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Abstract 

 Understanding speech is a difficult computational problem yet the human brain 

does it with ease. Entrainment of oscillatory neural activity to acoustic features of speech 

is an example of dynamic coupling between cortical activity and sensory inputs. The 

phenomenon may be a bottom-up, sensory-driven neurophysiological mechanism that 

supports speech processing. However, cognitive top-down factors such as linguistic 

knowledge and attentional focus affect speech perception, especially in challenging real-

world environments. It is unclear how these top-down influences affect cortical 

entrainment to speech. We used electroencephalography to measure cortical entrainment 

to speech under conditions of acoustic and cognitive interference. By manipulating the 

bottom-up, sensory features in the acoustic scene we found evidence of top-down 

influences of attentional selection and linguistic processing on speech-entrained activity. 

  



iv 
 

Table of Contents 
 

Abstract .......................................................................................................................................... iii 

Table of Contents ......................................................................................................................... iv 

List of Figures ............................................................................................................................... vi 

List of Abbreviations .................................................................................................................. vii 

1 Introduction ................................................................................................................................ 1 

1.1 What is speech to a brain? .................................................................................................. 1 

1.2 The potential functions of cortical speech tracking ........................................................ 5 

1.2.1 Syllabic parsing ............................................................................................................ 6 

1.2.2 Auditory scene analysis .............................................................................................. 7 

1.2.3 Attentional selection .................................................................................................... 8 

1.3 Entrainment to other speech features............................................................................. 10 

1.4 Intelligibility or acoustics? ............................................................................................... 12 

1.5 Top-down factors affecting speech tracking ................................................................. 15 

2 The Effects of Distractor Set-size on Neural Tracking of Attended Speech .................... 16 

2.1 Introduction ....................................................................................................................... 16 

2.2 Methods .............................................................................................................................. 20 

2.2.1 Participants ................................................................................................................. 20 

2.2.2 Stimuli and task .......................................................................................................... 20 

2.2.3 EEG analysis ............................................................................................................... 24 

2.3 Results ................................................................................................................................. 26 

2.3.1 Correct responses ....................................................................................................... 26 

2.3.2 Analysis of errors ....................................................................................................... 27 

2.3.3 EEG results .................................................................................................................. 28 

2.4 Discussion .......................................................................................................................... 33 

3 Cortical Entrainment to Speech Occurs Without Broadband Envelope Dynamics ........ 42 

3.1 Introduction ....................................................................................................................... 42 

3.2 Methods .............................................................................................................................. 45 

3.2.1 Participants ................................................................................................................. 45 

3.2.2 Stimuli .......................................................................................................................... 45 

3.2.3 Procedures ................................................................................................................... 47 

3.2.4 EEG analysis ............................................................................................................... 48 

3.3 Results ................................................................................................................................. 50 

3.3.1 Behavioral data ........................................................................................................... 50 

3.3.2 EEG results .................................................................................................................. 51 

3.4 Discussion .......................................................................................................................... 54 

4 The Effects of Periodic Interruptions on Cortical Entrainment to Speech ....................... 60 

4.1 Introduction ....................................................................................................................... 60 

4.2 Methods .............................................................................................................................. 63 

4.2.1 Subjects ........................................................................................................................ 63 

4.2.2 Presentation ................................................................................................................ 63 

4.2.3 Stimuli .......................................................................................................................... 63 



v 
 

4.2.4 Experimental paradigm............................................................................................. 65 

4.2.5 EEG recording and analysis ...................................................................................... 66 

4.2.6 Statistical analysis ...................................................................................................... 69 

4.3 Results ................................................................................................................................. 70 

4.4 Discussion .......................................................................................................................... 79 

5 Conclusions ............................................................................................................................... 86 

References .................................................................................................................................... 93 
 
 

  



vi 
 

List of Figures 

Figure 1.1 ..................................................................................................................................... 3 

Figure 2.1 ..................................................................................................................................... 21 

Figure 2.2 ..................................................................................................................................... 28 

Figure 2.3 ..................................................................................................................................... 31 

Figure 2.4 ..................................................................................................................................... 32 

Figure 2.5 ..................................................................................................................................... 33 

Figure 3.1 ..................................................................................................................................... 47 

Figure 3.2 ..................................................................................................................................... 51 

Figure 3.3 ..................................................................................................................................... 52 

Figure 3.4 ..................................................................................................................................... 54 

Figure 4.1 ..................................................................................................................................... 65 

Figure 4.2 ..................................................................................................................................... 71 

Figure 4.3 ..................................................................................................................................... 73 

Figure 4.4 ..................................................................................................................................... 75 

Figure 4.5 ..................................................................................................................................... 79 

  



vii 
 

List of Abbreviations 

ANOVA – Analysis of variance 
DISS – Global topographic dissimilarity 
ECoG – Electrocorticography 
EEG – Electroencephalography 
FDR – False discovery rate 
HG – Heshcl’s gyrus 
MEG – Magnetoencephalography 
RII – Ratio of intrusion to insertion errors 
RMS – Root-mean square 
(m)TRF – (multivariate) Temporal response function 
 

 

 



1 
 

1 Introduction 

 Understanding speech is a difficult computational feat, yet the human brain 

possesses an uncanny ability to extract meaning from the complex acoustic signal that 

makes up spoken language. Even more remarkable is that the ability to comprehend 

speech is surprisingly robust: people can pick out one voice from among many and 

understand what is being said and can understand speech even despite other loud noises 

in the environment. The faculty for understanding speech is so predominant that people 

perceive and understand speech that has been interrupted by silences – an experience 

anyone with poor mobile phone reception can attest to. Even if the loss of signal leads to 

the complete removal of speech information the brain is somehow able to restore the 

perception of speech and essentially make something coherent out of literally nothing. In 

this thesis, we explore the neural mechanisms that allow the brain to understand speech 

in challenging situations: In Chapter 2 we consider the role that alignment between 

temporal modulations in the physical speech signal and oscillatory electrical activity in 

the brain may play in maintaining attention to one talker among many others. In 

Chapter 3 we examine the role cortical entrainment to speech plays in segregating 

behaviorally relevant speech from background noise. In Chapter 4 we explore how 

speech tracking may influence neural mechanisms responsible for repairing the percept 

of interrupted speech. 

1.1 What is speech to a brain? 

From a physical standpoint speech is a dynamic, complex acoustic signal. Speech 

has a complex spectrum; the speech signal consists of energy at a number of frequencies 
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and the distribution between frequencies changes from moment to moment. Somehow, 

the brain can process slight differences in the spectrotemporal properties of the speech 

signal in order to extract meaningful information. 

Spoken language can be broken down along multiple hierarchically organized 

levels. Phonemes represent the atomic level of speech sounds in that they represent the 

smallest level at which different sound patterns can change the semantic meaning of a 

word or utterance. The syllable, consisting of a single vowel phoneme with or without 

surrounding consonant phonemes, represents the next unit of speech sound. Words are 

formed by one or more syllable-units, and utterances are made up of one or more words. 

These hierarchical levels correspond to how speech is synthesized into language in the 

mind of the listener. Thus, speech consists of a series of phonemes, organized into 

syllables, which are organized into words, which make up an utterance, which carries 

some sort of meaningful message. 
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Figure 1.1: Speech waveform (top) and spectrogram for the sentence “pour the stew 

from the pot into the plate.” The acoustic envelope reflects the energy dynamics of the 

speech signal. 

 

 The basic computational problem of understanding speech is fundamentally one 

of segmentation. The acoustic signal that arrives at the ear does not come with 

instructions or obvious markers of the boundaries between phonemes, syllables, words, 

or even utterances. Consider the utterance, “pour the stew from the pot into the plate,” 

(Figure 1.1) shown as a waveform - the acoustic signal generated from a speaker - and as 

a spectrogram which is analogous to the signal as it is broken down at the cochlea in the 

early auditory system of the brain. There are not obvious and consistent gaps between 

each phoneme. So how then, does the brain solve this segmentation problem? 



4 
 

 An important feature of speech is that it possesses some degree of temporal 

regularity. If we re-examine the spectrogram in Figure 1.1 we can see distinct and 

regular bursts of energy occurring at a rate of roughly 5 Hz. These low-frequency 

fluctuations in broadband energy are the acoustic or temporal envelope of speech. 

Acoustic envelope modulations at a rate of between 3-7 Hz seem to be a general feature 

of speech, corresponding to the syllabic rate across languages (Pellegrino, Coupé, & 

Marsico, 2011) and was potentially preceded by the development of communicative 

facial gestures in non-human primates (Ghazanfar, Morrill, & Kayser, 2013) since it also 

closely matches human mouth movement rates while speaking (Chandrasekaran, 

Trubanova, Stillittano, Caplier, & Ghazanfar, 2009). Speech also contains modulations at 

lower frequencies (1-2 Hz) which correspond to prosodic contours and higher 

frequencies (30-50 Hz) corresponding to phonemes which typically last 20-40 ms in 

duration (Arnal & Giraud, 2012; Ghitza & Greenberg, 2009; Poeppel, 2003).  

 Recent electrophysiological results have sparked increased interest in what kind 

of potential computational role the acoustic envelope may play in facilitating speech 

comprehension. Cortical entrainment of auditory cortical activity to the temporal 

envelope of speech was first demonstrated in magnetoencephalography (MEG) (Ahissar 

et al., 2001; Luo & Poeppel, 2007), and subsequently observed in electroencephalography 

(EEG) (Aiken & Picton, 2008) and electrocorticography (ECoG) (Nourski et al., 2009). 

These studies found that the phase of oscillatory neural activity, at the same modulation 

rate as the envelope, tracked the acoustic envelope of speech. Later studies also found 

that, in addition to phase entrainment of low-frequency (<8 Hz) activity, modulations in 
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power at higher frequencies in the gamma-band range (60-170 Hz) were also related to 

modulations in the speech envelope (Morillon, Liégeois-Chauvel, Arnal, Bénar, & 

Giraud, 2012; Pasley et al., 2012). The underlying neural mechanisms and functional 

roles of the speech envelope tracking response remains controversial. Neural 

entrainment to the acoustic envelope has been observed for non-speech sounds and 

unintelligible speech (Lalor, Power, Reilly, & Foxe, 2009; Luo & Poeppel, 2007; Millman, 

Prendergast, Hymers, & Green, 2013; Steinschneider, Nourski, & Fishman, 2013; Y. 

Wang et al., 2012) which suggests that envelope tracking is a general bottom-up 

stimulus-driven response. However, a number of other studies have found that the 

envelope tracking of speech is modulated by top-down cognitive functions such as 

attention and intelligibility (Ding & Simon, 2012a; Hambrook & Tata, 2014; Kerlin, 

Shahin, & Miller, 2010; Mesgarani & Chang, 2012; Peelle & Davis, 2012; Peelle, Gross, & 

Davis, 2013; Zion Golumbic, Ding, et al., 2013).  

1.2 The potential functions of cortical speech tracking 

In the following section we will discuss possible functional roles of neural 

entrainment to the acoustic envelope of speech. There are a number of hypothesized 

cognitive and computational functions that speech tracking may fulfill. Some functions 

(syllabic parsing) are definitively speech specific, while others (attentional selection, 

auditory scene analysis) are more general and may reflect adaptations to a broad range 

of pseudo-rhythmic acoustic stimuli. The hypothesized functions of cortical entrainment 

to the acoustic envelope share common proposed mechanisms based on two important 

observations: First, neural excitability is modulated by oscillatory phase (Volgushev, 
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Chistiakova, & Singer, 1998). Second, the momentary strength of connections between 

neural ensembles is modulated by their relative phase relationship at any given moment 

(Fries, 2005, 2015). Taken together these observations describe a potential mechanism by 

which entrainment to an external rhythm (e.g. the speech envelope) can determine the 

sensitivity of auditory areas and ad hoc cortical networks that support speech processing 

in various ways. 

1.2.1 Syllabic parsing 

 The correspondence between the syllabic rate, which is roughly 5 Hz, and theta-

band (4-8 Hz) oscillatory activity entrained to the acoustic envelope has led to the 

suggestion that entrainment may reflect an active parsing mechanism that is responsible 

for segmenting the continuous acoustic signal into syllabic and phonemic units. The 

boundaries between syllables are relatively well encoded by the acoustic envelope of 

speech (Ghitza, 2013; Greenberg, 1996; Stevens, 2002). It has been hypothesized that by 

entraining oscillatory activity to the syllable rate as it is encoded by the envelope, the 

brain creates “windows” of enhanced sensitivity in order to optimally process the 

spectrotemporal features that distinguish phonemes (Giraud & Poeppel, 2012). The 

TEMPO model (Ghitza, 2011) describes a more formal connection between the envelope 

and oscillatory activity: Theta oscillations entrain to the envelope acting both as a 

master-clock in the oscillator array and modulating the beta and gamma oscillations (at 

frequencies 4x and 10x the theta frequency respectively) which correspond to dyadic 

groupings of phonemes and the rapid spectrotemporal modulations within phonemes. 

This system of cascaded oscillators parses the acoustic stream into linguistic “chunks”. 
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These “chucks” are decoded by template-matching the syllable and phoneme level 

information chunks to internal models of the temporal and spectrotemporal features of 

syllables and phonemes respectively. According to this hypothesis envelope entrainment 

reflects actively segmenting and decoding speech. The hypothesized role of speech 

envelope tracking is supported by behavioral studies that found that speech 

intelligibility (Ghitza & Greenberg, 2009) and envelope tracking (Kayser, Ince, Gross, & 

Kayser, 2015) is reduced in response to irregular speech rates produced by manipulating 

the length of pauses between syllables or words. 

1.2.2 Auditory scene analysis 

 Adding complexity to the problem of understanding speech is the fact that we 

rarely hear a single voice in clear detail and isolated from other competing sounds. 

Therefore, the neural mechanisms for understanding speech must contain or interact 

with mechanisms for isolating the target speech from the acoustic mixture. Isolating one 

sound or set of sounds from a mixture is commonly referred to as auditory scene 

analysis and functions by grouping sounds into “streams” based on features including 

frequency, pitch, timbre, timing, location, and applied contextual cues (Bregman, 1990). 

Traditional neurological hypotheses of auditory scene analysis maintain that sound 

segregation is achieved by differential responses in spatially well-separated auditory 

neuron populations tuned to the acoustic features that support the formation of distinct 

streams (Bee & Klump, 2005; Fishman, Arezzo, & Steinschneider, 2004; Fishman, Reser, 

Arezzo, & Steinschneider, 2001; Micheyl, Tian, Carlyon, & Rauschecker, 2005; 

Pressnitzer, Sayles, Micheyl, & Winter, 2008). While this theory is convincing for 
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streaming based on spectral (frequency, pitch, timbre)  similarity because there is well 

defined tonotopy throughout the auditory system, and streaming based on spatial 

similarity because acoustic space is encoded by topographically sensitive neuron 

populations in primary auditory cortex (Middlebrooks, Dykes, & Merzenich, 1980; 

Mrsic-Flogel, King, & Schnupp, 2005), it cannot account for streaming based on the 

relative timing of sounds; for example, it fails to predict that simultaneously presented 

tones that are well separated in frequency will be perceived as a single stream (Elhilali, 

Ma, Micheyl, Oxenham, & Shamma, 2009). Shamma et al. (2011) have suggested that 

temporal coherence, both between components of an acoustic stream and the activity of 

neural populations encoding that component, may serve to bind components of a stream 

together. In this temporal coherence model of scene analysis, selective attention acts both 

to enhance the representation of salient acoustic features (Fritz, Elhilali, David, & 

Shamma, 2007) and modulates the timing of responses to maintain coherence among 

neural ensembles representing the target stream (Elhilali, Xiang, Shamma, & Simon, 

2009). 

1.2.3 Attentional selection 

 Maintaining the representation of a single stream within the brain is known as 

selective auditory attention and it provides a systematic enhancement of the 

representation of the selected stream within the brain (Fritz et al., 2007; Kaya & Elhilali, 

2017). Entrainment of low-frequency oscillatory activity has been suggested as a 

potential neurophysiological mechanism for enhancing the cortical representation of 

rhythmic stimulus both between (Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; 
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Schroeder & Lakatos, 2009) and within (Lakatos et al., 2013; Zion Golumbic, Ding, et al., 

2013) stimulus modalities.  

