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ABSTRACT

The cffects of pos.tural threat and the potential consequences of obstacle
contact on the obstacle negotiation kinemaucs among younger and clder adults were
examined. Seventeen older (OA; 7 males, 10 fernales; mean age, 68.94 £ 4.85) and
fifteen younger adults (YA; 5 males, 10 females; mean age, 22.53 T+ 2.77) negotated
virtual and real obstacles while walking at a self-determined velocity along a 7.2m
walkway under 4 different conditions of postural threat. Postural threat was
manipulated by varying the width (0.60m versus 0.15m) and height (floor versus
elevated (0.00m versus 0.60m)) of the walkway. Postural threat altered crossing
kinematics for all subjects. Specifically, age-related differences emerged with
increasing postural threat, however the changes observed among older adults were
considerably different from those of younger adults. Additionally, there was an effect
tor the potential consequences of obstacle confact, however, no age-related
differences emerged. These results revealed an effect for postural threat and obstacle
characteristics on the negotiation strategies of younger and older adults. Both
postural threat and obstacle charactenistics elicit conservative crossing kinesmatics in
younger and older adults. Specifically, these findings ilustrate age-dependent
differences in obstacle negotiation strategies and that postural threat affects older
adults diffecently than younger adults whereas the poteniial consequences of obstacle

contact affects younger and older adults equally.
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GENERAL INTRODUCTICN

The purpose of this thesis was to examine the effects of postural threat on
obstacle négofiation kinematics among younger and older adults. Two separate and
complete studies are presented. The behavioral kinematics used by older and younger
adults to negotiate an chstacle under conditions of postljral threat are examined in
the first study. The second study investigates the effects of the potential
consequences of obstacle contact on the negotiation kinematics of older and younger
adults. The general discussion addresses the relevance and contrbuuons of the
tindings of this thesis to the current hterature. Furthermore, the application of our
research findings to reduce the risk and occurrence of falls in both younger and older

adults are presented.



1. Background

One out of every three adults over the age of 65 falls each year (I'mnetts &
Speechley, 1989). These falls oécur durmg activities of .daﬂy living (AIDDL) such as
getting dressed, walking across the street, or negotiating an icy sidewalk. Of the 33%
of individuals experiencing falls each vear, 40% of these fallers are admutted to
hospitaj. Associated with falling during ADL are high medical costs, and loss of
independence and function (Begg & Sparrow, 2000). Furthermore, falling is the
leading cause of accident-related death in older adults (OA} (Pavol, Owings, Foley, &
Grabimer, 2001). Fall-telated deaths claim 185 of every 100,000 elderly lives each
year, almost ten tmes the number of deaths occurning among 15 to 29 year olds due
to motor velucle accidents (Winter, 1995). With current demographic trends
predicting an increase in the number of eldedy individuals to rise to 21% of the
Canadian population by 2006, it 1s likely that the high incidence of falls will increase
in future decades (Seatistics Canada - Recensement 1988) unless researchers can

dev_elop methods to maintain and improve the postural control of OA.

Why is the prevalence of falling among OA so high? Previous researchers
(Gabell, Stmons, & Wayak, 1985; Prudham & Evans, 1981; Ashley, Gryfe, & Annies,
1977) reported that 50% of all falls experienced by the elderly occur dunng gat.
Although 50% of falls occur dunng gait, the most common cause of reported falls
among OA was due to tripping over an obstacle (Overstall, Exton-Smith, lmms, &
Johnson, 1977). This finding suggests that obstacle detection and/or negotiation
abilities decline with age. Furthermore, a vanety of physiological and biomechanical
changes associated with aging may also alter the ability of OA to control gait and
avoid obstacles. Shumway-Cook and Woollacott (2001} reported that advanced age
contributes to a decrease m function in many of the sensory and motor systems that
are required for effecttve and safe locomotion. These age-related declines in
sensorimotor function have been associated with the high occurrence of falls among

the elderly (Woollacott & Tang, 1997; Alexander, 1994; Tinettt & Speechley, 1989)



and have been sugeested to contribute to OA being less able to anticipate,

compensate, and recover from a disturbance while walking.

The purpose of this general introduction is to provide an overview of the
current state of knowledge regarding obstacle negotiation ability among young and
older adults. To achieve this goal, T will review the terminology and fundamental
principles of biomechanics as they relate to postural control and gait. The first
section of this thesis details the age-related changes in the kinematics of locomotion.
The second section of this literature review provides an overview of the
sensorimotor and cognittve contributions to postural control and gait and targets
age-related changes in these areas. The effects of fear of falling on gait will also be
exammined. The final section addresses the issue of obhstacle avoidance and
summarizes the current literature regarding obstacle avoidance in the elderly for the

purpose of justifying the wotk presented in this thesis.

