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ABSTRACT

Ionizing radiation (IR), along with being an important diagnostic and treatment

modality, is a potent tumor-causing agent, and the risk of secondary radiation

treatment-related cancers is a growing clinical problem. Now some studies propose to

link secondary radiation-induced cancers to an enigmatic phenomenon of bystander

effects, whereby the exposed cells send signal damage and distress to their naïve

neighbors and result in genome destabilization and carcinogenesis. Yet, no data

existed on the bystander effects in an organ other than an exposed one. With this in

mind, we focused on the analysis of existence and mechanisms of radiation-induced

bystander effects in vivo. We have found that bystander effects occur in vivo in

distant skin and spleen following half-body or cranial irradiation. These bystander

effects resulted in elevated DNA damage, profound dysregulation of epigenetic

machinery, and pronounced alterations in apoptosis, proliferation and gene

expression. Bystander effects also exhibited persistency and sex specificity. The

results obtained while using the animal model systems can potentially be extrapolated

to different animals and humans.
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1. GENERAL INTRODUCTION 

1.1 RADIATION EXPOSURE AND CANCER 

During the last 100 years, radiation has received a lot of interest from researchers. 

On the one hand, it is a useful tool utilized in almost all spheres of human life, and 

especially in medicine. In medicine, ionizing radiation (IR) is an important diagnostic and 

treatment modality. On the other hand, it is a severe DNA damaging agent that can lead 

to serious consequences including cancer (Little, 1999).  

Data on radiation-induced cancers primarily come from individuals who were 

medically exposed, as well as from atomic-bomb and nuclear accident survivors.  

Since 1902 when the first radiation-induced cancer was reported (Little, 2000), 

and almost a hundred years after radiation was used for the first time to treat tumors 

(Gramegna, 1909), it still remains the number one diagnostic and treatment tool for a 

majority of cancers (Erven et Van Limbergen, 2007; De Potter et al, 2006; Roof et al, 

2003; Pollack et al, 2000). However, while modern cancer radiation therapy has led to 

increased patient survival rates, the risk of treatment-related deleterious effects, including 

secondary cancers, is becoming a growing problem (Hall et Phil, 2006; Brenner et al, 

2005; Rund et Ben-Yehuda, 2004; Brenner et al, 2000; Leone et al, 1999; Boice et al, 

1992).  

Moreover, recent data suggest that even fairly low doses of IR such as those being 

used in diagnostic procedures (like X-ray or Computer Tomography) can lead to the 

development of radiation-induced cancers (Brenner et Hall, 2004; Liu et al, 2004; Morin 

et al, 2000; Preston-Martin et al, 1989), especially in children or young adults who 
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underwent a radiation diagnostics in childhood (Kleinerman, 2006; Hall, 2002; Shu et al, 

2002; Infante-Rivard et al, 2000; Hildreth et al, 1989).    

Another group of studies that include data from the atomic bomb survivors and 

individuals exposed to industrial radiation accidents have shown an increased evidence of 

cancer development. Studies on the Hiroshina and Nagasaki A-bomb survivors cohort are 

the main source of information on delayed consequences of radiation exposure. Since 

1945 a number of investigations have been done indicating an elevated incidence of 

various types of cancer among survivors: leukemia (Wakabayashi et al, 1983; Watanabe 

et al, 1972; Folley et al, 1952), breast cancer (Carmichael et al, 2003; Wakabayashi et al, 

1983), thyroid carcinoma (Wakabayashi et al, 1983; Watanabe et al, 1972), stomach, and 

lung cancers (Wakabayashi et al, 1983). 

The increased cancer incidence is also well documented in the human population 

exposed to radiation from nuclear power accidents and nuclear test sites (Shilnikova et al, 

2003; Kossenko, 1996).   

Due to inadequate radionuclide processing and storage, approximately 30,000 

people who live near the Mayak nuclear facility in the southern Ural Mountains in Russia 

are constantly exposed to ionizing radiation. This has led to a significant growth in 

leukaemia incidence rates. Leukemia rates in the Mayak population were just slightly 

lower than among atomic bomb survivors (Shilnikova et al, 2003; Kossenko, 1996).  

  Another nuclear catastrophe, the most severe in uclear industry history, occurred 

in 1986 in Chernobyl, Ukraine, when the nuclear power reactor exploded releasing an 

enormous amount of radioactive isotopes into the environment. The largest human 

exposure was to Iodine-131, which led to a subsequent increase in a number of thyroid 
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carcinomas after 1990 (Williams, 2006; Bogdanova et al, 2006; Likhtarov et al, 2006). 

Further Chernobyl studies also described significantly elevated levels of other cancers 

including leukaemia and lymphoma (Balonov, 2007; Gluzman et al, 2005), breast cancer 

(Prysyazhnyuk et al, 2007; Pukkala et al, 2006), bladder cancer (Morimura et al, 2004), 

and renal-cell carcinomas (Romanenko et al, 2000).  A majority of radiation-induced 

non-hematological cancers continue to occur decades after exposure. Only 20 years have 

passed since the Chernobyl catastrophe, therefore it is too early to make a final evaluation 

of that accident (Baverstock et Williams, 2006; Williams et Baverstock, 2006).   

Elevated mutation and cancer rates were reported in the population of the 

Semipalatinsk nuclear test site in Kazakhstan – the biggest nuclear testing facility in 

Europe (Tanaka et al, 2006; Salomaa et al, 2002). Human population of the 

Semipalatinsk region exhibited significantly elevated levels of unstable chromosome 

aberrations such as dicentric, ring chromosomes and micronuclei in lymphocytes (Tanaka 

et al, 2006; Salomaa et al, 2002).  

 

1.2 BIOLOGICAL EFFECTS OF DIRECT RADIATION EXPOSURE  

IR can affect a variety of processes in exposed cells. It can cause changes in gene 

expression, disruption of mitochondrial processes, cell cycle arrest and apoptotic cell 

death (Valerie et al, 2007; Rodemann et Blaese, 2007; Jeggo et Lobrich, 2006; 

Amundson et al, 2003; Amundson et Fornace, 2003; Criswell et al, 2003; Fei et El-Deiry, 

2003; Iliakis et al, 2003; Powell et Kachnic, 2003). The most important is that  IR is a 

potent agent capable of inducing DNA damage such as cross linking, nucleotide base 

damage and single and double strand breaks (Huang et al, 2003; Little, 2000; Ward, 
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1995). If this damage is not correctly restored, it may cause deleterious genetic changes 

such as mutations and chromosomal aberrations at the initial sites of damage that are 

further expressed in descendants of irradiated cells. The accumulation of DNA damage 

caused by IR in conjunction with disrupted cellular regulation processes can lead to 

carcinogenesis (Sowa et al, 2006; Barcellos-Hoff, 2005; Little, 2000).  

 

1.3 INDIRECT RADIATION EFFECTS 

1.3.1 Radiation-induced Genomic Instability   

Traditionally, the  central dogma of radiation biology states that effects of IR are 

restricted to cells hit directly. This paradigm has been challenged by numerous 

observations in which cells that were not directly traversed by IR exhibit responses 

similar to those of the  directly irradiated cells (Kovalchuk et Baulch, 2008).  These 

responses were demonstrated in the cells that were descendents of directly irradited  cells 

and were termed ‘radiation-induced genomic instability’ (Kovalchuk et Baulch, 2008; 

Morgan et Sowa, 2007; Morgan et Sowa, 2005; Morgan, 2003a; Morgan, 2003b; 

Morgan, 2003c; Hendry, 2001).   

Genomic instability is characterized by an increased rate of acquisition of 

alterations in the genome.  It occurs in irradiated cells at a delayed time after irradiation 

as well as in the progeny of irradiated cells for several generations after exposure (Little, 

2000; Wright, 1998; Morgan et al, 1996). IR induced genomic instability manifests itself 

as an induction of chromosomal aberrations, aneuploidy, gene mutations and 

amplifications, microsatellite instability and cell death (Huang et al, 2003; Morgan, 

2003a; Morgan, 2003b; Suzuki et al, 2003).  Radiation-induced genomic instability also 
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includes the formation of micronuclei or chromosomal fragments that are not 

incorporated into the nucleus during cell division (Hamasaki et al, 2007; Müller et al, 

2004).  

Many signaling pathways are involved in the initiation and perpetuation of 

genomic instability (Limoli et al, 1997; Kaplan et al, 1997).  The relative contribution of 

different pathways depends upon the genetic background of an irradiated cell or organism 

(Watson et al, 1997; Paquette et Little 1994).  All these molecular changes may be 

causative factors in cancer development, thereby making the induction of genome 

instability an important prerequisite to cancer formation and a feature of cancer (Sowa et 

al, 2006; Goldberg, 2003; Little, 2003; Coleman et Tsongalis, 1999; Nowell, 1976). 

 

1.3.2 Radiation-induced Bystander Effects 

IR effects can also be seen in naïve cells that were in contact with directly 

irradiated cells or in naïve cells that received certain irradiation ‘distress’ signals from the 

cells that had been directly exposed via a growth medium.  This communication of 

exposure is termed the ‘bystander effect’ (BE) (Mothersill et Seymour, 2006; Morgan et 

Sowa, 2005; Mothersill et Seymour, 2004; Morgan 2003a; Morgan 2003b; Mothersill et 

Seymour, 2003; Morgan et al, 2002; Zhou et al, 2000).  

The very first bystander effect investigations were performed at the beginning of 

the twentieth century. Murphy, whose research interests were devoted to studies of 

lymphoid cells, showed morphological changes in these cells after culturing them with 

serum from radiation-exposed animals (Murphy et al, 1921; Murphy et Morton, 1915).  
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In 1954, Parsons reported the presence of soluble clastogenic factors in the 

circulating blood of patients who underwent radiotherapy (Parsons et al, 1954). These 

factors were capable of inducing chromosome damage in cultured cells (Emerit et al, 

1995; Emerit et al, 1994; Pant et Kamada, 1977; Hollowell et al, 1968; Goh et al, 1968). 

Clastogenic activity was found in the plasma of patients receiving a high dose of 

radiotherapy, as well as individuals who were accidentally exposed to substantial levels 

of radiation (Marozik et al, 2007; Emerit et al, 1994; Pant et Kamada, 1977; Hollowell et 

al, 1968; Goh et al, 1968).   

By the late 1990s, non-direct effects of radiation, including the bystander effect, 

started to receive a lot of interest from radiation biologists and radiation oncologists.  Just 

then, Kadhim and colleagues published studies on the effects of α-particle irradiation on 

haemopoietic stem cells (Kadhim et al, 1994; Kadhim et al, 1992). In parallel, Nagasawa 

and Little showed α-particle irradiation-induced enhancement of sister chromatid 

exchanges in Chinese hamster ovary (CHO) cell cultures (Nagasawa et Little, 1992).   

At that time, the term “radiation-induced bystander effect” was adopted from 

cancer gene therapy bystander effect studies.  During gene therapy, cancer cells were 

transfected with herpes simplex virus-thymidine kinase (HSV-tk), making them 

susceptible to cytotoxic ganciclovir therapy (Moolten et Wells, 1990). Intriguingly, even 

non-expressing HSV-tk cells in the vicinity underwent ganciclovir-mediated apoptosis. 

Furthermore, it was shown that levels of apoptosis increased in several types of tumor 

cells, even though only one type of cell was hit (Freeman et al, 1993).  

Over the years, a great variety of extensive radiation-induced bystander effect 

studies have been performed using cell culture models (Gaugler et al, 2007; Han et al, 
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2007; Maguire et al, 2007; Lyng et al, 2006b; Hu et al, 2006; Maguire et al, 2005; Zhou 

et al, 2005; Suzuki et Tsuruoka, 2004; Suzuki  et al, 2004; Yang et al, 2005; Mothersill et 

al, 2001; Zhou et al, 2002a; Zhou et al, 2002b; Zhou et al, 2001;  Lorimore et al, 1998) , 

tissue explants (Belyakov et al, 2006; Belyakov et al, 2003; Belyakov et al, 2002; 

Mothersill et al, 2002), spheroids (Persaud et al, 2005), or reconstructed human tissue 

models (Sedelnikova et al, 2007; Belyakov et al, 2005). As a result, bystander effects are 

accepted as a ubiquitous consequence of radiation exposure (Mothersill et Seymour 

2004). By the nature of their occurrence, BE can be divided into 2 main categories:  

• The gap junction communication-mediated BE that is based on the ability 

of intercellular gap junctions to transfer ions or metabolites from irradiated 

to unirradiated cells located in the vicinity (Suzuki et Tsuruoka, 2004; 

Azzam et al, 2003a, Azzam et al, 2003b, Shao et al, 2003; Bishayee et al, 

2001); 

• The medium-mediated BE that is based on the ability of irradiated cells to 

release a bystander signal into the medium with its further reception by 

unirradiated cells (Maguire et al, 2007; Liu et al, 2006; Lyng et al, 2006b; 

Yang et al, 2005; Zhou et al, 2002b). 

Bystander effects have been reported to occur within an exposed organ.  When the 

lung base was irradiated, significant molecular and cellular damage was observed in the 

shielded lung apex (Khan et al, 2003; Khan et al, 1998). It was also shown that when one 

lung, either right or left, was exposed, there was a marked increase of micronuclei in the 

unexposed shielded lung (Khan et al, 2003; Khan et al, 1998).  Similar, within-the-organ 
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bystander effects were observed during partial liver irradiation (Brooks, 2004; Brooks et 

al, 1974). 

Bystander effects also manifest themselves in the context of an organism in its 

entirety. Yet compared to the bystander effect data that are based on cell cultures, 

conclusive data on somatic bystander effects in vivo are relatively scarce (Kovalchuk et Baulch, 

2008; Mothersill et al, 2007; Goldberg et Lehnert, 2002).  

Overall, bystander effects encompass a wide range of genetic alterations, 

including gross genome rearrangements, chromosome aberrations, sister chromatid 

exchanges, deletions, duplications, gene mutations and amplifications (Han et al, 2007; 

Hamada et al, 2007; Smilenov et al, 2006; Lorimore et al, 2005; Klokov et al, 2004; 

Suzuki et al, 2003; Zhou et al, 2002a; Zhou et al, 2002b; Lorimore et al, 2001; Huo et al, 

2001; Zhou et al, 2000). They influence gene expression, cellular proliferation, 

senescence and cell death  (Lyng et al, 2006b; Liu et al, 2006; Sawant et al, 2002; 

Sawant et al, 2001) and are believed to be linked to radiation-induced genome instability 

(Kovalchuk et Baulch, 2008; Huang et al, 2007; Morgan, 2003c).  

While a great deal of data has been accumulated on the existence and 

manifestation of genomic instability and bystander effects in cultured cells, 3D tissues, 

organs and organisms, the mechanisms of these enigmatic phenomena remain largely 

unexplored. High frequency of induction and persistence of bystander responses suggests 

their possible epigenetic background (Wright et Coates, 2006; Kaup et al, 2006; Morgan, 

2003a; Morgan, 2003b; Lorimore et al, 2003; Nagar et al, 2003). 
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1.4 EPIGENETIC CHANGES IN CELLS 

There are two main forms of information in living cells and organisms – genetic 

and epigenetic.  The genetic changes involve alterations in a DNA sequence. Epigenetic 

changes are stable alterations in gene expression that include DNA methylation, histone 

modification, and RNA-associated silencing (Jaenisch et Bird, 2003).   

1.4.1 DNA Methylation  

Cytosine DNA methylation was the first epigenetic alteration identified, and it is 

the most widely studied epigenetic mechanism.  It is important for normal development, 

cell proliferation and proper maintenance of genome stability of a given organism (Baylin 

et Ohm, 2006; Baylin, 2005; Jaenisch et Bird, 2003).  

DNA methylation occurs predominantly in the context of CpG dinucleotides 

which are methylated at 60–80% of CpG sites (Weber et Schuebeler, 2007).  DNA is 

methylated at cytosine nucleotides by DNA methyltransferases to form 5-methyl-

cytosines. In mammals, three DNA methyltransferases (DNMT1, DNMT3a and 

DNMT3b) are primarily responsible for establishing and maintaining DNA methylation 

patterns at CpG sites (Goll et Bestor, 2005; Robertson, 2001; Rountree et al, 2001). 

Amongst those, DNMT1 is the major enzyme involved in the maintenance of a pattern of 

DNA methylation after DNA replication (Liang et al, 2002). DNMT1 is localized at the 

replication fork, where it can directly modify the nascent DNA immediately after 

replication (Weber et Schuebeler, 2007; Jirtle et Skinner, 2007; Goll et Bestor, 2005). 

DNMT3a and DNMT3b are de novo methyltransferases targeting unmethylated and 

hemimethylated sites (Weber et Schuebeler, 2007; Goll et Bestor, 2005; Okano et al, 

 9



1999). Deregulation of these proteins may lead to altered methylation patterns (Jirtle et  

Skinner, 2007; Weber et Schuebeler, 2007; Goll et Bestor, 2005).  

DNA methylation is known to be associated with an inactive chromatin state and 

repressed gene expression activity. In mammals, the association of DNA methylation 

with transcriptional repression is thought to be mediated by the MBD (methyl CpG-

binding domain) family of proteins (Klose et Bird, 2006). The MBD proteins, including 

MeCP2, MBD1, MBD2, and MBD3, selectively interact with methylated DNA and play 

a pivotal role in methylation-mediated chromatin remodeling and gene silencing (Bowen 

et al, 2004; Jaenisch et Bird, 2003; Hendrich et Tweedie, 2003; Robertson, 2002; 

Robertson et Wolffe, 2000). Moreover, methylated cytosines themselves can physically 

prevent the proper binding of transcription factors to promoter regions (Weber et 

Schuebeler, 2007). Altered global DNA methylation patterns are a well-known 

characteristic of cancer cells (Weidman et al, 2007).  The DNA methylation profile of 

cancer cells is frequently characterized by global genome hypomethylation as well as 

concurrent hypermethylation of selected CpG islands within gene promoters (Weidman et 

al, 2007; Baylin et Ohm, 2006; Baylin, 2005; Jaenisch et Bird, 2003). The global loss of 

DNA methylation at CpG dinucleotides was the first epigenetic abnormality identified in 

cancer cells, and it has been linked to the activation of transposable elements, elevated 

chromosome breakage, aneuploidy, increased mutation rates and, thus, to the 

phenomenon of  global genomic instability (Weber et Schuebeler, 2007; Weidman et al, 

2007; Robertson,  2002; Robertson et Wolffe,  2000).   
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1.4.2 Histone Modifications  

Undoubtedly, changes in DNA methylation are not isolated events; they occur in the 

context of global chromatin deregulation and altered histone modification levels (Weidman et 

al, 2007; Jaenisch et Bird, 2003).  Histone modifications, including acetylation, methylation, 

phosphorylation and ubiquitination, are important in transcriptional regulation (Weidman et al, 

2007; Jenuwein et Allis, 2001). Moreover, many of these alterations are stably maintained 

during the process of cell division. Acetylated histone tails lose their positive charge, thereby 

reducing their affinity to negatively charged DNA, which leads to a more relaxed chromatin 

structure. In this way, histone acetylation is linked to transcriptional activation, whereas histone 

deacetylation is an opposite repressive event (Jenuwein et Allis, 2001). Histone methylation 

can result in different transcriptional consequences depending upon the residue affected (Saha 

et al, 2006; Cheung et Lau, 2005).  Methylation of lysine 9 of histone H3 is associated with 

chromatin compaction and gene silencing, while methylation of lysines 4 and 27 of histone H3 

results in transcription activation and chromatin relaxation. Additionally, histone residues can 

be mono-, di- and tri-methylated, adding an enormous complexity to a still unexplored 

histone code (He et al, 2007a; Weidman et al, 2007; Saha et al, 2006; Cheung et Lau, 2005).  

It was recently shown that tumors undergo a massive loss of tri-methylation at lysine 20 

of histone H4 (Tryndyak et al, 2006a; Tryndyak et al, 2006b; Fraga et al, 2005). This loss 

occurs along with DNA hypomethylation and is linked to chromatin relaxation and 

aberrant expression. The status of lysine 20 trimethylation on H4 was suggested to be a 

universal marker for malignant transformation (Fraga et al, 2005; Sanders et al, 2004). 

Phosphorylation is another important histone modification (He et al, 2007a). One of the 

best studied modifications is phosphorylation of histone H2AX. H2AX is a member of a 
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H2A histone family. It becomes phosphorylated at serine 139 (γH2AX) as one of the 

earliest cellular responses to DSBs (Sedelnikova et al, 2003; Pilch et al, 2003; Rogakou 

et al, 1998) and accumulates in the nucleus at DSBs forming γH2AX foci. A direct 

correlation has been found between H2AX phosphorylation and the number of DSBs 

resulting from radiation (Celeste et al, 2003a). γH2AX is important for the repair of DNA 

strand breaks and for the maintenance of genome stability (Celeste et al, 2003b). 

 

      1.4.3 MiRNAome 

   Another mechanism of epigenetic control is through the involvement of small 

regulatory RNAs (Chuang et Jones, 2007; Molnar et al, 2007; Weber et al, 2007; Presutti 

et al, 2006; Nelson et al, 2006; Rogaev, 2005). MicroRNAs are of a special interest, as 

they can inhibit the translation of a variety of proteins. MicroRNAs (miRNAs) are 

initially expressed as part of a primary transcript (pri-miRNAs) and are formed from 

hairpins within the transcript. Further, dsRNA-specific ribonuclease cleavage by a 

member of the RNase II superfamily, Drosha, digests the pri-miRNA in the nucleus to 

release the hairpin precursor miRNA (pre-miRNA) (Esteller, 2006).  Pre-miRNAs are 

approximately 60 nucleotide (nt) RNAs with 1-4 nt 3’ overhangs, 25-30 basepair stems, 

and relatively small loops. They are exported to the cytoplasm where Dicer (RNase III) 

cleaves the pre-miRNA, which leads to the formation of a mature miRNA. To control the 

translation of target mRNAs, the mature miRNA must associate with the RNA-induced 

silencing complexes (RISC) (Gregory et al, 2005; Tang, 2005). After the association with 

the RISC complexes, miRNAs bind to the 3’UTR of mRNAs and serve as translational 

suppressors, thereby regulating the production of proteins and affecting many cellular 
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functions including proliferation, differentiation, and cell death (Bernstein et Allis, 2005). 

Argonaute (Ago) proteins are important components of the RISC machinery (Meister et 

al, 2005; Okamura et al, 2004). Specifically, Dicer was found to stably associate with an 

EIF2C2 (Ago2) protein (Chendrimada, 2005; Lee et al, 2003). In addition, PACT and 

several other proteins were shown to interact with Ago2 and Dicer proteins (Lee et al, 

2006). Regulatory miRNAs in association with the mRNA machinery impact cellular 

differentiation (Fatica et al, 2006; Chen et al, 2006; Bentwich, 2005), proliferation 

(Hwang et Mendell, 2007; Chen et al, 2006), apoptosis (Hwang et Mendell, 2007; 

Jovanovic et Hengartner, 2006), and possibly result in a predisposition to cancer (Hwang 

et Mendell, 2007; Calin et Croce, 2006; Kent et Mendell, 2006). These molecules have 

the ability to travel from cell to cell and from tissue to tissue to change the pattern of gene 

expression by targeting various regions of the genome for epigenetic modifications 

(Weber et al, 2007; Lujambio et al, 2007; Sevignani et al, 2006; Seitz et al, 2004).  

 

1.5 EPIGENETIC CHANGES IN THE DIRECTLY EXPOSED TISSUE 

Direct radiation exposure strongly influences epigenetic effectors. DNA 

damaging agents including IR have been reported to affect DNA methylation patterns 

(Kovalchuk et al, 2004; Minamoto et al, 1999; Tawa et al, 1998; Kalinich et al, 1989). 

Acute exposure to low linear energy transfer (LET) x-rays or γ-rays led to global 

hypomethylation (Tawa et al, 1998; Kalinich et al, 1989).   

IR is known to alter DNA methylation levels in the directly exposed tissue 

(Kovalchuk et al, 2004b).  It was recently shown that IR exposure leads to profound 

dose-dependent and sex- and tissue specific global DNA hypomethylation (Loree et al, 
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2006; Pogribny et al, 2005; Koturbash et al, 2005; Raiche et al, 2004; Pogribny et al, 

2004b). IR exposure also affects methylation of a p16 tumor suppressor promoter in a 

sex- and tissue-specific manner (Kovalchuk et al, 2004b). DNA hypomethylation 

observed after irradiation was related to DNA repair (Pogribny et al, 2004a). It was also 

correlated with radiation-induced alterations in the expression of DNA 

methyltransferases, especially – de novo methyltransferases DNMT3a and DNMT3b 

(Pogribny et al, 2005; Raiche et al, 2004). Most importantly, the radiation-induced global 

DNA hypomethylation appeared to be linked to genome instability in the exposed tissue 

(Loree et al, 2006; Pogribny et al, 2005; Raiche et al, 2004; Pogribny et al, 2004b).  

DNA methylation is closely connected with other components of chromatin 

structure. Although much attention has been given to radiation-induced changes in DNA 

methylation, histones have been largely overlooked.  Amongst the histone modifications 

that change upon radiation exposure, phosphorylation of histone H2AX is being studied 

most intensively.  Histone H2AX– a variant of histone H2A - is rapidly phosphorylated at 

Ser139 upon the induction of DNA strand breaks by irradiation, and it can be effectively 

visualized within repair foci using phospho-specific antibodies (Sedelnikova et al, 2003). 

Recent studies have also indicated that radiation-induced global loss of DNA methylation 

may be paralleled with changes in histone methylation, specifically the loss of histone H4 

lysine trimethylation (Pogribny et al, 2005). Data on IR effects of microRNAome are in 

their infancy (Marsit et al, 2006; Ishii et Saito, 2006).  
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1.6 EPIGENETIC DETERMINANTS OF INDIRECT RADIATION EFFECTS: 

BYSTANDER EFFECT 

Even though a lot of evidence points towards the epigenetic nature of radiation-

induced bystander effects, until recently very few studies addressed exact epigenetic 

changes in indirect radiation responses.  The recent pioneer work by Kaup and colleagues 

has proven that DNA methylation is important for the maintenance of the radiation-

induced bystander effect in cultured cells (Kaup et al, 2006). Using cultured human 

keratinocytes, they have demonstrated that dysregulation of DNA methylation in naïve 

cells exposed to medium from irradiated cells persists for 20 passages. Over a similar 

period of culture under comparable conditions, these cells have also exhibited increased 

and persistent levels of chromosome and chromatid aberrations, reproductive cell death, 

apoptosis and other signs of genome instability (Kaup et al, 2006). 