A two-talker paradigm (Cherry, 1953), in which two streams of speech are 

presented simultaneously while listeners are instructed to focus attention on a target 

stream while ignoring the other, competing stream is commonly used to study attention 

to speech. The addition of distractor speech to the acoustic scene reduces speech 

intelligibility in a complex manner depending on several factors related to the two 

speech signals including their spectral similarity, temporal correlation, and spatial 

proximity (Bronkhorst, 2015). Many electrophysiological studies using the two-talker 

paradigm have found that tracking of attended speech streams is more robust than 

tracking of simultaneously presented unattended speech (Ding, Chatterjee, & Simon, 

2014; Ding & Simon, 2012b, 2012a; Hambrook & Tata, 2014; Horton, D’Zmura, & 

Srinivasan, 2013; Kerlin et al., 2010; Kong, Mullangi, & Ding, 2014; Mesgarani & Chang, 

2012; Power, Foxe, Forde, Reilly, & Lalor, 2012; Rimmele, Zion Golumbic, Schröger, & 

Poeppel, 2015; Zion Golumbic, Ding, et al., 2013). Enhanced tracking of the attended 

speech stream is associated with enhanced perceptual awareness of the target speech 

(Hambrook & Tata, 2014; Mesgarani & Chang, 2012).  

Some part of this attentional effect may be explained by a general attentional 

enhancement of auditory features represented in sensory cortex; however, selective 

speech tracking responses have also been observed in areas outside of sensory cortex but 

only in response to the attended speech stream (Zion Golumbic, Ding, et al., 2013). This 
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result suggests that one function of attentional modulation of cortical speech tracking is 

to provide “temporal binding” between neural ensembles in auditory cortex and higher-

order areas responsible for transforming sound into speech in the brain. The theory of 

communication through coherence (Fries, 2005, 2015; Womelsdorf & Everling, 2015) 

suggests that by linking the phase of oscillatory activity in one brain area to the phase of 

oscillatory activity in another communication between the two areas becomes more 

effective and selective. The selective entrainment hypothesis (Schroeder & Lakatos, 2009; 

Zion Golumbic, Cogan, Schroeder, & Poeppel, 2013) proposes that attention phase-locks 

oscillatory activity in higher-order speech-specific brain areas to oscillatory activity in 

the auditory cortex, effectively selecting the acoustic signal that is being tracked by the 

auditory cortex.  

1.3 Entrainment to other speech features 

 While the discussion of neural entrainment to speech has thus far focused on the 

acoustic envelope as the entraining speech feature, both because it is easily computed 

and because its modulation rate matches the frequency of easily measurable neural 

oscillations, there is substantial evidence that suggests entrainment is driven by other 

acoustic and linguistic features, and not the acoustic envelope per se. In one EEG study 

Obleser et al. (2012) found that comparable phase-tracking occurred for both amplitude 

modulated complex tones and frequency modulated complex tones which had a 

constant amplitude (and therefore a flat acoustic envelope). An MEG study by Doelling 

et al. (2014) used a noise vocoding scheme to generate speech samples containing 

envelope information based on the broadband acoustic envelope, the acoustic envelope 
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within discrete frequency bands, an artificial envelope consisting of peaks of uniform 

height and shape, and an acoustic envelope without modulations between 2-9 Hz. They 

found that both the intelligibility of the synthesized speech and the neural tracking of 

speech was most sensitive to manipulation of the acoustic envelope within discrete 

frequency bands, suggesting that the acoustic speech tracking response actually reflects 

sensitivity to temporal modulations within frequency bands rather than across all 

frequencies. This notion is confirmed by experiments that effectively eliminate 

broadband envelope fluctuations in the acoustic scene by presenting carefully 

modulated noise concurrent with speech; despite the removal of the broadband acoustic 

envelope cue there is a robust speech-tracking response when actively (See Chapter 3) 

and passively (Zoefel & VanRullen, 2016) listening to speech. 

 Many studies have also reported neural entrainment to linguistic features of 

speech. Studies have identified cortical entrainment responses that reflect the encoding 

of phonetic articulatory features in both ECoG (Mesgarani, Cheung, Johnson, & Chang, 

2014) and EEG (Di Liberto, O’Sullivan, & Lalor, 2015; Di Liberto, Crosse, & Lalor, 2018; 

Di Liberto, Lalor, & Millman, 2018). Kayser et al. (2015) found that disrupting the regular 

rate of speech reduced pre-frontal delta-band activity phase-locked to the speech 

envelope while the evoked responses to acoustic transients were maintained, suggesting 

that low-frequency phase-locking responses cannot be explained solely by evoked 

responses to acoustics; the low-frequency speech tracking response must reflect some 

degree of neural entrainment of oscillatory activity. A number of interesting results have 

emerged based on hierarchically constructed isochronous speech synthesis techniques in 
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which syllables occur isochronously at a frequency of 4 Hz while words, phrases, and 

sentences constructed from those syllables occur at distinct (lower) frequencies. 

Crucially, for speech constructed in this manner, the acoustic envelope only provides 

cues regarding syllable boundaries – tracking of higher-order structures reflects 

entrainment based on the abstract linguistic connections between syllables and not 

acoustic features. Using this kind of stimulus while recording ECoG, Ding et al. (2016) 

found evidence of systematic neural entrainment to higher-order features (i.e. words, 

phrases, and sentences), as well as entrainment to syllabic features that was not 

associated with non-speech acoustic stimuli. Importantly, entrainment to higher-order 

features was dependent on listeners understanding the presented speech: English 

speakers did not entrain to Chinese words or phrases, and Chinese speakers did not 

show entrainment to English words or phrases. A subsequent EEG study by Makov et al. 

(2017) replicated the finding that the intelligibility of speech was crucial to tracking 

higher-order features and found that these higher-order structures were not tracked in 

sleeping listeners. Taken together these results suggest that neural entrainment to speech 

is not limited to theta-band tracking of the acoustic envelope, but rather reflects 

entrainment to phrasal/prosodic structures as well. 

1.4 Intelligibility or acoustics? 

 The relationship between neural entrainment to speech acoustic features and 

speech intelligibility has been persistent. The finding that neural entrainment to a speech 

signal modulates the intelligibility of that speech signal would indicate that entrainment 

to speech plays a mechanistic role supporting speech comprehension. In fact, a number 
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of studies have found that delta- and theta-band speech tracking is enhanced for 

intelligible versus unintelligible speech (Di Liberto, Lalor, et al., 2018; Doelling et al., 

2014; Gross et al., 2013; Park, Ince, Schyns, Thut, & Gross, 2015; Peelle et al., 2013), native 

vs foreign-language speech (Pérez, Carreiras, Gillon Dowens, & Duñabeitia, 2015), and 

comprehended vs misunderstood speech (Hambrook & Tata, 2014; Mesgarani & Chang, 

2012; Steinmetzger & Rosen, 2017). However, several studies have failed to replicate the 

apparent connection between speech tracking and intelligibility and thus must be 

reckoned with. Howard and Poeppel (2010) found no differences in speech-locked theta-

band activity for normal versus time-reversed speech, despite the time-reversed speech 

being entirely unintelligible; however, we note that their behavioral task involved 

matching two consecutively presented speech samples – a task that does not require 

explicit linguistic processing. Similarly, Pena and Melloni (2012) found low-frequency 

speech tracking activity did not differ for native versus foreign language speech; yet, we 

note again that their behavioral task did not require explicit linguistic analysis as it 

involved matching a brief sample probe, drawn from the pool of speech stimuli, to the 

previously presented speech sample. Millman et al. (2015) used three brief speech 

samples rendered unintelligible by processing the speech stimuli using a tone-vocoder 

with only 3 frequency channels which was rendered “intelligible” through a perceptual 

training process in which a degraded speech stimulus was presented in sequence with 

the unprocessed speech stimulus until listeners indicated that they now found the 

degraded stimulus intelligible. They found no difference between the pre- and post-

training speech tracking response, even though post-training the vocoded speech was 
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rated as intelligible by the listeners. Once again, we note that the purported 

improvement in intelligibility may be explained by simply perceptually mapping the 

degraded, vocoded speech to the intact speech rather than a perceptual restoration of the 

degraded speech itself; the mechanism implied by intelligibility improvement in the 

former case would not explicitly require linguistic processing. Studies using a similar 

paradigm, in which the perception of speech degraded by vocoding is restored through 

presentation of the un-vocoded speech, have found that “priming” degraded speech in 

this manner enhances tracking of phonetic features in the primed, degraded speech (Di 

Liberto, Crosse, et al., 2018; Di Liberto & Lalor, 2016; Di Liberto, Lalor, et al., 2018). 

Finally, Zoefel and VanRullen (2016) reported similar low-frequency tracking of normal 

and time-reversed speech; their behavioral task involved detection of a tone-pip 

embedded in the speech signal which, again, does not explicitly require linguistic 

processing. Given the number of studies that have found a connection between speech 

intelligibility and the neural entrainment to speech, and the apparent commonality 

between studies that have failed to replicate this effect, we suggest that entrainment to 

speech is related to its intelligibility through focused top-down mechanisms that are 

brought to bear only when the speech is task-relevant and understandable as speech. In 

our view the speech tracking response reflects the combination of stimulus-driven, 

bottom-up activity related to the features of the acoustic signal itself, and top-down 

modulatory activity mediated by cognitive processes including: task demands, prior 

knowledge, and contextual factors. 
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1.5 Novel thesis contributions: Top-down factors affecting speech tracking 

  In this thesis we explore the influence of top-down factors affecting cortical 

speech tracking responses to speech signals in complex acoustic scenes. Several ECoG 

studies have shown that activity in higher-order brain areas modulated speech-related 

auditory activity based on attention (Zion Golumbic, Ding, et al., 2013) and speech 

intelligibility (Ding, Melloni, et al., 2016; Leonard, Baud, Sjerps, & Chang, 2016), which 

suggests that neural entrainment to speech in auditory cortex is subject to top-down 

modulation by non-auditory areas. In Chapter 2 we consider cortical responses to target 

and distractor speech streams in a multi-talker environment. While previous studies 

have described an enhancement of neural entrainment to attended versus ignored 

speech in two-talker paradigms, we aimed to expand on that result by testing the effect 

of increasing the set-size of distractors in the acoustic scene. We also consider a possible 

mechanism of distraction in which to-be-ignored speech signals intrude on perception 

due to their actively being tracked in place of the to-be-attended speech. In Chapter 3 we 

question the role of the broadband acoustic envelope as a key feature of speech that 

enables entrainment by embedding the speech signal in a background of carefully 

modulated noise to eliminate amplitude fluctuations in the acoustic scene and we 

describe a novel component of the speech-tracking response related to segregating 

speech from background noise. In Chapter 4 we consider entrainment to acoustic and 

phonetic features during interrupted speech and examine the relationship between 

neural speech tracking and perceptual restoration of noise-interrupted speech. 
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2 The Effects of Distractor Set-size on Neural Tracking of Attended Speech 

2.1 Introduction 

The perception of natural speech in real-world environments requires the 

auditory system to extract a complex, dynamic acoustic signal from a complex 

background.  A typical acoustic scene contains a mixture of sounds emitted from any 

number of sources, yet the human auditory system is able to routinely isolate a single 

voice from the mixture and extract meaningful information from it. This phenomenon, 

and the associated computational challenges, are commonly referred to as the “cocktail 

party problem” (Cherry, 1953). Despite more than half a century of dedicated study of 

this problem, the neural mechanisms that enable the human brain to solve the cocktail 

party problem and understand speech in challenging acoustic environments have not 

been fully elucidated.  Recent work on selective attention has begun to elucidate the 

importance of the low-frequency dynamics that are inherent to speech stimuli. 

 Selective attention can enhance perception and memory of a single attended 

voice, even in environments with competing sound sources (Broadbent, 1952; Treisman, 

1964). Relative differences in loudness, spectral distinctiveness, spatial separation, and 

similarity between temporal envelopes are known to influence the discriminability of 

target speech in environments with two competing speakers (Arbogast, Mason, & Kidd, 

2002; Bronkhorst, 2015; Brungart, 2001), while adding more distractors to the scene can 

also impair perception of the target stream (Brungart, Simpson, Ericson, & Scott, 2001; 

Ericson, Brungart, & Brian, 2004). 
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 Since speech allows us to communicate in noisy environments, a selective 

attention mechanism is fundamentally important to the perception of speech. There is 

limited processing of unattended speech (Cherry, 1953; Holender, 1986; Lachter, Forster, 

& Ruthruff, 2004; Treisman, 1964), however the exact limits remain a matter of some 

controversy (cf. Aydelott, Jamaluddin, & Nixon Pearce, 2015; Rivenez, Guillaume, 

Bourgeon, & Darwin, 2008). Neurobiologically, attention may enhance speech 

comprehension by increasing the brain’s sensitivity to physical features related to the 

attended speech stream, while decreasing sensitivity to the features of competing sounds 

(Kaya & Elhilali, 2017; Knudsen, 2007; Lakatos et al., 2013) and by strengthening the 

relative connection amongst language processing neural networks (Giraud & Poeppel, 

2012; Hickok & Poeppel, 2007; Morillon et al., 2012; Vander Ghinst et al., 2016).  

 Two inter-related neural mechanisms have recently been proposed to explain 

how the brain solves the cocktail party problem. These are based on two important 

neurophysiological results: First, neural sensitivity is modulated by subthreshold, low-

frequency oscillations of the membrane potential (Fries, 2005; Volgushev et al., 1998). 

Second, that the phase of oscillations in auditory cortex tracks low-frequency amplitude 

modulations in speech signals (Abrams, Nicol, Zecker, & Kraus, 2008; Ahissar et al., 

2001; Hertrich, Dietrich, Trouvain, Moos, & Ackermann, 2012; Luo & Poeppel, 2007) 

(low-frequency phase tracking). Thus, the selective entrainment hypothesis (Schroeder & 

Lakatos, 2009; Zion Golumbic, Poeppel, & Schroeder, 2012) proposes that the phase-

tracking of low-frequency modulations of a speech signal by neuroelectric oscillatory 

activity increases cortical sensitivity to the target acoustic stream. By extension, selective 
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entrainment also reduces sensitivity to the spectrotemporal features of distractor streams 

to which neuroelectric oscillations are not entrained. A second, segmentation focused 

hypothesis suggests that low-frequency modulations enhance the segmentation of the 

continuous acoustic speech signal into discrete syllables, which are subsequently 

analyzed by the brain for their linguistic content (Ghitza, 2011; Ghitza & Greenberg, 

2009; Greenberg, 1996). These hypotheses are not mutually exclusive, rather they are 

linked by a common proposed mechanism and taken together they suggest an 

explanation for how failures of attention impair speech processing: failure to entrain to a 

target speech stream entails the dysfunction of an entrainment-based segmentation 

mechanism. 

  There is a growing body of literature that has studied the neural phase-tracking 

of speech in the presence of competing sounds. Evidence from scalp-recorded EEG 

(Hambrook & Tata, 2014; Horton et al., 2013; Kerlin et al., 2010; Kong et al., 2014; Power 

et al., 2012), MEG (Ding et al., 2014; Ding & Simon, 2012b; Rimmele et al., 2015; Zion 

Golumbic, Cogan, et al., 2013), and intracranial recordings (Mesgarani & Chang, 2012; 

Zion Golumbic, Ding, et al., 2013) have all shown that attention modulates the neural 

phase-tracking of speech signals and that such tracking is associated with enhanced 

perception of the target speech stream. However, while these attentional studies 

frequently evoke the cocktail party problem, they use simple acoustic scenes consisting 

of a single target speech stream competing with a single distractor source.  
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The current study seeks to extend those neurophysiological results to more 

complex acoustic scenes containing more than two simultaneous talkers and elucidate 

the neural mechanisms of speech-on-speech interference described by previous 

psychophysical studies. A number of psychophysical studies have investigated the effect 

of adding multiple talkers to an acoustic scene (Brungart et al., 2001; Humes, Kidd, & 

Fogerty, 2017; Miller, 1947; Simpson & Cooke, 2005) and found that speech perception is 

systematically impaired as the number of talkers in a scene increases from two to eight, 

however as these were purely behavioral studies they shed little light on the neural 

mechanisms responsible for the reduced performance.  