2 Pgosriral Control

2.1 Biomechanics and ‘Terminology of Postural Control During Standing

Postural control is the ability to control the position of the body in space for
the dual purposes of stability and onentation (Shumway-Cook & Woollacott, 2001).
In biomechanical terms, the position of the body may be described as the net
location of the body’s mass, or the center of mass (COM). To maintain balance and
prevent falls, the COM must remain within the lmits of the base of support (BOS)
(Shumway-Cook & Woollacotr, 2001). The BOS can be defined as the pomnts of
contact between the body and the support surface i a given situation (e, feet on a
sidewalk define the area known as the BOS). If the COM exceeds the Limuts of the
BOS, such as may occur following a nudge or a push, the body will become unstable
and a loss of equiibrium will occur unless compensatory actions counteract the
applied force. For example, a forward step would be taken following a bump to the

back that is of sufficient magnitude to displace the position of the COM beyond the



limits of the BOS. Thus step serves to adjust the dimensions of the BOS and ensure

the COM 1s in an appropnate position for the body to rematn upnight.

2.2 Postural Control During Locomeotion

It 15 known that most falls occur when the body 15 in motion and not dunng
static tasks (Maki & Mcllroy, 1996; Campbell, Borrie, & Spears, 1989). For example,
Maki and Mcllroy, (1996) indicated that 54% of falls are due to a slip, trip,
overstepping, or a BOS problem during weight transfer. These numbers remnforce
the fact that falling is caused during .quiet standing but more often during
locomotion. As 15 the case with upright stance, gait demands coordinating the
movements of the COM with those of the BOS. Unlike quiet standing however, gait
mvolves a series of continuous and controlled disequilibriums i which the COM 15
constantly exceeding and re-entering the limits of the BOS. To mutiate gait, the COM
must be accelerated beyond the limits of the BOS. The forward acceleration of the
COM s analogous to voluntarily faling forward (Winter, 1995). The resulting
relationship between the COM and the BOS produces a situation of disequilibrium
that must be counteracted to prevent instability. To prevent instability, the BOS is
adjusted anteriorly so that the COM 1s repositioned within the BOS. This continuous
forward movement of the body propels the COM forward and further steps occur.
- However, the motion of the COM beyond the BOS places the body in a state of
potential instability. Therefore, an individual 18 more vulperable to a loss of balance

1.OB) or a fall duning gait than during quiet standing or sitting.

2.2.1 Kinematics and Terminology of Locomotion

During gait, a series of steps are taken alternately between the left and right
lower limbs to produce patterned strides. A stride 1s defined by the distance traveled
between successive stance periods of a hmb (Winter, 1995). The terminology

assoctated with locomotton is llustrated in Figure 1. Relevant terms include: gait



cycle, step length, double limb suppori, simgle limb support, stance phase, swing

phase, lead toe off, trail toe off, lead heel contact, and trail heel contact.

—s — —b s  —p
;éﬁﬁaé& ﬁ

Gait cycle

Step length

Figure 1: Schematic diagram of a full gait cycle in forward human locomotion
(shown via arrows). Blue represents the lead Emb (i this case the limb that iitiates
gait) while red represents the trail lmb. The bold line indicates the double limb
support phase (DLS) when hoth feet are in contact with the ground. The dashed line
indicates the single hmb support phase (SLS) when one foot is contacting the
grounds. Stance phase of a lunb s defined as the time that ltmb is 10 contact with the
ground. Swing phasc of a lunb 1s defined as the time that hmb is not in contact with
the ground. Position terms: * = lead toe off, ** = trail toe off, *** = lead heel
contact, ¥*** = ¢rail heel contact. Note: a step is defined as the distance from toe off
of one limb to heel contact of the contralateral mb while a gait cycle 15 defined as
the toe off of one linb to the next toe off of the same himb.

During mid-pomnt of the swing phase, when the trail foot is closest to the
ground, the twe is traveling at its maximum hnear veloaty and is at its minimum
vertical displacement, less than lem above the ground (Winter, 1995; Winter, 1991).
Thus with a toe clearance height of less than 1em and maximum swing velocity, the
mid-point of the SLS phase may be considered the most dangerous phase of the gait

cycle.