A wide range of extensive cell culture-based studies address the role of 

phosphorylated histone H2AX in bystander effects (Yang et al, 2007; Burdak-Rothkamm 

et al, 2007; Smilenov et al, 2006; Sokolov et al, 2005) 

 Epigenetic changes were also shown to be important in whole tissue-based 

bystander effect models. The reconstituted 3D human tissue model offers an excellent 

alternative to cell cultures (Sedelnikova et al, 2007). A recent study by Sedelnikova and 

colleagues examined the bystander effects in two reconstructed human 3D tissue models: 

airway and full-thickness skin. After irradiating a thin plane of cells through the tissue 

with a microbeam, they analyzed a variety of biological endpoints in distal bystander 

cells (up to 2.5 mm away from an irradiated cell plane) as a function of post-exposure 

time (0 hours – 7 days). They detected a significant increase in levels of phosphorylated 
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H2AX in bystander tissues and extensive long-term increases in apoptosis and 

micronucleus formation as well as the loss of nuclear DNA methylation, persistent 

growth arrest, and an increased fraction of senescent cells. Of special interest is the 

observed loss of DNA methylation in bystander cells. DNA methylation is an important 

epigenetic phenomenon involved in the regulation of gene expression and genome 

stability. Since changes in DNA methylation are linked to other epigenetic effectors, the 

observed alteration of DNA methylation in bystander cells may be indicative of the 

epigenetic nature of the bystander effect in 3D human tissue models (Sedelnikova et al, 

2007).  

In summary, from the literature we have learned that although bystander effects 

are thought to be linked to radiation-induced secondary cancers, relatively few studies 

have evaluated bystander effects in vivo.  The mechanisms of radiation-induced bystander 

effects and the role of epigenetic changes still have to be delineated. Furthermore, tissue 

and sex specificity, strain and species-dependence, as well as long-term persistence of 

bystander effects need to be discerned.   
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1.7 HYPOTHESIS 

Rationale: Epigenetic changes are important regulators of gene expression and genome 

stability. IR induces genome instability and also gives rise to an enigmatic phenomenon 

of a bystander effect. This phenomenon has not been fully explored in the epigenetic 

domain.  While bystander effects were well studied using an in vitro model, its existence 

in vivo needs to be confirmed, because up to now, relatively few studies have evaluated 

bystander effects in vivo. The mechanisms of bystander effects in vivo need to be 

established, and tissue and sex specificity, strain and species-dependence as well as long-

term persistence of bystander effects need to be discerned.   

Based on evidence from the literature, we hypothesize that bystander effects occur 

in vivo and are epigenetically mediated and linked to genome instability. We predict 

that epigenetic bystander responses are correlated with levels of DNA damage 

accumulation and repair, proliferation and apoptosis. We beleive that the 

epigenetically-mediated bystander effects are persistent and distinct in males and 

females.  

Several experiments were designed to test the proposed hypotheses. The experiments 

are further described as chapters of this thesis. 
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2.  IRRADIATION INDUCES DNA DAMAGE AND MODULATES EPIGENETIC 

EFFECTORS IN DISTANT BYSTANDER TISSUE IN VIVO1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chapter 2 has been published in its entirety:  
 
Koturbash I, Rugo RE, Hendricks CA, Loree J, Thibault B, Kutanzi K, Pogribny 

I, Yanch JC, Engelward BP, Kovalchuk O. (2006) Irradiation induces DNA damage and 
modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene, 25:4267-75 
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2.1 ABSTRACT 

Irradiated cells induce chromosomal instability in un-irradiated bystander cells in 

vitro.  Although bystander effects are thought to be linked to radiation-induced secondary 

cancers, almost no studies have evaluated bystander effects in vivo.  Furthermore, it has been 

proposed that epigenetic changes mediate bystander effects, but few studies have evaluated 

epigenetic factors in bystander tissues in vivo.  Here, we describe studies in which mice were 

unilaterally exposed to X- irradiation and the levels of DNA damage, DNA methylation and 

protein expression were evaluated in irradiated and bystander cutaneous tissue.  The data 

show that X-ray exposure to one side of the animal body induces DNA strand breaks and 

causes an increase in the levels of Rad51 in unexposed bystander tissue. In terms of 

epigenetic changes, unilateral radiation suppresses global methylation in directly irradiated 

tissue, but not in bystander tissue at given time-points studied.  Intriguingly, however, we 

observed a significant reduction in the levels of the de novo DNA methyltransferases 

DNMT3a and 3b and a concurrent increase in the levels of the maintenance DNA 

methyltransferase DNMT1 in bystander tissues.  Furthermore, the levels of two methyl-

binding proteins known to be involved in transcriptional silencing, MeCP2 and MBD2, were 

also increased in bystander tissue.  Together, these results show that irradiation induces DNA 

damage in bystander tissue more than a centimeter away from directly irradiated tissues, and 

suggests that epigenetic transcriptional regulation may be involved in the etiology of 

radiation-induced bystander effects. 
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2.2 INTRODUCTION 

Until recently, it has been broadly accepted that biological consequences following 

ionizing radiation (IR) exposure are attributable to the direct effects of DNA damage.   

However, a wealth of evidence now challenges this classical paradigm (Mothersill et al, 

2004; Mothersill et Seymour, 2004; Hall, 2003; Ward, 2002). In particular, it has been shown 

that irradiated cells can elicit increased levels of mutations and chromosome aberrations in 

neighboring cells that were not exposed to radiation. These “bystander effects” can lead to 

persistent genome destabilization and ultimately may contribute to carcinogenesis (Mothersill et 

al, 2004; Mothersill et Seymour, 2004; Hall, 2003; Ward, 2002; Zhou et al, 2002b; Sawant et 

al, 2001; Zhou et al, 2000). Bystander effects encompass a wide range of genetic alterations, 

including gross genome rearrangements, chromosome aberrations, sister chromatid 

exchanges, deletions, duplications and gene mutations and amplifications (Morgan, 2003a; 

Morgan, 2003b; Little, 1999; Little, 1998).  

As such, bystander effects are a complication in radiation oncology and are thought to 

contribute to secondary radiation carcinogenesis (Mothersill et Seymour, 2004; Hall, 2003; 

Goldberg, 2003; Sigurdson et Jones, 2003; Huang et al, 2003; Goldberg et Lehnert, 2002). 

Despite its potential biological importance, most of what we currently know about radiation-

induced bystander effects stems from studies of cultured cells, rather than from animal 

models (Hall, 2003; Goldberg, 2003; Goldberg et Lehnert, 2002). Furthermore, despite the 

clear link between radiation-induced bystander effects and radiation-induced genome 

instability (Goldberg, 2003; Sigurdson et Jones, 2003; Huang et al, 2003; Morgan, 2003a; 

Morgan 2003b; Morgan et al, 2002), very few studies have explored the potential impact of 

radiation exposure on distant organs and tissues (Xue et al, 2002). 

 20



Radiation-induced genome instability has recently been suggested to be epigenetic in 

nature (Nagar et al, 2003). Epigenetic changes are mitotically stable alterations that include 

DNA methylation and histone modifications (Jaenisch et Bird, 2003; Robertson, 2002). 

Aberrant cytosine DNA methylation is well documented in cancer development and is linked 

to genomic instability and increased rates of genome rearrangements (Feinberg et Tycko, 

2004; Gaudet et al, 2003; Ehrlich, 2002; Esteller et Herman 2002; Robertson et Wolffe 

2000). A variety of DNA damaging agents including IR are known to affect genome DNA 

methylation patterns and this may contribute to their genome destabilizing effects (Koturbash 

et al, 2005; Pogribny et al, 2004a; Raiche et al, 2004; Minamoto et al, 1999; Tawa et al, 

1998; Kalinich et al, 1989).  To our knowledge, no studies have explored the possible roles 

of epigenetic mechanisms on somatic in vivo bystander effect.  

To investigate the possibility that X-irradiation induces DNA damage in bystander 

tissue in vivo, we monitored the induction and repair of DNA strand breaks in cutaneous 

tissue.  In addition, we also explored the possibility that epigenetic mechanisms (i.e. DNA 

methylation and alterations in DNA methyltransferases and methyl-binding proteins) are 

involved in the generation and/or maintenance of a radiation-induced bystander effect.  Here, 

we report that radiation exposure to one half of the body leads to elevated levels of DNA 

strand breaks, and alters the levels of key proteins known to modulate methylation patterns 

and silencing in the bystander half of the body at least 0.7 cm from the irradiated tissue.  

These are some of the first data to clearly demonstrate that bystander effects occur in vivo in 

distant tissues.   
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2.3 MATERIALS AND METHODS 

2.3.1 Model and Irradiation of Animals    

In this study we examined genetic and epigenetic alterations in mouse skin following 

in vivo radiation exposure.  45-days old male mice were randomly assigned to different 

treatment groups. Handling and care of animals was in strict accordance with the 

recommendations of the Canadian Council for Animal Care and Use (1993).  The procedures 

have been approved by the University of Lethbridge Animal Welfare Committee. Animals 

were housed in a virus-free facility and given food and water ad libitum.  

The exposed cohort (25 animals) received 1 Gy (2cGy/s) of X-rays (90kV, 5mA).  In 

the bystander group (25 animals) each animal was exposed to 1Gy (2cGy/s) of X-rays (90kV, 

5mA) having half of its body protected by a~2.5 mm thick lead shield, the same type as used 

for the human body protection in diagnostic radiology (Fig. 2.1) The protection of shielded 

‘bystander’ tissue was complete, as verified by careful dosimetry using a RAD-CHECK™ 

monitor (Nuclear Associates div. of Victoreen, Inc, FL, USA). Control mice were sham 

treated. All animals were humanely sacrificed 6 or 4 days (precisely 96 hours) upon 

completion of the treatment protocol. Based on the previous research, these time points are 

sufficient to see the induction and persistence, if any, of the radiation-induced epigenetic 

changes (Koturbash et al, 2005; Kovalchuk et al, 2004a). Cutaneous tissue was sampled 

upon sacrifice and processed for further molecular studies. 

A cohort of 5 animals was exposed to 1 Gy of X-rays while their bodies were completely 

shielded with a ~2.5 mm lead shield. Protection by the lead shielding was complete as verified by 

RAD-CHECK™ monitor (Nuclear Associates div. of Victoreen, Inc, FL, USA). 
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Another cohort of 5 animals was exposed to an approximate scatter dose of 

~0.013Gy. To determine the bystander ventral/thigh skin dose resulting from photon scatter 

within the mouse itself, a Monte Carlo simulation was performed (X-5 Monte Carlo Team, 

2003).  The skin was assumed to be 0.1 cm thick and a 2 mm thick lead shield covered one 

half of the mouse.  Absorbed dose was tallied within the skin region in several locations in 

both the unshielded dorsal regions and the shielded ventral/thigh regions.  Absorbed dose to 

the ventral skin from a 90 kVp X-ray spectrum was determined be approximately 0.014 – 

0.017 Gy for a 1 Gy dose delivered to the dorsal skin.   

 

2.3.2 Cytosine Extension Assay to Detect Sequence Specific Changes in 

DNA Methylation 

 Total DNA was prepared from skin tissues using TrizolTM Reagent (Amersham, Baie 

d'Urfé, Québec) according to the manufacturer’s protocol.  

DNA (0.5 μg) was digested overnight with a 10-fold excess of HpaII endonuclease 

according to manufacturers protocol (New England Biolabs, Beverly, MA).  A second DNA 

aliquot (0.5 μg) was incubated without restriction enzyme addition and served as a background 

control.  The single nucleotide extension reaction was performed in 25 µg of DNA, 1X PCR 

bufferII, 1.0 mM MgCl2, 0.25 units of Taq DNA polymerase (Fisher Scientific, Ottawa, ON), 

[3H]dCTP (57.4 Ci/mmol) (Perkin Elmer, Boston, MA) and incubated at 55°C for 1 h, then 

immediately placed on ice.  Duplicate aliquots (25μl) from each reaction were placed on Whatman 

DE-81 ion-exchange filters and washed three times 10 minutes with gentle agitation with sodium 

phosphate buffer (0.5 M, pH 7.0) at room temperature.  The filters were dried and processed by 

scintillation counting (Beckman Counter). Background label incorporation was subtracted from 
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enzyme-digested samples and results were expressed as relative [3H]-dCTP incorporation/1µg of 

DNA or as percent change from control (Pogribny et al, 2005; Pogribny et al, 2004a; Raiche et al, 

2004; Pogribny et al, 1999). 

 

2.3.3 DNA Strand Break Measurement 

A modification of the random oligonucleotide-primed synthesis assay (ROPS) was 

used to detect the presence of DNA strand-breaks in high molecular weight DNA (Pogribny 

et al, 2004a; Basnakian et James, 1996). The assay is based on the ability of Klenow 

fragment polymerase to initiate ROPS from the re-annealed 3’-OH ends of single stranded 

DNA. Briefly, 3’-OH DNA fragments present in the high molecular weight DNA are 

separated into single-strand fragments by heat denaturation and subsequently re-associated 

by cooling. The resulting random re-association of DNA strands consists primarily of single-

stranded DNA fragments primed by their own tails or by other DNA fragments. These 

fragments serve as random primers and the excess of DNA serves as template for Klenow 

fragment polymerase.  DNA was denatured by exposure at 100 ○C for 5 min, and then 

immediately cooled on ice. The mixture contained 0.25 μg heat-denatured DNA, 0.1 μl 

[3H]dCTP (57.4 Ci/mmol) (Perkin Elmer, Boston, MA), 0.05 mM  concentrations of each 

dGTP, dATP, dTTP, 0.6 μM dCTP,  10 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 7.5 mM DTT, 

and 0.5 unit Klenow polymerase (New England Biolabs, Beverly, MA) in a total volume of 

25 μl. After incubation for 30 min at 16 ○C, the reaction was stopped by the addition of an 

equal volume of 12.5 mM EDTA. The samples were subsequently applied on Whatman DE-

81 ion-exchange filters and washed three times with sodium phosphate buffer (pH 7.0) at 

room temperature. The filters were dried and processed by scintillation counting. The results 
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were expressed as the percent difference in [3H] dCTP incorporation relative to control 

values. 

 

2.3.4 Western Immunoblotting 

Western immunoblotting for RAD51, γH2AX, DNMT1, DNMT3a, DNMT3b, 

MeCP2 and MBD2 was conducted using cutaneous tissue.  Tissue samples were sonicated in 

0.4-0.8 ml of ice-chilled 1% sodium dodecyl sulphate (SDS) and boiled for 10 min.  Small 

aliquots (10 µl) of homogenate were reserved for protein determination using protein assay 

reagents from BioRad (Hercules, CA).  Equal amounts of proteins (20 μg) were separated by 

SDS-polyacrylamide electrophoresis (PAGE) in slab gels of 8 or 12% polyacrylamide, made 

in duplicates, and transferred to PVDF membranes (Amersham, Baie d'Urfé, Québec).  

Membranes were incubated with antibodies against RAD 51 (1:1000, BD Biosciences, 

Mountain View, CA), γH2AX (1:1000, Cell Signaling, Danvers, MA), DNMT1 (1: 1000, 

Abcam, Cambridge, MA), DNMT3a, DNMT3b (1:500, Abgent, San Diego, CA),  MeCP2 

(1:1000, Abcam, Cambridge, MA) and MBD2 (1:500, Abgent, San Diego, CA). Antibody 

binding was revealed by incubation with horseradish peroxidase-conjugated secondary 

antibodies (Amersham, Baie d'Urfé, Québec) and the ECL Plus immunoblotting detection 

system (Amersham, Baie d'Urfé, Québec).  Chemiluminescence was detected by Biomax MR 

films (Eastman Kodak, New Haven, CT). Unaltered PVDF membranes were stained with 

Coomassie Blue (BioRad, Hercules, CA) and the intensity of the Mr 50,000 protein band was 

assessed as a loading control.  Signals were quantified using NIH ImageJ 1.63 Software and 

normalized to both GAPDH and the Mr 50,000 protein which gave consistent results (values 

relative to Mr 50,000 are plotted). 
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2.3.5 Statistical analysis 

Statistical analysis was performed using the MS Excel 2000, Sigma Plot and JMP5 

software packages. 
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2.4 RESULTS  

2.4.1 Accumulation of DNA Damage in Bystander Skin Tissue In Vivo 

We studied bystander effects in vivo by placing lead shielding, one edge aligned 

along the spine, over half the body of a mouse, before exposure to 1 Gy of X-rays (Fig. 2.1).  

Animals were immobilized during exposure and bystander ventral skin was taken from the 

area adjacent to the thigh at least 0.7 cm from the exposed half of the mouse.  The lead 

shielding used for these studies is the same as that is used for patients exposed to radiation in 

a clinic, and complete protection of shielded bystander tissue from radiation exposure was 

verified by careful dosimetry (see Materials and Methods). 

DNA damage in mammalian bystander cells has been studied in vitro by directly 

measuring DSBs (Sokolov et al, 2005), and by measuring sequence rearrangements that are 

thought to be caused by DSBs, such as chromosomal aberrations, sister chromatid exchanges 

(SCEs), and homologous recombination between direct repeats (Rugo et al, 2005; Ponnaiya et 

al, 2004; Huo et al, 2001; Nagasawa et Little, 1992).  Since single-strand breaks can become 

DSBs if encountered by the replication fork (Helleday, 2003; McGlynn et Lloyd, 2002), we 

measured single and DSBs in bystander tissues in vivo using a modified version of the 

random oligonucleotide-primed synthesis (ROPS) assay (Basnakian et James, 1996).  This 

assay is based on the ability of Klenow polymerase to initiate ROPS from the re-annealed 3′-

OH ends of single stranded DNA. DNA strand breaks were quantified in skin from 

unirradiated control mice, fully irradiated mice, and from irradiated and bystander sides of 

mice (Fig. 2.2a). DNA strand breaks were quantified at 6 hours and at 4 days (precisely 96 

hours) after exposure in order to monitor the persistence and/or repair of irradiation-induced 

strand breaks over time.  As expected, cells isolated from the skin of fully irradiated animals 
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as well as the skin from the irradiated side of hemi-shielded animals showed significantly 

increased levels of strand breaks 6 hours post-irradiation compared to controls (50% and 

48%, respectively; p<0.05; Fig. 2.2A).  Surprisingly, we also found significantly elevated 

levels of breaks in bystander skin from hemi-shielded mice 6 hours post-treatment (20%; 

p<0.05), indicating that damage is induced in shielded tissue in vivo. Four days after 

exposure, the number of strand breaks under all conditions had returned to control levels 

(Fig. 2.2A, grey bars), indicating that strand breaks induced directly (in the exposed tissue) 

and indirectly (in the shielded bystander tissue) had been repaired. 

As an alternative approach for assessing the occurrence of DSBs, we assayed for the 

presence of γH2AX phosphorylation.  H2AX is a member of the H2A histone family which 

becomes phosphorylated at S139 (γH2AX) as one of the earliest cellular responses to DSBs 

(Rogakou et al, 1998). γH2AX accumulates in the nucleus at DSBs forming the γH2AX foci 

and a direct correlation has been found between the H2AX phosphorylation and the number 

of DSBs resulting from radiation.  Although the majority of γH2AX foci appear within 

minutes of radiation exposure, previous studies have shown that a certain subset of breaks 

and H2AX phosphorylation persists for many hours (Rothkamm et Lobrich, 2002).  At 6 

hours after exposure, γH2AX  was undetectable by Western blot in skin from un-irradiated 

control mice, but was significantly increased in skin from fully irradiated mice and in skin 

from the irradiated sides of hemi-shielded mice (~2.2- and ~1.6-fold over control, 

respectively; Fig 2.2B).  In addition, there was a slight increase in γH2AX in the skin from 

the bystander sides of hemi-shielded mice (although not readily apparent by eye, 

densitometry analysis shows that there is a statistically significant ~1.3 fold increase in 

γH2AX levels in bystander tissue compared to control cohorts; p < 0.05, Student’s t-test), 
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which is consistent with DSBs in the bystander tissues 6 hours after irradiation.  By 4 days 

post irradiation, γH2AX was still slightly elevated in cutaneous tissue from fully irradiated 

mice and from the irradiated side of hemi-shielded mice, but not in bystander skin. These 

data are consistent with the ROPS assay 6 hours after exposure, indicating that X-irradiation 

resulted in the induction of DSBs in shielded bystander tissue in vivo.  

Mammalian cells employ homologous recombination (HR) and non-homologous end 

joining (NHEJ) as important pathways to repair DSBs (reviewed in Helleday, 2003; West, 

2003; McGlynn et Lloyd, 2002; Hoeijmakers, 2001).  HR allows cells to use the undamaged 

sister chromatid or the homologous chromosome as a template for repair and thus is 

considered error-free (Helleday, 2003; West, 2003; McGlynn et Lloyd, 2002; Hoeijmakers, 

2001). NHEJ is a fast, yet error-prone process of linking broken DNA ends together without 

reference to the accurate base pairing (Hoeijmakers, 2001). 

As we had found evidence of DSBs in bystander tissues, we next asked if HR or 

NHEJ related proteins were induced in bystander tissues.  Rad51 is a key protein essential for 

repair of DSBs via HR in mammals (Lundin et al, 2003; Sonoda et al, 1998). Rad51 binds to 

single stranded DNA and forms a nucleoprotein filament that catalyses homology searching, 

strands pairing, and strand exchange (Baumann et West, 1998; Baumann et al, 1996). Ku70 is 

a key participant in the non-homologous end-joining (NHEJ) pathway to repair DSBs 

(Hoeijmakers, 2001).  

Western blots were performed on lysates of skin from control mice, fully irradiated 

mice, and the irradiated and bystander sides of hemi-shielded mice 6 hours and 4 days post-

treatment.  No significant changes were found in the levels of Ku70 in the exposed and 

bystander mouse skin (data not shown).  
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Unexpectedly, we found that Rad51 expression is similarly elevated in tissues from 

fully exposed and the exposed and bystander sides of hemi-shielded mice at 6 hrs and 4 days 

after exposure (Fig. 2.2C).  Rad51 activity is generally thought to be controlled by 

subnuclear localization.  However, the increased levels of Rad51 described here are 

nevertheless consistent with an earlier report of a transcription-dependent increase in Rad51 

found in cultured human cells after DNA damage and measured by immunofluorescence 

(Haaf et al, 1995).  

 

2.4.2 Epigenetic Changes in Exposed and Bystander Tissue 

Bystander effects are thought to arise via epigenetic mechanism(s). DNA methylation 

is an important epigenetic mechanism for regulating gene expression/silencing and there is 

increasing evidence that methylation also serves to help safeguard genome stability.  For 

example, decreased DNA methylation has been linked to elevated levels of transposon 

activation, sister chromatid exchanges and other gross genome rearrangements (Robertson, 

2002; Esteller et Herman, 2002; Gonzalgo et Jones, 1997).  

To test if changes in methylation were observed in bystander tissue, global cytosine 

methylation was measured in skin from un-irradiated, irradiated, and the irradiated and 

bystander sides of hemi-shielded mice 6 hours and 4 days after irradiation. To monitor 

changes in DNA methylation, we employed the sensitive HpaII-based cytosine extension assay, 

which measures the proportion of unmethylated CCGG sites in genomic DNA (Koturbash et al, 

2005; Kovalchuk et al, 2004; Pogribny et al, 2004a; Raiche et al, 2004).  Using this approach, 

we found that exposure to 1 Gy of X-rays led to a significant decrease in DNA methylation 

in exposed skin 6 hours post-treatment (decreased methylation appears as an increase in 3H-

 30



dCTP incorporation; Fig. 2.3A). Methylation levels in the exposed tissue returned to normal 

in a separate cohort analyzed 4 days post-treatment (Grey bars; Fig. 2.3A). DNA methylation 

changes were not significant in bystander tissue, although a slight decrease was observed 

(Fig. 2.3A). Overall, unilateral irradiation suppressed global DNA methylation in directly 

irradiated, but not in bystander tissue at the time-points studied.  

In mammals, three DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) are 

primarily responsible for establishing and maintaining DNA methylation patterns at CpG 

sites (Raiche et al, 2004; Robertson, 2001; Rountree et al, 2001).  In particular, DNMT3a and 

DNMT3b catalyze de novo methylation, while DNMT1 maintains existing methylation 

patterns. Deregulation of any or all of these proteins may result in perturbations of DNA 

methylation. To further investigate the basis of methylation loss in irradiated tissue, we 

monitored expression of DNMT1, DNMT3a and DNMT3b methyltransferase in skin from 

un-irradiated, fully irradiated, and the irradiated and bystander sides of hemi-shielded mice at 

6 hours and 4 days post-irradiation.  Interestingly, DNMT1 expression was significantly up-

regulated in bystander tissue both 6 hours and 4 days post-treatment (~1.4 and 1.8 fold 

respectively; Fig. 2.3B), whereas expression remained unchanged in irradiated skin. 

Although these are somewhat subtle changes in the levels of DNMT1, it is striking that 

within the same animals, DNMT1 was consistently higher in bystander tissue than in directly 

irradiated tissue.  Furthermore, each lane is a combined sample from 5 separate animals, and 

each Western was repeated 3 times, such that the fold induction reflects cohorts of at least 15 

animals. In contrast to DNMT1 expression of the de novo methyltransferases DNMT3a and 

DNMT3b was slightly down-regulated both in irradiated skin as well as in bystander tissue 6 

hrs post-irradiation (Fig. 2.3B). Suppression of DNMT3b was reduced at 4 days post-
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irradiation and levels of DNMT3a had normalized by 96 h post-irradiation, which coincides 

with recovery of normal methylation levels by this time (Fig. 2.3B).  (Densitometry analysis 

shows that the decrease is statistically significant; p < 0.05, Student’s t-test.) 

In mammals, the association of DNA methylation with transcriptional repression is 

thought to be mediated by the MBD (methyl CpG-binding domain) family of proteins. MBD 

proteins, including MeCP2, MBD1, MBD2, and MBD3, selectively interact with methylated 

DNA and play pivotal roles in methylation-mediated chromatin remodeling and gene 

silencing (Bowen et al, 2004; Jaenisch et Bird, 2003; Hendrich et Tweedie, 2003; Robertson, 

2002; Wade, 2001; Robertson et Wolffe, 2000). To test if MBD expression is altered in 

bystander tissue, we monitored expression of MeCP2 and MBD2 in skin from un-irradiated, 

fully irradiated and in skin from the irradiated and bystander sides of mice at 6 and 96 hours 

post-irradiation. Both MeCP2 and MBD2 were significantly up-regulated (~2-fold) in 

bystander skin (Fig. 2.3B). As was observed with DNMT1, this induction persisted 4 days 

post-treatment.  In addition, a slight but statistically significant increase in MeCP2 expression 

(~1.25 fold) was also evident in irradiated skin at 6 hours post-irradiation. Up-regulation of 

the methyl-binding proteins MeCP2 and MBD2 in bystander skin is consistent with the 

observed induction of DNMT1 methyltransferase in this tissue. 