If the neural tracking of speech dynamics is a mechanism for implementing 

selective attention, then we should expect perceptual performance and the speech-locked 

phase-tracking of the EEG signal to vary together as more distractors are added to the 

scene. The present study investigated two additional questions about phase-tracking of 

low-frequency speech dynamics: first, we used both natural and vocoded speech – a 

processed version of speech in which acoustic energy is filtered into well-defined, non-

overlapping frequency bands -  to consider whether phase-tracking is a within-band 

mechanism of selection. Second, we measured whether distractor streams are phase-

tracked on trials in which a distractor is perceived instead of the target. In this way we 

tested the hypothesis that transient phase-tracking of a distractor is an active mechanism 

of distraction. 
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2.2 Methods 

2.2.1 Participants 

31 undergraduates from the University of Lethbridge were recruited and 

participated for course credit: 17 participants (mean age: 21.9 years; 7 females; 5 left-

handed) heard natural speech stimuli while 14 participated (mean age: 21.6 years; 8 

females; 0 left-handed) in a version of the experiment in which the speech stimuli were 

first vocoded (see details below). Participants provided informed written consent. 

Procedures were in accordance with the Declaration of Helsinki and were approved by 

the University of Lethbridge Human Subjects Review Committee. Participants were 

neurologically normal and reported normal hearing. 

2.2.2 Stimuli and task 

All stimuli were presented in free field by an Apple Mac Pro with a firewire 

audio interface (M-Audio Firewire 410). Participants sat in the center of an array of near-

field studio monitors (Mackie HR624 MK-2) arranged in a circle. A target speech stream 

was presented from a speaker directly in front of the participant. Distractor speech 

streams were presented from two, four, or six speakers in symmetric locations around 

the circular array (Figure 2.1). Speech stream presentation was controlled by a program 

custom coded using Apple Computer’s Core Audio framework (Mac OS 10.6).  
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Figure 2.1: Schematic of the speaker array. Target speech streams (labelled “T”) were 

presented simultaneously with two (from speakers labeled “2”), four (from speakers 

labeled “2” and “4”), or six (from all numbered speakers) distractor speech streams 

while listeners monitored the target stream for number keywords. 

 

  Each speech stream consisted of the concatenation of eight sentences, spoken by 

the same speaker, from the Coordinate Response Measure (CRM) Corpus (Bolia, Nelson, 

Ericson, & Simpson, 2000). The CRM corpus consists of predictably structured sentences 

of the format: “Ready <call sign> go to <color> <number> now,” spoken by four male and 

four female speakers. On each trial listeners were simultaneously played one target 

speech stream and up to six distractor speech streams, each spoken by a unique speaker. 

Each block contained twelve 15.5 second stimuli which were divided into pseudo-

randomly ordered sub-blocks of four stimuli at each distractor set size.  
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Listeners were tasked with reporting the number word (“one”, “two”, etc.) 

spoken from the target stream at the center speaker by pressing the corresponding 

number key on a keyboard in front of them. Participants responded as quickly and as 

accurately as possible. Unique number words occurred in all streams in close temporal 

proximity; the standard deviation from the mean latency of number word onsets across 

all speech streams on a given trial was 55 ms. Trials for which participants reported the 

number from the target stream were considered correct; responses in which listeners 

reported the number from a distractor stream were labeled intrusion errors; responses in 

which listeners reported a number that was not present in any stream were labeled 

insertion errors. Thus, intrusion and insertion errors differed in the likely source of the 

error: Intrusion errors are so-called because words from a distractor stream seem to have 

intruded on the successful perception of the target stream, while insertion errors occur 

when listener’s perceptual mechanism has inserted an unheard word into the scene. The 

presumptive causes of these two types of errors are fundamentally different: intrusion 

errors occur when information from a distractor stream interferes with the perception of 

the target, while insertion errors most likely occurred when the listener lacked 

information completely and was forced to guess from among the limited pool of possible 

number words.  

Because the number of distractor streams varied between distraction conditions 

while the possible pool of numbers in the auditory scene was always eight (i.e. “one” 

“two” through “eight”) the relative distribution of intrusion and insertion errors one 

would expect by chance differs between conditions, making a direct comparison of error 
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rates between conditions difficult to interpret. To address this difficulty, we instead 

consider the log-transformed ratio of intrusion errors to insertion errors (RII), 

normalized by the ratio predicted by chance based on the number of distractors in the 

scene. The interpretation of the RII is straightforward: values greater than zero indicate 

that listeners are more likely commit intrusion errors than insertion errors while values 

less than zero indicate that listeners were more likely to commit insertion errors relative 

to intrusion errors. Differences between distraction conditions can be meaningfully 

compared because the differences in the distribution of errors we would expect by 

chance have been normalized. 

As the number of distractor streams increases, the total level of acoustic energy in 

the scene increases as well, which could potentially mask the target simply due to 

interference in the auditory periphery (i.e. energetic masking). To address this potential 

confound, the stimuli for one experimental group of 14 participants was vocoded to 

produce intelligible but spectrally non-overlapping speech signals (Arbogast et al., 2002; 

Brungart, Simpson, Darwin, Arbogast, & Kidd, 2005; Dorman, Loizou, & Rainey, 1997; 

Ihlefeld & Shinn-Cunningham, 2008; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 

1995). Each speech signal was bandpass filtered into 16 fixed-frequency bands of 1/3 

octave width, with center frequencies distributed on a logarithmic scale from 175 Hz to 

5.6 kHz every 1/3 octave. The envelope of each frequency band was extracted using the 

Hilbert transform and that envelope was multiplied by a pure tone carrier at the center 

frequency of that band. For each trial, target stimuli were constructed by randomly 

selecting and summing four low-frequency (175-882 Hz) bands and four high-frequency 
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(1.1 - 5.6 kHz) bands; distractor stimuli were constructed by combining the eight 

remaining bands not used in the construction of the target. This resulted in minimal 

spectral overlap between the target and distractors, minimizing interference at the level 

of the basilar membrane.  

2.2.3 EEG analysis 

 EEG was recorded with 128 Ag/Ag-Cl electrodes in an elastic net (Electrical 

Geodesics Inc., Eugene, OR, USA). Scalp voltages were recorded at a 500 Hz sampling 

rate and impedances were maintained under 100 kΩ. Data were first analyzed using the 

BESA software package (Megis Software 5.3, Grafelfing, Germany). Data were visually 

inspected for bad channels and the signal from a small number of electrodes (10 or 

fewer) was replaced with an interpolated signal. Because each trial was 15.5 seconds 

long, eye movement artifacts occurred in a majority of trials, therefore eye movement 

artifacts were corrected using an adaptive artifact correction algorithm (Ille, Berg, & 

Scherg, 2002). Data were interpolated to an 81-channel 10-10 montage and further 

analyzed in MATLAB (MATLAB version 7.10.0; The Mathworks Inc., 2010, Natick, MA, 

USA) using custom scripts and EEGLAB functions (Delorme & Makeig, 2004). 

 To isolate EEG activity phase-locked to each of the unique competing speech 

streams, the first derivative of the acoustic envelope for each stream was calculated and 

cross-correlated with the EEG. This acoustic envelope for each speech stream was 

calculated by taking the absolute value of the Hilbert transform and low-pass filtering 

the resulting waveform with a cut-off at 25 Hz. The acoustic envelope was then down-
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sampled to match the sample rate of the EEG data. The first-derivative of the resulting 

signal was calculated, half-wave rectified, and normalized such the sum of the signal 

across the whole epoch equaled 1 (Hambrook & Tata, 2014; Hertrich et al., 2012). Thus, 

we obtain a signal that captures transient energy increases, an aspect of acoustic stimuli 

to which the auditory system is known to be tuned (Fishbach, Nelken, & Yeshurun, 2001; 

Howard & Poeppel, 2010). These speech envelopes were then cross-correlated with each 

channel of the time-aligned EEG data to arrive at a cross-correlation function that reflects 

activity phase-locked to the acoustic dynamics of each particular speech stream. Peri-

target epochs were defined as [-1000 1000] ms for the acoustic signal and [-1700 2300] ms 

for the recorded EEG data; a longer epoch was used for the EEG data to remove the need 

to pad the data with zeros or normalize the cross-correlation function at extreme lags. 

Trials were separated based on task performance relative to each target as past studies 

have shown minimal tracking of the target stream on error trials (Hambrook & Tata, 

2014; Mesgarani & Chang, 2012). 

 To determine the frequency content of the observed phase-locked activity, 

wavelet decomposition was performed on the cross-correlation function for the interval 

of cross-correlation lags [-200 800] ms. Evoked power was calculated as the power in the 

trial-averaged cross-correlation function, normalized by the mean evoked power across 

the whole epoch. For all distractor set sizes the power from all two, four, or six distractor 

streams was averaged before comparison with power phase-locked to the target stream. 
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2.3 Results 

2.3.1 Correct responses 

Listener’s ability to identify number words from the target stream was impaired 

as the number of distractors in the auditory scene increased (Figure 2.2A). A 2x3 mixed 

ANOVA with stimulus type (natural, vocoded) as a between-subject factor and 

distractor number (two, four, six) as a within-subject factor revealed a significant main 

effect of distractor number on correct response rate (F(2,58)=373.3, p<0.001, η2=0.93) as 

well as an interaction between the distractor number and stimulus vocoding 

(F(2,58)=37.86, p<0.001, η2=0.57). Analysis of the simple main effects identified significant 

effects of distraction for both natural (F(2,28)=244.5, p<0.001 Benjamini-Hochberg 

adjusted, η2=0.95) and vocoded (F(2,28)=55.44, p<0.001 Benjamini-Hochberg adjusted, 

η2=0.80). There was also a simple main effect of stimulus type for two distractors 

(F(1,29)=8.02, p=0.017 Benjamini-Hochberg adjusted, η2=0.22), but there was not a 

significant effect for four or six distractors (F(1,29)<1.34, p>0.512 Benjamini-Hochberg 

adjusted, η2<0.04), suggesting that the vocoding process impaired baseline intelligibility 

of the target, but did not result in systematically different distraction at higher numbers 

of distractors. Increased distractor set-size impaired performance for both natural and 

processed speech stimuli; crucially, the spectral separation between the target and 

distractor streams only somewhat mitigated the effect of distraction indicating that the 

target and distractor streams are primarily interfering after they pass through the 

auditory periphery. 
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2.3.2 Analysis of errors 

 Intrusion errors, that is reporting a number word from a distractor stream, 

increased with increasing set size of distractors (Figure 2.2B & 2.2C). A 2x3 mixed 

ANOVA with RII as the measurement variable, stimulus type (natural, vocoded) as a 

between-subject factor and distractor set size (two, four, six) as a within-subject factor 

revealed a significant main effect of distractor set size (F(1.66,48.10)=47.83, p<0.001, 

η2=0.62, Greenhouse-Geisser corrected) and stimulus type (F(1,29)=10.50, p=0.003, 

η2=0.27), as well as a significant interaction between distractor set size and stimulus type 

(F(1.66,48.10)=6.09, p=0.007, η2=0.17). Analysis of the simple main effects identified 

significant effects of distractor set size for both natural (F(2,28)=52.22, p<0.001 Benjamini-

Hochberg adjusted, η2=0.79) and vocoded (F(2,28)=9.00, p=0.001 Benjamini-Hochberg 

adjusted, η2=0.39) stimuli. There was not a significant simple main effect of stimulus type 

for two distractors (F(1,29)=0.063, p=0.80 Benjamini-Hochberg adjusted , η2=0.002), 

however there were significant effects at four distractors (F(1,29)=6.07, p=0.020 

Benjamini-Hochberg adjusted, η2=0.17) and six distractors (F(1,29)=11.32, p=0.002 

Benjamini-Hochberg adjusted, η2=0.28) suggesting that natural, unfiltered distractors are 

more likely to “intrude” on perception than distractors that do not spectrally overlap 

with the target stream. It is also possible that the perception of individual distractors in 

the vocoded version of the experiment is impaired due to their perfect spectral overlap 

with all the other distractors. 
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Figure 2.2: Behavioral results for the listening task using natural (blue) and vocoded 

(red) speech samples. (A) Mean correct response rate plotted as a function of the number 

of distractors in the acoustic scene. (B) Mean intrusion error rate (solid line) and insertion 

error rate (dashed line) plotted as a function of the number of distractors in the scene. (C) 

Log-transformed ratio of chance-normalized intrusion errors to insertion errors. Error 

bars indicate standard error of the mean. 

 

2.3.3 EEG results 

 We used a wavelet time-frequency decomposition to explore the time-frequency 

content of the cross-correlation function for target and distractor speech streams (Figure 

2.3). Previous studies strongly suggested that EEG signals maximally phase-locked to 

attended speech within the theta band (i.e. 4-8 Hz). For the target stream we observed a 

peak in phase-locked theta-band power at a lag of approximately 100 ms for all 

distractor set sizes (Figure 2.4). We performed a 2x3x2 mixed ANOVA in which phase-

locked theta-band power from [40 160] ms lag was the measurement variable; stimulus 

type was a between-subject factor (natural, vocoded); distractor number (two, four, six), 

and attention (attended stream, distractor stream) were within-subject factors (Figure 

2.5A). This analysis identified significant main effects of distractor number 
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(F(2,58)=10.00, p<0.001, η2=0.26) and attention (F(1,29)=19.58, p<0.001, η2=0.40), as well as 

an interaction that trended towards significance between attention and distractor 

number (F(2,58)=2.84, p=0.067, η2=0.09). There was not a significant effect of stimulus 

type (F(1,29)=0.21, p=0.65, η2=0.007), and there were no significant interactions between 

stimulus type and distractor number (F(2,58)=0.87, p=0.42, η2=0.029) nor between 

stimulus type and attention (F(1,29)=0.034, p=0.86, η2=0.001). 

While similar experiments have previously found that tracking of attended 

speech is reduced in epochs surrounding errors of perception, they were not designed to 

interrogate how tracking of distractors is affected during task errors in which the 

distractor is perceived as the target. One potential mechanism of distraction is that 

distractor streams momentarily co-opt the neural dynamics that should track the target 

speech. In this case we would predict that the epoch around “successful” intruding 

distractors would be tracked more than other distractors that were not perceived. We 

would further predict that the epoch around a perceived distractor on intrusion errors 

would be tracked similarly to the epoch around perceived targets on correct trials. The 

first prediction was tested using a 2x2 mixed ANOVA in which phase-locked theta band 

power within a [40 160] ms lag was the measurement variable, stimulus type as a 

between-subject factor (natural, vocoded), and perception of the distractor stream as a 

within-subject factor (intruding distractor, rejected distractor). This analysis revealed no 

significant effects of perception (F(1,91)=0.54, p=0.46, η2=0.006) or stimulus-type 

(F(1,91)=0.56, p=0.46, η2=0.006); successfully intruding distractor streams are not 

preferentially tracked by the EEG (See Figure 2.5B). A second 2x2 mixed ANOVA with 
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phase-locked power as the measurement variable, stimulus type as a between-subject 

factor (natural, vocoded), and attention (attended, ignored) as a within-subject factor. 

This analysis revealed a significant effect of attention on phase-tracking (F(1,91)=46.54, 

p<0.001, η2=0.34) with no significant effect of stimulus type (F(1,91)=0.99, p=0.32, 

η2=0.011); ignored speech that intruded onto perception was not tracked as well as 

successfully perceived attended speech (Figure 2.5B). Taken together, these results 

suggest that active but transient phase-tracking of a distractor stream is not the 

mechanism by which distracting speech intrudes into perception. 
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Figure 2.3: Time-frequency representation of cross-correlation function. Phase-locked 

power in the speech-EEG cross-correlation function for natural (left column) and 

vocoded (right column) speech for target and distractor speech streams split into correct 

responses (top row) and intrusion errors (bottom row). 
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Figure 2.4: Phase-locked theta-band (4-8 Hz) power in the speech-EEG cross-correlation 

function for natural (left) and vocoded (right), target (blue) and ignored (red) speech 

streams surrounding correct responses (solid lines) and intrusion errors (dashed lines). 