2.2.2 Age Related Changes in the Kinematics of Gait

An abﬁndance 6f research evidence has demonstrated that OA walk differenty
than .younger adults (YA) (PfiﬂCG ét al., 1997, -Judge, COunpuu, & Davis, 1996;
Buchner et al., 1996; Alexander, 1994; Nuﬂ:; Marsdeﬁ, & Thompsoﬁ, 1993). For
example, Winter (1991) reported that OA walked with wider strides and shorter steps
compared to vounger adults (YA). Slower walking velocities among OA due to
Sllorteﬁed_ stride lengths and decreased stride velocity have also been documented by
Judge and colleagues (1996). In addition, it 1s also reported that A speand more time
n the DILS phase of gait than YA (Judge et al,, 1996; Winter, 1991; Murray, Kory, &
(Clarkson, 1969; Winter, Patla, Frank, & Walt, 1990; Winter et al., 1990). The DLS
phase 18 thought to be the more stable of the two gait phases since there are two feet
in contact with the walking surface. Therefore, the adoption of a longer DLS (61%
of the gait cycle) causes the walking velocity of OA to decrease (Judge et al.,, 1996). -
Speculation from these findings follows that OA are adopting a slower and
potentially more conservative walking strategy than YA (Judge et al., 1996; Winter,
1991; Murray et al., 1969).

It is known that the age-related changes in sensory function have a negative
impact on postural control (Woollacott, 1989). Although a decline of the sensory
systems negatively affects the ability of OA to avoid falling, there are many
alterations observed in the age—.associated musculoskeletal system that also provide
- explanation for the difficulty that OA demonstrate in maintaining their balance. For
example, muscular strength and joint range of motion (ROM) decrease signuficantly
with age (Amansson, Grimby, IHedberg, Rungren, & Sperling, 1978). As a result of
these physical declines, ROM for the hip and knee during normal gait do not
apptoach the limits of passive joint ROM among OA. This alteration implies that
QA are not reaching the potential ROM available. This discrepancy may be due to
articular disease or musculotendmous tightness (Judge et al,, 19906). Thus, the aging
process, combined with the body’s inherent instability, makes postural control and

locomotion an especially difficult rask for the elderly.



3. Obstacle Avoidance

During locomotion, it is rare to experience prolonged situations that are void
of clutter, crowds, or consteamnts. Indeed, external factors such as icy sidewalks,
pootly lit hallways, narrow walkways, and obstacles frequently contribute to the
challenge OA have in maintaining their balance. Tripping over obstacles 15 one of the
most common causes of reported falls in the elderly (Overstall et al., 1977). In fact,
uneven pavement was the leading cause of falls m one year (Crosbie & Ko, 2000). In
addition to taps over expected obstacles, OA have high rates of falling due to trips
over unexpected or saddenly appearing obstacles (Cao, Ashton-Miller, Schultz, &

Alexander, 1998).

The movement solution used to avoird an obstacle is referred to as the
avoidance strategy. These strategies have been defined by Austin and colleagues
(1999) based on the observaton that individuals adopt stereotypical movement
patterns to avoid an obstacle in their path. Four movement patters were defmed for
all age groups: 1. increasing vertical clearance as obstacle height increased; 2. neither
increasing ot decreasing vertical clearance based on obstacle height; 3. decreasing
vertical clearance with increasing obstacle height; 4. interference (obstacle contact)
(Austin et al, 1999). Similarly, Chen and colleagues have classified the possible
movement patterns for obstacle avoidance: step shortening (55), step lengthening
LS) (Chen, Ashron-Miller, Alexander, & S5chultz, 1994a; Chen, Ashton-Miller,
Alexander, & Schultz, 1991} and normal (NS). 88 mnvolves shortening the normal gait
stride to contact the walkway before the obstacle and to take an extra crossing step,
while LS involves a lengthening of the nommal stride to take a longer crossing step,
(Chen et al., 1994a; Chen et al., 1991) and NS shows a normal gait pattern dugng

obstacle negotiation.