 

2.4.3. Bystander Effects are Not the Result of Insufficient Shielding or 

Radiation Scattering 

As an independent measure of effective shielding, fully shielded mice were exposed 

to 1 Gy X-rays and ventral skin was analyzed by Western blot for expression of Rad51, 

DNMT1, MeCP2, and MBD2 expression.  As can be seen in Figure 2.4A, there was no 
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induction. Furthermore, levels of the γH2AX protein, an indicator of DNA damage, also 

remained unchanged from the un-irradiated control (data not shown). As X-rays penetrate 

tissue, they can react with biological matter resulting in the deflection of their trajectories. 

This is referred to as scatter radiation. Low doses, close to the scatter-dose range levels were 

shown to induce bystander effects (Mothersill et al, 2005b; Maguire et al, 2005; Kashino et al, 

2004; Mothersill et Seymour, 2002). Thus, to measure if scatter contributed to the effects 

seen in bystander tissue, mice were irradiated with a dose approximating the expected scatter 

dose (13 mGy, which was calculated as described in Materials and Methods) and ventral skin 

was analyzed as was done for the fully shielded samples above. There was no protein 

induction seen (Fig. 2.4B) indicating that the observed changes in expression were not likely 

to be caused by scatter radiation. 

 

2.4.4 Exploration of Possible Effects of Physiological Asymmetry 

It is well known that the mammalian body is not absolutely symmetrical and multiple 

organs do not have a pair. In our initial experiments we protected the right part of the animal 

body, exposing the left side. Thus, the spleen, an important hematopoietic organ was within 

the exposure field. On the other hand, irradiation of right side of the animal body exposes 

more of the liver. It is possible that differential exposure of organs has a role in the induction 

of bystander effects.  To address this question, experiments were set up in which the right or 

the left half of the body was shielded while animals were exposed to X-rays. In a third 

experimental group, the heads were exposed to X-rays while the body was shielded by lead.  

Sham-treated animals served as experimental controls. Animals were sacrificed 6 hours and 4 

days after exposure and tissue lysates analyzed by Western blot. Consistent with the 
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experiments shown in Figure 2.3, we found that DNMT1 expression was upregulated in 

bystander tissues but not on irradiated skin; this was the case regardless of which side of the 

body was irradiated (Fig. 2.5). In addition, Rad51 was upregulated in all irradiated and 

bystander tissues, regardless of which half of the body was exposed (Fig. 2.5).  Interestingly, 

induced expression of MBD2 and MeCP2 was noted in bystander skin only when the left 

side of the body was irradiated, suggesting the possibility that internal organs affect 

upregulation of MBD2 and MeCP2 in bystander tissue (Fig. 2.5). Further studies are 

underway to elucidate the molecular underpinnings of the regulation of MBD2 and MECP2.   

As an independent approach for studying potential bystander effects, we also adjusted 

the exposure procedure so that for one cohort of animals, their heads were irradiated and 

unexposed cutaneous tissue from their backs was analyzed. We found similar expression 

patterns for DNMT1 and Rad51 in bystander skin taken from the dorsal sides (at least 0.7 cm 

away from the irradiated tissue) of animals whose heads had been irradiated, which is 

consistent with the data from the unilateral exposure.  
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2.5 DISCUSSION  

Most reported bystander effects have been observed in vitro and the biological 

significance of bystander effects in vivo are unclear (Goldberg, 2003; Goldberg et Lehnert, 

2002).  Ideally, research on bystander effects would be done in clinical trials. However, in 

the meantime, experiments involving animals could be useful for delineating the possible 

effects of irradiation on unexposed tissues and for dissecting the molecular basis for such 

effects (Goldberg, 2003; Goldberg et Lehnert, 2002; Balmain et Harris, 2000).  We set out to 

explore DNA damage and repair in bystander tissues in a mouse model.  The main findings 

of the present study are: (i) radiation exposure leads to the induction of DNA damage in 

distant (>0.7 cm from irradiated tissues), lead-shielded, bystander tissues in vivo; (ii) DNA 

damage in bystander tissues was present several hours after radiation; (iii) bystander tissues 

exhibited changes in expression of genes involved in methylation, indicating gene silencing 

by methylation may be involved in bystander effects; (iv) expression changes in bystander 

tissue persisted through 4 days after irradiation; (v)  expression changes in bystander tissue 

may be, in part, linked to internal organ exposure, as the more pronounced response was 

observed when the left side of the body was irradiated. 

 

2.5.1 DNA Damage and Repair 

We measured DNA damage in skin from un-irradiated, irradiated and the irradiated 

and bystander sides of hemi-shielded mice.  We found significant increases in strand breaks 

in irradiated and bystander samples 6 hrs after exposure but not after 4 days, which is 

consistent with the damage being repaired in irradiated and bystander tissues.  In addition, we 

monitored γH2AX as a specific marker of DSBs.  As the appearance of γH2AX occurs 
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rapidly after DSBs are formed, it is often examined soon after damage is induced, for 

example, after 30 minutes.  The fact that we observed an increase in γH2AX in irradiated and 

bystander tissues 6 hrs after exposure is surprising as it indicates there may be unrepaired 

DSBs persisting after irradiation (Rothkamm et Lobrich, 2003).  Alternatively, it may reflect 

an increase in the number of dividing cells in tissues following irradiation (Ichijima et al, 

2005).  

The induction of Rad51 in irradiated tissue was somewhat unexpected.  It is thought 

that Rad51 activity is regulated by sub-nuclear localization (West, 2003), however there are 

earlier reports that are consistent with the induction of Rad51 expression by IR (Haaf et al, 

1995).  Interestingly, we found Rad51 was similarly induced in both irradiated and bystander 

tissues even 4 days after irradiation, suggesting a persistent upregulation of DSB repair 

capacity.  The cellular repercussions of this finding will have to be further elucidated, since it 

was recently shown that overexpression of Rad51 can lead to chromosome rearrangements 

and genome instability (Richardson et al, 2004). 

 

2.5.2 DNA Methylation 

Although it is hypothesized that bystander effects result from epigenetic changes to 

cells, the precise mechanism by which bystander effects are induced and maintained is not 

known.  In this study we found a decrease in global methylation in irradiated skin but not in 

bystander skin.  The observed decrease in global DNA methylation in irradiated skin 6 hours 

after irradiation correlated (r2>0.9) with the accumulation of strand breaks, as monitored by 

the ROPS assay, as well as with the increase in recombination activity (r2>0.9). Thus, the 

loss of methylation in cells from directly irradiated tissue may be related to the repair status 
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of these cells.  Indeed, it is known that DNA polymerases involved in repair and recombination 

incorporate cytosine but not methylcytosine during repair synthesis (Pogribny et al, 2005). Thus, 

the induction of DNA lesions and subsequent activation of DNA repair and recombination 

mechanisms may result in DNA hypomethylation (Pogribny et al, 2005; Koturbash et al, 2005; 

Pogribny et al, 2004a). We have previously shown that suppression of DNA methylation 

caused by exposure to gamma-irradiation is linked to activation of DNA repair (Pogribny et 

al, 2004a).  Another possible mechanism by which irradiation could reduce the levels of DNA 

methylation could be that DNA damage interferes with the ability of DNA methyltransferases to 

methylate DNA (Panayiotidis et al, 2004; Turk et al, 1995).  However, it seems unlikely that the 

number of DNA lesions induced under these conditions would yield detectable changes in global 

methylation.  

De novo methyltransferases function primarily as regulators of cell fate and 

differentiation. Interestingly, we found a decrease in the expression of DNA 

methyltransferases involved in de novo methylation, DNMT3a and 3b, in both irradiated and 

bystander tissues.  It is well established that clinical exposure to radiation therapy can induce 

cutaneous injury which involves complex physiological changes.  Thus, one possibility is 

that the suppressed levels of DNMT3a and 3b reflect an early injury response.  Interestingly, 

previous studies show a correlation between DNA hypomethylation and suppression of 

DNMT3a and 3b in mouse liver, spleen and thymus following whole-body exposure to X-

rays (Pogribny et al, 2005; Raiche et al, 2004).  

In contrast to the suppression of de novo methyltransferase levels, we observed an increase 

in the levels of the methyltransferase responsible for maintaining DNA methylation patterns, 

DNMT1, only in bystander tissues.  It is interesting that global methylation was suppressed 
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in directly irradiated tissue, but not in bystander.  One possibility is that increased levels of 

DNMT1 may offset the radiosuppression of DNA methylation that was observed in directly 

irradiated tissue.  Along with the increased levels of DNMT1 in bystander tissue, we also 

found that the levels of MeCP2 and MBD2, proteins involved in transcriptional silencing, 

were increased in bystander but not irradiated skin.  Although additional studies are 

necessary to delineate the potential biological significance and persistence of these shifts in 

protein levels, these results demonstrate that there are significant physiological changes in 

distant unexposed tissue of animals exposed to X-irradiation.  
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2.6 FIGURES AND TABLES. 
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 Figure 2.1. Induction of in vivo bystander effect. 

  Animals had leaded shielding covering half of their bodies during exposure to 1 Gy of X-

rays.  Animals in the un-irradiated control cohort were sham treated. Animals in the fully irradiated 

cohort received 1 Gy of whole body X-ray exposure. CT – un-irradiated skin; IR – skin from fully 

irradiated animals; IR½– skin from the irradiated side of hemi-shielded animals; BS ½  – skin from 

the shielded, bystander side of hemi-shielded animals.  Note that ventral skin was taken from the 

area adjacent to the thigh, thus bystander samples were taken at least 0.7 cm from the edge of 

irradiated side.   

 

 

 39



 

Figure 2.2. DNA damage in irradiated and bystander skin. 

A.  Levels of DNA strand breaks were revealed by a modified ROPS assay (see 

Materials and Methods).  Separate cohorts were analyzed 6 hours and 4 days after exposure.  

Levels of DNA strand breaks are presented as mean values ± SEM, n=10; *denotes 

statistically significant difference compared to controls (p<0.05), paired Student’s t-test.  

 B.  Lysates from cutaneous tissue were immunoblotted using antibodies against 

RAD51and γH2AX. Representative blots from 3 independent experiments; each experiment 

included pooled lysates from 5 animals for each exposure condition, with equal representation of 

each animal. 

CT, IR, IR½ and BS ½ are as described in Figure 2.1. 
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Figure 2.3. Epigenetic effects of radiation exposure. 

A. Relative levels of global DNA methylation where an increase in 3H-dCTP 

indicates a decrease in global methylation in cutaneous tissues of un-irradiated control, fully 

irradiated, and the irradiated and bystander sides of animals 6 hrs and 4 days after exposure.   

B. Western analysis of DNMT1, DNMT3a, DNMT3b, MeCP2, MBD2. Protein levels 

relative to loading controls were compared and the statistically significant fold changes relative to 

untreated sham controls are shown.  Representative blots from 3 independent experiments; each 

experiment included cohorts of 5 animals for each exposure condition, with equal representation of 

each animal.  Each lane represents pooled lysates from 5 animals; experiments were repeated 3 

times independently.  

CT, IR, IR½ and BS ½ are as described in Figure 2.1. 
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Figure 2.4. Bystander effects are not due to insufficient shielding or radiation 

scattering. 

A. Western analysis of fully shielded animals.  Animals in the control cohort were 

sham treated. Animals of the shielded cohort were exposed to 1 Gy of X-rays while there bodies 
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were completely shielded with lead. Representative blots from 3 independent technical repeats are 

shown; each experiment included cohorts of 5 animals for each exposure condition, with equal 

representation of each animal 

B.  Western analysis of animals exposed to the approximate dose expected from 

scatter. Animals in the control cohort were sham treated. Animals of the scatter-dose exposed 

cohort received 0.013 Gy dose (see Materials and Methods). Representative blots from among 3 

independent technical repeats are shown; each experiment included pooled lysates from 5 animals 

for each exposure condition, with equal representation of each animal. 
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Figure 2.5. Role of internal organ exposure in the generation of bystander effects. 

Animals were irradiated as described in the text, 3 animals per treatment group. Lysates 

from the control and shielded/bystander cutaneous tissue were immunoblotted using antibodies 

against DNA repair and DNA methylation-related proteins. CT – lysate from control animal 

skin; R – lysate from the right body side shielded skin (left side was irradiated); L - lysate from 

the left body side shielded skin (right side was irradiated); B - lysate from the lower animal 

body shielded skin (head was irradiated). Protein levels relative to loading controls were 

compared.  Representative blots from among 3 independent technical repeats are shown; each 

experiment included pooled lysates from 3 animals for each exposure condition, with equal 

representation of each animal. 
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3. IN VIVO BYSTANDER EFFECT: CRANIAL X-IRRADIATION LEADS TO 

ELEVATED DNA DAMAGE, ALTERED CELLULAR PROLIFERATION AND 

APOPTOSIS, AND INCREASED P53 LEVELS IN SHIELDED SPLEEN1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chapter 3 has been published in its entirety: 

Koturbash I, Loree J, Kutanzi K, Koganow C, Pogribny I, Kovalchuk O. (2008) 
In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered 
cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J 
Radiat Oncol Biol Phys., 70:554-62 
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 3.1 ABSTRACT 

It is well accepted that irradiated cells may ‘forward’ genome instability to non-

irradiated neighboring cells, giving rise to the ‘bystander effect’ phenomenon. While 

bystander effects are well studied using cell cultures, data on somatic bystander effects in 

vivo are relatively scarce. We set out to analyze the existence and molecular nature of 

bystander effects in a radiation target organ spleen using a mouse model.  The animal’s head 

was exposed to X-rays while the remainder of the body was completely protected by a medical 

grade shield. Using immunohistochemistry, we addressed the levels of DNA damage, cellular 

proliferation, apoptosis, and p53 protein in the spleen of control animals, completely exposed 

and head exposed /body bystander animals. We have found that the localized head radiation 

exposure leads to the induction of bystander effects in the lead-shielded distant spleen 

tissue. Namely, cranial irradiation leads to the elevated levels of DNA damage and 

increased p53 expression, it also alters the levels of cellular proliferation and apoptosis in 

bystander spleen tissue. The observed bystander changes were not caused by radiation 

scattering, and were observed in two different mouse strains, C57BL/6 and BALB/c. Our 

study proves that bystander effects occur in distant somatic organs upon localized 

exposures. Further studies are required to characterize the nature of an enigmatic 

bystander signal, to analyze the long-term persistence of these effects, and the possible 

contribution of radiation-induced bystander effects to secondary radiation carcinogenesis. 

Key words: bystander effect, mouse model, apoptosis, proliferation, DNA 

damage, γH2AX, p53 
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3.2 INTRODUCTION 

Bystander effects are now accepted as ubiquitous consequences of radiation 

exposure (Little, 2006; Mothersill et Seymour, 2004; Morgan, 2003a).  They are very 

well studied using cell cultures (Little, 2006; Sokolov et al, 2005; Yang et al, 2005; 

Mothersill et Seymour, 2004; Morgan, 2003a).  Using cell culture-based assays, it has 

been shown that irradiated cells can elicit myriads of molecular responses in the 

neighboring bystander cells that have never been exposed to radiation. These responses 

can lead to a persistent genome destabilization, and ultimately may contribute to 

carcinogenesis (Mothersill et Seymour, 2004, Mothersill et al, 2004; Hall, 2003; Ward, 

2002; Zhou et al, 2002a; Sawant et al, 2001; Zhou et al, 2000). Overall, bystander effects 

encompass a wide range of genetic alterations, including gross genome rearrangements, 

chromosome aberrations, sister chromatid exchanges, deletions, duplications and gene 

mutations and amplifications (Little, 2006; Morgan, 2003a; Morgan, 2003b; Nagasawa et 

Little, 2002). They also influence gene expression, cellular proliferation, senescence and 

cell death (Sedelnikova et al, 2007; Chaudhry, 2006; Belyakov et al, 2003; Belyakov et 

al, 2002). 

Compared to the bystander effect data based on cell culture, the conclusive data on 

somatic bystander effects in vivo are relatively scarce (Koturbash et al, 2006b; Hall, 2003; 

Goldberg et Lehnert, 2002). It was shown that radiation exposure can lead to the release 

of soluble ‘clastogenic’ factors into circulating blood. These factors are capable of 

inducing chromosome damage in cultured cells (Marozik et al, 2007; Emerit et al, 1995; 

Emerit et al, 1994; Pant et Kamada, 1977; Hollowell et Littlefield, 1968; Goh, 1968). 

Such clastogenic activity was found in plasma of patients receiving high dose 
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radiotherapy and individuals accidentally exposed to radiation (Marozik et al, 2007; 

Emerit et al, 1995; Emerit et al, 1994; Pant et Kamada, 1977; Hollowell et Littlefield, 

1968; Goh, 1968). Bystander effects were shown to be important within an exposed 

organ.  When the lung base was irradiated, significant molecular and cellular damage was 

observed in the shielded lung apex (Khan et al, 2003; Khan et al, 1998). It was also 

shown that when one lung, either right or left, was exposed, the marked increase of 

micronuclei was noted in the unexposed shielded lung (Khan et al, 2003; Khan et al, 

1998). Similar within-the-organ bystander effects were observed during partial liver 

irradiation (Brooks et al, 1974). 

We have recently confirmed the existence of in vivo bystander effects using a 

mouse skin model, whereby half of the animal body was exposed to radiation, while the 

other half was protected by a medical grade shield (Koturbash et al, 2006b). The data 

showed that X-ray exposure to one side of the animal body caused profound epigenetic 

changes in the unexposed bystander body half 4 days after exposure.  

Interestingly, the data obtained in the mouse skin model showed that bystander 

effects were the most prominent when spleen was in the field of irradiation, suggesting a 

possible role of spleen in the bystander effects (Koturbash et al, 2006b). Spleen is an 

important radiation-target organ (Koturbash et al, 2005; Pogribny et al, 2004a), yet the 

existence, molecular and cellular mechanisms of the radiation-induced bystander effects 

in spleen need to be further addressed. The overall data on bystander effects in organs 

other than exposed ones are scarce. 

Thereafter, we set out to analyze the existence and molecular nature of bystander 

effects in a radiation target organ spleen using a mouse model, whereby an animal head 
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was exposed to X-rays, while the animal body was completely protected by a medical-

grade lead shield. To investigate the possibility that X-irradiation induces DNA damage 

in bystander tissue in vivo, we monitored the induction and repair of DNA strand breaks 

in spleen tissue. We also explored changes in the levels of cellular proliferation, 

apoptosis and p53 in the bystander spleen.  Here, we report that cranial irradiation leads 

to the elevated levels of DNA strand breaks, altered levels of p53 protein, cellular 

proliferation and apoptosis in the bystander spleen in two different strains of laboratory 

mice.  
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3.3 MATERIALS AND METHODS 

3.3.1 Model and Irradiation of Animals    

In this study we examined the molecular alterations in spleen of C57BL/6 and 

BALB/c strains following in vivo cranial irradiation exposure.  The 50 days old male 

mice (30 C57BL/6 and 30 BALB/c animals) were randomly assigned to different 

treatment groups. Handling and care of animals was in strict accordance with the 

recommendations of the Canadian Council for Animal Care and Use.  The procedures 

have been approved by the University of Lethbridge Animal Welfare Committee. 

Animals were housed in a virus-free facility and given food and water ad libitum.  

The whole body exposed cohort (10 BALB/c and 10 C57BL/c animals) received 1 

Gy of whole body exposure to X rays (5cGy/s, 90kV, 5mA). The second cohort (10 

BALB/c and 10 C57BL/c animals) received 1 Gy of X rays exposure to scull only,  while 

the rest of animal body were protected by a ~3 mm thick lead shield, the same type as 

used for a human body protection in diagnostic radiology. The protection of shielded 

‘bystander’ tissue was complete, as verified by the careful dosimetry using RAD-

CHECK™ monitor (Nuclear Associates div. of Victoreen, Inc, FL, USA). Control mice 

(10 BALB/c and 10 C57BL/c animals) were sham treated. The animals were humanely 

sacrificed either 6 hours or 96 hours (4 days) after exposure. These time points were 

chosen to analyze the initial (6 hours) as well as persistent (4 days) responses, if any. 

Spleen tissue was sampled upon sacrifice and processed for the further molecular studies. 

The experiment was independently reproduced according to the same scheme 

using 18 C57BL/6 and 18 BALB/c animals. Both experiments yielded congruent results. 
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Another cohort of 10 animals was exposed to an approximate scatter dose of 

~0.01Gy. To determine the bystander ventral//spleen/thigh skin dose resulting from 

photon scatter within the mouse itself, a Monte Carlo simulation was performed (X-5 

Monte Carlo Team, 2003).  The skin was assumed to be 0.1 cm thick, and a 2 mm thick 

lead shield covered one half of the mouse.  An absorbed dose was tallied within the skin 

region in several locations in both the unshielded dorsal regions and the shielded 

ventral/thigh regions.  The absorbed dose to the ventral skin/spleen located right beneath 

the skin from a 90 kVp X-ray spectrum was determined to be approximately 0.014 – 

0.017 Gy for a 1 Gy dose delivered to the dorsal skin (Koturbash et al, 2006b). The 

animals were sacrificed 6 hours after exposure. 

 

3.3.2 DNA Damage Analysis – Histone γH2AX Foci Accumulation  

The spleen tissue was touch-printed onto the positively charged slides (VWR, 

Mississauga, ON), air-dried and fixed in 2% PFA in PBS.  Upon fixation, slides were 

immunostained using antibodies against phosphorylated histone H2AX, as described 

(Nakamura et al, 2006; Koturbash et al, 2006a; Sedelnikova et al, 2004). Foci were 

counted by eye in a blinded fashion by two independent investigators. At least 100 cells 

from the each studied tissue of each animal were examined as recommended. 

Examinations were repeated 3 times. The data are presented as a mean number of foci per 

cell ± a standard error of the mean. 

3.3.3 Proliferation Analysis – Ki67 and PCNA Immunohistochemistry 

Paraffin embedding and sectioning was conducted at Central Vet Labs, 

Edmonton, AB. Automated staining for Ki67 was conducted at the Calgary Central 
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Lab Services in accordance with the standard developed protocols and using tonsil 

tissue as a positive control for the stain quality (Cassie et al, 2006). In brief, upon the 

citrate buffer epitope retrieval slides were rinsed and subjected to serum blocking to 

prevent the non-specific binding of immunoglobulin. Sections then were incubated 

with mouse anti-human Ki67 (DakoCytomation, Carpinteria, CA) rinsed and 

subjected to peroxidase blocking.  Following the peroxidase blocking, the slides were 

incubated with the secondary biotinylated antibody, subjected to HRP-Streptavidin 

detection and counterstained with hematoxylin. Cells positive for Ki67 presented as 

red/pink, while negative cells stained blue. Tonsil tissue served as a positive control. 

Ki67 index was quantified by enumerating Ki67-positive cells in, at least, 20 high 

power fields. Amount of Ki67 positive cells relative to those of control animals are 

shown as the mean + SD; *p <0.05.  

Automated staining for PCNA was conducted by Calgary Central Lab 

Services using primary anti-PCNA antibody (Novocastra, Newcastle, UK). Upon 

secondary antibody application,  HRP-Streptavidin detection and counterstaining with 

hematoxylin, the cells positive for PCNA stained brown/purple, while the negative 

cells stained blue. Tonsil tissue served as a positive control. PCNA index was 

quantified by enumerating PCNA-positive cells in, at least, 20 high power fields. 

Levels of PCNA positive cells relative to those of the control animals are shown. 

 

3.3.4 Analysis of Apoptosis  

Paraffin embedding and sectioning were conducted at Central Vet Labs, 

Edmonton, AB. Automated staining for apoptosis was conducted using the 
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Peroxidase In Situ Apoptosis Detection Kit® (Chemicon, Temecula, CA) according 

to the manufacturer’s instructions. The kit detects apoptotic cells in situ by labelling 

and detecting DNA strand breaks by the TUNEL method. Apoptosis was quantified 

by enumerating apoptotic cells in, at least, 20 high power fields. Levels of the 

apoptotic cells relative to those of the control animals are shown as the mean + SD; 

*p <0.05. 

 

3.3.5 p53 Immunohistochemistry 

Paraffin embedding and sectioning were conducted at Central Vet Labs, 

Edmonton, AB. Automated staining for p53 was conducted using an anti-p53 

antibody (CM1) Novocastra, Newcastle, UK). This antibody recognizes both wild 

type and mutant forms of human p53 protein under denaturing and non-denaturing 

conditions and can not discriminate between functional and non-functional forms of 

protein. Upon the secondary antibody application, DAB detection and 

counterstaining, cells positive for p53 stained dark brown, while the negative cells 

stained light pink/orange. Tonsil tissue served as a positive control. High expressing 

p53 index was quantified by enumerating p53-positive cells in, at least, 20 high 

power fields. The number of the strongly p53 positive cells relative to those of the 

control animals is shown. 

 

 3.3.6 Statistical Analysis 

Statistical analysis (Student’s t-test, Tukey-Kramer test and Dunnett’s test) 

was performed using the MS Excel 2000 and JMP5 software packages. 
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3.4 RESULTS  

3.4.1 Accumulation of DNA Damage in Bystander Spleen Tissue In Vivo  

Prior studies showed a pronounced induction of DNA strand breaks (DSBs) in 

bystander cells (Sokolov et al, 2005). Thus, we decided to measure strand breaks in 

bystander spleen tissue in vivo.  We analyzed bystander effects in vivo by placing lead 

shielding over the mouse body, that only a head was exposed before exposure to 1 Gy of 

X-rays (Fig. 3.1).  The lead shielding used for these studies is the same as used for 

patients exposed to radiation in the clinic. The same type of shielding was used in the 

published studies on the bystander effect in mouse skin (Koturbash et al, 2006b). 

Complete protection of shielded bystander tissue from radiation exposure was verified by 

the careful dosimetry (see Materials and Methods). 

DSBs were analyzed in both irradiated and shielded (bystander) spleen from mice 

that had been exposed to 1 Gy of X-rays, while their bodies (from the neck down) were 

protected by a lead shield (Fig. 3.1). To analyze the presence of the DSBs, we assayed the 

presence of phosphorylated form of histone H2AX (γH2AX). H2AX, a variant of histone 

H2A, is rapidly phosphorylated at Ser139 in the chromatin micro-environment 

surrounding a DNA double-strand break (Paull et al, 2000; Rogakou et al, 1998).  Indeed, 

within minutes after exposure to radiation, phosphorylated H2AX can be visualized 

within the repair foci using phospho-specific antibodies (Nakamura et al, 2006; 

Koturbash et al, 2006a; Sedelnikova et al, 2004; Paull et al, 2000; Rogakou et al, 1998).  

Quantification of phosphorylated histone H2AX foci (γH2AX foci) constitutes a sensitive 

and reliable method to quantify radiation-induced DNA damage (Paull et al, 2000; 

Rogakou et al, 1998). 
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Using this method, we noted that whole body X-ray exposure led to a significant 

(p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) increase in levels of 

γH2AX foci in spleen of C57BL/6 and BALB/c mice.  There was a less pronounced, but 

statistically more significant (p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s 

test) increase in γH2AX foci in the ‘bystander‘ spleen of the head-exposed mice. This 

indicates an increase in DSBs in bystander tissue. However, 4 days following irradiation, 

the DSBs were repaired. 