Light shaded outline indicates standard error or the mean. 
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Figure 2.5: (A) Effect of attention on phase-locked theta power. Phase-locked theta-band 

(4-8 Hz) power in the speech-EEG cross-correlation function for the interval [40 160] ms 

lag for natural (blue) and vocoded (red) speech streams surrounding correct responses. 

Responses to attended speech are plotted with solid lines, the mean response to 

distractor speech is plotted with dashed lines. (B) Phase-locked theta power as a function 

of perception and attention. Phase-locked theta power for the interval [40 160] ms lag for 

natural (blue) and vocoded (red) speech streams. The speech tracking signal is strongest 

to attended and successfully perceived speech (Reported Target); there is no apparent 

increase in speech tracking of the successfully intruding distractor (Reported Distractor) 

relative to successfully ignored distractors (Unreported Distractor). Error bars indicate 

standard error of the mean. 

 

2.4 Discussion 

 Our behavioral results show a clear effect of distractor set size on listeners’ ability 

to identify target words in a target speech stream. Participants were significantly more 

likely to identify words from the target stream when there were fewer distractors, and 

more likely to make intrusion errors when there were more distractors. Vocoding the 

target and distractor streams to be spectrally distinct somewhat mitigated the effects of 

increasing distractor set size. However, even when the target and distractors were 

spectrally distinct, and energetic interference at the auditory periphery was minimized, 

increasing the number of distractors still impaired performance. For both natural and 

vocoded speech, the ratio of intrusion errors to insertion errors increased relative to 
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chance as distractor set size increased. If the primary effect of distraction was due to 

increased interference at the auditory periphery then we should expect this ratio to 

return to chance values as distractors were added to the scene. Taken together, these 

data strongly suggest that the informational content present in the distractor streams 

interferes with the representation of the target speech stream at the cortical level.  

Our electrophysiological results show increased theta-band EEG power phase-

locked to the acoustic dynamics of target speech, compared to distractor speech. This 

result agrees with previous studies using two-talker auditory scenes, which have found 

that attention enhances low-frequency activity evoked by continuous speech (Ding & 

Simon, 2012b; Hambrook & Tata, 2014; Kerlin et al., 2010; Power et al., 2012; Zion 

Golumbic, Ding, et al., 2013). In the present study, this enhancement was maintained, 

even in very crowded acoustic scenes with six distractors, suggesting that phase-tracking 

of the acoustic dynamics of a target represents a generalized mechanism for maintaining 

the neural representation of that stream.  

A study by Rimmele et al. (2015), in which subjects heard simultaneously 

presented natural and vocoded speech while monitoring one stream for a loudness 

increase, previously found that the tracking of vocoded speech was not modulated by 

attention. They suggested that their results indicate that the attentional enhancement of 

speech tracking depends on the presence of fine-structure in the stimulus and that fine-

structure in natural speech is only utilized when the speech is the object of attention. 

They go on to suggest that processing the temporal fine structure of speech reflects 
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linguistic processing as both eliminating fine-structure by vocoding (Dorman et al., 1997; 

Shannon et al., 1995; Sheldon, Pichora-Fuller, & Schneider, 2008; Smith, Delgutte, & 

Oxenham, 2002) and ignoring speech (Cherry, 1953; Treisman, 1964) impair speech 

perception. Our current results stand in contrast to their findings. We found that 

attention enhanced the tracking of successfully perceived vocoded speech, relative to 

ignored speech, in the absence of fine structure cues. A possible explanation for this 

discrepancy can be found in the different stimulus processing procedure used by 

Rimmele et al. (2015). In their experiment they used four vocoder bands spread over the 

entire range of the human cochlea (80Hz – 20 kHz; center frequencies: 0.292, 1.15, 3.75, 

11.7 kHz), while previous studies of the intelligibility of vocoded speech have restricted 

the frequency range to a maximum cut-off frequency of around 6-8 kHz reflecting the 

limited vocal range of the male speakers used in those studies (Dorman et al., 1997; 

Ihlefeld & Shinn-Cunningham, 2008; Shannon et al., 1995; Sheldon et al., 2008; Smith et 

al., 2002). Thus, their choice of stimulus processing bands resulted in speech of 

significantly degraded acoustic quality and intelligibility, which suggests listeners could 

only extract limited linguistic information. It is also worthwhile to note that the task 

used by Rimmele et al. (2015) simply required monitoring the attended stream for 

changes in loudness, a task which may benefit from but does not explicitly require 

linguistic processing. While our results dispute the claim that the modulation of neural 

tracking of speech requires access to fine structure information, they do support the 

overall conclusion that attended speech is tracked more effectively due to linguistic 

processing. Linguistic processing may provide a top-down influence on the tracking of 
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speech mediated by attention. In the previous study by Rimmele et al. (2015) the reduced 

linguistic content available to listeners of band-limited vocoded speech and the non-

linguistic nature of the behavioral task possibly led to an attenuation of top-down 

attentional factors that enhance the tracking of speech. 

 Previous psychoacoustic studies have considered the differential effects of 

energetic and informational interference on the perception of speech. Ihlefeld & Shinn-

Cunningham (2008) identified three linked mechanisms affecting speech identification in 

this kind of task: across-time linkage, short-term segmentation, and selective attention.  

Across-time linkage refers to the integration of the features of an acoustic stream 

across temporal discontinuities like silent gaps or stop consonants and is influenced by 

stable (in the current experiment) factors including spatial location, pitch, timbre, and 

overall intensity (Bregman, 1990; Culling & Summerfield, 1995; Darwin, 1997). Task 

errors due to a failure of temporal integration would result in listeners temporarily 

monitoring a distractor stream for a task-relevant keyword as if it were the target stream 

and we would expect them to commit intrusion errors as a result. Errors of this type, due 

to a failure of temporal integration of the target stream, should be accompanied by 

erroneous phase-tracking of the reported distractor stream; however, we found no 

evidence that the successful distractor stream was tracked differently than other 

distractors, and it certainly was not tracked as if it was the target stream. Thus, failures 

of across-time linkage are an unlikely mechanism for causing errors in this task. 
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Short-term segmentation refers to the process by which some portion of the 

acoustic mixture of the scene is segregated into discrete speech sounds. Segmentation is 

primarily based on the brain’s analysis of the spectrotemporal properties of a sound 

stream; in particular, low-frequency modulations are believed to provide a basis for 

dividing an incoming speech signal into syllabic units (Ghitza, 2011; Ghitza & 

Greenberg, 2009; Greenberg, 1996). Such a mechanism, operating within discrete 

frequency bands (Doelling et al., 2014), is robust to energetic interference from stationary 

signals but may be susceptible to interference by competing signals which share similar 

dynamics to the target signal. Indeed, such an interference effect may be the reason that 

adding more distractor streams to the scene impairs perception of a target stream, even 

when distractors are spectrally distinct from the target speech stream as in the vocoded 

speech group. 

Selective attention refers to the ability to selectively tune the brain’s sensitivity to 

a single target stream among a mixture of competing sounds. Selective attention may be 

directed to a number of acoustic features including spatial location, prosody, pitch, 

timbre, and speaker identity (Darwin, Brungart, & Simpson, 2003; Darwin & Hukin, 

2000; Freyman, Helfer, McCall, & Clifton, 1999; Shinn-Cunningham, Ihlefeld, Satyavarta, 

& Larson, 2005). Attention can enhance the sensory representation of target features 

while suppressing the representation of competing signals (Desimone & Duncan, 1995). 

This effect is appears in our data as increased EEG phase-tracking of speech is evident 

for attended speech streams but not ignored streams. 
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The selective entrainment hypothesis (Schroeder & Lakatos, 2009; Zion Golumbic 

et al., 2012) proposes that phase entrainment of neural oscillations to the temporal 

dynamics of a behaviorally relevant auditory stream is a mechanism for attentional 

selection. The hypothesis arises from the fact that neural sensitivity is modulated by the 

phase of low-frequency oscillations (Engel, Fries, & Singer, 2001; Volgushev et al., 1998). 

Thus, oscillatory activity forms temporal windows in which post-synaptic cells may be 

more (or less) sensitive to excitatory input. This principle forms the basis of the theory of 

communication by coherence (Fries, 2005), which states that communication between 

neuronal ensembles is optimally efficient when graded potentials in pre- and post-

synaptic cells are phase-aligned This phase alignment ensures that synaptic transmission 

occurs within those windows during which the post-synaptic cell is biased towards 

depolarization. By modulating the phase of these oscillations relative to a stimulus 

stream, a selective entrainment mechanism forms a sort of filter – allowing some neural 

assemblies to ignore inputs from non-selected cells while enhancing sensitivity to 

selected cells. 

 Selective attention enables the enhanced representation of a single information 

source at the cost of impairing the perception of other sources. Selective entrainment 

may provide a mechanistic explanation for selective attention to temporally predictable 

auditory streams. By phase-locking auditory neural activity to the dynamics of an 

attended stream, neurons encoding the relevant features of that stream may be biased to 

fire more readily. The theory of communication by coherence provides a framework by 

which attended auditory signals are transmitted to other brain areas responsible for 
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higher-order cognitive processes including: semantic and grammatical processing, 

working memory, reward-processing, and response-planning (Ding, Melloni, et al., 2016; 

Giraud & Poeppel, 2012). Selective entrainment not only biases the brain to respond to 

the attended stream, it can also selectively block competing signals from those same 

higher-order cognitive processes, even if they share similar spectral content, by virtue of 

the periodic nature of neural oscillations. Signals that do not share the same 

spectrotemporal dynamics of the attended stream will arrive during non-optimal 

temporal windows and be suppressed. The presence of additional competing speech to 

the acoustic scene seems to degrade this attentional mechanism as we observed reduced 

entrainment to the target speech as distractor set-size increased. 

 We should note that the two proposed mechanistic roles of neural phase-

tracking: as a mechanism for selective attention and providing a framework for speech 

segmentation are not mutually exclusive. Indeed, both make similar predictions about 

the perceptual consequences of phase-tracking to a target speech stream. The selective 

entrainment hypothesis suggests that neural tracking of a speech stream enables an 

enhanced representation of the features of that stream which leads to improved 

perception of that stream. The theory that oscillatory activity supports the segmentation 

of speech likewise predicts that phase-tracking of speech enables the parsing of the 

acoustic signal into meaningful speech sounds. The current experiment provides little 

insight into a possible dissociation between these two theories; it can only confirm the 

strong link between successful perception of a speech stream and the brain’s tracking of 

the dynamics of that stream. 
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Speech-tracking fails in the presence of distracting voices, even when the target 

speech occupies its own frequency bands as in our vocoded condition.  This points to a 

central, rather than peripheral, mechanism that is vulnerable to interference by the 

additional load of acoustically dynamic, information-containing speech streams.  Within 

auditory cortex itself competing, spectrally-overlapping streams can degrade the 

representation of a target stream by introducing increasing spike-activity unrelated to 

the target and suppressing target-related activity (Narayan et al., 2007). Reducing the 

spectral overlap between target and competing streams, as in our vocoded speech group, 

reduces the degree of interference within auditory cortex (Larson, Maddox, Perrone, Sen, 

& Billimoria, 2012). With these results in mind it appears that the reduction in the phase-

tracking response due to increased distractor set-size is driven by interference within 

association areas, including within the language processing network. The proposed 

mechanistic explanation of reduced phase-tracking with increased distractor set-size fits 

well with psycholinguistic results that demonstrate that linguistic interference between 

competing speech streams is dependent on the intelligibility of the competing speech 

(Brouwer, Van Engen, Calandruccio, & Bradlow, 2012; Calandruccio, Dhar, & Bradlow, 

2010; Van Engen & Bradlow, 2007), which cannot be explained by physical 

spectrotemporal similarities between the target and distractor speech (Calandruccio, 

Brouwer, Van Engen, Dhar, & Bradlow, 2013). Our results suggest a complicated 

interaction between attentional processes, speech intelligibility, and speech-entrained 

auditory cortical activity. This interaction suggests that language processing areas 

beyond auditory cortex exert some top-down influence that enhances the entrained 
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response to the acoustics of task-relevant speech, but that the effectiveness of this top-

down modulation is itself modulated by the linguistic representation of the speech 

within cortex.   Thus, this effect may be speech-specific, although other information-

dense, dynamic, and salient stimuli such as music might produce similar interference 

effects. 

 We found that phase-tracking an attended speech stream is associated with the 

successful perception of that speech, even in a crowded ‘cocktail party’-type 

environment with as many as seven concurrent speakers. The neural tracking of speech 

varied with the number of distractors in the acoustic scene, irrespective of the spectral 

overlap between targets and distractors, suggesting that the addition of more speech 

sources in the scene interferes with the cortical mechanisms – related to selective 

attention and or stream segregation – responsible for tracking a target speech signal. 
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3 Cortical Entrainment to Speech Occurs Without Broadband Envelope Dynamics 

3.1 Introduction 

 Speech is an inherently rhythmic acoustic signal. The amplitude envelope of 

speech signals is modulated at around 5 Hz, putatively corresponding to the syllable rate 

and seemingly regardless of language or speech context (Ding, Patel, et al., 2016; 

Goswami & Leong, 2013). It has been proposed that the brain might leverage the 

predictability of this rhythmicity to facilitate speech perception by aligning oscillatory 

neural activity to the speech envelope.  This entrainment is proposed to enhance stream 

segregation (Krishnan, Elhilali, & Shamma, 2014; Shamma et al., 2011), attentional 

selection (Ding & Simon, 2012b; Hambrook & Tata, 2014; Kerlin et al., 2010; Mesgarani & 

Chang, 2012; Power et al., 2012), and speech segmentation (Ghitza, 2011; Giraud & 

Poeppel, 2012).  

 Despite the apparent importance and versatility of the neural tracking of speech, 

it remains unclear which features of speech are essential to allow tracking to occur. Three 

aspects of the speech signal have been identified as candidate features:  First, early 

investigations of the neural tracking of speech focused on modulations in the broadband 

temporal amplitude envelope of speech as the primary feature that enables speech 

tracking (Ahissar et al., 2001; Aiken & Picton, 2008; Luo & Poeppel, 2007).  In this view, it 

is the amplitude of the acoustic signal itself that contains low-level cues that convey 

information about the dynamic contents of the speech.  Second, researchers have 

suggested that the brain tracks higher-level spectrotemporal features of the speech 

acoustics such as modulations within discrete frequency bands (Ghitza, Giraud, & 



43 
 

Poeppel, 2013; Obleser et al., 2012).  Third, it is also proposed that neural tracking of 

speech reflects entrainment to linguistic features of speech that are characterized by 

complex and variable conjunctions of acoustic features such as phonemes, syllables, 

words, or hierarchical prosodic or grammatical structures (Di Liberto, O’Sullivan, & 

Lalor, 2015; Ding, Melloni, et al., 2016; Mesgarani et al., 2014).  The goal of the present 

study was to elucidate this question by temporally smoothing the low-level acoustic 

modulations of speech, leaving only higher-level spectrotemporal and linguistic features 

intact. 

A prior investigation by Zoefel and VanRullen (2016) suggested at the 

importance of each of these features for speech tracking, however the stimulus 

conditions and behavioral task led to some difficulty with interpretation. Briefly, their 

experiment consisted of three distinct speech presentations: 1) speech presented by itself, 

2) speech presented in a background of noise that obscured the broadband acoustic 

envelope but retained high-level spectrotemporal and linguistic features, and 3) a time-

reversed speech-in-noise that retained high-level spectrotemporal modulations but 

eliminated envelope and linguistic features. Crucially, their behavioral task was not 

related to the presented speech; rather than listening to the speech, listeners were tasked 

with monitoring the acoustic environment for brief tone pips. It is well established that 

the processing of unattended speech for linguistic content is limited (Cherry, 1953; 

Dalton & Fraenkel, 2012; Lachter et al., 2004; Treisman, 1964) and the limited pre-

attentive processing of speech is believed to be based on stimulus-memory-trace 

comparisons rather than the  extensive processing of speech that is the object of attention 
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(Pulvermüller & Shtyrov, 2006). There is substantial evidence that attended speech is 

tracked by the brain to a significantly greater degree (Ding & Simon, 2012a; Hambrook & 

Tata, 2014; Kerlin et al., 2010; Mesgarani & Chang, 2012; Zion Golumbic, Ding, et al., 

2013; Zion Golumbic et al., 2012) and that active listening to speech enhances brain 

activity in response to speech under poor listening conditions (Wild et al., 2012). Thus,  

Zoefel and VanRullen (2016) reported no significant differences between the neural 

tracking of speech-in-noise regardless of whether it was presented normally or time-

reversed. 