3.1 Biomechanics of Safely Negotiating An Obstacle

When stepping over an obstacle the first limb to cross the obstacle is the lead
limb, the second to cross s the trail imb. A successful crossing 1s defined as crossing
both limbs over the obstacle wathout contacting it and creating a stable BOS wirhin -
which the COM is located. Specifically, obstacle crossing requires that the lead limb
clear the obstacle and create a stable foot positton that contaibutes to a stable BOS,
and that the trail imb avoid contact with the obstacle during the swing phase of trail
limb crossing (Crosbie & Ko, 2000). The movement of each limb durnng obstacle
crossing may be described by independent kinematic parameters. The lead limb
reaches a higher toe clearance in the vertical direction as well as increased vertical hup
position. In addition, the lead hmb travels with a higher velocity compared to the
swing limb (Patla, Rietdyk, Martin, & Prentice, 1996). Pata and colleagues (1996)
reported that the traid lunb appeared to move ‘automatically’ being pulled forward by
the momentum of the COM. Since the lead limb 1s bemng guided visuvally and the traid
limb 1s not, (Patla, Prentice, Rietdyk, Allard, & Martin, 1999) the only requirement
for the tratl kmb 18 to avoid obstacle contact. Observations have been made that
ndividuals may prefer to use one limb over the other as their dominant lead limb.
This may be a positive strategy because one ltmb may be physically fit for lead hmb
requirements but it may also be a detriment to the individual. For example, limb
preference may retlect dominance and consistency in the crossing hmb used. If
presented with an obstacle in a nme-restrcted situation, it may be impossible to
adjust one’s stride to mantam the use of a dominant crossing imb. For example, a
ame restricted situation may require the use of a S8 (Chen, Ashton-Miller,
Alexander, & Schultz, 1994b) forcing the non-domunant limb to become the lead

limb creating ustability to the individual during obstacle crossing,

Regardless of the strategy used during obstacle negotiation, successful
avoidance requires that the hips are elevated and walking speeds are slowed (Pavol et
al., 2001). These accommodations help to ensure sufficient time and joint ROM for
obstacle crossing. Interestingly, Chou and colleagues (2001b) reported that

individuals adopt a forward lean during obstacle avoidance. It was speculated that



although a forward lean served ro minimize vertical displacement of the COM, thus
alignment does place individuals in a posittion of potential risk. The reason for this
increased fall risk is that the length of the moment arm for the head, arms and trunk
(HAT) segment around the hip joimnt 1s increased by forward mclination.
Consequently, the gravitaconal torque of the HAT segment increases, and threatens

the possibility of a forward fall unless adequate oppositional torque 1s generated.

4. Factors Affecting Obstacle Negotiation Kinematics

Obstacle negotiation requires mtegration between the cognitive and
sensorimotor systems. Potential dangers must be recognized and an appropriate
response must be selected by the central nervous system (CNS) and executed by the
motor system. This response is referred to as a negotiation strategy and is defined as
the patterns of movement adopted to avoid obstacle contact and a subsequent fall

(Chen et al., 1994a; Chen et al,, 1991).

4.1 Effects of Environmental Context on Obstacle Avoidance

Research indicates that there are a number of factors that influence
negotiation strategies. Environmental context can be described as the components of
the external environment that have an effect on our balance. For example, stepping
on an icy surface, walking in a crowded hallway or negotating a curh are
cotﬁponents of environmental context. The availabihity of negotiation strategies may
be lumuted by the constraints imposed by the environmental context. For example,
the need to step with one foot directly in tront of the other in a crowded place
(Daubney & Culbam, 1999) may lunit the number of safe, avatlable responses, Patla
and colleagues (1999) manipulated environmental context by presenting a light spot
at various positions along a walkway. When the light was presented, individuals were
asked to avoid stepping on the spot The results from this study revealed that foot

placement strategies are highly dependent on the relationship between the



undesirable landing area and normal foot placement. This study simulates an altered
environmental context by forcing subjects to place their foot in undesirable landing
areas. In a true environment, mdividuals encounter real obstacles such as patches ot
ice or roots on a path that they wish to avoid. If alternative response strategies are
limited, such as when walking on a narrow path, stability may have to be

compromised.

4.2 Effects of Available Response Times or Obstacle Avoidance

Available response time (ART) 15 the amount of ume that an individual has
to avowd contacting an obstacle. ART is measured as the estimated time between
obstacle appearance and obstacle contact, should the individual continue to walk at a
constant speed. Chen and colleagues (1994b) have demonstrated that the frequency
of successtul negoniation is strongly correlated with ART. However, when ART is
minimized, individuals alter their gait patterns to adopt movement strategies that take
less time for balance recbvery (Patla et al., 1999). For example, when confronted
with an obstacle and given a short ART, individuals may opt to use a LS to allow for
more tume to implement a change in the swing limb trajectory (Patla et al., 1999).
Similar avoidance strategies have been reported when individuals are asked to stop
suddenly before an obstacle. Cao and colleagues, (1998} reported that OA did not
pérform as well as YA when given the same ART and asked to stop before an
obstacle. Results revealed that OA required longer ARTs to stop safely and avoid
Conté,ctiﬂg an obstacle. Finally, longer ARTs resulted 1 individuals selecting a toe otf
position that was more posterior to the obstacle compared to the toe off positions
chosen when shorter ARTs were provided (Chen et al., 1994b). This 