 

3.4.2 Radiation-induced Changes in Apoptosis and Cellular Proliferation 

in Bystander Spleen In Vivo 

In a variety of cell culture- and explant-based assays, bystander effects were 

shown to affect cellular proliferation and apoptosis (Belyakov et al, 2003; Belyakov et al, 

2002). In this study, we addressed the levels of apoptosis and cellular proliferation in the 

spleen of control, completely exposed and head-exposed animals.   

The whole body exposure led to a significant (p<0.05, Student’s t-test, Tukey-

Kramer test and Dunnett’s test) increase in the number of apoptotic cells in spleens of 

both mouse strains 6 hours and 4 days after exposure (Fig. 3.3A). Cranial exposure led to 

a significant (p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) 

upregulation of apoptosis in bystander spleen tissue of C57BL/c mice but only a slight 

increase in the BALB/c strain.  The observed elevated levels of apoptosis could be linked 

to the elevated levels of DNA damage.  

For proper functioning, cells have to maintain a tight balance between cell death 

and proliferation. We studied whether cranial exposure led to alterations in cellular 
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proliferation levels. Immunohistochemistry techniques (Ki67) revealed that both the 

whole-body and cranial irradiation led to a significant (p<0.05, Student’s t-test, Tukey-

Kramer test and Dunnett’s test) increase in cellular proliferation in spleens of both animal 

strains. Ki67 is a nuclear protein expressed during late G1-, S-, G2-, and M-phases of the 

cell cycle, while cells in the G0 (quiescent) phase are negative for this protein (Cassie et 

al, 2006; Scholzen et Gerdes, 2000). Levels of Ki67 positive cells stayed elevated up to 4 

days post-exposure. We also analyzed the levels of proliferating cell nuclear antigen 

(PCNA), an S-phase-specific protein (Maga et Hubscher, 2003).  We did not find any 

significant changes in the levels of PCNA positive cells (data not shown). Therefore, we 

concluded that the increase in the number of the Ki67 positive cells may be due to the 

G1/G2 blocks, which are often seen upon exposure to DNA damaging agents (Cassie et 

al, 2006; Ishikawa et al, 2006). 

 

3.4.3 Radiation Exposure Resulted in the Elevation of p53 Levels in the 

Exposed and Bystander Spleen Tissue 

It is well accepted that p53 is a central mediator of radiation responses. Irradiation 

was shown to upregulate and activate p53, which can consequently induce transcription 

of a variety of downstream targets triggering DNA repair, cell cycle arrest, senescence 

and apoptosis (Fei et El-Deiry, 2003; Iliakis et al, 2003).  

Having seen the induction of DNA damage and alterations in the cellular 

proliferation and apoptosis levels, we decided to relate these changes to p53 levels in 

directly irradiated and bystander cells. To do this, we analyzed the levels of p53 using 

immunohistochemistry. We noted that whole body irradiation led to statistically 
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significant p53 up-regulation 6 and 96 hours after exposure in spleen of both animal 

strains. Cranial irradiation also up-regulated p53 in the bystander spleen, but to a less 

extent than the whole-body irradiation. The up-regulation trend seen in the bystander 

spleen of BALB/c animals 96 hours after cranial irradiation was significant at a 90% 

confidence limit (Fig. 3.4).  The observed p53 upregulation can be correlated with the 

observed proliferation and cell cycle arrest changes, elevated apoptosis, and repair of 

DNA damage. 

 

3.4.4 Bystander Effects are Not the Result of Insufficient Shielding or 

Radiation Scattering 

While passing through the tissue, X-rays can be reflected forming a small ‘scatter’ 

dose in the protected tissue. To check if the possible small scatter dose could contribute 

to the generation of bystander effects in spleen, we exposed a separate cohort of animals 

to the scatter dose of ~0.01Gy calculated according to the Monte Carlo simulation and 

directly measured by RAD-CHECKTM (Koturbash et al, 2006b; X-5 Monte Carlo Team, 

2003). We noted that the scatter dose application did not result in any changes in DNA 

damage, cellular proliferation and apoptosis in animal spleen (Fig. 3.5).  

As an extra biological measure of effective shielding, the fully shielded mice were 

exposed to 1 Gy X-rays, and spleen was analyzed for the levels of the γH2AX protein, 

cellular proliferation, apoptosis and p53. Then we compared these parameters with the 

unexposed controls. No changes were found (data not shown). 
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3.5 DISCUSSION 

In this report we describe a significant in vivo bystander effect that occurs in a 

mouse spleen upon cranial irradiation. The main findings of the present study are: (i) 

cranial X-ray irradiation results in the induction of bystander effect in the lead-shielded 

distant spleen tissue; (ii) cranial X-ray irradiation induces DNA damage in bystander 

spleen tissue; (iii) cranial exposure also results in the altered levels of cellular 

proliferation, apoptosis and expression of p53 protein in the bystander spleen tissue; (iv) 

the observed changes in the shielded bystander tissue are not due to the radiation 

scattering, they are observed in two different strains of mice – C57BL/6 and BALB/c.  

Currently, firm and conclusive evidence that IR-induced bystander effects in vivo 

are operational is still limited. The literature evidence suggests that bystander effects may 

exist and have important biological consequences within an organ, as shown by 

irradiation of lung field and liver sectors (Khan et al, 2003; Khan et al, 1998; Brooks et 

al, 1974). Soluble clastogenic factors in blood following radiation exposure were shown 

to induce bystander effects (Marozik et al, 2007; Emerit et al, 1995; Emerit et al, 1994; 

Pant et Kamada, 1977; Hollowell et Littlefield, 1968; Goh, 1968). Bystander effects were 

also reported in the artificial human 3D tissue models upon α particle irradiation 

(Sedelnikova et al, 2007).  Yet, bystander effects in distant somatic organs following 

localized exposure need to be further studied, especially considering their relevance to 

radiation-induced secondary malignancies (Marozik et al, 2007; Hall, 2003; Goldberg et 

Lehnert, 2002; Emerit et al, 1995; Emerit et al, 1994; Pant et Kamada, 1977; Hollowell et 

Littlefield, 1968; Goh, 1968).  
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Our laboratory has recently developed an in vivo model, where bystander effects 

were studied in the skin of mice subjected to half-body or head IR exposure, while the 

rest of the body is protected by a medical grade lead shield. The data obtained in this 

model showed that bystander effects were the most prominent when the spleen was in the 

field of irradiation, suggesting a possible role of the spleen in bystander effects 

(Koturbash et al, 2006b). Furthermore, some early bystander effect studies reported 

changes in the sternal bone marrow of children who received spleen irradiation as a part 

of leukemia treatment (Parsons et al, 1954). Therefore, we hypothesized that spleen, an 

organ of utmost significance for direct radiation effects, may also be targeted by the 

bystander responses. 

As shown in the present study, spleen indeed is an important target organ for 

bystander effects. The bystander effects observed in the spleen tissue were characterized 

by a profound induction of DNA damage. This is in agreement with the existing literature 

(Sedelnikova et al, 2007; Sokolov et al, 2005; Mothersill et Seymour, 2004) and with our 

previous report on the in vivo bystander effect in skin (Koturbash et al, 2006b). Bystander 

effects have been shown to result in the DNA damage accumulation in the cell culture, 

3D tissue models, and in the bystander liver and lung tissue (Sedelnikova et al, 2007; 

Koturbash et al, 2006b; Sokolov et al, 2005; Mothersill et Seymour, 2004; Khan et al, 

2003; Khan et al, 1998).  

There can be several possible, not mutually exclusive ways of an indirect DNA 

damage induction in bystander spleen tissue. They can be mediated by reactive oxygen 

species, via inflammatory cytokines or via other factors secreted by IR-damaged blood 

cells (reviewed in Little, 2006; Mothersill et Seymour, 2004; Morgan, 2003a). Amongst 
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those factors, microRNAs and other epigenetic effectors may be especially important 

(Koturbash et al, 2007).  

Previous studies addressed the molecular changes in bystander tissues. The 

associated cellular changes have not been addressed in depth. This study is the first 

attempt to analyze the levels of cellular proliferation and apoptosis in the bystander 

spleen tissue in vivo.  Here we show that the observed induction of DNA damage was 

paralleled by the significant elevation of apoptosis and Ki67 index in the bystander 

spleen tissues. However, no changes were noted in the levels of PCNA positive cells. 

Ki67 is a nuclear protein expressed in all cell cycle phases but the G0 (quiescent) phase. 

PCNA, on the other hand, is an important DNA replication protein which is strongly 

elevated in S phase. Radiation exposure was proven to induce G1 and G2 arrest (Cassie et 

al, 2006; Ishikawa et al, 2006; Fei et El-Deiry, 2003; Iliakis et al, 2003). Thus, the 

elevated Ki67 level observed without PCNA upregulation can be interpreted as a sign of 

a radiation damage-induced cell cycle block in the exposed and bystander spleen tissue 

(Ishikawa et al, 2006). Upregulation of apoptosis and cell cycle block may be viewed as a 

‘positive’ defensive cellular response aimed to halt the cell cycle and provide cells with 

enough time to repair the damage. These data are in good agreement with previously 

reported increases of apoptosis in bystander cells and 3D tissue models (Sedelnikova et 

al, 2007; Belyakov et al, 2002). 

Another important outcome of this study is the observed elevation of p53 levels in 

irradiated and bystander mouse spleen. Tumor suppressor p53, which is considered to be 

a guardian of the genome, coordinates DNA repair with cell cycle progression and 

apoptosis (Fei et El-Deiry, 2003). The p53 is required for the G1 checkpoint control. It 
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also mediates the S phase delay and partakes in the G2/M arrest following irradiation 

(Niida et Nakanishi, 2006; Jeggo et Lobrich, 2006; Fei et El-Deiry, 2003).  The cell cycle 

arrest gives a window of time to repair the damaged DNA. Cells with unrepairable 

damage are then eliminated via apoptosis. The loss of p53 is linked to genome instability 

and carcinogenesis (Fei et El-Deiry, 2003). The role for p53 in bystander effects is 

controversial (Grosovsky, 1999).  The evidence of the p53 involvement in bystander 

effects was initially shown in rat lung epithelial cells following the α-particle irradiation. 

The analysis revealed that the fraction of p53 positive cells was larger than the number of 

cells directly hit by α-particles (Hickman et al, 1994). Later, these findings were further 

confirmed by using confluent human fibroblast cultures (Azzam et al, 1998). These 

studies suggested that the observed p53 increases may involve direct cell-cell 

communications and are disrupted by gap junction inhibitors (Azzam et al, 1998; 

Hickman et al, 1994).  Medium-transfer based bystander effect studies showed the 

opposite effects (Iyer et Lehnert, 2000). Exposure of the naïve human fibroblasts to the 

medium of the exposed cells led to the decreased p53 levels (Iyer et Lehnert, 2000). The 

reduced p53 levels were possibly due to elevated proliferation of cells with low p53 

levels (Iyer et Lehnert, 2000). Alternatively, the downregulation of p53 levels may be a 

‘compensatory’ mechanism aimed to reduce the gap junction mediated p53 increase (Iyer 

et Lehnert, 2000).  

Our study in the first to show that in vivo cranial irradiation results in the elevated 

levels of p53 in the distant bystander spleen. The upregulation of p53 was persistent and 

correlated with the observed cell cycle, DNA repair and apoptosis changes. The 

mechanisms leading to the upregulation of p53 in bystander spleen need to be further 
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investigated. Also, the antibody used in the current study detects both functional and non-

functional forms of p53 (Mothersill et al, 1994).  In the future, more studies will be 

needed to dissect the roles of p53 modifications in bystander tissue. 

Importantly, congruent with previous reports (Koturbash et al, 2007; Koturbash et 

al, 2006b), the bystander effects observed in this study, were not due to radiation 

scattering or insufficient shielding. In this study we used the same animal body shielding 

that was previously described (Koturbash et al, 2007; Koturbash et al, 2006b). The 

scatter dose for mouse spleen was miniscule, and exposure of animals to the scatter dose 

did not result in the altered levels of DNA damage, p53, cellular proliferation or cell 

death. Notwithstanding, the role of small scatter doses has to be further analyzed, since 

some other studies have shown that doses within the range of the scatter doses induced 

bystander effects in the cell culture based assays (Maguire et al, 2005; Mothersill et al, 

2005; Kashino et al, 2004; Mothersill et Seymour, 2002). 

Another central outcome of this study is the fact that comparable radiation-

induced bystander effects were observed in two strains of mice. The unexpected 

congruency of the responses between the 2 strains was somewhat surprising. On the one 

hand, these strains are known to respond differently to radiation. The C57Bl/6 strain 

usually has a strong apoptotic response, while BALB/c strain is very susceptible to 

radiation lymphomogenesis and exhibits radiation-induced proliferation (Lindsay et al, 

2007; Kataoka et al, 2006; Wallace et al, 2001; Mori et al, 2001).  On the other hand, the 

recent study by Rogers and colleagues (2001) has reported a comparable induction of 

micronuclei in both strains upon irradiation (Rodgers et al, 2001). In the future more 
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studies are needed to define strain- as well as tissue-, dose- and exposure regime- 

specificities of the direct and indirect radiation responses. 

These data, together with the recently reported bystander effects in mouse skin 

(Koturbash et al, 2006b) and in rat spleen (Koturbash et al, 2007), strongly suggest that 

somatic radiation-induced bystander effects that can be seen in distant organs upon half-

body or cranial exposure, and they indeed represent a cross-species phenomenon. Thus, 

these data can potentially be extrapolated to other species and, most importantly, to 

humans. 

Further studies are required to analyze the nature of the enigmatic bystander 

signal and the possible contribution of radiation-induced bystander effects to the 

secondary radiation carcinogenesis and cancer treatment (Mothersill et Seymour, 2006; 

Mothersill et Seymour, 2004, Hall, 2003; Goldberg et Lehnert 2002). 
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3.6 FIGURES AND TABLES 

Whole body exposed  Control

sham

Head Exposure

lead shielding

Scatter exposure

 

Figure 3.1. Induction of in vivo bystander effect in mouse spleen. 

The whole-body-exposed cohort of animals received 1 Gy of whole body exposure to 

X-rays. The head-exposed cohort received 1 Gy of X-ray exposure to the skull only while the 

rest of the animal body was protected by an approximately 3-mm thick lead shield. The scatter-

exposure cohort was exposed to an approximate scatter dose of 0.01 Gy. Control mice were 

sham treated. 
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Figure 3.2. Radiation-induced accumulation of γH2AX foci in exposed and 

bystander murine spleen. 

A.  γH2AX foci in the cells.  

B.  Number of γH2AX foci per cell, mean values ± SEM, n= 1,000; *p<0.05, 

Student’s t-test, Dunnett’s test and Tukey-Kramer test. Numbers above bars show the 

total amount of spots/total amount of cells scored. 

C.        Number of cells with four and more foci of the total amount of cells 

scored.  

CT - control animals, grey bars; B - body exposed animals, black bars; H – head 

exposed animals, dashed bars.  
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Figure 3.3. Changes in the cellular proliferation and apoptosis levels in the 

exposed and bystander murine spleen. 

A. Levels of cellular proliferation as measured by Ki67 

immunohistochemistry (IHC).  Levels of Ki67 positive cells relative to control are shown 

(control levels taken as 100%). Mean values ± SEM, n= 1,000; *p<0.05, Student’s t-test, 

Dunnett’s test and Tukey-Kramer test.  CT - control animals, grey bars; B - body exposed 

animals, black bars; H – head exposed animals, dashed bars.  

 B.  Apoptosis levels as measured by ApopTagTM IHC.  Levels of apoptotic 

cells relative to control are shown (control levels taken as 100%). Mean values ± SEM, 

n= 1,000, *p<0.05, Student’s t-test, Dunnett’s test and Tukey-Kramer test.   
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Figure 3.4. Changes in the levels of p53 positive cells in the exposed and 

bystander murine spleen. 

Levels of p53 positive cells relative to control are shown (control levels taken as 

100%). Mean values ± SEM, n=1,000; *p<0.05, Student’s t-test, Dunnett’s test and 

Tukey-Kramer test.  CT - control animals, grey bars; B - body exposed animals, black 

bars; H – head exposed animals, dashed bars. 
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Figure 3.5. Bystander effects in murine spleen did not result from radiation 

scattering. 

 Control cohort was sham treated. The scatter-dose exposed cohort received the 

calculated ‘scatter’ dose. 
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4. RADIATION-INDUCED BYSTANDER EFFECTS IN VIVO ARE SEX SPECIFIC1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chapter 4 has been submitted in its entirety:  
Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, 

Kovalchuk O. (2008) Radiation-induced bystander effects in vivo are sex specific. Mutat 
Res. (in press) 
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4.1 ABSTRACT 

Ionizing radiation (IR) effects span beyond the area of direct exposure and can be 

observed in neighboring and distant naïve cells and organs. This phenomenon is termed 

the‘bystander effect’. IR effects in directly exposed tissue in vivo are epigenetically 

mediated and distinct in males and females.  Yet, IR-induced bystander effects have 

never been explored in a sex-specificity domain.  

We used an in vivo mouse model, whereby the bystander effects are studied in  

the spleen of male and female animals subjected to head exposure when the rest of the 

body is protected by a medical grade lead shield. We analyzed the induction of DNA 

damage and alterations in global DNA methylation. The molecular parameters were 

correlated with cellular proliferation and apoptosis levels. The changes observed in the 

bystander organs are compared to changes in unexposed animals and animals exposed to 

the predicted and measured scatter doses. 

We have found selective induction of DNA damage levels, global DNA 

methylation, cell proliferation and apoptosis in the exposed and bystander spleens of 

male and female mice. Sex differences were significantly diminished in animals 

subjected to surgical removal of the gonads. 

These data constitute the first evidence of sex differences in radiation-induced 

bystander effects in mouse spleen in vivo. We show the role of sex hormones in spleen 

bystander responses and discuss the implications of the observed changes. 
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4.2 INTRODUCTION 

Over the course of years, the central dogma of radiation biology stated that 

ionizing radiation (IR) effects were restricted to directly exposed cells.  However it was 

shown that IR effects can also be seen in the naïve cells that were in contact with directly 

irradiated cells, or in the naïve cells that received certain irradiation ‘distress’ signals 

from directly exposed cells via the growth medium (reviewed in Morgan et Sova, 2007;  

Morgan et Sova, 2005; Mothersill et Seymour, 2004; Morgan, 2003a; Morgan, 2003b). 

Such an exposure communication process is termed a bystander effect (Morgan et Sova, 

2007; Morgan et Sova, 2005; Mothersill et Seymour, 2004; Morgan, 2003a; Morgan, 

2003b). A variety of bystander effect studies have been performed using cell culture 

models (Gaugler et al, 2007; Han et al, 2007; Maguire et al, 2007; Hu et al, 2006; Liu et 

al, 2006), tissue (Belyakov et al, 2006; Belyakov et al, 2003; Belyakov et al, 2002), 

spheroids (Persaud et al, 2005), or reconstructed human tissue models (Sedelnikova et al, 

2007; Belyakov et al, 2005). As a result, bystander effects are accepted as a ubiquitous 

consequence of IR exposure (Mothersill et Seymour, 2004). 

Overall, bystander effects encompass a wide range of genetic alterations, including 

gross genome rearrangements, chromosome aberrations, sister chromatid exchanges, deletions, 

duplications, gene mutations and amplifications (Han et al, 2007; Hamada et al, 2007; 

Smilenov et al, 2006; Klokov et al, 2004; Suzuki et al, 2003; Zhou et al, 2002; Lorimore et al, 

2001). They also influence gene expression, cellular proliferation, senescence, and cell death 

(Lyng et al, 2006b; Sawant et al, 2002; Sawant et al, 2001), and are linked to radiation 

carcinogenesis (Huang et al, 2007; Mothersill et al, 2003; Goldberg et Lehnert, 2002).  

Bystander effects also manifest themselves in the whole-organism environment 
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(Mothersill et al, 2001). Yet, compared to the bystander effect data based on cell cultures, the 

conclusive data on the somatic bystander effects in vivo are relatively uncommon (Goldberg et 

Lehnert, 2002). IR exposure was shown to result in the release of soluble ‘clastogenic’ factors 

into the circulating blood of exposed individuals. These factors are capable of inducing 

chromosome damage in the cultured cells (Marozik et al, 2007; Emerit et al, 1997; Pant et 

Kamada, 1977; Goh et Summer, 1968). The bystander effects were shown to manifest 

themselves within an exposed organ upon partial organ irradiation. We have recently 

confirmed the existence of the somatic bystander effects in vivo using rodent skin and spleen 

models, whereby one part of the animal body was exposed to IR, and another part was 

protected by a medical grade shield (Brooks, 2004; Khan et al, 2003). The data showed that X-

ray exposure to one side of the animal body caused profound epigenetic changes in the 

unexposed bystander parts. The epigenetic changes being implicated in the bystander effects 

include DNA methylation, histone modification, and RNA-associated silencing (Koturbash et 

al, 2008; Koturbash et al, 2007; Koturbash et al, 2006b). 

Interestingly, all the previous rodent model-based bystander studies were 

conducted using male animals. However, it has been shown that IR-induced secondary 

cancers occur at different frequencies in males and females (Guizard et al, 2001; Yoshida 

et al, 1993). Recent data also show that strikingly different patterns of gene expression 

and epigenetic changes are induced by IR in various tissues of male and female mice. 

Additionally, a limited amount of literature suggests that the bystander effects may 

indeed be distinct in males and females (Raiche et al, 2004; Pogribny et al, 2004; 

Kovalchuk et al, 2004a; Kovalchuk et al, 2004b; Mothersill et al, 2001). 
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Notwithstanding, bystander effects were never explored in a sex-specificity domain 

(Basnakian et James, 1996).  

Using a mouse model, we set out to analyze the sex specificity of bystander 

effects in a radiation target spleen, whereby the animal head was exposed to X-rays, 

while the animal body was completely protected by a medical-grade lead shield. We 

monitored the induction of DNA strand breaks in spleen tissue of male and female mice.  

We also explored the epigenetic parameters such as changes in the levels of global DNA 

methylation and expression of methyl-binding protein MeCP2. Molecular changes were 

correlated with levels of cellular proliferation and apoptosis.  Here, for the first time, we 

report that the IR-induced bystander effects in vivo are sex specific and are more 

pronounced in male animals. 

 

 73



4.3 MATERIALS AND METHODS 

4.3.1 Model and Irradiation of Animals  

 In this study we examined the molecular changes in spleen of male and female 

C57BL/6 mice following in vivo cranial irradiation exposure.  The 45 days old male mice 

(30 males and 30 female) were randomly assigned to different treatment groups. The 

whole body exposed cohort (10 male and 10 female animals) received 1 Gy of the whole 

body exposure to X rays (5cGy/s, 90kV, 5mA). The second cohort (10 male and 10 

female animals) received 1 Gy of X rays exposure to scull only,  while the rest of animal 

body were protected by a ~3 mm thick lead shield, the same type as used for a human 

body protection in diagnostic radiology. The protection of shielded ‘bystander’ tissue was 

complete, as verified by careful dosimetry using RAD-CHECK™ monitor (Nuclear 

Associates div. of Victoreen, Inc, NY, USA). The control mice (10 male and 10 female 

animals) were sham treated. The animals were humanely sacrificed either 6 hours or 96 

hours (4 days) after exposure. These time points were chosen to analyze the initial (6 

hours) as well as persistent (4 days) responses, if any. Spleen tissue was sampled upon 

sacrifice and processed for further molecular studies. The experiment was independently 

reproduced according to the same scheme using 15 male and 15 female animals. Both 

experiments yielded congruent results. Another cohort of 10 animals was exposed to an 

approximate scatter dose of ~0.01Gy (Koturbash et al, 2008; Koturbash et al, 2007, 

Koturbash et al, 2006b). To determine the bystander ventral/spleen/thigh skin dose 

resulting from photon scatter within the mouse itself, a Monte Carlo simulation was 

performed (Koturbash et al, 2006).  The skin was assumed to be 0.1 cm thick, and a 2 

mm thick lead shield covered one half of the mouse.  An absorbed dose was tallied within 
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the skin region in several locations in both the unshielded dorsal regions and the shielded 

ventral/thigh regions.  The absorbed dose to the ventral skin/spleen located right beneath 

the skin from a 90 kVp X-ray spectrum was determined to be approximately 0.014 – 

0.017 Gy for a 1 Gy dose delivered to the dorsal skin (Hamada et al, 2007). Additionally, 

the scatter dose upon cranial was directly measured and was also found to be in the range 

of ~0.01Gy.  The animals were sacrificed 6 hours after exposure. 

 To dissect the effects of sex hormones on the manifestations of bystander effects, 

a cohort of 30 male and 30 female animals were subjected to gonadotomy at the age of 18 

days.  At the age of 45 days, the castrated and ovariectomised (CAST and OVX) animals 

were subjected to IR treatment using the same scheme as with the intact animals.  

Handling and care of animals were in strict accordance with the recommendations 

of the Canadian Council for Animal Care and Use.  The procedures were approved by the 

University of Lethbridge Animal Welfare Committee.  

 

4.3.2 DNA Damage Analysis 

Total DNA was prepared from spleen tissue using Qiagen DNAeasy™ Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. A modification of the 

random oligonucleotide-primed synthesis assay (ROPS) was used to detect the presence 

of DNA strand breaks in high molecular weight DNA (Pogribny et al, 1999). 3´-OH 

DNA fragments present in the high molecular weight DNA are separated into single-

strand fragments by heat denaturation (95º C) and subsequently re-associated by cooling. 

The resulting random re-association of DNA strands consists primarily of the single-

stranded DNA fragments primed by their own tails or by other DNA fragments. These 
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fragments serve as random primers, and the excess of DNA serves as template for 

Klenow fragment polymerase. DNA was denatured by exposure at 100˚C for 5 min and 

then immediately cooled on ice. The mixture contained 0.25 μg heat-denatured DNA, 0.1 

μl [³H]dCTP (57.4 Ci/mmol) (Perkin-Elmer, Boston, MA), 0.05 mM concentrations of 

each dGTP, dATP, and dTTP, 0.6 μM dCTP, 10 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 

7.5 mM DTT, and 0.5 U Klenow polymerase (New England Biolabs, Beverly, MA) in a 

total volume of 25 μl. After incubation for 30 min at 16˚C, the reaction was stopped by 

the addition of an equal volume of 12.5 mM EDTA. The samples were subsequently 

applied on Whatman DE-81 ion-exchange filters and washed three times with sodium 

phosphate buffer (pH 7.0) at room temperature. Access of sodium phosphate was 

removed by extra washing with the distilled water. The filters were dried and processed 

using a scintillation counter (Beckman LS 5000CE, Fullerton, CA, Canada). The results 

were expressed as the percent difference in [³H] dCTP incorporation relative to control 

values.  