In the present study we investigated whether acoustic envelope modulations are 

necessary for the neural tracking of speech during active listening.  We compared the 

neural response to speech presented alone with the response to speech presented against 

a background of amplitude-modulated noise that effectively smoothed the broadband 

envelope, while listeners were actively attending to the speech stimuli. Further, if 

envelope modulations are necessary for speech tracking, we tested the theory that 

tracking can be restored by spatially separating the speech from the masking noise.  If 

the brain is able to track the low-frequency dynamics of speech, despite a smooth 

amplitude envelope, then other higher-level mechanisms must account for the speech 

tracking phenomenon.  
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3.2 Methods 

3.2.1 Participants 

 48 undergraduates participated in the experiment.  Two between-subjects 

conditions were tested:  one in which target speech and masking noise were co-located at 

the same speaker, and one in which the target and masker were presented from different 

locations.  Each group had 24 participants. The participants in the colocalized group had 

an age range of 18-29 years, with a mean age of 20.3 years; 2 were left-handed; and 13 

were female. The participants in the spatially separated group had an age range of 18-24 

years, with a mean age of 20.6 years; 2 were left-handed; and 15 were female.  All 

participants were University of Lethbridge students and were recruited and participated 

for course credit. Participants provided informed written consent. Procedures were in 

accordance with the Declaration of Helsinki and were approved by the University of 

Lethbridge Human Subjects Review Committee. Participants were neurologically 

normal and reported normal hearing. 

3.2.2 Stimuli 

 All stimuli were presented in free-field by an Apple iMac with a firewire audio 

interface (M-Audio Firewire 410). Participants sat 1.1 meters from a near-field studio 

monitor (Mackie HR624 MK-2) located on the front auditory midline. For the 

colocalization group, both speech and noise-maskers were presented from this midline 

speaker. For the spatial separation group, noise-maskers were presented from an 

identical studio monitor 30° to the right or left of the auditory midline with the location 

of the masker being pseudorandomly chosen and balanced between trials and 
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conditions.  Stimulus presentation was controlled by a script custom coded using 

MATLAB (MATLAB version 7.10.0; The Mathworks Inc., 2010, Natick, MA, USA) and 

Psychophysics Toolbox Version 3 (Brainard, 1997). 

 Speech stimuli were constructed by concatenating sentences from the Pacific 

Northwest/Northern Cities (PN/NC) corpus (McCloy et al., 2013). The PN/NC corpus 

consists of recordings of male and female speakers reading 180 sentences from the IEEE 

“Harvard” set (“IEEE Recommended Practice for Speech Quality Measurements,” 1969). 

Speech samples were created by concatenating three unrelated sentences read by a male 

voice to create a sample of speech roughly 6.5 s long. 

 Noise maskers were broadband noise with spectral composition matching the 

roughly 1/f, long-term average spectral composition of the speech stimuli. Spectrally 

matched noise was generated by randomly time-shifting each original speech segment 

and adding the resulting signals together 10 000 times and finally scaling the resulting 

signal to 2.5 times the original average RMS amplitude of the speech sample, resulting in 

a target-to-masker ratio of -8 dB. This procedure resulted in stationary noise that 

matched the average spectrum of the original speech samples.  Two types of masker 

were tested:  In the Flat Mask condition the noise masker consisted of a sample of noise 

with constant amplitude added to the acoustic scene. In the Complementary Mask 

condition, the amplitude of the noise masker was modulated by the inverse of the low-

frequency amplitude envelope of the concurrently presented speech signal, effectively 

eliminating low-level amplitude modulations in the scene (Figure 3.1). 
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Figure 3.1: Waveform (grey) and spectrogram of an example sentence from the three 

experimental conditions. The speech envelope (green) and the masked stimulus 

envelope (magenta) are superimposed on the sound waveform. 

 

3.2.3 Procedures 

  At the start of each session listeners were presented with a speech sample 

without a masker, followed by that same speech sample accompanied by an 

unmodulated masker, and finally the same sample presented with an envelope-

modulated masker, to familiarize listeners to the stimuli and ensure they could hear the 

speech in the presence of masking noise. Listeners were instructed to listen carefully to 

the speech sample and maintain fixation at a fixation cross displayed on a monitor just 

below eyeline. In each trial listeners were presented with a speech sample either alone 

(in the Unmasked condition) or with a simultaneously presented noise masker (in the Flat 

and Complementary Mask conditions). Following each trial, listeners were given up to 25 

seconds to recall as many words from the preceding speech sample as they could by 
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typing them into a keyboard; listeners could move on to the next trial before 25 seconds 

had elapsed if they could not recall anymore words. Each experiment consisted of three 

blocks, corresponding to the three experimental conditions, and each block contained 30 

trials. The presentation order of the three conditions was counterbalanced using a Latin-

square design. 

 Performance on individual trials was scored as a proportion of correctly 

transcribed words divided by the total number of words in the speech sample, excluding 

common articles “the”, “a”, and “an”. 

3.2.4 EEG analysis 

 EEG was recorded with 128 Ag/Ag-Cl electrodes in an elastic net (Electrical 

Geodesics Inc., Eugene, OR, USA). Scalp voltages were recorded at a 500 Hz sampling 

rate and impedances were maintained under 100 kΩ. Data were first analyzed using the 

BESA software package (Megis Software 5.3, Grafelfing, Germany). Data were visually 

inspected for bad channels and the signal from a small number of electrodes (10 or 

fewer) was replaced with an interpolated signal. Because of the length each trial, eye 

movement artifacts occurred in a majority of trials, therefore eye movement artifacts 

were corrected using an adaptive artifact correction algorithm (Ille et al., 2002). Data 

were interpolated to an 81-channel 10-10 montage and further analyzed in MATLAB 

(MATLAB version 7.10.0; The Mathworks Inc., 2010, Natick, MA, USA) using custom 

scripts and EEGLAB functions (Delorme & Makeig, 2004). 
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 To isolate EEG activity phase-locked to the competing speech samples, the first 

derivative of the acoustic envelope for each sample was calculated and cross-correlated 

with the EEG. The acoustic envelope for each speech sample was calculated by taking 

the absolute value of the Hilbert transform of the sample and low-pass filtering the 

resulting waveform at 25 Hz. The acoustic envelope was then down-sampled to match 

the sample rate of the EEG data. The first-derivative of the resulting signal was 

calculated, half-wave rectified, and normalized such the sum of the signal across the 

whole epoch equaled 1 (Hambrook & Tata, 2014; Hertrich et al., 2012). Thus, we obtained 

a signal that captures transient energy increases, an aspect of acoustic stimuli to which 

the auditory system is known to be tuned (Fishbach et al., 2001; Howard & Poeppel, 

2010). The first 500 ms of EEG and acoustic signal from each trial was discarded to 

minimize the effect of strong responses to the sudden onset of sound. The speech 

envelope dynamics signal was then cross-correlated with each channel of the time-

aligned EEG data to arrive at a cross-correlation function, which reflects electrical 

activity phase-locked to the acoustic dynamics of that speech signal.  

 The frequency content of the phase-locked neural activity captured by the cross-

correlation function was analyzed by a wavelet decomposition for a range of cross-

correlation lags [-300 700] ms. The evoked power was calculated as the power in the 

trial-averaged cross-correlation function, normalized by the power in the [-300 -100] ms 

lag epoch in which the EEG signal is presumed to precede the speech signal. 
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3.3 Results 

3.3.1 Behavioral data 

 Listener’s ability to recall words from the speech stream was reduced by the 

addition of a noise masker to the acoustic scene (Figure 3.2). A 2x3 mixed ANOVA with 

mask location (colocalized, spatially separated) as a between subject factor and mask 

type (unmasked, complementary mask, flat mask) as a within-subject factor revealed a 

significant main effect of mask type (F(1.64,75.63)=251.1, p<0.001, η2=0.85, Greenhouse-

Geisser adjusted, ε=0.82), a significant effect of mask location (F(1,46)=23.10, p<0.001, 

η2=0.33), as well as a significant interaction between mask type and location 

(F(1.64,75.63)=17.77, p<0.001, η2=0.28, Greenhouse-Geisser adjusted, ε=0.82). Analysis of 

the simple main effects identified significant effects of mask type for both the colocalized 

speech-masker group (F(2,45)=151.2, p<0.001 Benjamini-Hochberg adjusted, η2=0.87) and 

the spatially separated speech-masker group (F(2,45)=56.86, p<0.001 Benjamini-Hochberg 

adjusted, η2=0.72). The analysis also identified a significant increase in word recall rate 

when the speech sample and masker were spatially separated in both the 

complementary mask (F(1,46)=28.15, p<0.001 Benjamini-Hochberg adjusted, η2=0.38) and 

flat mask (F(1,46)=58.78, p<0.001 Benjamini-Hochberg adjusted, η2=0.56) conditions.   As 

there was no masker present in the Unmasked condition, the comparison between 

location groups in Figure 3.2 simply reflects the between groups comparison given 

identical unmasked stimuli (F(1,46)=2.36, p=0.13 Benjamini-Hochberg adjusted, η2=0.049).  
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Figure 3.2: Behavioral results for the listening task for colocalized and spatially 

separated speech and noise maskers. Error bars indicate standard error. 

 

3.3.2 EEG results 

 Cross-correlation of the first-derivative of the speech envelope with recorded 

EEG revealed robust neural tracking of speech, even in the presence of masking noise 

that obscured the low-level amplitude envelope (Figure 3.3). The correlation between 

speech dynamics and EEG activity remained consistent whether speech was presented 

alone as in the Unmasked condition, or whether the speech was presented with a noise 

masker; examination of the  cross-correlation function revealed that the addition of noise 

to the scene produced robust speech-locked activity at later lags [200 350] ms which had 

a similar scalp-topographical distribution as the earlier activity seen across all conditions 

(Figure 3.3, bottom).  
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Figure 3.3: Cross-correlation of the EEG and the first-derivative of the speech envelope at 

a representative electrode, FCz (top), and scalp topographies (bottom) corresponding to 

local peaks in the cross-correlation function when masking noise was colocalized (left) 

and spatially separated (right) relative to target speech. Shaded area indicates 95% 

confidence interval. 
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Time-frequency decomposition of the cross-correlation function revealed that 

speech-locked theta-band EEG activity increased relative to baseline. For the colocalized 

speech-masker group there was a significant increase from baseline in speech-locked 

theta power in all conditions for a range of latencies (See Figure 3.4; one-tailed t-test, 

Benjamini-Hochberg FDR corrected, p<0.05). A 2x3 mixed ANOVA with mask location 

(colocalized, spatially separated) as a between-subject factor and mask type (unmasked, 

complementary mask, flat mask) as a within-subject factor reveals that mask type has a 

significant effect (F(2,92)=9.66, p<0.001, η2=0.17) on the latency of the maximum speech-

locked theta-band power; there was no effect of mask location (F(1,46)=0.21, p=0.81, 

η2=0.004). Post hoc pairwise comparisons confirm that peak theta power occurs later for 

the masked conditions (242 ± 19 ms Complementary Mask; 256 ± 18 ms Flat Mask) than the 

unmasked (161 ± 19 ms) condition (p<0.004, Bonferroni corrected) while there was no 

difference between masking conditions (p=1, Bonferroni corrected). This shift in the 

latency of maximum speech-locked theta power was due to the component in the cross-

correlation function that was present at later lags.  This component occurred only for 

speech presented simultaneously with noise, and likely reflects a stream segregation or 

attention processes. 
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Figure 3.4: (Top) Speech-locked evoked power in the speech-EEG cross-correlation 

function for masked and unmasked speech. (Bottom) Speech-locked theta (4-8 Hz) cross-

correlation power.  Horizontal bars indicate latencies at which speech-locked theta 

power was significantly greater than during the [-300 -100] ms lag baseline (one-tailed t-

test, P<0.05, Benjamini-Hochberg adjusted). Shaded area indicates 95% confidence 

interval. 

 

3.4 Discussion 

 Our behavioral results show a robust effect of noise-maskers on the word recall 

rate of speech. Listeners could recall fewer words when speech was presented 

simultaneously with envelope modulated and unmodulated noise. Spatially separating 

the noise masker from the speech somewhat reduced the effect of the masker, consistent 

with the effect of spatial release from masking described in speech intelligibility 

experiments (Arbogast et al., 2002). 

The cross-correlation of the EEG with the speech envelope dynamics showed that 

the brain tracks periodic features of speech despite the presence of noise that obscures 
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the broadband speech envelope. This result strongly suggests that intact broadband 

speech envelope dynamics is not a necessary feature that enables the neural tracking of 

speech.  Instead, higher-level features such as modulations within discrete frequency 

bands and/or linguistic features with fuzzily defined acoustic attributes must provide a 

sufficient basis for the brain's ability to track the speech signal. The fact that speech 

tracking is unaffected by the spatial location of the noise masker suggests that the 

observed neural tracking of speech reflects an object-based tracking of the speech signal 

after it has been separated from other competing sounds in the scene, rather than simple 

monitoring and integration of the acoustic energy in the scene. 

Robustness of cortical tracking of speech-in-noise could be explained in part by a 

contrast gain control mechanism (Ding & Simon, 2013). The addition of noise to the 

acoustic scene effectively compresses the dynamic range of speech in both broadband 

(i.e. the acoustic envelope) and narrow-band frequency ranges (See Figure 4.1). Such a 

passive mechanism, in which the sensitivity of the auditory periphery is adapted based 

on the statistics of the acoustic scene, does not necessarily entail cortical involvement 

and can be observed in anaesthetized animals (Dean, Harper, & McAlpine, 2005; 

Rabinowitz, Willmore, Schnupp, & King, 2011; Wen, Wang, Dean, & Delgutte, 2009). 

However, passive contrast gain control fails to explain the difference between the 

tracking of natural and vocoded speech-in-noise observed by Ding et al. (2014). They 

found that, while background noise reduced the intensity contrast for both speech types 

(which would be compensated for by a contrast gain control mechanism), only the 

tracking of vocoded speech-in-noise is reduced, which suggests that the observed 
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cortical tracking mechanism is sensitive to spectrotemporal fine-structure cues that are 

not present in vocoded speech. Thus, contrast gain control is not a sufficient mechanistic 

explanation for the observed neural tracking of speech-in-noise.  

Our results contrast in interesting ways with those of a related study by Zoefel 

and VanRullen (2016). They employed a cross-correlation procedure using acoustically 

similar speech samples as background sound in a tone-detection task.  They reported 

differences between the brain's response to natural speech and speech-in-noise: the 

cross-correlation function to speech-in-noise lacked a peak between 100-150 ms lag and 

was attenuated relative to the cross-correlation function to natural speech. We found no 

such differences in our results; the cross-correlation function to speech was similar 

across masking conditions for lags ≤200 ms. We attribute the difference in results to the 

established effect of attention on the neural tracking of speech. Previous studies have 

found that attending to a speech stream in the presence of distractors enhances the 

neural synchronization to that speech stream even in the presence of competing sounds 

(Ding & Simon, 2012a; Hambrook & Tata, 2014; Kerlin et al., 2010; Mesgarani & Chang, 

2012; Zion Golumbic, Ding, et al., 2013).  Furthermore, Baltzell et al. (2017) reported an 

effect of task demands on speech tracking even when speech was presented in isolation.  

We therefore propose that active listening to speech among competing acoustic streams 

engages higher-level linguistic and attentional mechanisms that make the tracking of 

periodic features more robust. 
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The speech-EEG cross-correlation function for the masked conditions showed a 

speech-phase-locked response at lags >200 ms which we propose reflects a stream 

segregation and attentional selection process in which the speech stream is separated 

from the background noise.  This segregation mechanism seems not to be dependent on 

spatial separation, as the co-localized and spatially separated groups did not 

substantially differ in our study, though we note a study focused on distinguishing the 

two with more experimental power may be able to identify a difference.  Other 

experiments using a two-talker paradigm have reported robust activity at lags >200 ms 

phase-locked to attended speech (O’Sullivan, Power, et al., 2015; Power et al., 2012). 