 

4.3.3 DNA Methylation Analysis 

Total DNA was prepared from spleen tissue using Qiagen DNAeasy™ Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. A well established 

radiolabeled [³H]dCTP extension assay was employed to evaluate the level of global 

DNA methylation (Nagar et al, 2003). 1 μg of genomic DNA was digested with 20 U of 

methylation-sensitive HPAII restriction endonuclease (New England Biolabs, Beverly, 

MA) for 16-18 h at 37˚C. A second DNA aliquot (1 μg) of undigested DNA served as 

background control. The single nucleotide extension reaction was performed in a 25 μl 
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reaction mixture containing 1.0 μg DNA, 1X PCR buffer II, 1.0 mM MgCl2, 0.25 U 

AmpliTaq DNA polymerase, and 0.1 μl of [³H]dCTP (57.4 Ci/mmol) (Perkin-Elmer, 

Boston, MA), and incubated at 56˚C for 1 h. The samples were applied to Whatman DE-

81 ion-exchange filters and washed 3 times with 0.5 M sodium phosphate buffer (pH 7.0) 

at room temperature. The filters were dried and processed for counting using a 

scintillation counter (Beckman LS 5000CE; Fullerton, CA). The [³H]dCTP incorporation 

into DNA was expressed as mean disintegrations per minute (dpm) per μg of DNA after 

subtraction of the dpm incorporation in the undigested samples (background).  

 

4.3.4 Analysis of Apoptosis  

Paraffin embedding and sectioning were conducted at Central Vet Labs, 

Edmonton, AB. Staining for apoptosis was conducted using a Peroxidase In Situ 

Apoptosis Detection Kit® (Chemicon, Temecula, CA) according to the manufacturer’s 

instructions. The kit detects apoptotic cells in situ by labeling and detecting DNA strand 

breaks by the TUNEL method. Apoptosis was quantified by enumerating apoptotic cells 

in, at least, 20 high power fields. Levels of the apoptotic cells relative to those of the 

control animals are shown as the mean amount of apoptotic cells per high resolution field 

of view + SD; *p <0.05. 

 

4.3.5 Proliferation Analysis – Ki67 and PCNA Immunohistochemistry 

Paraffin embedding and sectioning was conducted at the Central Vet Labs, 

Edmonton, AB. Staining for Ki67 was conducted in accordance with the standard 

developed protocols and using tonsil tissue as a positive control for the stain quality 
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(Brooks, 2004). In brief, upon the citrate buffer epitope retrieval, slides were rinsed and 

subjected to serum blocking to prevent the non-specific binding of immunoglobulin. 

Sections then were incubated with mouse anti-human Ki67 (DakoCytomation, 

Carpinteria, CA), rinsed and subjected to peroxidase blocking.  Following the peroxidase 

blocking, the slides were incubated with the secondary biotinylated antibody, subjected to 

HRP-Streptavidin detection, and then counterstained with hematoxylin. Cells positive for 

Ki67 were red/pink, while negative cells stained blue. Tonsil tissue served as a positive 

control. Ki67 index was quantified by enumerating Ki67-positive cells in, at least, 20 

high power fields. The amount of Ki67 positive cells relative to those of control animals 

are shown as the mean + SD; *p <0.05.  

Staining for PCNA was conducted using primary anti-PCNA antibody 

(Novocastra, Newcastle, UK). Upon the secondary antibody application, HRP-

Streptavidin detection and counterstaining with hematoxylin, the cells positive for PCNA 

stained brown/purple, while the negative cells stained blue. Tonsil tissue served as a 

positive control. PCNA index was quantified by enumerating PCNA-positive cells in, at 

least, 20 high power fields. Levels of PCNA positive cells relative to those of the control 

animals are shown. 

 

4.3.6 Statistical Analysis 

Statistical analyses (Student’s t-test with Bonferroni correction for multiple 

comparisons, Tukey-Kramer test and Dunnett’s test) were performed using the MS Excel 

2000 and JMP5 software packages. 

 78



4.4 RESULTS  

4.4.1 Sex Differences in the Accumulation of DNA Damage in Bystander 

Spleen Tissue In Vivo  

Numerous reports suggest that bystander effects are linked to the induction of 

DNA damage (Maguire et al, 2007; Sedelnikova et al, 2007; Han et al, 2007; Suzuki et 

al, 2003). Therefore, as an initial step of our study, we measured DNA strand breaks in 

bystander spleen tissue of male and female animals.  We examined the sex specificity of 

bystander effects in vivo by placing lead shielding over the body of male or female mice, 

while the head was left unprotected and was exposed to 1 Gy of X-rays (Fig. 4.1).  The 

lead shield used for these studies is the same as that used for patients exposed to radiation 

in a clinic. The identical shielding was used in the published studies on the bystander 

effect in rodent models (Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 

2006b).  

DNA strand breaks were analyzed in the spleen of unexposed, whole-body 

irradiated and head-exposed male and female mice that had been exposed to 1 Gy of X-

rays, while their bodies (from the neck down) were protected by the lead shield (Fig. 4.1).  

Levels of DNA strand breaks were evaluated using a modification of the random 

oligonucleotide-primed synthesis assay (ROPS) (Kovalchuk et al, 2004a; Kovalchuk et al, 

2004b; Mothersill et al, 2001; Pogribny et al, 1999; Basnakian et al, 1996). The assay is based 

on the ability of Klenow fragment polymerase to initiate ROPS from the re-annealed 3’-OH 

ends of single stranded DNA. Briefly, 3’-OH DNA fragments that exist in the high molecular 

weight DNA are separated into single-strand fragments by heat denaturation and subsequently 

re-associated by cooling. The resulting random re-association of DNA strands consists 
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primarily of single-stranded DNA fragments primed by their own tails or by other DNA 

fragments. These fragments serve as random primers, and the excess DNA serves as template 

for Klenow fragment polymerase incorporating radioactively labeled dNTPs.  

Using this method, we noted that whole body X-ray exposure led to a significant 

1.7 and 1.3 fold increase in the levels of DNA strand breaks (DSBs) in spleen of male 

and female mice, respectively, 6 hours after treatment as compared to control animals 

(p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) (Fig. 4.1A). The IR-

induced increase in the level of DSBs in male mice was significantly higher (p<0.05, 

Student’s t-test, Tukey-Kramer test and Dunnett’s test) than in females.  There was a less 

pronounced (1.4 fold) but still statistically significant (p<0.05, Student’s t-test, Tukey-

Kramer test and Dunnett’s test) increase in DNA strand breaks in the bystander spleen of 

head-exposed male mice. However, we did not detect any significant changes in the 

levels of breaks in the bystander female spleen (Fig. 4.1A).  All the damage in the 

exposed and bystander spleen was repaired in 4 days after exposure (Fig. 4.1A) in both 

male and female animals.  

Having seen the sex differences in the induction of DNA damage in the exposed 

and bystander spleen, we then decided to deduce the role that sex hormones may play in 

the aforementioned processes. To do so, weanling animals were subjected to gonadotomy 

- castration (CAST) and ovariectomization (OVX). At the age of 45 days, the cohorts of 

CAST and OVX animals were exposed to IR using the protocol described above. Our 

study has revealed that castration and ovariectomization strongly affect changes in the 

magnitude of DNA strand breaks inducted after IR exposure in male and female spleen.  
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Neither the whole-body nor the cranial radiation exposure has affected the levels of DNA 

strand breaks in the spleen tissue of CAST animals.  

In the OVX animals, whole body irradiation led to a small (1.3 and 1.2 fold) but 

significant (p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) increase in 

the DSBs 6 and 96 hours after irradiation. A similar small but significant 1.2 fold 

increase was also seen in the spleen of cranially exposed OVX mice 96 hours after 

exposure (Fig. 4.1B). 

Overall, the sex differences in the IR-induced strand break levels were somewhat 

less pronounced in the CAST and OVX animals as compared to the intact ones. 

 

4.4.2 Sex-specific Radiation-induced Hypomethylation in the Bystander 

Spleen Tissue  

Recent studies suggest that bystander effects are mediated via epigenetic 

mechanisms (Weber et Schubeler, 2007; Kaup et al, 2006; Wright et Coates, 2006; 

Lorimore et al, 2003). DNA methylation is one of the common and so far best-studied 

mechanisms of epigenetic regulation. It is crucial for the regulation of gene expression 

and silencing and serves as a safeguard of genome stability. Altered DNA methylation 

has been associated with gross genome rearrangements and is known as a cancer 

hallmark (reviewed in Baylin et Ohm, 2006; Klose et Bird, 2006; Kalinich et al, 1989).  

The direct IR exposure has been reported to affect DNA methylation patterns (Pogribny 

et al, 2005; Pogribny et al, 2004; Kovalchuk et al, 2004a; Mothersill et al, 2001; Tawa et 

al, 1998). Acute exposures to low LET x-rays or γ-rays were noted to result in global 

hypomethylation (Pogribny et al, 2005; Tawa et al, 1998).  Furthermore, our laboratory 
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has shown that whole-body IR exposure leads to profound dose-dependent and sex- 

specific global DNA hypomethylation (Koturbash et al, 2005; Pogribny et al, 2004; 

Kovalchuk et al, 2004a; Brown et Gatter 2002).  

DNA methylation levels are also affected in the bystander tissue. Previously, 

using both mouse and rat models, we have detected short and long-term changes in global 

DNA methylation in bystander spleen tissue after cranial exposure to moderate and high 

doses of IR (Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 2006b). Yet, 

all the previous bystander effect-related DNA methylation studies were conducted using 

male animals only, and bystander effect-induced DNA methylation changes have never 

been explored in a sex-specificity domain. 

To test for any sex-specificity in the bystander effect-induced DNA methylation 

changes, we  measured the levels of global cytosine DNA methylation in spleen tissue of 

control, whole-body exposed and head-exposed male and female mice  6 and 96 hours 

after exposure to 1 Gy of IR using a well-established HpaII/MspI-based cytosine 

extension assay (Koturbash et al, 2008; Koturbash et al, 2006b; Pogribny et al, 2004; 

Kovalchuk et al, 2004a; Kovalchuk et al, 2004b; Mothersill et al, 2001). The HpaII-

based cytosine extension assay measures the proportion of CCGG sites that lost methyl 

groups on both DNA strands. This overhang can be used for the subsequent single nucleotide 

extension with the labeled [3H]dCTP. The extent of [3H]dCTP incorporation opposite the 

exposed guanine is directly proportional to the number of cleaved and thus unmethylated CpG 

sites and inversely proportional to the levels of methylation (i.e., the higher is methylation, the 

less [3H]dCTP is incorporated). Taking into consideration that the vast majority of the 

frequently occurring HpaII tetranucleotide recognition sequences are constitutively 
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methylated in vivo, an increase in cleavage at these sites indicates genome-wide 

hypomethylation.  

The assay revealed that the whole body IR exposure resulted in a significant 2.8 

and 1.4 fold (p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) increase in 

the incorporation of [3H]dCTP  6 and 96 hours after exposure, respectively. Cranial irradiation 

also led to a significantly 1.5 and 1.4 fold elevated [3H]dCTP incorporation seen 6 and 96 hours 

after cranial irradiation (Fig. 4.2A).  These changes were indicative of a profound and persistent 

global genome loss of DNA methylation in the exposed and bystander spleen of male mice. In 

females, the DNA methylation changes were much less pronounced. In female spleen the loss 

of DNA methytion was seen only 96 hours after whole body irradiation (Fig. 4.2A). 

Intriguingly, gonadectomy resulted in profound global DNA hypomethylation (p<0.05, 

Student’s t-test, Tukey-Kramer test and Dunnett’s test) in the exposed spleen tissue of 

both CAST and OVX mice 6 hours after irradiation. In addition, all the sex differences in 

the DNA methylation patterns of the intact male and female animals were lost following 

gonadectomy (Fig. 4.2B).  

 

4.4.3 Radiation-induced Changes in Apoptosis and Cellular Proliferation 

in Bystander Spleen In Vivo  

The levels of cellular proliferation and apoptosis are important endpoints 

frequently affected in bystander cells as shown in a variety of cell culture, human 3D 

tissue and tissue explants studies (Sedelnikova et al, 2007; Belyakov et al, 2005). Even 

though their biological parameters were also significantly altered in the bystander spleen 
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of cranially exposed male mice (Koturbash et al, 2008), the sex specificity of the 

bystander effect-induced proliferation and apoptosis in vivo has never been considered.  

 In this study, we analyzed and compared the levels of cellular proliferation and 

apoptosis in the spleen of control, whole body exposed and head-exposed male and 

female mice.  Apoptosis analysis was conducted using the ApopTagTM method. In this 

assay, apoptotic cells are identified in situ by specific end labeling and 

immunohistochemical detection of the DNA fragments produced during the apoptotic 

process (Koturbash et al, 2008). We found that the whole-body exposure led to a 

significant (p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) increase in 

the number of apoptotic cells in the murine spleen tissue of both sexes 6 and 96 hours 

after exposure. Interestingly, the number of apoptotic cells was significantly higher 

(p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) in the female spleen 

tissue 6 hours after irradiation than in the male spleen tissue (Fig. 4.3). 

Cranial exposure led to significant (p<0.05, Student’s t-test, Tukey-Kramer test 

and Dunnett’s test) up-regulation of apoptosis in bystander spleen tissue of mice of both 

sexes 6 hours post exposure. No significant changes in the levels of cell death were found 

96 hours after cranial irradiation; however the higher apoptotic index in the female spleen 

has to be acknowledged as compared with the male spleen tissue. The detected increased 

levels of apoptosis could be linked to the increased levels of DNA damage.  

Sterilization of animals led to diminished sex-determined differences in the 

majority of apoptotic cells after whole-body and cranial irradiation in both OVX and 

CAST animals (Fig. 4.3).  
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For proper functioning, the cells have to maintain a tight link between cell death 

and proliferation. Having observed elevated sex-specific levels of apoptosis in the 

exposed and bystander spleen tissue of males and females, we studied whether irradiation 

leads to altered cellular proliferation. To do so, we have analyzed and compared the 

levels of Ki67 and proliferating cell nuclear antigen (PCNA) in spleens of control and 

exposed male and female mice by immunohistochemistry (IHC). Ki67 is a nuclear 

protein expressed during the late G1-, S-, G2-, and M-phases of the cell cycle, but not in 

the G0 (quiescent) phase (Moldovan et al, 2007).  PCNA is primarily functioning as a 

DNA polymerase cofactor during DNA replication, and therefore its levels are strongly 

elevated in S phase (Hall, 2003). 

The analysis showed that whole-body exposure led to a significant increase 

(p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) in the levels of Ki67-

positive cells in the murine spleen tissue of both sexes (Fig. 4.4A).  In the mean time, 

cranial exposure resulted in a significant increase (p<0.05, Student’s t-test, Tukey-

Kramer test and Dunnett’s test) of Ki67-positive cells only in the male spleen tissue. 

Levels of Ki67 remained significantly elevated (p<0.05, Student’s t-test, Tukey-Kramer 

test and Dunnett’s test) 96 hours after whole-body exposure in spleen of both sexes. 

Sterilized male animals have shown a less pronounced, but still significant increase 

(p<0.05, Student’s t-test, Tukey-Kramer test and Dunnett’s test) in Ki67-positive cells in 

spleen 6 and 96 hours after whole body exposure (Fig. 4.4A). Sterilized female animals 

have shown a small, but significant increase (p<0.05, Student’s t-test, Tukey-Kramer test 

and Dunnett’s test) in Ki67-positive cells in spleen 96 hours after whole body exposure. 
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Levels of Ki67 in the bystander spleen tissue remained unchanged in both OVX and 

CAST animals 6 and 96 hours after irradiation (Fig. 4.4A).  

We also analyzed the levels of PCNA in murine control, exposed and bystander 

spleen tissue. We did not detect any significant changes in the levels of PCNA-positive 

cells. We also could not identify any significant sex-determined differences in the 

expression of PCNA (Fig. 4.4B).  

 

4.4.4 Bystander Effects are Not Due to Radiation Scattering 

Importantly, all of the bystander effects observed in this study were not due to the 

insufficient shielding or radiation scattering.  Radiation scattering occurs when X-rays 

pass through the tissue and partially get reflected. This leads to the formation of a small 

“scatter” dose in the shielded area. In our previous studies, exposure of the animals to the 

scatter doses calculated according to the Monte Carlo simulation and directly measured 

by using RAD-CHECK did not induce the bystander-like responses (Koturbash et al, 

2008; Koturbash et al, 2007; Koturbash et al, 2006). Similarly in the present study, 

exposure of male and female animals to the scatter dose did not result in any significant 

changes in DNA damage and methylation, cellular proliferation and apoptosis in spleen 

tissue (data not shown). As an extra measure of shielding effectiveness, the fully shielded 

mice were subjected to 1Gy X-ray exposure. Spleen tissue was further analyzed for the 

levels of DNA strand breaks, patterns of methylation and cellular proliferation and 

apoptosis. No changes were found in the aforementioned parameters in comparison with 

the unexposed control animals (data not shown). 
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4.5 DISCUSSION 

In this study, we report significant sex-determined differences in the in vivo 

bystander effect that occurs in mouse spleen tissue upon cranial irradiation. The main 

findings of the present study are that: (i) cranial irradiation results in the induction of sex-

specific bystander effects in lead-shielded distant spleen tissue in vivo; (ii) cranial X-ray 

irradiation induces different levels of DNA damage in bystander spleen tissue of male 

and female mice; (iii) cranial irradiation results in the sex-specific patterns of DNA 

methylation, proliferation and apoptosis in the exposed and bystander spleen tissues of 

male and female mice; (iv) gonadectomy leads to the significantly diminished sex 

differences in the bystander spleen tissue.   

Ionizing radiation is an invaluable diagnostic and treatment tool. On the other 

hand, it is a severe damaging agent (Hall, 2003). Radiation impact is not localized only to 

the area of exposure, it can be extended to the unexposed naïve bystander cells and tissue 

(reviewed in Morgan et Sova, 2007; Morgan et Sova, 2005; Mothersill et Seymour, 2004; 

Morgan, 2003a; Morgan, 2003b) and even to other bystander living organisms 

(Mothersill et al, 2007). Bystander effects manifest themselves as changes in the levels of 

DNA damage and mutation, gross genome rearrangements and genome instability, 

cellular proliferation and death (Sedelnikova et al, 2007; Gaugler et al, 2007; Han et al, 

2007; Maguire et al, 2007; Hamada et al, 2007; Huang et al, 2007; Lyng et al, 2006b; 

Smilenov et al, 2006; Hu et al, 2006; Belyakov et al, 2006; Liu et al, 2006; Persaud et al, 

2005; Belyakov et al, 2005; Klokov et al, 2004; Mothersill et al, 2003; Belyakov et al, 

2003; Suzuki et al, 2003; Zhou et al, 2002; Sawant et al, 2002; Belyakov et al, 2002; 

Lorimore et al, 2001; Sawant et al, 2001).  
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Recently, the increasing research efforts have focused on bystander effects in vivo 

in the whole organisms (Koturbash et al, 2008; Marozik et al, 2007; Koturbash et al, 

2007; Koturbash et al, 2006b; Brooks, 2004; Khan et al, 2003; Emerit et al, 1997; Pant et 

Kamada, 1977; Goh et Summer, 1968), as those types of effects may be linked to the 

radiation-induced carcinogenesis (Jaenisch et Bird, 2003; Goldberg et Lehnert, 2002).   

Yet, the vast majority of the aforementioned animal-based in vivo studies were 

conducted using male animals, while the sex differences in the bystander effects 

remained unexplored. Among the plethora of research work on bystander effect, only one 

study noted putative sex specificity, yet the authors did not further discuss and elucidate 

the phenomenon they observed (Mothersill et al, 2001). 

Direct radiation exposure effects have been proven to be sex specific (Koturbash 

et al, 2005; Raiche et al, 2004; Pogribny et al, 2004; Kovalchuk et al, 2004a; Kovalchuk 

et al, 2004b; Brown et Gatter, 2002; Mothersill et al, 2001). Taking into consideration 

that responses in bystander cells are very reminiscent of those in directly irradiated cells, 

we hypothesize that bystander effects may also be distinct in males and females. 

The experimental outcomes support our hypothesis. We observed a significant sex 

difference in the levels of radiation-induced DNA damage in the exposed and bystander 

spleen. Male spleen tissue exhibited higher levels of damage. We have also noted a 

striking difference in levels of DNA methylation in bystander male and female spleens. 

In male spleens, significant and persistent DNA hypomethylation was observed, while no 

such changes were seen in female spleens.  These data are in agreement with a previous 

report on more pronounced loss of DNA methylation in male spleens after whole body 
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radiation exposure (Koturbash et al, 2005; Pogribny et al, 2004; Kovalchuk et al, 2004a; 

Brown et Gatter, 2002).  

The observed loss of global DNA methylation in male spleen tissue was 

persistent. The DNA methylation changes were accompanied by a subtle decrease in the 

levels of methyl-binding protein MeCP2, primarily in the spleen of male animals (data 

not shown). The loss of DNA methylation observed in the exposed and bystander male 

spleen tissue was well-correlated with the accumulation of DNA strand breaks and can 

therefore be related to activation of DNA repair processes (Koturbash et al, 2005; 

Kovalchuk et al, 2004a, Brown et Gatter, 2002). Furthermore, DNA methylation changes 

observed in the spleen of cranially exposed male mice were well-correlated with the 

changes observed previously in a male rat spleen model (Koturbash et al, 2007). 

Interestingly, a significant sex difference in the levels of methylation in spleen tissue was 

eliminated in sterilized mice.   

The changes in DNA methylation are not isolated events, and they occur in the 

context of the global chromatin deregulation and altered histone modification levels 

(Weidman et al, 2007; Jenuwein et Allis, 2001). Histone modifications including 

acetylation, methylation, phosphorylation and ubiquitination are important in 

transcriptional regulation (Cheung et Lau, 2005; Jenuwein et Allis, 2001). Many histone 

modifications are maintained during process of cell division. The acetylated histone tails 

lose their positive charge, reducing the affinity to the negatively charged DNA and 

leading to the relaxed chromatin packaging (Cheung et Lau, 2005). Histone methylation 

can result in different consequences depending upon the residue affected (Saha et al, 

2006; Fraga et al, 2005; Jenuwein et Allis, 2001).  Methylation of lysine 9 of histone H3 
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is associated with chromatin compaction and gene silencing. Histone residues can be 

mono-, di- and tri-methylated, adding an enormous complexity to the yet unexplored 

histone code (Saha et al, 2006; Fraga et al, 2005; Jenuwein et Allis, 2001).  It was 

recently shown that tumors undergo a massive loss of tri-methylation at lysine 20 of 

histone H4 (Tryndyak et al, 2006a; Tryndyak et al, 2006b). This loss occurs along with 

DNA hypomethylation and is linked to chromatin relaxation and aberrant expression 

(Tryndyak et al, 2006a).  

We have analyzed the levels of trimethylated lysine 9 of histone H3, trimethylated 

lysine 20 of histone H4 and acetylated lysines 12 and 16 of histone H4. Unlike DNA 

methylation, no significant treatment-related histone modification changes were observed 

(data not shown). This correlates with the previously reported lack of histone methylation 

changes in the bystander rat spleen (Koturbash et al, 2007). No treatment related changes 

in levels of histone modifications were seen in the CAST and OVX animals either. Yet, 

we observed that overall levels of histone H3 and H4 methylation in the OVX animals 

were about twice as low as in intact animals of the respective groups. This interesting 

observation may be further studied to deduce the role of sex hormones in the maintenance 

of histone modification patterns. 

Exposure to radiation results in gross cellular perturbations, including altered cell 

death and proliferation. An increased cell death was observed in the spleen tissue of male 

and female mice 6 hours upon whole body irradiation and was still detectable 96 hours 

after exposure. Cranial irradiation led to the significantly increased levels of apoptosis in 

bystander spleen in animals of both sexes 6 after exposure. In addition, significantly 

higher levels of apoptosis were detected in exposed female spleen in comparison with the 
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male spleen tissue. Although we did not find significant sex differences in cell death in 

bystander spleen, there was a clear trend towards higher levels of apoptosis in females.  

Induction of apoptotic events was paralleled with significant increases in a Ki67 

index in bystander spleen tissue. Interestingly, opposite to cell death, the significant 

increase of Ki67-positive cells in the distant bystander spleen was observed in male mice. 

No changes were detected in levels of PCNA-positive cells. A nuclear protein Ki67 was 

expressed during all stages of the cell cycle but G0 (Moldovan et al, 2007). In the mean 

time, PCNA, a DNA replication protein, was strongly expressed in the S phase (Hall, 

2003). Taking into account that exposure to radiation was previously reported to cause G1 

and G2 cell cycle arrests, the elevated levels of apoptosis and Ki67 paralleled with the 

unchanged expression of PCNA might suggest a defensive cell cycle block in response to 

DNA damage (Cassie et al, 2006). We assume that this will aim to halt the cell cycle and 

provide cells with enough time to repair radiation-induced lesions. However, the 

significant sex differences in cell death and Ki67 suggest different mechanisms to be 

involved in male and female mice. Sterilization led to the diminished sex differences, 

indicating sex hormones as possible regulators of a cellular response to whole body and 

cranial radiation exposure.   

Our previous studies showed that males are more susceptible to the whole body 

irradiation (Cassie et al, 2006; Koturbash et al, 2005; Pogribny et al, 2004; Kovalchuk et 

al, 2004a; Brown et Gatter, 2002). The current study confirms our previous findings and 

importantly, further extends them to prove that males are more susceptible to the 

radiation-induced induction of bystander effect. This constitutes an interesting and novel 

finding. 
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The mechanisms of sex differences have to be further explored. The observed 

effects may be linked to a higher incidence of leukemia and lymphoma in males in mice 

and humans (Guizard, 2005; Noshchenko et al, 2001; Yoshida, 1993). Therefore, our 

data can be potentially extrapolated to humans. However, additional studies are needed 

for a deeper understanding of the role of sex hormones, epigenetic machinery and cellular 

response interplay. It will help us reveal the mechanisms of secondary radiation-induced 

malignancies and their interrelationship with bystander effects.  
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4.7 FIGURE LEGENDS. 
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Figure 4.1. Induction and persistence of DNA damage upon 

 X-ray exposure in the radiation-target spleen tissue of whole 

 body and cranially exposed male and female mice. 

 The levels of DNA strand breaks were evaluated using the modification of a random 

oligonucleotide-primed synthesis assay (ROPS).  

A. Levels of radiation-induced strand breaks in the spleen tissue of intact male and 

female mice.  

B. Levels of radiation-induced strand breaks in the spleen tissue of castrated 

(CAST) or ovariectomized (OVX) animals. 

 The levels of DSBs relative to control are presented as mean values +/- SEM., n 

≥ 6; (p<0.05), and they are significantly different from control, Student’s t-test with 

Bonferroni correction for multiple comparisons, Tukey-Kramer test and Dunnett’s test. 