O'Sullivan et al. (2015b) reported a similar effect in the neural response to stochastic 

figure-ground stimuli. Stochastic figure-ground stimuli contain a “figure” consisting of a 

series of tones that emerge from a background of unrelated tones based on consistent 

temporal coherence of frequency components over time. They found that actively 

listening to the acoustic stimuli evoked significantly greater phase-locked activity 

peaking at around 210 ms, consistent with the cross-correlation component peaking 

around from 220-260 ms lag in our results. Importantly, the topography of this late-

latency activity appears to be consistent across studies and is itself consistent with neural 

sources in temporal cortex, suggesting that it may be a signature of a general sound 

segregation and attention mechanism. O’Sullivan et al. (2015b) suggest activity at these 

latencies reflects a general mechanism for segregating acoustic streams on the basis of 

their temporal coherence.  
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Pre-attentive stream segregation appears to be reflected by early latency cortical 

activity phase-locked to temporally coherent acoustic streams that occurs even during 

passive listening (O’Sullivan, Shamma, et al., 2015; Zoefel & VanRullen, 2016). The 

effects of selective attention and stream segregation emerge at latencies around 200 ms, 

though it remains unclear what this activity represents. It may be the case that this later-

latency activity represents a continuation of stimulus-driven activity. Alternatively, we 

propose that this activity reflects a response to top-down feedback activity, potentially 

originating in frontal and motor areas that have also been shown to track speech (Ding, 

Melloni, et al., 2016; Park et al., 2015; Zion Golumbic, Ding, et al., 2013). Such feedback 

signals may encode predictions about upcoming stimulus features in the quasi-periodic 

speech stream or represent the response of error encoding predictive neural units 

(Feldman & Friston, 2010). Further research examining the causal relationship between 

speech-tracking activity in auditory areas and higher-order brain areas is called for to 

identify the mechanistic underpinnings of attentional effects on the speech-tracking 

response. 

Our results show that the neural tracking of speech does not rely solely on 

tracking the broadband acoustic envelope. We found that the acoustic dynamics of 

speech are tracked even when loud background noise eliminates broadband amplitude 

modulations in the acoustic scene. Two higher-level features in the speech stream may 

provide the periodic cues that enable tracking:  it is possible that the brain tracks fast 

modulations within discrete frequency bands (Ghitza et al., 2013).  Likewise, higher-level 

linguistic or grammatical features may allow the brain to temporally align oscillatory 
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activity with linguistic features even in the absence of periodic acoustic cues.  Indeed, the 

observed entrainment between EEG oscillations and speech features across many studies 

might not be driven entirely by bottom-up acoustic features.  Instead, entrainment 

between brain oscillatory activity and quasi-periodic speech features might reflect 

temporal coherence between top-down signaling among speech-related cortical regions, 

or coherence between top-down and bottom-up afferent signals. For example, predictive 

coding is proposed as a computational mechanism for auditory perception (Bastos et al., 

2012; Bendixen, 2014; Gagnepain, Henson, & Davis, 2012; Winkler, Denham, Mill, Bohm, 

& Bendixen, 2012).  In this theory, predictions about afferent features are projected down 

to lower levels.   For dynamic stimuli such as speech, there must be coherence between 

predicted features and bottom-up evidence.   The fact that familiarity with the 

grammatical or lexical structure of the language (Ding, Melloni, et al., 2016), and the 

present result that robust speech tracking can occur in the absence of a discrete 

broadband envelope suggests that this phenomenon reflects the temporal coherence 

called for by a top-down dynamic prediction mechanism. 
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4 The Effects of Periodic Interruptions on Cortical Entrainment to Speech 

4.1 Introduction 

Speech sounds like a smooth stream of words separated by gaps but, acoustically 

speech consists of periodic bursts of acoustic energy interleaved with silences that do not 

necessarily correspond to word boundaries. This is evident when hearing a foreign 

language: we easily recognize that the sound we hear is speech, but instead of 

segmented words we hear only staccato bursts of sound without clear word boundaries.  

Unfamiliar speech sounds like this in part because many languages share a quasi-

periodic 5-hz amplitude envelope corresponding to the syllable rate (Chandrasekaran et 

al., 2009; Poeppel, 2003).  In fact, speech is a temporally and spectrally complex acoustic 

signal modulated at several time scales which also include high frequency modulations  

(30-50 Hz) corresponding to phonemic features and a lower-frequency intonation 

contour (1-2 Hz) (Chait, Greenberg, Arai, Simon, & Poeppel, 2015; Ghitza & Greenberg, 

2009; Giraud & Poeppel, 2012). 

 Although the brain is remarkably good at stitching these dynamic acoustic events 

together into a coherent stream of words, speech perception mechanisms can be 

disrupted.  One such disruption occurs when brief segments of speech are replaced with 

silent gaps –also known as the “picket fence” effect.  In this case, speech processing 

mechanisms fail to recover the content of the interrupted speech.  It is possible to restore 

perception somewhat by filling these gaps with broadband noise (Miller & Licklider, 

1950; Warren, 1970).  This is called phonemic restoration and it depends on several factors: 

the intensity of the noise bursts, with louder noise being more effective; spectral overlap 
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between the noise and speech (Bashford & Warren, 1987);  the proportion of speech 

occluded by interruptions (Bashford, Riener, & Warren, 1992; Cooke, 2003; X. Wang & 

Humes, 2010); linguistic context (X. Wang & Humes, 2010); and agreement with visual 

cues (Shahin, Bishop, & Miller, 2009).   Importantly, speech perception is more resilient 

to interruptions when the envelope dynamics are preserved (Bashford, Warren, & 

Brown, 1996; Başkent, Eiler, & Edwards, 2009; Fogerty, 2013; Fogerty & Humes, 2012; 

Fogerty, Kewley-Port, & Humes, 2012; Gilbert, Bergeras, Voillery, & Lorenzi, 2007; 

Shinn-Cunningham & Wang, 2008), which suggests that low-frequency envelope 

modulations are not merely epiphenomena, but rather encode information that can be 

used by the brain to facilitate speech perception.  

 The phase of low-frequency (4-8 Hz) neuroelectric oscillations tracks modulations 

in the acoustic envelope. This phase-tracking of speech has been associated with 

improved intelligibility of degraded speech and improved effectiveness of selective 

attention in studies employing electroencephalography (EEG) (Ding & Simon, 2009; 

Hambrook & Tata, 2014; Kerlin et al., 2010; Peelle & Davis, 2012), electrocorticography 

(ECoG) (Mesgarani & Chang, 2012; Zion Golumbic, Ding, et al., 2013), and 

magnetoencephalography (MEG) (Cogan & Poeppel, 2011; Ding & Simon, 2012a; 

Doelling et al., 2014). Studies using advanced statistical techniques have found that the 

brain also tracks speech features beyond the broadband envelope (Di Liberto et al., 2015; 

Mesgarani et al., 2014). Converging lines of evidence from studies using perceptual 

entrainment paradigms (Hickok, Farahbod, & Saberi, 2015; Zoefel & VanRullen, 2015a) 

and periodically modulated electrical stimulation (Riecke, Formisano, Herrmann, & 
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Sack, 2015) further suggest that neural entrainment provides perceptual benefits.  These 

results have led to the theory that low-frequency neural oscillations play a 

computational role in optimally parsing speech (Ghitza, 2011; Giraud & Poeppel, 2012). 

The goal of the present study was to investigate the importance of the speech phase-

tracking phenomenon in the neural mechanisms that restore removed linguistic 

information in the picket-fence effect. 

 Entraining oscillatory activity to temporal modulations in speech may connect 

low-level acoustic representations to brain-wide speech processing networks (Fries, 2005; 

Schroeder & Lakatos, 2009).  Thus, degradation of speech perception in the picket-fence 

effect may result not only from removal of phonemic information, but also because 

interruptions introduce sharp acoustic transients that do not align with real syllable 

boundaries.  These transients probably disrupt neural speech tracking.  In this theory, 

phonemic restoration occurs because the continuity of the speech envelope is restored.  

Two predictions follow:  first, that inserting gaps into continuous speech degrades EEG 

speech tracking.  Second, that filling those gaps with carefully modulated noise that 

restores the acoustic envelope (Bashford et al., 1996; Fogerty & Humes, 2012; Shinn-

Cunningham & Wang, 2008)  will restore speech-related brain responses along with 

speech perception.  In the present study we show that phonemic restoration is facilitated 

by restoring speech envelope dynamics, which in turn restores the dynamics of cortical 

speech-processing networks. 
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4.2 Methods 

4.2.1 Subjects 

 Twenty undergraduates (12 female; 2 left-handed; mean age 19.5 years) from the 

University of Lethbridge were recruited and participated for course credit. Participants 

were neurologically normal and reported normal hearing. All participants provided 

informed written consent and procedures were in accordance with the Declaration of 

Helsinki and were approved by the University of Lethbridge Human Subjects Review 

Committee. 

4.2.2 Presentation 

 All stimuli were presented in free-field by an Apple iMac with a firewire audio 

interface (M-Audio Firewire 410). Participants sat 1 meter from a near-field studio 

monitor (Mackie HR624 MK-2) located on the front auditory midline. Stimulus 

presentation was controlled by a script custom coded using MATLAB and 

Psychophysics Toolbox Version 3 (Brainard, 1997; Pelli, 1997). 

4.2.3 Stimuli 

 The stimuli consisted of 60 speech samples of continuous speech generated from 

the Pacific Northwest/Northern Cities (PN/NC) corpus (McCloy et al., 2013). The PN/NC 

corpus consists of recordings of male and female speakers reading 180 sentences from 

the IEEE "Harvard" set and their time-aligned phonetic transcripts (“IEEE 

Recommended Practice for Speech Quality Measurements,” 1969). Each speech sample 

contained three unrelated sentences, read by one of two male voices, concatenated 
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together to create a sample of speech ~6.5s long. Each speech sample contained 20-27 

total words (mean: 22.93 ± 1.8). Each individual sentence was presented twice for each 

participant: once read by each speaker used with non-identical partner sentences to 

create a unique sentence triplet. Four versions of each speech segment, corresponding to 

the four experimental conditions, were created: Original speech segments consisted of 

uninterrupted continuous speech, Gap speech segments were generated based on 

original speech segments that had been interrupted by 166 ms silences inserted every 333 

ms with 40 ms of jitter, Burst speech segments were created from Gap speech segments in 

which the silent periods were filled with loud (+4 dB relative to average speech level) 

bursts of spectrally matched, uniform intensity noise. Previous studies suggest that 

phonemic restorations are more likely to occur if the masking noise shares spectral 

similarities with the interrupted speech, therefore we used noise samples that matched 

the spectral properties of the original speech (Bashford & Warren, 1987). Spectrally 

matched noise was generated by randomly time-shifting each original speech segment 

and adding the resulting signals together; this process was repeated 10 000 times and the 

resulting signals were combined and scaled to match the original average RMS 

amplitude. This procedure resulted in stationary noise which matched the average 

periodogram of the original speech samples. Finally, Smooth speech segments were 

created from Gap speech segments in which the silent periods were filled with spectrally 

matched noise that had been scaled by the low-pass (<25 Hz) filtered acoustic envelope 

of the original speech (Figure 4.1). This procedure resulted in speech samples that had 
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been interrupted yet retained the same low-frequency amplitude dynamics as the 

original speech. 

 

 

Figure 4.1: Example speech waveform and envelope for Original, Gap, Burst, and Smooth 

speech conditions. Both the Gap and Burst conditions substantially alter the envelope of 

the original speech. The envelope is restored in the Smooth condition.  Highlighted 

regions show the effect of adding gaps or bursts to epochs within syllables (left vertical 

column) and between syllables (right vertical column). 

 

4.2.4 Experimental paradigm 

  Each participant completed 80 trials, 20 in each condition, pseudorandomly 

ordered, with one break after 40 trials. Each trial consisted of the presentation of a single 

speech sample after which participants were given 30 seconds to recall and type as many 

of the words from the speech sample as possible. Performance on each trial was scored 

as a proportion of correctly recalled words divided by the total of number of words in 

the speech sample excluding common articles "the", "a", and "an'".  
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4.2.5 EEG recording and analysis 

 EEG was recorded with 128 Ag/Ag-Cl electrodes in an elastic net (Electrical 

Geodesics Inc., Eugene, OR, USA). Scalp voltages were recorded at a 500 Hz sampling 

rate and impedances were maintained under 100 kilo-ohms. Data were first analyzed 

using the BESA software package (Megis Software 5.3, Grafelfing, Germany). Data were 

visually inspected for bad channels and the signal from a small number of electrodes (10 

or less) was replaced with an interpolated signal. Because of the length of the trials, eye 

movement artifacts occurred in a majority of trials, therefore eye movement artifacts 

were corrected using the adaptive artifact correction algorithm (Ille et al., 2002). The EEG 

data from three subjects was not included in the final analysis: one subject had >10 

identified bad channels, and two subjects had large non-eye movement artifacts that 

could not be corrected. Data were re-referenced to an average reference, interpolated to 

an 81-channel 10-10 montage, digitally filtered between 1-15 Hz, and exported to 

MATLAB (MATLAB version 8.3.0.532; The Mathworks Inc., 2014, Natick, Massachusetts, 

USA) where further analysis was performed using custom scripts, EEGLAB functions, 

and the mTRF toolbox (Crosse, Di Liberto, Bednar, & Lalor, 2016; Delorme & Makeig, 

2004). 

 Brain activity related to speech processing was isolated using linear regression to 

determine multivariate temporal response functions (mTRFs) which describe a mapping 

between the EEG and three different representations of the original, uninterrupted 

speech signal. 1) The envelope dynamics representation was calculated by taking the 

absolute value of the Hilbert transform of the signal to extract the acoustic envelope, 
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low-pass filtering the envelope at 25 Hz, down-sampling the envelope to match the 

sample rate of the EEG data, then taking the first-derivative of the signal and half-wave 

rectifying it to create a signal that captured the low-frequency dynamics of the speech 

signal. This first-derivative envelope dynamics representation is preferred to the 

envelope itself because the auditory system is tuned to transient changes in sound 

captured by the first-derivative of the envelope (Doelling et al., 2014; Fishbach et al., 

2001; Hambrook & Tata, 2014; Hertrich et al., 2012; Howard & Poeppel, 2010). 2) The 

spectrogram representation was computed at 19 bark-scale frequencies using the 

VOICEBOX toolbox (Brookes, 2003). 3) The phonetic features representation was 

obtained by mapping the phonetic transcript of speech samples in the PN/NC corpus 

onto a space of 19 articulatory-acoustic features (Di Liberto et al., 2015; Mesgarani et al., 

2014). For the three interruption conditions the same original speech representations 

were used for generating TRFs and reconstructing EEG data. This choice relates to the 

fundamental hypothesis of our study: that restored perception of interrupted speech is 

supported by neural mechanisms active during those interrupted segments. We 

therefore sought to measure the extent to which the normal neural mechanisms of 

speech perception engaged during uninterrupted speech were abolished or restored in 

the three interruption conditions. 

 The relationship between a speech representation and it’s encoding in the EEG 

can be quantified using a model-based approach. Essentially, an mTRF and the speech 

representation for a given trial are combined to predict the EEG signal on that given trial. 

The accuracy of that prediction, measured and reported here as a Pearson correlation 
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coefficient between the predicted and measured EEG signals, reflects the degree to 

which the EEG encodes the information contained in the speech representation. 