White bar columns – 6 hours after exposure, dashed bar columns – 96 hours after 

exposure.  
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Figure 4.2.  Whole body and cranial radiation exposure induces the significant and 

sex-specific loss of DNA methylation in the murine spleen. 

The levels of global genome DNA methylation in the spleen tissue of irradiated 

mice were measured by the cytosine extension assay based on the treatment of DNA with 

a methylation-sensitive restriction enzyme HpaII. This enzyme cleaves CCGG sequences 

in case that internal cytosine residues are unmethylated on both strands. The cleavage 

results in the formation of a 5'-guanine overhang that is used for the subsequent single 

nucleotide extension with the labeled [3H]dCTP. The extent of [3H]dCTP incorporation 

opposite the exposed guanine is directly proportional to the number of cleaved and thus 

unmethylated CpG sites and inversely proportional to the levels of methylation (i.e., the 

higher the methylation, the lower the incorporation of [3H]dCTP).  

A. Levels of [3H]dCTP incorporation in the intact male and female mice.  

B. Levels of [3H]dCTP incorporation in the CAST and OVX mice. 

 95



The levels of  [3H]dCTP incorporation relative to control are presented as mean 

values +/- SEM., n ≥ 6; (p<0.05), and they are significantly different from control, 

Student’s t-test with Bonferroni correction for multiple comparisons, Tukey-Kramer test 

and Dunnett’s test. Bars and abbreviations as defined in Figure 4.1. 
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Figure 4.3. Radiation-induced induction of apoptosis in spleen tissues of the whole 

body head-exposed male and female mice. 

The apoptosis levels were measured by ApopTagTM IHC.  The levels of apoptotic 

cells relative to control are shown, mean values ± SD, n=400; *p<0.05, Student’s t-test, 

Dunnett’s test and Tukey-Kramer test.  Bars and abbreviations as defined in Figure 4.1. 
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Figure 4.4.  Changes in the cellular proliferation levels in the exposed 

 and bystander spleen of male and female mice. 

A. Levels of cellular proliferation as measured by Ki 67 

immunohistochemistry (IHC).  The levels of Ki67 positive cells relative to control are 

shown, mean values ± SEM, n=400; *p<0.05, Student’s t-test, Dunnett’s test and Tukey-

Kramer test.   

B. Levels of cellular proliferation as measured by PCNA 

immunohistochemistry (IHC).  The levels of PCNA positive cells relative to control are 

shown, mean values ± SD, n=400; *p<0.05, Student’s t-test, Dunnett’s test and Tukey-

Kramer test.   

Bars and abbreviations as defined in Figure 4.1. 
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5. SEX-SPECIFIC MICRORNAOME DEREGULATION IN THE SHIELDED 

BYSTANDER SPLEEN OF CRANIALLY EXPOSED MICE1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chapter 5 has been submitted in its entirety: 

 Koturbash I, Zemp F, Kutanzi K, Luzhna L, Loree J, Kolb B, Kovalchuk O. 
(2008) Sex-specific microRNAome deregulation in the shielded bystander spleen of 
cranially exposed mice. Cell Cycle (in press) 
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5.1 ABSTRACT 

The bystander effect whereby exposed cells signal distress to their naïve 

unexposed neighbors is now accepted as a ubiquitous consequence of radiation exposure. 

It is well documented to occur in cultured cells, 3D tissue models, and in organs and 

organisms. Notwithstanding, the exact mechanisms of the bystander effect remain 

unclear. Recent studies hinted that bystander effects may, in part, be distinct in males and 

females, and may be mediated via short non-coding RNAs, specifically – microRNAs. 

MicroRNAs are small, abundant and capable of regulating the expression of a wide 

variety of targets. Yet, their roles in bystander effects have not been analyzed in detail.  

The mechanisms of sex differences in the bystander effects also remain to be uncovered.  

We hypothesized that the radiation-induced expression of microRNAs in the 

exposed and bystander tissue may be distinct in males and females. With this in mind, we 

set out to analyze the sex-specific expression of microRNAs in the shielded ‘bystander’ 

spleen of male and female mice following cranial irradiation. 

Using a well-established bystander mouse model whereby the animal’s head is 

exposed, while the body is completely protected by a medical-grade shield, we have for 

the first time shown that radiation exposure triggers a significant and sex-specific 

deregulation of microRNAome in the shielded spleen. The altered miRNA levels were 

paralleled by sex-specific changes in the levels of the miRNA processing enzyme Dicer 

and components of the RNA-induced silencing complex (RISC). Gonadectomization of 

animals resulted in drastic microRNAome alterations. We propose that the observed 

changes may be important confounding factors that may in the future help us explain sex 

specificity of radiation-induced tumors. 
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5.2 INTRODUCTION 

Ionizing radiation (IR) is an invaluable diagnostic and treatment tool. On the other 

hand, it is a severe damaging agent and a potential carcinogen (Little, 2000). Radiation 

impact is localized not only in the area of exposure, but it can be extended into the tissue 

(Sedelnikova et al, 2007; Belyakov et al, 2005), organ (Brooks, 2004; Khan et al, 2003; 

Khan et al, 1998; Brooks et al, 1974), organism (Koturbash et al, 2008; Koturbash et al, 

2007; Koturbash et al, 2006b) and even to other living organisms (Mothersill et al, 2007). 

Recent studies report a plethora of alterations taking place in bystander cells and tissues 

such as an induction of DNA strand breaks (Koturbash et al, 2008; Sedelnikova et al, 

2007; Han et al, 2007; Smilenov et al, 2006; Belyakov et al, 2005; Suzuki et al, 2004; 

Zhou et al, 2002), altered gene expression (Hamada et al, 2007; Maguire et al, 2005; 

Zhou et al, 2005; Klokov et al, 2004), cell cycle arrest and apoptosis (Koturbash et al, 

2008; Sedelnikova et al, 2007; Lyng et al, 2006a; Belyakov et al, 2005; Belyakov et al, 

2002), and a number of epigenetic events (Koturbash et al, 2007; Sedelnikova et al, 2007, 

Kaup et al, 2006; Koturbash et al, 2006b),  resulting in genome instability (Morgan et 

Sowa, 2007; Sedelnikova et al, 2007; Belyakov et al, 2005; Mothersill et Seymour, 2004; 

Morgan, 2003a; Morgan, 2003b; Morgan et al, 2002). Yet, the precise mechanisms of 

bystander effects and the nature of bystander signaling remain enigmatic.  

A newly emerged mechanism of epigenetic control mediated through the 

involvement of small regulatory RNAs (Filipowicz et al, 2008; Niwa et Slack, 2007) 

promises to bridge the gaps in our understanding of the bystander effect phenomenon 

(Koturbash et al, 2007). 
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Amongst those, small regulatory RNAs, microRNAs (miRNAs) are of a particular 

interest. MiRNAs are evolutionally conserved, small single-stranded non-protein-coding 

RNA molecules which are presently recognized as major negative gene regulators 

(Filipowicz et al, 2008; Nilsen, 2007; Niwa et Slack, 2007). Most miRNA genes are 

located in noncoding regions of the genome, but about one-fourth of mammalian 

miRNAs are found in coding sections or introns (Ying et Lin, 2004). MiRNAs are 

initially expressed as part of primary miRNAs (pri-miRNAs). The miRNA portion of the 

pri-miRNA transcript forms a hairpin, which is released by a dsRNA-specific 

ribonuclease Drosha in the nucleus to form a precursor miRNA (pre-miRNA) (Rana, 

2007; Hutvagner, 2005; Lee et al, 2003; Hutvagner et Zamore, 2002). The pre-miRNAs 

are then exported to the cytoplasm, where Dicer (a member of the RNAse III 

superfamily) cleaves the pre-miRNA leading to the formation of a mature miRNA (Rana, 

2007; Hutvagner, 2005; Lee et al, 2003; Hutvagner et Zamore, 2002). To control 

translation of target mRNAs, mature miRNAs must associate with the RNA-induced 

silencing complex (RISC) proteins (Rana, 2007; Hutvagner, 2005) such as Argonaute 

(Ago),  PACT (protein kinase, interferon-inducible double-stranded RNA-dependent 

activator, PRKRA),  fragile X mental retardation protein  (FXR), TudorSN  and other 

proteins (Joshua-Tor, 2006; Lee et al, 2006; Chendrimada et al, 2005; Gregory et al, 

2005; Scadden, 2005; Jin et al, 2004). Ago proteins are important components of the 

RISC machinery (Joshua-Tor, 2006). Dicer was found to stably associate with the Ago2 

protein (Chendrimada et al, 2005). PACT has been shown to interact with Dicer without 

facilitating its pre-miRNA cleavage activity (Lee et al, 2006). Finally, FxR protein 

interacts with mammalian Ago2 and is associated with the Dicer activity (Jin et al, 2004). 
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Tudor-SN is another subunit of the RNA-induced silencing complex, which is important 

to the mechanism of RNA interference and gene regulation (Scadden, 2005).   

Being associated with RISCs, miRNAs bind to a specific section of mRNAs, thus 

serving as translational suppressors and regulators of the proteins production (Carthew, 

2006; Sevignani et al, 2006; Hutvagner et Zamore, 2002). By doing so, the regulatory 

miRNAs in association with the miRNA processing machinery impact cellular 

differentiation, proliferation, apoptosis, and even predisposition to cancer (Fabbri et al, 

2007; Wiemer, 2007; Zhang et al, 2007; Esquela-Kerscher et Slack, 2006; Lu et al, 

2005). Indeed, aberrant levels of miRNAs have been reported in a variety of human 

cancers (Wiemer, 2007; Zhang et al, 2007; Lu et al, 2005).  

Furthermore, several studies pointed towards a putative role of the miRNA processing 

machinery in tumor cells (Chiosea et al, 2007; Chiosea et al, 2006; Karube et al, 2005; Kaul et 

Sikand, 2004; Cheng et al, 2003). However, the functions of microRNAs and miRNA 

processing machinery in the genotoxic stress response in general (Marsit et al, 2006; 

Cheng et al, 2003) and in the radiation-induced bystander in particular have yet to be 

studied in detail. 

Our previous studies hinted the putative task of miRNAs in bystander effects 

(Koturbash et al, 2007). The present study was designed to dissect the role of the 

microRNAome and microRNA machinery in the regulation of a cellular response to the 

direct (whole body) or indirect (cranial) exposure to IR in the spleen tissue of male and 

female mice. Here, we for the first time show that radiation exposure results in a 

significant and sex-specific deregulation of microRNAome and miRNA processing 

machinery in the directly exposed and shielded bystander spleen.  
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5.3 MATERIALS AND METHODS 

5.3.1 Animal Model 

 In this study, we analyzed microRNAome changes in the spleen of male and 

female C57BL/6 mice following in vivo cranial irradiation exposure.  The 45 days old 

male mice (30 males and 30 female) were randomly assigned to different treatment 

groups. The whole body exposed cohort (10 male and 10 female animals) received 1 Gy 

of whole body exposure to X-rays (5cGy/s, 90kV, 5mA). The second cohort (10 male and 

10 female animals) received 1 Gy of X-rays exposure to a scull only,  while the rest of 

animal body were protected by a ~3 mm thick lead shield, the same type as used for a 

human body protection in diagnostic radiology. The protection of shielded ‘bystander’ 

tissue was complete, as verified by careful dosimetry using a RAD-CHECK™ monitor 

(Nuclear Associates div. of Victoreen, Inc, FL, USA). The control mice (10 male and 10 

female animals) were sham treated. The animals were humanely sacrificed either 6 hours 

or 96 hours (4 days) after exposure. These time points were chosen to analyze the initial 

(6 hours) as well as persistent (4 days) responses, if any. Spleen tissue was sampled upon 

sacrifice and processed for further molecular studies. The experiment was independently 

reproduced according to the same scheme using 15 male and 15 female animals. Both 

experiments yielded congruent results. Another cohort of 10 animals was exposed to an 

approximate scatter dose of ~0.01Gy (Koturbash et al, 2008; Koturbash et al, 2007; 

Koturbash et al, 2006b). To determine the bystander ventral/spleen/thigh skin dose 

resulting from photon scatter within a mouse itself, a Monte Carlo simulation was 

performed (Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 2006b).  The 

skin was assumed to be 0.1 cm thick, and a 2 mm thick lead shield covered one half of 
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the mouse.  An absorbed dose was tallied within the skin region in several locations in 

both the unshielded dorsal regions and the shielded ventral/thigh regions.  The absorbed 

dose to the ventral skin/spleen located right beneath the skin from a 90 kVp X-ray 

spectrum was determined to be approximately 0.014 – 0.017 Gy for a 1 Gy dose 

delivered to the dorsal skin. Additionally, the scatter dose upon cranial was directly 

measured, and was found to be in the range of ~0.01Gy.  The animals were sacrificed 6 

hours after exposure. 

 To dissect the effect of sex hormones on the bystander effects manifestations, a 

cohort of 30 male and 30 female animals were subjected to gonadotomy at the age of 18 

days.  At the age of 45 days, the castrated and ovariectomised (CAST and OVX) animals 

were subjected to IR treatment using the same scheme as the intact animals.  

Handling and care of animals was in strict accordance with the recommendations 

of the Canadian Council for Animal Care and Use.  The procedures were approved by the 

University of Lethbridge Animal Welfare Committee.  

 

5.3.2 miRNA Microarray Expression Analysis 

Total RNA was extracted from mouse spleen tissues using TRIzol Reagent 

(Invitrogen, Burlington, Ontario) according to the manufacturer's instructions. Tissue 

from 3 animals per group was used for the analysis. The miRNA microarray analysis was 

performed by LC Sciences (Houston, TX). Ten micrograms of total RNA were size-

fractionated (<200 nucleotides) by using a mirVana kit (Ambion, Austin, TX). Poly-A 

tails were added to the RNA sequences at the 3′ ends using a poly(A) polymerase, and 

nucleotide tags were then ligated to the poly-A tails. The tagged RNAs were hybridized 
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to the dual-channel microarray μParaFlo microfluidics chips (LC Sciences) containing 

439 miRNA probes to rat and mouse miRNAs and then labeled with tag-specific 

dendrimer Cy3 and Cy5 fluorescent dyes. Dye switching was performed to eliminate the 

dye bias. The detection probes melting temperature was balanced by incorporating 

varying numbers of modified nucleotides with the increased binding affinities. 

Hybridization images were collected using a GenePix 4000B laser scanner (Molecular 

Devices, Sunnyvale, CA), and then digitized using the Array-Pro image analysis software 

(Media Cybernetics, Silver Spring, MD). The maximum signal level of background 

probes was 180. A miRNA detection signal threshold was defined as twice the maximum 

background signal. Normalization was performed with a cyclic LOWESS (locally 

weighted regression) method to remove system-related variations, as previously 

described (Pogribny et al, 2007; Bolstad et al, 2003). Data adjustments included data-

filtering, log 2 transformation, and gene centering and normalization. The t-test analysis 

was conducted between the control, whole body exposed and bystander sample groups. 

MicroRNAs with p-values < 0.05 were selected for cluster analysis. 

 

5.3.3 Quantitative real-time PCR (qRT-PCR) expression analysis 

Quantitative real-time PCRs (qRT-PCRs) were performed by using SuperTaq 

Polymerase (Ambion) and a mirVana qRT-PCR miRNA Detection Kit (Ambion) 

following the manufacturer's instructions. Reactions contained mirVana qRT-PCR Primer 

Sets specific for miR-34a, miR-17-5p, miR-20a, miR-26, miR-92, miR-106, and miR-

150, human 5S rRNA served as a positive control. Quantitative real-time PCR was 

 106



performed on a SmartCycler (Cepheid, Sunnyvale, CA). End-point reaction products 

were also analyzed on a 3.5% high-resolution agarose gel stained with ethidium bromide.  

 

5.3.4 Immunohistochemistry 

Paraffin embedding and sectioning were conducted at Central Vet Labs, 

Edmonton, AB. The sections were stained with hematoxylin and eosin (H&E) for the 

histopathological examination. Following the pathological examination, the tissues were 

assembled into tissue microarrays (TMAs) with 2 mm cores. TMAs offer great benefits 

for the fast, consistent and efficient analysis of large amounts of data.  The TMAs were 

produced by Pantomics, Inc (www.pantomics.com). Immunohistochemical staining was 

conducted using the antibodies against Dicer, FXR, PACT, TUDOR-SN (Santa Cruz 

Biotechnology, Santa Cruz, CA), Ago 2 and p38 (Abcam, Cambridge, MA) in 

accordance with the manufacturer’s recommendations.  In brief, upon the citrate buffer 

the epitope retrieval slides were rinsed and subjected to serum blocking to prevent the 

non-specific binding of immunoglobulin. Sections then were incubated with primary 

antibodies, rinsed and subjected to peroxidase blocking.  Following the peroxidase 

blocking, the slides were incubated with the secondary biotinylated antibody, subjected to 

HRP-Streptavidin detection and counterstained with hematoxylin. Positive cells stained 

brown/purple, while negative cells stained blue. Positive cells were enumerated in, at 

least, 20 high power fields.  
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5.3.5 Statistical analysis 

Statistical analysis (Student’s t-test, Bonferroni correction, Tukey-Kramer test and 

Dunnett’s tests) was performed using the MS Excel 2000 and JMP5 software packages. 
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5.4 RESULTS 

In this study, we utilized an in vivo murine model to identify and compare 

microRNAome changes in spleen of whole body and head-exposed animals. In the course 

of the study, experimental animals (males and females of comparable weight) were 

divided in several experimental cohorts. The ‘whole body exposed’ cohort received 1 Gy 

of whole body irradiation to X-rays. The ‘bystander’ cohort received 1 Gy of X-rays 

exposure to the scull only,  while the rest of the animal body was protected by a ~3 mm 

thick lead shield, the same type as used for the human body protection in diagnostic 

radiology. The identical shielding was used in the published studies on the bystander 

effect in rodent models (Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 

2006b). The protection of the shielded ‘bystander’ tissue was complete as verified by 

careful dosimetry. Control mice were sham treated. The animals were humanely 

sacrificed either 6 hours or 96 hours after exposure to analyze both the initial and 

persistent responses.  

 

5.4.1 MicroRNAome changes in spleen of whole-body and head exposed 

male and female mice 

Analysis of the murine spleen microRNA profile revealed a number of intriguing 

patterns. First of all, the background levels of miRNA expression in male and female 

spleen appeared to be quite different. Specifically, 8 microRNAs were found up-

regulated in the spleen tissue of intact male mice in comparison with females, whereas 4 

were up-regulated in the intact female spleen in comparison with the male spleen (Fig. 

5.1).   
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Next, we analyzed microRNAome changes upon X ray exposure in the directly 

irradiated and bystander spleen. Since we previously noted that both direct irradiation and 

bystander effects in spleen were very pronounced 96 hours after exposure and persisted 

even further, we decided to use this time-point for the initial analysis of radiation-induced 

microRNAome changes.  

We found that exposure to ionizing radiation resulted in gross and sex-specific 

microRNAome perturbations in murine spleen tissue. In male spleen, 4 miRNAs were 

up-regulated and 8 miRNAs were downregulated by whole body irradiation. In female 

spleen, 5 microRNAs were up-regulated and 15 were down-regulated by whole body 

exposure.  Amongst those, miR-34a was significantly upregulated and miR-150 was 

significantly downregulated in both sexes. Their expression was independently confirmed 

by qRT-PCR (data not shown).  

The observed upregulation of miR-34a in the exposed spleen tissue of males and 

females constitutes an important novel finding. The upregulated miR-34a is known to 

exert a negative impact on transcription factors E2F1 via p53 pathway (He et al, 2007a; 

He et al, 2007b) and on E2F3 (Welch et al, 2007). Consequently, miR-34a has been 

assumed to be a tumor suppressor miRNA (He et al, 2007a; He et al, 2007b; Welch et al, 

2007). Therefore, its upregulation in the exposed tissue may be viewed as a positive 

protective effect. Its role in radiation responses has to be further analyzed. 

Cranial irradiation also resulted in a profound and sex-specific pattern of 

microRNAome changes in the shielded bystander spleen. In male mice, it led to 

downregulation of 6 microRNAs in the bystander spleen. In the female bystander spleen, 

 110



cranial exposure resulted in upregulation of 3 and downregulaton 6 microRNAs (Fig. 

5.2).  

Comparison of miRNA profiles of the exposed and bystander spleen revealed that 

only 1 microRNA (miR-26b) was downregulated under both conditions in males. In 

females, microRNA profiles of the exposed and bystander spleen tissue shared more 

similarities. There 4 microRNAs (miR-30e, miR-24, miR-181a and miR-422b) were 

down-regulated in both groups (Fig. 5.2). Their expression was also independently 

confirmed by qRT-PCR. 

Furthermore, evaluation of miRNAome patterns of the male and female bystander 

spleen also revealed several interesting findings. We observed a significant (p < 0.05) 

down-regulation of microRNAs miR-23a and miR-23b (Fig. 5.2) and a slight (p< 0.1) 

down-regulation of microRNA miR-24 in the male bystander spleen tissue.  Similarly, we 

observed a significant (p<0.05) down-regulation of miR-24 in the female bystander 

spleen.  These miRNAs share a lot of similarities in their genome locations and in their 

targets. Specifically, miR-24 that was cloned from a mouse (Lagos-Quintana et al, 2002) 

and is supposed to stem from a hairpin originating from chromosome 13. It also has a 

second predicted hairpin sequence on chromosome 8. MiR-23b originates from 

chromosome 13 and is located in the vicinity of miR-24-1. In addition, both of them, 

miR-23b and miR-24, target Notch1 that is a known apoptosis and cell differentiation 

regulator (Fukuda et al, 2005).  At the same time, the miR-23a hairpin derived from 

chromosome 8 is located in a close proximity with the predicted hairpin for miR-24-2.  

The aforementioned miRNAs are also confirmed to target MAPK14 (also known 

as p38) (Kiriakidou et al, 2004) and chemokine CXCL12 (Lewis et al, 2003). MAPK14 
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(p38) has been shown to be implicated in the formation of a bystander response (Azzam 

et al, 2002). CXCL12 is an important cytokine (Juarez et al, 2007). CXCL12 can induce 

elevation of cytoplasmic Ca2+ levels (Bendall et al, 2005), and calcium flux was observed 

in bystander cells in the conditioned medium experiments (Lyng et al, 2006a; Shao et al, 

2006). The fact that miR-23a, miR-23b and miR-24 were altered in the bystander spleen 

of both sexes allows us to propose them as putative “bystander miRNAs”.  Moreover, the 

observed down-regulation of miR-24 and miR-23 species was paralleled by a significant 

increase in the expression of their target protein p38 (Fig. 5.7). Based on the 

aforementioned facts, the exact roles of these miRNAs in bystander effects have to be 

further discerned. 

We also saw significant changes in several miRNAs implicated in the regulation 

of proliferation and apoptosis in the exposed and bystander spleen (Esquela-Kerscher et 

Slack, 2006).  These were miR-92, miR17-5p, miR-20a, miR-106 (Fig. 5.2). Such 

changes were in part expected, since radiation exposure is well known to disturb a fine 

balance between proliferation and apoptosis in the directly exposed and bystander tissue 

(Koturbash et al, 2008; Sedelnikova et al, 2007; Belyakov et al, 2005; Morgan, 2003a, 

Morgan, 2003b).  Yet, further detailed analysis is required to delineate their involvement 

in the radiation and bystander responses. 

 

5.4.2 Castration and ovariectomization of animals significantly impact 

microRNAome and its response to genotoxic stress 

Having seen the marked sex differences in microRNAome changes in the exposed 

and bystander spleen, we decided to deduce what impact sex hormones may have on the 
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aforementioned phenomenon. To do so, weanling animals were subjected to 

gonadectomy - castration (CAST) and ovariectomization (OVX). At the age of 45 days, 

the cohorts of CAST and OVX animals were exposed to radiation using the protocol 

described above.  

Our study revealed that castration and ovariectomization strongly affected the 

murine spleen microRNAome. We found that sterilization of animals led to an increase in 

the number of differentially expressed miRNAs (Fig. 5.3). In total, expression patterns of 

28 microRNAs were distinct: 25 of them were up-regulated in CAST males and 3 in 

OVX females in comparison to the sterilized animals of the opposite sex.   

Furthermore, comparison of microRNA expression in the intact and sterilized 

animals revealed a drastic impact of the sterilization procedure on microRNAome (Fig. 

5.8).  

Radiation exposure significantly influenced the microRNAome level of CAST 

and OVX animals. Whole body irradiation led to elevated levels of 2 miRNAs and 

decreased the level of 1 miRNA in CAST animals. In OVX animals, it resulted in up-

regulation of 7 and down-regulation of 4 microRNAs.  

Head irradiation caused up-regulation of 11 and down-regulation of 3 miRNAs in 

CAST males. It also led to up-regulation of 1 miRNA in OVX animals.  

Surprisingly, a pattern of radiation-induced miRNAome changes observed in spayed 

animals was very distinct from that seen in intact animals. In the future, a detailed 

analysis of cellular and organismal repercussions of these changes may lead to furthering 

our understanding of the interplay between hormonal regulation and genotoxic stress 

responses. 
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5.4.3. Sex-specific changes in the levels of Dicer and RISC proteins upon 

whole body and cranial exposure in murine spleen 

Production and function of miRNAs requires a set of proteins collectively referred 

to as the microRNA processing machinery, or miR machinery (Nilsen, 2007; Carthew, 

2006; Sevignani et al, 2006; Gregory et al, 2005; Hutvagner, 2002).  The altered balance 

of the miR machinery components may result in altered miRNA levels and influence the 

interaction between miRNAs and their cognate mRNAs (Nilsen, 2007; Carthew, 2006; 

Sevignani et al, 2006; Gregory et al, 2005; Hutvagner, 2002). 

Having seen pronounced and sex-specific miRNA alterations in exposed and 

bystander murine spleens, we decided to further investigate radiation and bystander-

induced changes in the miR machinery proteins. In this study, we analyzed and compared 

levels of the RNA processing enzyme Dicer and RISC machinery components – Ago2, 

FxR, TUDOR-SN and PACT in male and female spleens upon whole body and cranial 

irradiation. 

The IHC analysis revealed that whole body and cranial radiation exposure led to a 

significant (p<0.05) up-regulation of Dicer expression in the spleen of male and female 

mice 6 and 96 hours after exposure (Fig. 5.4). Interestingly, 96 hours after exposure, up-

regulation was more pronounced in males than in females. Dicer expression pattern in 

CAST and OVX animals differed from that in intact mice. In CAST animals whole body 

exposure let to a less pronounced Dicer induction, while cranial exposure led to a small 

but significant Dicer induction only 96 hours after irradiation. No Dicer changes were 

seen in CAST animals 6 hours after cranial exposure. Similarly, in the OVX spleen small 
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but statistically significant changes were seen only 6 hours after whole body or head 

exposure.  

Dicer is involved in the processing of pre-miRNAs in the cytoplasm, leading to 

the formation of mature miRNAs (Cummins et al, 2006; Tijsterman et Plasterk, 2004). 

Any alterations in Dicer levels usually result in drastic changes in the microRNAome. 

Knockout of Dicer led to a significant down-regulation of a large number of miRNAs 

(Cummins et al, 2006). Recently, Dicer was explored in the cancer and carcinogenesis 

domain. Dicer was found to be up-regulated in prostate adenocarcinoma (Chiosea et al, 

2006) and Burkitt lymphoma (Kaul et Sikand, 2004). In lung carcinoma, contrarily, Dicer 

levels were decreased (Chiosea et al, 2007). Our data for the first time show that Dicer 

levels may be changed in cells and tissues in response to genotoxic stress. Dicer, 

therefore, may play an important role in fine-tuning genotoxic stress responses mediated 

via microRNAs in both directly exposed and bystander tissues.  Besides being an 

important RNA interference regulator, Dicer is known to affect the cell cycle G1 

checkpoint and DNA damage checkpoints (Carmichael et al, 2004). Furthermore, Dicer 

is a main contributor to the maintenance of centromeric heterochromatin and 

chromosome segregation (Fugukawa et al, 2004; Volpe et al, 2003; Provost et al, 2002; 

Volpe et al, 2002). The aforementioned phenomena are affected by direct irradiation 

(Rodemann et Blaese, 2007) and bystander effects (reviewed in Morgan et Sowa, 2007; 

Mothersill et Seymour, 2004; Morgan, 2003a; Morgan, 2003b) Therefore, we may 

speculate that these processes may be partially perturbed due to Dicer dysregulation.  

To regulate the expression of their target mRNAs, miRNAs need to be associated 

with proteins of the RISC complex. Amongst those, Ago2 is one of the most important 
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(Joshua-Tor, 2006; Chendrimada et al, 2005, Gregory et al, 2005). We noted that in the 

male spleen, whole body radiation exposure resulted in a significant (p<0.05) down-

regulation of Ago2 96 hours after irradiation (Fig. 5.6). Cranial exposure led to a 

significant (p<0.05) up-regulation of Ago2 in the male spleen 6 hours following radiation 

treatment.  In females, whole body irradiation induced a significant drop in Ago2 

expression 6 and 96 hours after exposure (p<0.05).  Alongside with this, cranial exposure 

caused a significant (p<0.05) decrease in Ago2 levels in the bystander spleen 96 hours 

after exposure (Fig. 5.6).  

Interestingly, CAST and OVX animals exhibited different patterns of Ago2 

expression upon irradiation. In CAST and OVX animals, both whole body and cranial 

irradiation led to a significant up-regulation of Ago2. Up-regulation was seen both 6 and 

96 hours after treatment and was more pronounced in CAST animals than in OVX ones. 

Ago2 is very important for the final Dicer-mediated processing of mature miRNAs, and 

further for their proper interaction with the RISC members (Joshua-Tor, 2006). Notably, 

scarce studies showed that Ago levels were significantly elevated in multiple tumor cells 

lines (Jaronczyk et al, 2005). Therefore, up-regulation of Ago2 may have a negative 

influence on the exposed and bystander tissue, where it was noted.  In the future 

dysregulation of Ago2 has to be further explored in the context of radiation- and 

bystander-induced carcinogenesis. 

FXR levels were found to be statistically significantly elevated in the bystander 

spleen of cranially exposed males 6 hours after irradiation, in the irradiated spleen of the 

whole body exposed female mice 96 hours after treatment and in the irradiated spleen of 

the whole body exposed CAST animals 6 hours after the X-ray application (Fig. 5.6). 
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Notably, in OVX animals, all treatments led to a significant up-regulation of FXR. FXR 

interacts with mammalian Ago2 and is associated with Dicer activity (Jin et al, 2004a; Jin 

et al, 2004b).  Therefore, any changes in its expression may influence production and 

activity of microRNAs. 

PACT is another vital member of the RISC complex (Lee et al, 2006).  It interacts 

with Dicer and may contribute to stabilization of the Dicer protein (Lee et al, 2006). 

PACT levels were down-regulated in the exposed male and female spleen 6 hours after 

exposure. Contrarily, in the bystander male spleen, PACT expression was statistically 

significantly elevated both 6 and 96 hours after cranial irradiation. In the bystander 

female spleen, PACT was down-regulated 96 hours after treatment. Interestingly, CAST 

and OVX animal groups exhibited different patterns of PACT induction upon irradiation. 

In CAST animals, PACT up-regulation was seen only 6 hours after the whole body X-ray 

exposure.  In OVX animals, up-regulation of PACT was observed 96 hours following the 

whole body and head irradiation. Data on the cellular effects of PACT are relatively 

scarce. The up-regulation of PACT was reported in bronchoalveolar carcinoma, and 

higher levels of PACT were considered a poor prognostic factor (Roh et al, 2005).  The 

role of PACT in genotoxic stress responses and carcinogenesis has yet to be established.  

TUDOR-SN levels were significantly affected in the exposed male animals. 

Whole body irradiation down-regulated TUDOR-SN 6 and 96 hours after exposure. 

Cranial irradiation led to TUDOR-SN down-regulation 6 hours after radiation treatment. 

In females, contrarily, TUDOR-SN was significantly up-regulated 96 hours following 

whole body exposure.  Patterns of TUDOR-SN induction by radiation in the spayed mice 

differed significantly from those in the intact ones.  In CAST animals, whole body 
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exposure led to significantly increased levels of TUDOR-SN 6 and 96 hours after 

irradiation, and cranial exposure resulted in up-regulation of TUDOR-SN 96 hours after 

treatment. In OVX animals, TUDOR-SN was up-regulated after all treatments and all 

time-points.  TUDOR-SN is an important RISC machinery component. It harbors a 

recognizable nuclease domain and could therefore contribute to the RNA degradation 

observed in RNAi (Scadden, 2005). Its exact role in the RISC complexes has to be 

further delineated. Overall, whole-body and cranial exposure-induced patterns of the 

miRNA machinery were significantly different in males and females, and in CAST and 

OVX animals.   

Both the deregulated microRNAome and the altered expression of Dicer and 

RISC may result in significant changes in the expression of various proteins that partake 

in many important cellular pathways such as maintenance of genome stability, DNA 

repair, cell cycle control, apoptosis, proliferation, differentiation. All these processes are 

affected by direct irradiation. Additionally, they are the known targets of bystander 

effects.  

The altered microRNAome and miR machinery may also be explored as potential 

bystander effects biomarkers. Future studies are needed to dissect the role of the miRNAs 

and miRNA machinery in radiation and bystander responses.  

It is known that while passing through the tissue, X-rays can be reflected, and this 

leads to the formation of a small ‘scattered’ dose of radiation in the protected tissue 

(Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 2006b). Yet, exposure of 

animals to a scatter dose did not exert any changes in the exposed spleen. We therefore 

concluded that changes observed in the shielded spleen tissue can be classified as true 
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bystander effects. This conclusion is also supported by a series of our previous studies 

that also showed that the observed in vivo bystander effects are not initiated by the 

scatter-dose (Koturbash et al, 2008; Koturbash et al, 2007; Koturbash et al, 2006b).  
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5.5 DISCUSSION 

In this study, we for the first time report the pronounced and sex-determined 

microRNAome deregulation that occurs in the mouse spleen tissue upon whole body and 

cranial irradiation. The main findings of the present study are that: (i) male and female 

spleen tissues are characterized by very distinct microRNA patterns; (ii) radiation 

exposure alters microRNAome of male and female animals and induces sex-specific 

changes of microRNA levels in the exposed spleen tissue; (iii) cranial exposure also 

influences spleen microRNAome and causes distinct changes in the male and female 

shielded bystander spleen. Importantly, these are the first data on radiation- and 

bystander-induced microRNAome changes in animal tissues in vivo.  

Furthermore, our study is the first to investigate the role of sex hormones in 

microRNAome regulation in vivo. We provide evidence that the microRNAome of 

castrated and ovariectomized mice differs very much from the microRNAome of intact 

animals. Additionally, radiation and bystander responses of sterilized animals differ 

drastically from intact animal responses.  

Our microRNAome data sets may provide a roadmap for further analysis of the 

role of microRNAome in genotoxic stress responses. Specifically, our data provide an 

opportunity to integrate sex hormones and stress responses.  

The radiation- and bystander –induced microRNAs identified in our study may 

further be explored as sex-specific biomarkers of direct and indirect/bystander responses.  

It is known that radiation-induced cancer occurs more frequently in males 

(Guizard et al, 2001; Noshcenko et al, 2001; Yoshida et al, 1993; 

http://www.infobiogen.fr/services/chromcancer/Anomalies/splenvillousID2063.html), yet 
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the molecular grounds of this sex-specific bias are not well understood. The microRNA 

patterns observed in this study in the male and female spleen tissue may be used to 

further explore the molecular basis of sex differences in radiation-induced 

carcinogenesis.  

Another important outcome of this study is a proof of radiation- and bystander-

inducibility of Dicer and other RISC complex members. Dicer is a key RNAse involved 

in the final steps of microRNA maturation. It works in tight collaboration with Ago2, 

PACT, FXR and TUDOR-SN. All of these proteins exhibit altered expression upon direct 

irradiation. They are also changed in the shielded bystander spleen. The altered levels of 

microRNA machinery go well together with the observed microRNAome deregulation. 

Cellular and organismal repercussions of the observed changes need to be further 

defined. Moreover, the mechanisms of sex differences in the microRNAome and 

microRNA processing machinery levels have to be further explored.  

Altered Dicer and RISC levels, together with the altered microRNAome, may 

serve as novel and sex-specific biomarkers of exposure and bystander effects.  
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5.7. FIGURE LEGENDS 

 

females males 

 

Figure 5.1. Hierarchical clustering of differentially 

 expressed miRNA genes in male and female spleen samples. 

Hierarchical clusters of significantly altered miRNAs (as determined by ANOVA) 

across the male and female mouse spleen. Red denotes high expression levels, whereas 

green depicts low expression levels. Each miRNA listed is significantly differentially 

expressed (p < 0.05) between male and female mice. 
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Figure 5.2. Differentially expressed miRNAs in spleen of male and female mice 

subjected to whole body and head exposure of 1 Gy of X rays. 

  Hierarchical clusters of differentially expressed miRNA genes in spleen of whole 

body and head exposed male and female mice (as determined by ANOVA). Each miRNA 

listed is significantly differentially expressed (p < 0.05) between control and treatment 

groups. Color arrows denote microRNAs expressed differentially expressed in different 

groups.  
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   OVX CAST 

Figure 5.3. Hierarchical clustering of differentially expressed miRNA genes in 

castrated (CAST) and ovariectomized (OVX) spleen samples. 

Hierarchical clusters of significantly altered miRNAs (as determined by ANOVA) 

across the CAST and OVX mouse spleen. Red denotes high expression levels, whereas 

green depicts low expression levels. Each miRNA listed is significantly differentially 

expressed (p < 0.05) between CAST and OVX mice. 
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Figure 5.4. Differentially expressed miRNAs in spleen of castrated 

 (CAST) and ovariectomized (OVX) mice subjected to whole  

body and head exposure of 1 Gy of X rays. 

Hierarchical clusters of differentially expressed miRNA genes in spleen of whole 

body and head exposed CAST and OVX mice (as determined by ANOVA). Each miRNA 

listed is significantly differentially expressed (p < 0.05) between control and treatment 

groups. Color arrows denote microRNAs expressed differentially expressed in different 

groups.  
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Figure 5.5. Changes in the Dicer levels in the exposed and bystander spleen of intact 

male, intact female, castrated (CAST) and ovariectomized (OVX) mice. 

The levels of Dicer positive cells relative to control are shown, mean values ± 

SEM, n=400* - p<0.05, Student’s t-test, Dunnett’s test and Tukey-Kramer test.   
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Figure 5.6. Changes in the Ago2, PACT, FXR and TUDOR-SN levels 

 in the exposed and bystander spleen of intact male,  intact female,  

castrated (CAST) and ovariectomized (OVX) mice. 

The levels of Ago2, PACT, FXR and TUDOR-SN positive cells relative to 

control are shown, mean values ± SEM, n=400* - p<0.05, Student’s t-test, Dunnett’s test 

and Tukey-Kramer test.   
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 bystander bystander 

control control 

Figure 5.7. Changes in p38 levels in bystander male and female spleen. 
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male CAST female OVX

 

Figure 5.8. Hierarchical clustering of differentially expressed miRNA genes 

 in intact (male/female) and sterilized (CAST/OVX) spleen samples. 
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6. ROLE OF EPIGENETIC EFFECTORS IN MAINTENANCE OF THE LONG-

TERM PERSISTANT BYSTNADER EFFECT IN SPLEEN IN VIVO1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Chapter 6 has been published in its entirety: 

 Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald R, Tryndyak V, 
Kovalchuk I, Pogribny I, Kovalchuk O. (2007) Role of epigenetic effectors in 
maintenance of the long-term persistent bystander effect in spleen in vivo. 
Carcinogenesis, 28:1831-8 
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6.1 ABSTRACT 

Radiation therapy (RT) is a primary treatment modality for brain tumors, yet it 

has been linked to the increased incidence of secondary, post-RT cancers. These cancers 

are thought to be linked to indirect radiation-induced bystander effects.  Bystander effects 

occur when irradiated cells communicate damage to nearby, non-irradiated ‘bystander’ 

cells, ultimately contributing to genome destabilization in the non-exposed cells. Recent 

evidence suggests that bystander effects may be epigenetic in nature; however, 

characterization of epigenetic mechanisms involved in bystander effect generation and its 

long-term persistence has yet to be defined.  

To investigate the possibility that localized X-ray-irradiation induces persistent 

bystander effects in distant tissues, we monitored the induction of epigenetic changes 

(i.e., alterations in DNA methylation, histone methylation and miRNA expression) in the 

rat spleen tissue 24 hours and 7 months after localized cranial exposure to 20Gy of X 

rays. 

We found that localized cranial radiation exposure led to the induction of a 

bystander effect in lead-shielded, distant spleen tissues. Specifically, this exposure caused 

a profound epigenetic dysregulation in the bystander spleen tissue which manifested as a 

significant loss of global DNA methylation, alterations in methylation of LINE 1 

retrotransposable elements, and downregulation of DNA methyltransferases and methyl-

binding protein MeCP2. Further, irradiation significantly altered expression of miR-194, 

a microRNA putatively targeting both DNMT3a and MeCP2. This study is the first to 

report conclusive evidence of the long-term persistence of bystander effects in radiation 
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carcinogenesis target organs (spleen) upon localized distant exposure using the doses 

comparable to those used for clinical brain tumor treatments. 
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6.2 INTRODUCTION 

Radiation therapy (RT) is the number one treatment for almost all brain tumor 

types (Curry et al, 2005), malignant (Shu et al, 1998; Halberg et al, 1991; Krischer et al, 

1991), as well as benign (Attanasio et al, 2003). Despite the markedly better prognosis 

and increased patient survival rates after RT, a serious drawback of induction of 

secondary tumors arose. Numerous cases of secondary cancer development following RT 

have been reported (Simmons et Laws, 1998; Brada et al, 1992), yet mechanisms of 

secondary cancers remain enigmatic. Recent studies attribute secondary carcinogenesis to 

indirect radiation effects, particularly – to the radiation-induced bystander effect. 

Bystander effect is a phenomenon whereby irradiated cells communicate the damage 

to the non-irradiated nearby ‘bystander’ cells, thus contributing to their genome destabilization 

and carcinogenesis (Mothersill et Seymour, 2004; Hall et Hei, 2003; Hall, 2003). This 

enigmatic phenomenon is considered by some researchers to be a negative complication in 

radiation oncology, while others refer to it as an important protective homeostatic response 

(Mothersill et Seymour, 2005; Hall, 2003; Hall et Hei, 2003; Camphausen et al, 2003; Redpath 

et al, 2001). 

The majority of the bystander effect data currently come from the studies in cell 

cultures, while in vivo data are scarce (Hall, 2003; Goldberg, 2003; Goldberg et Lehnert, 

2002). Mechanistically, current models link radiation-induced bystander effects with the 

radiation-induced genome instability (Goldberg, 2003; Morgan, 2003b; Morgan, 2003c; 

Morgan et al, 2002). Radiation-induced genomic instability which encompasses a wide 

range of end points such as gross genome rearrangements, chromosome aberrations, gene 

mutation (Morgan, 2003c; Dubrova, 2003) was recently suggested to have an epigenetic 
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nature, yet the contribution of known epigenetic mechanisms to its generation has to be 

defined (Dubrova, 2003; Nagar et al, 2003). 

Epigenetic changes are heritably stable alterations and include DNA methylation, 

histone modifications and RNA-mediated silencing (Jaenisch et Bird, 2003). Aberrant 

cytosine DNA methylation is associated with genomic instability, increased genome 

rearrangements rates and is linked to cancer development (Royo et al, 2006; Baylin, 

2005; Jaenisch et Bird, 2003).  A variety of DNA damaging agents, including ionizing 

radiation (IR), are known to affect genome DNA methylation pattern (Raiche et al, 2004; 

Pogribny et al, 2004a; Minamoto et al, 1999). DNA methylation changes are closely 

connected with the alterations in the other components of chromatin structure, primarily - 

histone modifications, which are also affected by IR exposure (Pogribny et al, 2005). One 

of the mechanisms of chromatin modification is the involvement of small regulatory 

RNAs (Bernstein et Allis, 2005). Regulatory RNAs were associated with cellular 

differentiation, proliferation, apoptosis, as well as with predisposition to cancer 

(Sevignani et al, 2006; Hwang et Mendell, 2006; Hammond, 2006). These molecules 

have the ability change the pattern of gene expression or target epigenetic modifications 

in various regions of the genome (Pogribny et al, 2005; Raiche et al, 2004; Pogribny et 

al, 2004a; Minamoto et al, 1999). The role of RNA-mediated silencing, specifically 

microRNAs (miRNAs), in bystander effects has never been addressed.  

We have recently confirmed the existence of in vivo bystander effects using a 

mouse skin model whereby half of the animal body was exposed to radiation while the 

other half was protected by the medical grade shield (Koturbash et al, 2006b). The data 

showed that X-ray exposure to one side of the animal body caused profound epigenetic 
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changes in the unexposed bystander body half 4 days after exposure. The potential of the 

localized body part exposures to induce bystander effects has never been addressed in 

detail.   

The data obtained in the mouse skin model showed that bystander effects were the 

most prominent when spleen was in the field of irradiation, suggesting a possible role of 

spleen in the bystander effects (Koturbash et al, 2006b). Spleen is an important radiation-

target organ (Raiche et al, 2004; Pogribny et al, 2004a), yet the existence and molecular 

mechanisms of the radiation-induced bystander effects in spleen have never been 

addressed. 

Also, to be relevant for carcinogenesis the bystander effects should accumulate 

and/or persist over a long period of time. Yet, the long-term persistence of the distant 

bystander lesions in somatic organs upon irradiation has never been addressed.  

To investigate the possibility that localized X-ray-irradiation induces bystander 

effects in the distant tissue, we monitored the induction of epigenetic changes (i.e. DNA 

methylation, histone methylation and miRNA expression) in spleen tissue 24 hours and 7 

months after the localized cranial irradiation.  Here, we report that localized cranial 

radiation exposure leads to decreased levels of global DNA methylation, alters the levels 

of key proteins known to modulate methylation patterns and silencing (e.i. de novo 

methyltransferase DNMT3a and methyl-binding protein MeCP2) and contributes to 

reactivation of LINE1 retrotransposons  in the bystander spleen, located at least 16 cm 

from the irradiation site. We also show that radiation exposure results in the altered levels 

of miR-194 in plasma and spleen of animals subjected to cranial X-irradiation. 

Importantly, the changes persisted for 7 months after exposure. These are some of the 
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first data to clearly demonstrate that bystander effects occur in vivo in distant tissue and, 

most importantly, persist over a long period of time and are epigenetically regulated.  
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6.3 MATERIALS AND METHODS 

6.3.1 Model and Irradiation of Animals    

In this study we examined the genetic and epigenetic alterations in rat spleen 

following in vivo cranial irradiation exposure.  Rats (3 months old male Long Evans 

animals) were randomly assigned to different treatment groups. Handling and care of 

animals was in the strict accordance with the recommendations of the Canadian Council 

for Animal Care and Use.  The procedures have been approved by the University of 

Lethbridge Animal Welfare Committee. Animals were housed in a virus-free facility and 

given food and water ad libitum.  

The whole body exposed cohort (6 animals) received 20Gy (5cGy/s) of X-rays 

(90kV, 5mA) applied as two doses of 10 Gy in two consecutive days.  The animals were 

sacrificed 24 hours after the second exposure. The head-exposed cohort (18 animals) 

received 20 Gy (5cGy/s) of X-rays (90kV, 5mA) to the hippocampal area of the scull, 

applied as two doses of 10Gy in two consecutive days. The rest of the animal body 

protected by a ~3 mm thick lead shield, the same type as used for the human body 

protection in diagnostic radiology. The protection of shielded ‘bystander’ tissue was 

complete, as verified by careful dosimetry using RAD-CHECK™ monitor (Nuclear 

Associates div. of Victoreen, Inc, Carle Place, NY). Six animals were humanely 

sacrificed 24 hours after exposure to address the early bystander effects. Twelve animals 

were humanely sacrificed 7 months after exposure. This time point is sufficient to see the 

persistence, if any, of the radiation-induced changes, as 7 months in rat life correspond to 

10 human years (Quinn, 2005). Control rats (12 animals) were sham treated. For the 

sham treatment the animals were places into the irradiator machine and completely 
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shielded by lead. No radiation leakage through the shield has occurred as verified by 

dosimetry using RAD-CHECK™ monitor (Nuclear Associates div. of Victoreen, Inc).  

Six control animals were sacrificed 24 hours after exposure, while the other six animals – 

7 months after exposure. Spleen tissue was sampled upon sacrifice, snap-frozen and 

processed for further molecular studies. Upon sacrifice, blood from vena cava was 

collected into the polypropylene tubes with heparin and plasma was obtained by 

centrifugation (440g, 10 min). Plasma was carefully removed and snap frozen. 

 

6.3.2 Cytosine Extension Assay to Detect Sequence Specific Changes in 

DNA Methylation 

Total DNA was prepared from spleen tissue of exposed and control animals using 

Qiagen DNAeasy Kit (Qiagen, Mississauga, Ontario) according to the manufacturer’s protocol. 

The cytosine extension assay and the determination of the absolute percent of double-

stranded unmethylated CCGG sites was conducted as previously described (Koturbash et 

al, 2006b; Pogribny et al, 2005; Pogribny et al, 2004b). DNA methylation changes in the 

exposed cohorts were related to the age-matched controls. No statistically significant age-

related changes were noted. 

 

6.3.3 Western Immunoblotting 

Western immunoblotting for DNMT1, DNMT3a, DNMT3b, MeCP2 and PCNA 

was conducted using spleen tissue of exposed and control animals as described before 

(Koturbash et al, 2006b; Pogribny et al, 2005) using the following antibodies - DNMT1 

(1: 1000, Abcam, Cambridge, MA), DNMT3a, DNMT3b (1:500, Abgent, San Diego, 
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CA), MeCP2 (1: 1000, Abcam, Cambridge, MA) and PCNA (1:500, Santa Cruz 

Biotechnology, Santa Cruz,  CA).  Antibody binding was revealed by incubation with 

horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology) and 

the ECL Plus immunoblotting detection system (Amersham, Baie d'Urfé, Québec).  

Chemiluminescence was detected by Biomax MR films (Eastman Kodak, New Haven, 

CT). Signals were quantified using NIH ImageJ 1.63 Software and normalized to both 

GAPDH and the Mr 50,000 protein which gave consistent results. Protein levels in the 

exposed cohorts were related to the age-matched controls.  

 

6.3.4 Analysis of LINE 1 Methylation Status by COBRA Assay 

Methylation status of long interspersed nucleotide elements (LINE-1) was 

determined by COBRA assay, which consists of a standard bisulfite modification of 

genomic DNA, subsequent PCR amplification and digestion of PCR product with 

appropriate restriction endonuclease (Asada et al, 2006; Tryndyak et al, 2006; Xiong et 

Laird, 1997).  The combination of sodium bisulfite treatment and PCR amplification 

results in methylation-dependent creation of new restriction endonuclease sites, such as 

RsaI, or methylation dependent retention of pre-existing sites, such as BstUI.  Briefly, 

genomic DNA was treated with sodium bisulfite as previously described in detail 

(Tryndyak et al, 2006).  Bisulfite-modified DNA was PCR-amplified with primers 

corresponding to the regulatory region of rat LINE-1 sequence (Tryndyak et al, 2006).  

The sense primer was 5’-TTTGGTGAGTTTGGGATA-3’, and the antisense primer was 

5’-CTCAAAAATACCCACCTAAC-3’.  The PCR products were digested with RsaI or 

BstUI restriction endonucleases (New England Biolabs, Beverly, MA). The digested 
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products were separated on 3% high resolution agarose gels (Sigma, St. Louis, MO), 

stained with ethidium bromide, photographed, and the band intensity was analyzed by 

NIH ImageJ 1.63 Software. 

 

6.3.5 mRNA Isolation and  Real-time Reverse Transcription-PCR (RT-

PCR) 

Total mRNA was isolated from frozen spleen tissue of control and exposed 

animals by using TRIzol Reagent (Invitrogen, Burlington, Ontario) and first-strand 

cDNA template was synthesized using RevertAid™ First Strand cDNA Synthesis Kits 

(Fermentas, Burlington, Ontario) according to the manufacturer’s instructions.  The 

primers used in this study were synthesized by Operon Biotechnologies (Huntsville, 

Alabama). The LINE1 ORF1 (Long Interspersed Nuclear Element 1 open reading frame 

1) primer sequences were: LINE 1 ORF1 forward 5’-AAGAAACACCTCCCGTCACA-

3’; LINE1 ORF reverse 5’-CCTCCTTATGTTGGGCTTTACC- 3’. The beta actin 

primers were: beta actin forward 5’-CCTCTGAACCCTAAGGCCAA-3’; beta actin 

reverse 5’-AGCCTGGATGGCTACGTACA-3’. The data for LINE 1 ORF1 were 

standardized against the actin data. Control wells containing SYBR Green PCR master 

mix and primers without sample cDNA emitted no fluorescence after 40 cycles. 