 Generic mTRFs for each experimental condition and speech representation were 

generated based on procedures described by Di Liberto & Lalor (2017). EEG data was 

down-sampled to 100 Hz and converted to z-scores prior to regression to improve 

computational efficiency (Crosse et al., 2016). First, mTRFs were generated for each 

subject using a leave-one-out cross-validation approach in which an mTRF was trained 

on 19 trials and used to predict EEG signal for the remaining trial. This was repeated 20 

times, until all trials had been predicted. This cross-validation procedure was repeated 

25 times to empirically tune the ridge regression regularization parameter, λ, across a 

range of logarithmically spaced values from [10-1, 106]. The regularization parameter is 

used to optimize the prediction accuracy for each condition-representation combination 

and is described in detail by Crosse et al. (2016). Second, a subset of 12 symmetrical 

fronto-central electrodes (FC5, F3, FC3, F1, FC1, Fz, FCz, F2, FC2, F4, FC4, FC6) with the 

highest correlation coefficients across all conditions were identified and selected for 

further analysis. Exemplar mTRFs and reported reconstruction accuracies are the 

average results over these 12 electrodes.  Finally, the EEG signal for each subject was 

predicted by averaging the optimized subject-specific mTRFs from all other subjects to 

create a “generic” mTRF which is more effective than subject-specific models. All mTRFs 

were computed using a peri-stimulus time-window of lags ranging from -100 to 400 ms. 

Thus, the prediction accuracies reported reflect the prediction of single-subject EEG data 

based on mTRF models trained using the data from all other subjects in the experiment. 
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For plotting TRF models for different conditions, which may have different amplitudes 

due to different λ-values used in their generation, TRF weights were normalized by 

subtracting the mean pre-stimulus baseline and dividing by the standard deviation 

across the whole time-window.   

To further understand the differences in speech-locked brain activity between the 

four experimental conditions we analyzed the topographic distribution of the temporal 

response functions derived from the envelope dynamics representation of speech based 

on the methodology described by Murray et al. (2008). Because different λ parameters 

were used to arrive at the TRF for each condition, and because the λ-value acts as a 

smoothing factor that modulates the variance of the TRF across time, comparing global 

field power across conditions yields results that cannot be readily interpreted, so we 

instead focus on the global topographic dissimilarity (DISS) between conditions. To 

calculate the topographic dissimilarity the TRF weights at each electrode are normalized 

by subtracting the mean TRF weight across all electrodes and dividing by the 

instantaneous global field power (the standard deviation of TRF weights across all 

electrodes). From these normalized TRF weights the topographic dissimilarity is 

computed for a given time lag by computing the square root of the mean of the squared 

differences between the TRF weights at each electrode.  

4.2.6 Statistical analysis 

 The significance of differences in behavioral performance and TRF-based 

reconstruction of EEG signals using repeated measures ANOVAs performed in SPSS 
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(IBM SPSS Statistics version 20.0.0; IBM Corp., 2011, Armonk, New York, USA). Designs 

for each individual ANOVA can be found in the Results describing Figure 4.2 (for 

behavioral results) and Figure 4.4 (for EEG reconstruction results). Assumptions of 

sphericity were assessed using Mauchly’s test of sphericity. For factors that violated the 

assumption of sphericity original and adjusted degrees of freedom are reported along 

with the p-value based on the adjusted degrees of freedom. 

The significance of DISS values was assessed using a non-parametric 

permutation test in which, at the within-subject level, TRF weights were randomly 

assigned to an experimental condition and a new DISS value was computed based on the 

reassigned TRF weights; this process was repeated 100 000 times to generate an 

empirical distribution of DISS values and p-values were assigned based on where the 

actual DISS ranked within this distribution. The false discovery rate of this analysis was 

controlled by Bonferroni correcting for the number of pairwise between-condition 

comparisons (six) and using the Benjamini-Hochberg procedure to account for the 

comparisons at each computed time lag (51) (Benjamini & Hochberg, 1995). 

4.3 Results 

 Listeners were able to recall fewer words from interrupted speech compared to 

uninterrupted speech, however restoring the acoustic envelope in the Smooth 

interruption condition remediated the detrimental effect of interruption (Figure 4.2). 

Note that speech stimuli consisted of three unconnected simple sentences and contained  

an average of 23 words. At the end of each trial, participants performed a free-recall of 
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these words. Thus, performance was limited by the working memory capacity of 

listeners (Cowan, 2001), and we would not expect near-ceiling performance even in the 

Uninterrupted condition. A repeated measures ANOVA on the percentage of words 

recalled per trial showed a significant main effect of interruption condition (F(3,57; 

adj:1.9,36)=258.68, p<0.001, η2=0.93, Greenhouse-Geisser adjusted, ε=0.64). Post hoc 

pairwise comparisons revealed significant differences in task performance between 

conditions (p<0.001) with the exception of the Gap and Burst conditions, though the 

difference between those conditions trended towards significance (p=0.098). 

 

Figure 4.2: Percentage of correctly recalled words from sentences that were 

uninterrupted, interrupted by silent gaps (Gap), interrupted by bursts of noise (Burst), or 

interrupted by noise that followed the original speech envelope (Smooth). Interruptions 

significantly decreased word recall. Word recall was significantly improved by the 

restoration of the original acoustic envelope in the Smooth condition (error bars indicate 

standard error; † p<0.1; * p<0.0001). 

 

 The encoding of speech features by the brain was measured using a forward TRF 

modelling approach in which EEG data was reconstructed based on optimized TRFs and 
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representations of the envelope dynamics of speech, the spectrogram of speech, and the 

phonetic features of speech respectively. Qualitatively, the TRFs for the envelope 

dynamics and spectrogram representations of speech contained a common peak-trough-

peak neural activation pattern occurring at post-stimulus lags from 0 to 300 ms, across all 

interruption conditions (Figure 4.3). The TRFs for the phonetic feature representation of 

speech are less straightforward to interpret, possibly due to the relatively limited 

recording time in the current study compared to previous studies (130 seconds of data 

per condition in the current study compared to a minimum of 600 seconds of data used 

by Di Liberto et al. (2017)). Increased recording time can improve the discriminability of 

phonetic features based on their TRFs (Di Liberto & Lalor, 2017), it is possible that our 

current data cannot support the generation of distinct TRFs using a phonetic feature 

representation. 
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Figure 4.3: Grand-average multivariate temporal response functions (mTRFs) generated 

for envelope dynamic, spectrogram, and phonetic feature models at peri-stimulus time-

lags from -100 to 400 ms for uninterrupted and interrupted speech, averaged over 12 

fronto-central electrodes. 

 

 How well the brain encodes speech features under each interruption condition is 

quantifiable by measuring the correlation (Pearson’s r) between the measured EEG and 

the EEG signal reconstructed based on the speech representation and the TRF (Figure 

4.4A). For all combinations of conditions and speech representations the reconstruction 
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accuracy was significantly greater than zero (one-sample t-test; t>2.81, p<0.007 Benjamin-

Hochberg FDR corrected). A 3x4 repeated measure ANOVA with speech representation 

(envelope dynamics, spectrogram, phonetic features) and interruption (uninterrupted, 

gap, burst, smooth) as factors reveals a significant main effect of interruption 

(F(3,48)=11.12, p<0.001, η2=0.41), while there was not a significant effect of speech 

representation (F(2,32; adj:1.5,24)=2.51, p=0.11, η2=0.13, Greenhouse-Geisser adjusted, 

ε=0.75) nor a significant interaction between factors (F(6,96)=1.06, p=0.39, η2=0.062). Post 

hoc pairwise comparisons of interruption conditions reveals significant differences 

between the Uninterrupted condition and both the Gap (p=0.045) and Burst (p<0.001) 

conditions while there was not a significant difference between the Uninterrupted and 

Smooth conditions (p=0.61); there were significant differences between the Smooth 

condition and both the Gap (p=0.014) and Burst (p<0.001) conditions; there was a trend 

towards significance for the difference between Gap and Burst conditions (p=0.093). It is 

worthwhile to note that because we have used the original, uninterrupted speech 

representations for all conditions these electrophysiological results reflect speech-related 

responses in the brain, rather than responses to the interruptions. Because the 

interruptions were not time-locked to any feature of the speech itself the averaged EEG 

response captured by the mTRF analysis for each condition reflects responses to the 

speech signal and not the interruptions themselves. 
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Figure 4.4: A) Grand-average EEG prediction accuracy (Pearson’s r) for each speech 

model for uninterrupted and interrupted speech over 12 frontocentral electrodes. 

Reconstruction of EEG activity is poor for Gap and Burst interrupted speech, but 

reconstruction is improved in the Smooth condition in which the acoustic envelope is 

restored. B) Grand-average EEG prediction accuracy for intact and missing segments of 

speech, collapsed across speech representation. C) Grand-average EEG prediction 

accuracy for Uninterrupted and Smooth speech conditions over 12 frontocentral 

electrodes, collapsed across speech representation, using TRFs trained on data from 

either Uninterrupted or Smooth conditions. Error bars indicate standard error. 
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Disrupting the low-frequency envelope in the Gap and Burst conditions appears 

to disrupt both the perception (Figure 4.2) and the cortical representation (Figure 4.4A) 

of the interrupted speech. Restoring the envelope in the Smooth condition appears to 

restore both perception and the brain’s response to the interrupted speech. However, it 

is possible that interruptions disrupt brain responses globally, across the entire speech 

sample, or only locally within the missing segments themselves. To assess the extent of 

such local disruptions we considered the differences in response to intact and missing 

segments of speech. The mTRF analysis was repeated using speech representations that 

included data only from the intact or removed portions of the signal from each trial. For 

the Uninterrupted condition the “missing” segments were in fact intact speech that would 

have been removed in an equivalent interrupted condition (Figure 4.4B). A 2x4 repeated 

measures ANOVA with speech intactness (intact, missing) and interruption condition 

(uninterrupted, gap, burst, smooth) collapsed across speech feature models revealed a 

significant main effect of intactness (F(1,16)=18.49, p<0.001, η2=0.54), no effect of 

interruption (F(3,48)=1.02, p=0.39, η2=0.06), as well as a significant intact*interruption 

interaction (F(3,48)=3.00, p<0.001, η2=0.27). Consideration of the simple main effects 

showed a significant effect of intactness for the Gap (F(1,16)=16.28, p=0.002 Benjamini-

Hochberg adjusted, n2=0.50) and Burst (F(1,16)=16.18, p=0.002 Benjamini-Hochberg 

adjusted, η2=0.50) conditions and found no effect of intactness for the Uninterrupted or 

Smooth conditions (F(1,16)<1.10, p>0.62 Benjamini-Hochberg adjusted, η2<0.064). Thus, 

the response to intact speech segments remains similar regardless of interruption type 
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while the speech information encoded by the EEG is substantially reduced during the 

missing segments of speech for Gap and Burst, but not Smooth interrupted speech. 

 The lack of a difference in reconstruction accuracy between the Uninterrupted and 

Smooth conditions suggests that the brain responds similarly to uninterrupted speech 

and interrupted speech with an intact envelope. Restoring the envelope in the Smooth 

condition could restore the “canonical” response to speech; alternatively, reconstruction 

accuracy might be improved in the Smooth condition due to the encoding of some 

different, yet still speech-locked, set of features. If the speech features encoded by the 

EEG in both conditions are the same, then we could predict that the TRFs are 

interchangeable between conditions – that is to say that the EEG from Uninterrupted 

trials can be predicted just as well using TRF models trained on data from Smooth trials 

as TRFs trained based on data from Uninterrupted trials and vice versa. To test this 

hypothesis, we used Uninterrupted TRFs to reconstruct the EEG from Smooth trials and 

Smooth TRFs to reconstruct Uninterrupted data and compared the reconstruction accuracy 

to the reconstruction accuracy of a purely within-condition reconstruction. A 2x2 

repeated measure ANOVA  was performed  with interruption (uninterrupted, smooth) 

and TRF model-prediction relationship (within-condition, across-condition) as within-

subject factors, collapsed across speech representation, failed to find a significant main 

effect of interruption (F(1,16)=0.03, p=0.86, η2=0.002), however there was a significant 

effect of TRF model-prediction relationship (F(1,16)=13.55, p=0.002, η2=0.45) as the across-

condition reconstruction accuracy was poorer for both conditions and for all speech 

representations (Figure 4.4B). There was no significant interaction effect (F(1,16)=0.035, 
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p=0.86, η2=0.002). This result suggests that, while the degree of speech feature encoding 

in the EEG signal may be similar across Uninterrupted and Smooth trials, the specific 

features encoded in the EEG signal are systematically different. 

 Topographic analysis of the TRFs based on the envelope dynamics of the speech 

revealed significant topographic differences between the topography of TRF weights for 

the Uninterrupted and both the Burst and Smooth interruption conditions which suggests 

different neural generators are activated in response to speech interrupted by noise 

(Figure 4.5). The earliest topographic differences occurred for a range of lags from 60-130 

ms characterized by a bilateral pattern of relatively stronger TRF weights at frontal 

electrodes for the interrupted conditions and weaker TRF weights at occipital electrodes. 

A second difference occurred for a later range of lags from 230-330 ms characterized by a 

pattern of strongly right-lateralized activity in response to the noise interrupted speech. 

There were no significant differences found for other pairwise comparisons between 

conditions.  
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Figure 4.5: Results of topographic dissimilarity analysis for pairwise comparisons of 

envelope dynamics TRFs. Topographies of TRFs from noise-interrupted conditions 

significantly differed from the TRF from uninterrupted speech at early lags (60-130 ms) 

and later lags (230-330 ms). 

 

4.4 Discussion 

 We found that interrupting speech with brief, repeated gaps of silence impaired 

perception and subsequent recall.  Filling those gaps with noise restored perception to 

some degree - this is the classical phonemic restoration or “picket fence” effect.  Filling 

those gaps such that the low-frequency acoustic envelope was restored resulted in 

significantly better recovery of perception. Our EEG results showed some evidence of 
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correspondence to our behavioral results: The Gap and Burst conditions showed the 

worst perceptual performance (Figure 4.2) and had the worst EEG reconstruction 

accuracy (Figure 4.4A). In the Smooth condition, perception was moderately restored; 

interestingly, EEG reconstruction accuracy was as good as it was for the Uninterrupted 

condition, however further analysis suggested that this does not mean that the original 

neural response to speech was restored by smoothing the acoustic envelope. 

Recent work has demonstrated the importance of the relationship between the 

acoustic dynamics of speech and the electrical dynamics of the brain as revealed in 

EEG/MEG studies.  We hypothesized that interruptions in speech might impair 

perception not only by removing phonemic information, but also by destroying the 

original target envelope of the utterance.   Two predictions followed:  First, that 

interruptions that disrupt the speech envelope should disrupt the neural tracking of 

speech as measured by the accuracy of reconstruction of the EEG signal constructed 

from the original uninterrupted speech representations.  Second, that restoring the 

appropriate envelope, without restoring the phonemes themselves, should restore both 

the neural response to speech and speech perception. 

Our electrophysiological results do not fully support our first prediction and call 

for a more nuanced account of speech tracking in the picket-fence effect.   If acoustic 

transients unrelated to syllable boundaries disrupted speech responses across the entire 

utterance, then we should expect reduced speech tracking during both missing and 

intact speech segments.  Figure 4.4B shows that for speech interrupted by gaps or bursts, 
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there was a reduction in the amount of speech information encoded in the EEG signal 

only during those interruptions when the speech signal had been completely 

removed.  Speech information during intact segments was encoded similarly regardless 

of whether other segments of the utterance had been interrupted. These results suggest 

that the speech tracking response is not simply a bottom-up, stimulus-driven response to 

acoustic transients. Intracranial studies of single phonemic restorations have found that 

the bilateral auditory cortex response to restored phonemes was predicted by pre-

interruption activity in left frontal cortex which suggests a top-down mechanism that 

biases auditory activity to support the perception of continuous speech (Leonard et al., 

2016). We speculate that the canonical EEG-speech tracking response to uninterrupted 

speech represents, to some degree, agreement between bottom-up activity driven by 

acoustic transients and dynamic top-down activity reflecting an attempt to predict the 

content of the incoming speech signal. This notion is consistent with models of 

predictive coding based on intracranial recordings (Leonard, Bouchard, Tang, & Chang, 

2015). For the intact speech, in all conditions, the speech tracking response is consistent 

because the speech signal, and thus the bottom-up signal, is intact and matches the top-

down prediction. The initial acoustic transient at the interruption offset in the Gap and 

Burst do not affect the response to subsequent intact speech because, even though this 

transient is a highly salient sound feature in the bottom-up signal sweep, it is not 

accounted for in the top-down prediction and so the response to that transient is filtered 

out. During the Gap and Burst interruptions the acoustic signal and the 

brain’s predictions are mismatched resulting in a reduced speech tracking response. 
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Our second prediction, that restoring the smooth envelope should restore normal 

speech-related processes, was partly supported by our electrophysiological 

results.  Restoring the acoustic envelope of speech in the Smooth condition appeared to 

restore the neural encoding of the speech signal even during segments of missing 

speech.  However, TRFs were not interchangeable between uninterrupted and smooth 

conditions, suggesting that speech features encoded in these two conditions are different 

when the low-frequency acoustic envelope is restored without the spectral fine-structure 

of the original phonemes.  Furthermore, as shown in Figure 4.5, restoring the low-

frequency envelope in the smooth condition lead to a dissimilar topographic distribution 

of TRF weights when compared to the uninterrupted condition.  This suggests that, 

while speech perception may be restored to some degree, the neural mechanisms 

mediating that perception are systematically different that those engaged during normal 

speech perception. 

The roles of auditory and speech-specific brain regions in parsing continuous 

dynamic stimuli have been under investigation and provide some framework for 

interpreting the present results.  For example, neurophysiological studies of the 

continuity illusion using simple tone stimuli in primates and humans suggest that 

continuity is reflected physiologically at the level of primary auditory cortex (Petkov, 

O’Connor, & Sutter, 2007; Riecke, van Opstal, Goebel, & Formisano, 2007). Other studies 

using speech stimuli interrupted by bursts of noise identified complementary networks 

that act to repair the interrupted stimulus and maintain the percept of continuity 

involving, respectively, the left inferior frontal gyrus, left pre-supplementary motor area, 
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and bilateral insula and; left posterior angular gyrus and superior temporal sulcus, right 

superior temporal sulcus, bilateral superior frontal sulcus, and precuneus (Shahin et al., 

2009). The core area of right Heschl’s gyrus (HG) has also been implicated in 

maintaining perceptual continuity of interrupted stimuli (Riecke et al., 2007; Shahin et 

al., 2009). Our topographic analysis found a strongly right-lateralized TRF component at 

lags from 230-330 ms occurring for conditions in which interruptions were filled with 

noise which could plausibly arise from the activation of right HG. This putative 

activation of right HG is time-locked to the interrupted speech signal and is the second 

significant deviation (with the first occurring at lags from 60-130 ms) from the brain 

activity associated with uninterrupted speech processing, which suggests that it 

represents a secondary stage of processing mediated by feedback based on the 

surrounding intact speech signal. Other studies of illusory continuity have found that 

low-frequency activity related to the interruption onset is suppressed when the illusion 

is perceived (Kaiser, Senkowski, Roa Romero, Riecke, & Keil, 2018; Riecke, Esposito, 

Bonte, & Formisano, 2009). While our data do not speak to the brain’s response to the 

interruption, we found evidence for an enhanced or additional response to the 

interrupted speech itself only when the interruptions are filled with noise that could 

potentially mask a continuous speech signal. 

Our data provide limited insight into the broader question of what relationship 

exists between speech-tracking neural responses and speech intelligibility. The 

relationship between speech intelligibility and cortical entrainment to speech remains 

controversial (Haegens & Zion Golumbic, 2018; Zoefel & VanRullen, 2015b). Recent 
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experiments have used priming paradigms in which degraded speech is rendered 

intelligible following the presentation of un-degraded speech and suggest that the 

linguistic cues present in intelligible speech support spectrotemporal tuning to speech 

features within auditory cortex (Holdgraf et al., 2016) and increase top-down signaling 

to auditory areas from association areas (Di Liberto, Lalor, et al., 2018). Our results 

indirectly support the idea that speech-tracking responses are related to intelligibility 

based on the correspondence between perceptual performance and our EEG 

reconstruction results; however, it was not the goal of our study to parameterize 

intelligibility. The main goal of this study was to characterize the cortical response to 

interrupted speech dynamics and explore a potential mechanistic explanation for a well-

known perceptual illusion. While the correspondence between intelligibility and the 

EEG speech-tracking response in our results is certainly suggestive of a relationship 

between cortical entrainment to speech and speech intelligibility, further experiments 

that exercise tight control over acoustic differences while parameterizing intelligibility in 

other ways will provide more definitive answers. 

Entrainment of brain electrical dynamics to the low-frequency acoustic dynamics 

in speech has been proposed as a mechanism that allows the brain to rhythmically 

improve perceptual sensitivity.  One theory is that this allows the brain to effectively 

parse speech into perceptual units.  It might also play a role in maintaining selective 

attention to a single stream (Giraud & Poeppel, 2012; Hambrook & Tata, 2014; Hickok et 

al., 2015; Riecke et al., 2015; Schroeder & Lakatos, 2009).  Those theories suggest a 

mechanism that aligns temporal windows of enhanced neural sensitivity with important 
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spectrotemporal events in the speech stream.  A related theory, called Communication-

through-Coherence, posits that the brain electrical dynamics of disparate regions should 

be entrained when those regions need to effectively exchange information (Engel et al., 

2001; Fries, 2005).   Taken together, these ideas suggest that, to optimally process speech, 

language-processing networks should entrain to the frequency of important 

spectrotemporal events in speech. 

 Smoothing the low-frequency amplitude envelope substantially restored 

perception beyond simply filling gaps with noise.  This is remarkable considering that, 

because only low-frequency modulations were restored, only minimal phonemic-level 

information was restored to the signal.   The Smooth condition, by design, retained the 

low-frequency amplitude cues of normal speech. These might allow the brain to 

optimally process speech-related spectrotemporal events. This improved processing of 

sound may aid top-down mechanisms that the brain employs to repair the percept of 

degraded speech.  It might also allow for the more efficient use of contextual information 

about the sound surrounding the interruptions. Such restorative neural processes are 

likely to be dynamic, since the speech signal itself is dynamic, and an intact acoustic 

envelope may provide an important temporal cue that coordinates the dynamical 

activity between the distributed brain areas responsible for the successful perception of 

interrupted speech.  
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5 Conclusions 

Oscillatory electrical activity in the brain entrains to rhythmic fluctuations of 

sensory inputs. The computational purpose of coupling internal, neural activity to 

external stimulus dynamics is not yet understood. The entrainment of cortical activity to 

acoustic and abstract features of speech has been proposed as a physiological mechanism 

involved in processing continuous speech. This thesis has described three studies that 

consider top-down, cognitive effects on the entrainment of auditory cortical activity to 

speech. We found that entrainment to speech cannot be explained as a simple bottom-up 

stimulus-response; it also reflects top-down influences of attentional and linguistic 

processing mechanisms. These studies contribute valuable insights into how the brain 

processes speech - especially in real-world, noisy environments. 

 In Chapter 2 we considered the cognitive process of selective attention in relation 

to the EEG speech-tracking response. We recreated an ecologically valid “cocktail party” 

environment in which listeners had to attend and respond to a single target stream 

against a background of up to six other competing speakers. Behaviorally, listeners were 

less likely to report words from a target speech stream as the number of distractor voices 

in the scene was increased. They were also more likely to report words occurring in the 

distractor streams suggesting that the informational content of distractors actively 

interfered with perception of the target speech. Our electrophysiological results showed 

enhanced tracking of attended versus ignored speech but only during epochs 

surrounding correct responses to target words in the attended speech, in agreement with 

existing literature (Hambrook & Tata, 2014; Mesgarani & Chang, 2012). We tested three 
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hypotheses: (a) Speech-tracking activity related to the target speech stream is reduced as 

the attentional challenge is increased by increasing the distractor set-size. As predicted, 

the attentional enhancement effect was reduced as more distractors were added to the 

acoustic scene. (b) Spectral overlap in the auditory periphery results in increased 

energetic masking, thus speech-tracking is reduced due to a degraded low-level stimulus 

representation. We invalidate this hypothesis based on the observation that tracking of 

the target speech stream was also reduced when Interference in the auditory periphery 

was ruled out by spectrally separating the target from distractor streams in the vocoded 

speech group. (c)  We explicitly tested a theory of “active distraction” which suggests 

that distractor streams may intrude on perception by transiently capturing attention, 

however we found no evidence to suggest that such a mechanism occurs in our 

experimental paradigm.   

The main result from Chapter 2 is that the attentional enhancement of 

entrainment to target speech is reduced as the distractor set-size in the acoustic scene is 

increased. This reduction in attentional effect cannot be explained solely based on 

interference in the auditory periphery: the tracking of target speech was also reduced by 

adding distractors when target and distractor speech was spectrally separated through a 

vocoding process. Thus, we can conclude that interference between competing speech 

streams occurs in cortex. We further speculate, based on reports of reduced interference 

within the spike-train representations of spectrally separated sounds in auditory cortex 

(Larson et al., 2012; Narayan et al., 2007), that increased interference within higher-order, 

potentially speech-specific, cortical areas drives the reduction in attentional 
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enhancement of speech-tracking responses in auditory areas with increasing distractor 

set-size. We believe that the results presented in Chapter 2 strongly suggest that neural 

networks responsible for the more general cognitive tasks of attentional selection and 

language processing exert some top-down influence on auditory cortical activity to 

enhance the tracking of a target speech signal. 

 In Chapter 3 we examined the role of the broadband acoustic envelope in the 

cortical entrainment to speech. One possible explanation for the effect observed in 

Chapter 2 is that broadband acoustic envelope cues related to the target speech are 

obscured by the addition of more speech signals to the scene. If broadband envelope 

fluctuations are important for tracking speech we should expect that systematically 

removing broadband envelope cues from the scene will likewise abolish cortical 

entrainment to speech. We used temporally modulated, spectrally matched noise to 

obscure the broadband speech envelope and found that the broadband envelope 

modulations were not necessary for speech tracking to occur. Thus, higher-level acoustic 

modulations (such as energy fluctuations within discrete frequency bands) and linguistic 

features are taken to be sufficient for entraining cortical activity to speech. This finding 

reinforces our interpretation of the results presented in Chapter 2, that competing speech 

interferes with the representation of higher-level features of attended speech in cortex. 

Furthermore, we identify a component in the EEG speech-tracking response that appears 

to be related to the selection of a speech stream in the presence of background noise. This 

component appears to be analogous to a component observed in experiments where 

listeners had to selectively listen to one speech stream in a two-talker dichotic listening 
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paradigm (Power et al., 2012), and a component related to separating a salient tone-

sequence from a background of other tones (O’Sullivan, Shamma, et al., 2015). We 

propose that this component may reflect activity related to the cognitive processes of 

selective attention and stream segregation. We speculated that this component may 

reflect a response to feedback from higher-order neural ensembles generating top-down 

predictions about the nature of the target acoustic stream. 

 In Chapter 4 we investigated the brain’s response to acoustic and linguistic 

features of interrupted speech, seeking a mechanistic explanation for the phonemic 

restoration effect. The study described in Chapter 3 suggests a speech-tracking 

mechanism that operates by entraining activity to the high-level spectrotemporal 

transients that occur quasi-periodically in normal speech. We had predicted that 

interrupting speech by replacing segments of speech with silent gaps or bursts of noise 

would disrupt speech perception by disrupting such a neural mechanism – the transients 

that mark the on-off cycle of the interruptions introduce spectrotemporal boundaries 

unrelated to the temporal organization of the target speech. Thus, we predicted that the 

tracking of interrupted speech would be reduced, relative to intact speech. We further 

predicted that restoring the acoustic envelope of interrupted speech by inserting 

envelope-modulated noise into gaps would restore both perception of the interrupted 

speech and neural entrainment to speech. Our first prediction was not supported by our 

data: while cortical tracking of speech was reduced for speech interrupted by silence or 

noise bursts, this reduction is more parsimoniously attributed to the absence of the 

speech information itself rather than the disruption of a continuous processing 
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mechanism. We found that the tracking of segments of speech that had not been not 

been removed remained intact regardless of interruption; thus, the spurious 

spectrotemporal transients at the beginning and ending of intact speech segments did 

not appear to influence entrainment to the acoustic or linguistic features of speech. This 

called for a more nuanced account of speech-tracking: entrainment to speech does not 

simply reflect a bottom-up, stimulus-driven response to spectrotemporal modulations; 

rather, it reflects the alignment between the bottom-up sensory signal and top-down 

predictions about the sensory signal, with those predictions putatively coming from 

association areas (Davis & Johnsrude, 2003, 2007, Leonard et al., 2016, 2015; Peelle & 

Davis, 2012). Our second hypothesis was only partly supported by our results: the 

magnitude of speech-tracking responses was restored by restoring the acoustic envelope 

of interrupted speech, however the speech-tracking response itself was topographically 

different from the response to uninterrupted speech which suggests that a different set 

of neural ensembles are responsible for encoding interrupted speech. Interestingly, this 

difference occurred at around the same latency as the selection-related component 

observed in Chapter 3. This response may reflect a similar feedback-driven response to 

signals from higher-order areas responsible for generating predictions about an 

incoming behaviorally relevant stimulus. It should be noted that, while we do observe 

components in the EEG speech-tracking response at latencies around 200–300 ms in both 

experiments, they exhibit markedly different topographies which may indicate that the 

components reflect different underlying processes (i.e. there is not a shared feedback 

mechanism), or it may be due to the differential activation of brain areas by a similar 
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feedback mechanism – the illusory continuity in the phonemic restoration is known to 

activate distinct brain areas that are not activated by intact speech (Shahin et al., 2009). 

Since we cannot distinguish between these alternatives based on our current data further 

experiments are called for. 

  These experiments describe top-down influences in the brain’s response to 

speech and suggest that cortical entrainment to speech reflects the interplay of high-level 

attentional and linguistic processes. The cognitive goal of attention to speech – to select 

one stream of speech for enhanced processing while excluding other, un-related stimuli 

– can be achieved by two complementary, oscillatory neural mechanisms: (a) sensory 

selection of the rhythmic speech signal (Schroeder & Lakatos, 2009; Zion Golumbic et al., 

2012), and (b) temporally organizing neural activity within anatomically diverse neural 

ensembles to define functional networks that can optimally communicate and encode 

high-level or abstract stimulus features (Fries, 2005, 2015; Helfrich & Knight, 2016; Voloh 

& Womelsdorf, 2016; Voytek et al., 2015). Under current theories of speech perception 

these mechanisms work together. Oscillation-based sensory selection effectively 

segments and parses the continuous speech signal (Ghitza, 2011) while also providing a 

temporal frame-of-reference to organize activity throughout a language processing 

network that spans areas in frontal, prefrontal, and temporal cortices (Giraud & Poeppel, 

2012). However, these theories of speech perception are limited because they describe 

speech perception in terms of a bottom-up stimulus decoding process, related to the 

speech-tracking electrophysiological response, and do not account for the role of top-

down feedback processes. These theories cannot explain, for example, why interference 
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in the linguistic representation of speech results in an attenuated speech-tracking 

response as we observed in Chapter 2. Therefore, we propose an expansion to these 

theories of speech perception, based on a predictive coding perspective, which maintains 

that the cortical speech-tracking response reflects, to some degree, the agreement 

between bottom-up sensory responses and top-down predictions. Under this expanded 

theory, adding competing speakers to a scene reduces tracking of an attended signal by 

degrading the neural representation of high-level linguistic features, which in turn 

results in less robust predictive feedback to the sensory areas producing the EEG speech-

tracking response. Some limited support for this theory, from studies using causality 

analysis, already exists: Park et al. (2015) found that low-frequency auditory cortical 

activity tracked speech better as a function of increased top-down signaling from frontal, 

motor, and posterior temporal areas; Di Liberto et al. (2018) found increased cortical 

entrainment to speech rendered intelligible through prior knowledge that was mediated 

by increased top-down signaling from left inferior frontal gyrus. These studies represent 

useful models for testing the predictions of a predictive coding account of speech-

tracking. Future studies, preferably leveraging the superior spatial localization 

capabilities of intracranial recording or MEG, should be conducted to determine the 

causal relationship underlying activity associated with the selective attention, stream 

segregation, and perceptual restoration effects described in this thesis. The results of 

such studies would elucidate the neurobiological mechanisms that connect sound 

perception, attentional selection, and language processing. 
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