 

6.3.6 Histone Extraction 

The acid extracts were prepared from frozen spleen tissues using  lysis buffer 

containing 10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl , 0.5 mM DTT , 1.5 

mM PMSF, followed by addition of HCl to a final concentration of 200 mM.  Cell lysates 
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were centrifuged at 14000xg for 10 min at 4ºC, and the acid-insoluble pellets were 

discarded.  The supernatant fractions, which contain the acid soluble proteins, were 

purified by sequential dialysis against 100 mM acetic acid and H20.  Protein 

concentrations were determined by Bradford assay (Pierce, Rockford, IL).  Equal 

amounts of total histones (40 μg) were resolved on a 15% polyacrylamide gel.  Proteins 

were transferred onto PVDF membranes (Pogribny et al, 2005).  

 

6.3.7 Analysis of Histone Modifications   

Equal amounts of total histones were resolved on 15% polyacrylamide gel and 

transferred onto PVDF membranes.  Membranes were incubated using anti-trimethyl-

histone H3 lysine 9 (1:1000), anti-trimethyl-histone H4 lysine20 (1:2000), anti-histone 

H3 (1:1000) and anti-histone H4 (1:1000) primary antibodies (Upstate, Charlottesville, 

VA).  Upon secondary alkaline phosphatase-labeled antibody treatment 

chemifluorescence was detected with the ECL Substrate for Western Blotting (GE 

Healthcare, Piscataway, NJ) and measured directly by Storm Imaging System (Molecular 

Dynamics, Sunnyvale, CA).   

 

6.3.8 miRNA Microarray Expression Analysis  

Total RNA from frozen plasma was prepared using TRIzol Reagent (Invitrogen, 

Burlington, Ontario) according to manufacturer’s instructions. Total RNA from rat spleen 

was also extracted using TRIzol Reagent (Invitrogen, Burlington, Ontario) according to 

manufacturer’s instructions, size-fractionated (<200 nt) by using the mirVana kit 

(Ambion, Austin, TX) and labeled with Cy3 and Cy5 fluorescent dyes. Dye switching 
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was performed to eliminate the dye bias. Pairs of labeled samples were hybridized to 

dual-channel microarrays. Microarray assays were performed on a µParaFlo microfluidics 

chip with each of the detection probes containing a nucleotide sequence of coding 

segment complementary to a specific miRNA sequence and a long non-nucleotide 

molecule spacer that extended the detection probe away from the substrate. The 

maximum signal level of background probes was 180. A miRNA detection signal 

threshold was defined as twice the maximum background signal.  Normalization was 

performed with a cyclic LOWESS (locally-weighted regression) method to remove 

system-related variations.  Data adjustments included data-filtering, log2 transformation, 

and gene centering and normalization.  The t-test analysis was conducted between control 

and exposued sample groups.  miRNAs with p-values < 0.05 were selected for cluster 

analysis.  Two independent microarray hybridizations were performed, each involving 4 

control and 4 exposed samples to insure the reproducibility of the results. The miRNA 

microarray analysis was performed by LC Sciences (Austin, TX). 

 

6.3.9 Quantitative Real Time-PCR (RT-PCR) miRNA Expression Analysis  

RT-PCRs on total spleen and plasma RNA were performed by using SuperTaq 

Polymerase (Ambion, Austin, TX) and the mirVana qRT-PCR miRNA Detection KitTM 

(Ambion, Austin, TX) following the manufacturer’s instructions. Reactions contained 

mirVana qRT-PCR Primer SetsTM specific for hsa-miR-194 and human 5S rRNA as 

positive controls. Real-time RT-PCR was performed on a SmartCycler (Cepheid, 

Sunnyvale, CA) and end-point reaction products were also analyzed on a 3.5% high-

resolution agarose gel stained with ethidium bromide.  
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6.3.10 Statistical Analysis 

Statistical analysis (Student’s t-test, Bonferroni correction, Tukey-Kramer test and 

Dunnett’s tests) was performed using the MS Excel 2000 and JMP5 software packages. 
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6.4 RESULTS 

In this study we used a rat spleen model to gain further insight into the 

occurrence, possible persistence and molecular underpinnings of the somatic bystander 

effect in vivo after a localized cranial irradiation. The animals received either a whole-

body exposure of 20Gy or the localized cranial exposure of 20Gy to the hippocampal 

area of the brain, while the rest of the body was shielded by lead.  Shielding was 

complete as verified by careful dosimetry.  We examined the role of epigenetic factors in 

the generation of bystander effects in vivo in the rat spleen. This important organ is 

frequently affected following therapeutic radiation exposures and is one of the targets of 

radiation oncology side effects (Koturbash et al, 2005). 

 

6.4.1 Significant and Persistent Loss of Global Genome DNA Methylation 

in Bystander Spleen 

Initially, we investigated the IR-induced changes in global cytosine DNA 

methylation in control, exposed and bystander spleen tissue 24 hours and 7 months after 

radiation treatment. To determine the absolute percent of methylated HpaII sites in DNA, 

we used the HpaII/MspI-based cytosine extension assay that measures the proportion of 

CCGG that had lost methyl groups on both strands.  While HpaII cleaves CCGG sequences 

when internal cytosine residues are unmethylated on both strands, its isoschizomer MspI 

cleaves CCGG sites in DNA regardless of CpG methylation status. The absolute percent 

of double-stranded unmethylated CCGG sites can be calculated by relating the data of 

HpaII and MspI digests (Pogribny et al, 2004b). Because the vast majority of the 

frequently occurring HpaII tetranucleotide recognition sequences are constitutively 
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methylated in vivo, an increase in cleavage at these sites is an indicator of genome-wide 

hypomethylation (Pogribny et al, 2004b). We found that whole body X-ray exposure 

resulted in a significant increase in the absolute percent of unmethylated CCGG sites in 

rat spleen as compared to controls (Fig. 6.1A). Localized head exposure also led to a 

significant increase in the absolute percent of unmethylated CCGG sites in the shielded 

bystander spleen as compared to the control (Fig. 6.1A and B). This effect, indicative of a 

profound global DNA hypomethylation was seen in the bystander spleen 24 hours and 7 

months after cranial irradiation (Fig. 6.1A and B).   

 

6.4.2 Hypomethylation-related Reactivation of LINE 1 Retroelements in 

Bystander Spleen 

Having seen the significant and persistent global DNA hypomethylation in rat 

spleen 7 months after cranial irradiation we decided to further analyze the nature of the 

DNA methylation changes and the possible hypomethylation target loci. Several studies 

in humans and rodents have shown that global DNA demethylation resulted in activation 

of transposable elements contributing to genome instability (Rollins et al, 2006; Yoder et 

al, 1997). With this in mind, we analyzed the levels of DNA methylation of the LINE-1 

transposable retroelements which constitute almost 23% of rat genome (Rat Genome 

Sequencing Project Consortium, 2004). Figure 6.2 shows the status of the LINE-1 

regulatory region methylation in spleen of the control rats and the rats exposed to cranial 

irradiation, as determined by the COBRA assay (Tryndyak et al, 2006; Xiong et Laird, 

1997). The assay is based on digestions of the PCR fragment amplified from the bisulfite 

converted DNA, where all non-methylated cytosines are converted to thymines. LINE-1-
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specific primers amplified the fragment of 163 nt from the bisulfite-converted DNA (Fig. 

6.2A). This fragment contains two sequences that can be recognized by BstUI and RsaI 

endonucleases, upon retaining and modifying the original sequence after bisulfite 

conversion. Digestion with BstUI is only possible if both cytosines at recognition 

sequence CGCG are methylated and thus, protected from conversion. Complete 

methylation will lead to complete cleavage resulting in two bands of 80 and 83 

nucleotides long (seen as one band on the gel; Fig. 6.2B), whereas loss of methylation at 

any of the CpG cytosines would prevent cleavage and contribute to an “uncut” 163 nt 

band (Fig. 6.2B). The recognition sequence GTAC for the RsaI enzyme can be formed 

from GGCACG sequence in the 163nt fragment of LINE-1 promoter when non-CpG 

cytosine is completely unmethylated and CpG cytosine is completely methylated (Fig. 

6.2C). Previous papers showed that methylation at the non-CpG sites at the LINE-1 

promoter is extremely rare, with 98.2% of all the non-CpG cytosines been unmethylated 

(Tryndyak et al, 2006; Burden et al, 2005). Thus, it is safe to suggest that the RsaI 

recognition site is influenced primarily by the loss of methylation at CpG cytosine (Fig. 

6.2C).  

The COBRA assay revealed that LINE-1 promoters were indeed hypomethylated 

in the bystander rat spleen 7 months after cranial irradiation. There was a 5-10% decrease 

in the cleavage of PCR products using BstUI and RsaI enzymes in the group of exposed 

versus group of control animals (Fig. 6.2D, E). These phenomena, indicative of LINE1 

reactivation, can in turn contribute to gross genome rearrangements and genome 

instability resulting in the neoplastic cell transformation. LINE1 activation was 
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previously documented in tumor cells and was paralleled by global genome 

hypomethylation (Garnell et Goodman, 2003). 

To prove our hypothesis, we analyzed the steady state level of LINE-1 ORF1 

RNA. RT-PCR analysis of spleen tissue revealed a significant 60% increase in expression 

of LINE-1 in the bystander spleens of the head-exposed rats as compared to controls (Fig. 

6.2F). 

6.4.3 Altered levels of DNA methyltransferases and methyl-binding 

proteins in bystander spleen 

Having seen pronounced and persistent DNA hypomethylation in the exposed and 

bystander spleen we proceeded with analysis of the possible mechanisms of this 

phenomenon. We addressed the radiation-induced changes in the expression levels of the 

maintenance (DNMT1) and de novo (DNMT3a and DNMT3b) methyltransferases (Goll 

et Bestor, 2005) in the control, exposed and bystander spleen tissue 24 hours and 7 

months after irradiation.  

We noted that levels of methyltransferases DNMT1, DNMT3a and DNMT3b and 

the methyl-binding protein MeCP2 were statistically significantly downregulated 24 

hours upon the whole-body as well as the localized head exposure as compared to the 

controls (Fig. 6.3). We also found that whole body exposure resulted in significant 

downregulation of proliferating cell nuclear antigen (PCNA) 24 hours after exposure 

(Fig. 6.3).  Contrarily, PCNA levels were not altered in the bystander spleen 24 hours 

after exposure (Fig. 6.3). These data are in good agreement with whole body irradiation-

induced DNA hypomethylation and reduced expression of DNMTs and MeCP2 in mouse 

spleen previously reported by our group (Raiche et al, 2004; Pogribny et al, 2004a). 
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Importantly, altered protein levels were also observed 7 months after cranial 

radiation exposure (Fig. 6.4). We found that DNMT1 levels were statistically 

significantly decreased in the spleen of the bystander group 7 months after cranial 

irradiation (Fig. 6.4).  

At the same time, we noted that the levels of de novo methyltransferase DNMT3a 

were also statistically significantly down-regulated in bystander spleen 7 months after 

exposure (Fig. 6.4).  We have previously shown that DNMT3a expression was reduced 

following IR exposure, and correlated with post-irradiation DNA hypomethylation 

(Raiche et al, 2004; Pogribny et al, 2004a). Also, DNMT3a expression was previously 

found to be down-regulated in the bystander skin (Koturbash et al, 2006b). 

In addition to the DNA methylation loss and down-regulation of the key 

methyltransferases, we also noted a significantly lower level of methyl-binding protein 

MeCP2 in the bystander spleen 7 months after irradiation (Fig. 6.4). This protein has 

been shown to interact with methylated DNA and affect methylation-mediated chromatin 

remodeling and gene silencing (Jaenisch et Bird, 2003; Hendrich et Tweedie, 2003).  The 

contribution of MeCP2 to IR-induced genome instability and bystander effects need to be 

further analyzed.  

Since DNA replication is one of the most active mechanisms contributing to 

partial loss of methylation, it was important to show that cell proliferation was not 

induced in bystander spleens either 24 hours or 7 months after cranial exposure (Fig. 6.3 

and Fig. 6.4). Western blot analysis did not find any changes in the level of the 

proliferating cells nuclear antigen, confirming that the observed changes were not linked 

to an increase in cellular proliferation (Fig. 6.3). 
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The reduced levels of DNMTs and MeCP2 seen 7 months after exposure may be 

linked to the LINE-1 hypomethylation and reactivation seen at the same time (Fig. 6.2).  

Previously, down-regulation of methyl-CpG binding protein MeCP2 was shown to pre-

dispose cells to elevated levels of mutation and LINE-1 retrotransposon reactivation, and 

result in genome instability and aberrant gene expression rates, leading to carcinogenesis 

(Yu et al, 2001). Also, altered levels of DNMT1, DNMT3a or 3b significantly reduced 

DNA methylation levels in the LINE-1 repetitive elements (Xu et al, 1999). 

Undoubtedly, DNA methylation changes and altered expression/activity of DNA 

methyltransferases may in part be linked to DNA damage induced by reactive oxygen 

species generated upon radiation exposure (Pogribny et al, 2005; Raiche et al, 2004; 

Pogribny et al, 2004a). Reactive oxygen species were implicated in the bystander effects 

in cell cultures, yet their exact role in bystander effects in vivo still need to be addressed. 

 

6.4.4 Lack of Histone Methylation Changes in Bystander Spleen 

Recent studies indicate that global loss of DNA methylation may be paralleled by 

changes in histone methylation, specifically – histones H3 and H4 hypomethylation 

(Fraga et al, 2005). The combined loss of DNA methylation and trimethylation of histone 

H3 lysine 9 (H3K9me3) and H4 lysine 20 (H4K20me3) were reported to be signs of 

carcinogenesis. The interplay between radiation-induced DNA methylation changes and 

histone modifications is still under-investigated (Pogribny et al, 2005). The role(s) of 

histone modifications in bystander effects have never been addressed. Thus, the 

pronounced DNA methylation changes have prompted us to investigate the changes in 

histones H3K9 and H4K20 trimethylation in control, exposed and bystander spleen 24 
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hours and 7 months after exposure.  We noted that whole body exposure to 20Gy of X 

rays resulted in a significant decrease in the levels of H4K20 trimethylation (Fig. 6.5A). 

This was in agreement with the loss of H4K20 trimethylation upon irradiation in mouse 

thymus tissue previously reported by our group (Pogribny et al, 2005). Yet, we did not 

observe any significant changes in histone H3K9 trimethylation and histone H4K20 

trimethylation levels in the bystander spleen tissue either 24 hours or 7 months after 

irradiation (Fig. 6.5A and B).  

 

6.4.5  miRNA Expression in Bystander Tissue  

Another mechanism of epigenetic control is through the involvement of small 

regulatory RNAs. Amongst those, of special interest are microRNAs (miRNAs). miRNA 

molecules are small non-coding RNAs that function as key regulators of RNA 

interference pathway (Sevignani et al, 2006; Hwang et al, 2006; Hammond, 2006).  

miRNAs can reduce the levels of their target transcripts as well as the amounts of protein 

encoded by their transcripts (Sevignani et al, 2006; Hwang et al, 2006; Hammond, 2006).  

By doing so miRNAs regulate RNA stability and translatability, thus contributing to gene 

silencing. In parallel, their roles as regulators of epigenetic status and chromatin structure 

have also been proposed (Bernstein et Allis, 2005). Thereafter, miRNAs play crucial 

roles in regulating cellular differentiation, proliferation and apoptosis. Further to this, 

miRNA expression changes are a common occurrence in cancers and were suggested to 

play an important role(s) in pathogenesis of human tumors (Esquela-Kerscher et Slack, 

2006; Ruvkun, 2006).  

 151



Thus, in a search for possible regulators of long-term persistent bystander effects 

we analyzed the role of microRNAs. We set out to determine the expression patterns of 

known miRNAs in spleen from control and head-exposed animals 7 months after 

irradiation using miRNA microarray technology. Two independent miRNA microarray 

hybridizations were performed, each involving 4 control and 4 bystander spleen samples. 

We identified that miR-194 was significantly up-regulated in bystander spleen seven 

months after exposure.  We also noted a subset of miRNAs that exhibited an up-

regulation trend (90% confidence limit) (data not shown).  To confirm the result of 

microarray analysis, we carried out RT-PCR of miR-194. The RT-PCR was a solid 

validation of the microarray result (data not shown).  

We next proceeded to address the early changes in miR-194 expression upon 

whole body and cranial irradiation using the RT-PCR approach. We found that the levels 

of miR-194 were significantly elevated in the spleen of whole-body and head exposed 

animals 24 hours after irradiation (data not shown). Furthermore, the elevated levels of 

miR-194 were also seen in plasma of the whole-body and head exposed animals 24 hours 

after irradiation (data not shown), suggesting the possible spread on miRNAs by blood. 

We next proceeded with identification of putative miR-194 targets using the 

known algorithms (John et al, 2004). To our surprise, we found that miR-194 may be 

targeting DNMT3a and MeCP2, the proteins that were significantly down-regulated in 

the exposed and bystander spleen tissue 24 hours and 7 months after irradiation (Fig. 6.3 

and Fig. 6.4).  

Thus, up-regulation of miR-194 may be seen as a putative step in maintenance of 

the low levels of DNMT3a and MeCP2, the key regulators of DNA methylation. The low 
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levels of the aforementioned proteins may consequently lead to global genome 

hypomethylation and locus-specific DNA methylation loss in LINE 1 retrotransposons 

(Fig. 6.2). Thus, miR-194 may be one of the putative players in maintenance of an 

epigenetic bystander response in rat spleen. This microRNA can also regulate a variety of 

other targets influencing cellular stress responses. 
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6.5 DISCUSSION 

In this report we describe a significant and persistent in vivo bystander effect that 

occurs in the rat spleen upon distant cranial irradiation. The main findings of the present 

study are: (i) localized cranial radiation exposure leads to the induction of a bystander 

effect in the lead-shielded distant spleen tissue; (ii) epigenetic dysregulation in the 

bystander spleen tissue was manifested as a significant loss in global DNA methylation 

and alterations in the methylation of LINE 1 retrotransposable elements; (iii)  irradiation 

leads to the significant down-regulation of DNA methyltransferases and methyl-binding 

protein MeCP2; (iv) irradiation significantly alters the expression of miR-194, a 

microRNA that putatively targets DNMT3a and MeCP2; (v) profound epigenetic 

alterations can be seen 24 hours after the exposure and persisted for 7 months. 

Overall, the firm and conclusive evidence that IR-induced bystander effects in 

vivo are operational is limited (Koturbash et al, 2006b; Hall, 2003; Goldberg, 2003; 

Goldberg et Lehnert, 2002). The clinical literature is scarce and does not provide any 

support for or against the somatic bystander effect in vivo, even though numerous studies 

suggest a functional bystander effect in vitro (reviewed by Little, 2006).  

To bridge this knowledge gap, our laboratory has recently developed an in vivo 

model whereby bystander effects were studied in the skin of animals subjected to half-

body or head exposure, while the rest of the body was protected by a medical grade lead 

shield. Using this model, we have pioneered studies of the role of epigenetic mechanisms 

in bystander effects in cutaneous tissue in vivo, and generated the first data to clearly 

demonstrate that bystander effects occur in vivo in distant tissue and are epigenetically 

mediated (Koturbash et al, 2006b). Importantly, the data obtained in the mouse skin 
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model showed that bystander effects were the most prominent when the spleen was in the 

field of irradiation, suggesting a possible role of the spleen in bystander effects 

(Koturbash et al, 2006b).  

As it’s shown in the present study, spleen, an important radiation-target organ, is 

also an important target organ for the bystander effect. The bystander effect observed in 

the shielded bystander spleen 24 hours and 7 months after head exposure was 

characterized by profound epigenetic dysregulation. This is in agreement with our 

previous report on the in vivo bystander effect in skin where epigenetic alterations also 

played a key role (Koturbash et al, 2006b). In both systems we noted a down-regulation 

of de novo DNA methyltransferase DNMT3a in bystander spleen tissue. De novo 

methyltransferases function primarily as regulators of a cell fate and differentiation. Their 

deregulated expression/activity may lead to deleterious effects and contribute to 

carcinogenesis (Goll et Bestor, 2005; Robertson et Jones, 2000).  

We have also noted a significant decrease in the level of maintenance DNA 

methyltransferase DNMT1 and methyl-binding protein MeCP2 in bystander spleen. 

These results somewhat contradict our previous observations in the skin model. Yet, in 

our previous study we were analyzing the bystander effects that occurred after 1 Gy of X 

ray exposure, while the dose used in the current study was 20 times higher. Also, in the 

current study we addressed the persistent long-term effects 7 months after exposure. Thus 

the differences in DNMT1 and MeCP2 expression patterns observed in the two studies 

may to a certain extent reflect the dynamics of changes that occur over time. 

Furthermore, the discrepancy could also be due to the tissue specificity of bystander 
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changes. Further studies are clearly needed to address the tissue specificity and dose 

responsiveness of the bystander effect induction. 

It should be noted that the reduction of the levels of DNA methyltransferases and 

methyl-binding protein MeCP2 in the exposed and bystander spleen ranges between 15 – 

50%. DNA methyltransferases are responsible for setting and maintaining DNA 

methylation patterns in mammalian cells (Goll et Bestor, 2005). Importantly, it was 

shown that both maintenance (DNMT1) and de novo (DNMT3a and 3b) 

methyltransferases played a critical role in the development of mammalian organisms, 

and their loss had lethal consequences (Egger et al, 2006; Kaneda et al, 2004; Hata et al, 

2002). Thus these seemingly ‘small’ methyltransferases expression changes can 

significantly affect cellular function.  The exact impact of DNMTs and methyl-binding 

proteins on radiation-induced bystander effects has to be further elucidated. 

Of special interest and potential importance was the loss of DNA methylation and 

reactivation of LINE 1 retroelements observed. Hypomethylation of LINE-1 sequences 

have been reported in many cancers (Roman-Gomez et al, 2005). It was suggested that 

hypomethylation of LINE-1 sequences may promote the genomic instability and facilitate 

tumor progression (Kazazian, 2002). However, it has not yet been established whether 

the epigenetic changes, including hypomethylation and reactivation of LINE1 elements 

often found in tumors, play a causative role in carcinogenesis, or they are merely a 

consequence of the transformed state. Recently, progressive hypomethylation of a LINE-

1 regulatory region in liver has been found at very early stages of carcinogenesis prior to 

full-fledged tumor formation (Tryndyak et al, 2006). The result of our present study that 
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shows the loss of LINE-1 CpG methylation in bystander spleen may be viewed as a 

genome instability event predisposing cells to future carcinogenic transformations.  

As X-rays penetrate tissue, they can react with biological matter resulting in the 

deflection of its trajectories. This is referred to as scatter radiation (Koturbash et al, 

2006b). Low doses, close to the scatter-dose range levels, were shown to induce 

bystander effects (Zeng et al, 2006; Mothersill et al, 2005; Maguire et al, 2005; Kashino 

et al, 2004; Mothersill et Seymour, 2002).  Yet, congruent with the previous study, the 

bystander effects observed in this study in the rat spleen were not due to insufficient 

shielding or radiation scattering. We used the same animal body shielding that was 

previously described (Koturbash et al, 2006b). The scatter dose for rat spleen was 

miniscule (~0.0012Gy), slightly less than the previously reported one for the mouse 

model (Koturbash et al, 2006b). Exposure of animals to the scatter dose did not affect 

DNA methylation and protein expression 24 hours after exposure (data not shown).  

The important outcome of this study is the observation of the altered levels of 

miR-194 in spleen and plasma of the whole-body and head exposed animals. miRNAs are 

involved in the post-translational gene regulation and gene silencing.  Although the 

precise biological role of miRNAs has not been fully understood, they are suggested to 

regulate various developmental and physiological processes, such as apoptosis, cellular 

differentiation and proliferation. Their altered expression may contribute to diseases. 

Recently, the importance of miRNAs in gene silencing and chromatin dynamics has 

attracted scientists’ increasing attention (Bernstein et Allis, 2005). Profiling miRNA 

expression under various conditions as well as correlating profiles with physiological 

changes may allow investigators to uncover the exact role of miRNAs in cellular life. 
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Here we found that up-regulated levels miR-194 in the exposed and bystander tissue are 

correlated with down-regulated levels of its putative targets – de novo methyltransferase 

DNMT3a and methyl-binding protein MeCP2. The decreased levels of these proteins 

were linked to significant global and LINE1 locus-specific hypomethylation, thus 

contributing to the genome destabilization and possibly further to carcinogenesis. 

It should be mentioned that miR-194 is the only miRNA that is statistically 

significantly up-regulated in bystander rat spleen tissue 24 hours and 7 months after 

exposure.  It is also strongly upregulated in the spleen and plasma of rats subjected to the 

whole-body irradiation. Overall, miR-194 seems to play some role in the maintenance of 

the long-term response where, probably, the altered levels of just a few RNAs are 

enough. 

Further studies are clearly needed to achieve the in-depth understanding of the 

complete dynamics of miRNAome patterns in the bystander effects.  

A most recent report by Kemppainen et al, (2007) proved that miRNAs are very 

abundant in biofluids – plasma, serum, urine and saliva and exhibit high donor-to-donor 

consistency (Kemppainen et al, 2007).  Thus, even though their means of dispersion into 

biofluids are illusive, microRNAs in plasma, serum, saliva and urine can be used as 

biomarkers for cancer and other diseases (Kemppainen et al, 2007). 

Our study is the first that has shown the altered levels of microRNA in the plasma 

upon radiation exposure. More studies are needed to understand the ways of microRNA 

penetration/secretion into plasma and the role of blood miRNAs in mediation of distant 

radiation responses. Overall, this is the first report suggesting a possible role of miRNAs 
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in bystander effects. More studies are needed to confirm and dissect the miRNA role in 

this enigmatic phenomenon in detail. 

Most importantly, this study is the first report that provides the conclusive 

evidence of the long-term persistence of the bystander effects in radiation carcinogenesis 

target organ (spleen) following the localized distant cranial exposure. The doses and 

exposure regimes used in this study are close to those used in a clinic for brain therapy 

treatments (Curry et al, 2005). Radiotherapy is one of the most common treatments for 

brain tumors (Curry et al, 2005; Shu et al, 1998; Halberg et al, 1991; Krischer et al, 

1991). Nevertheless, the risk of the secondary radiation-induced complications, including 

secondary cancers which peak 10 years after exposure, has been reported (Curry et al, 

2005; Goldberg, 2003; Goldberg et Lehnert, 2002). Seven months in the life cycle of a rat 

corresponds to ~ 10 years in human life (Quinn, 2005). Thus the data obtained in this 

study using a rat model can be potentially extrapolated to humans. Further studies are 

required to delineate the possible contribution of radiation-induced bystander effects to 

secondary carcinogenesis, to identify and characterize the nature of the enigmatic 

bystander signal, and to address the impact of reactive oxygen species and DNA damage 

on the mediation of the immediate and delayed bystander effects in vivo. 
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6.6 FIGURES AND TABLES. 
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Figure 6.1. Pronounced loss of DNA methylation in rat spleen after the whole 

body and the localized cranial irradiation. 

Levels of the global genome DNA methylation in spleen tissue were measured by 

the HpaII /MspI cytosine extension assay. HpaII that cleaves CCGG sequences when internal 

cytosine residues are unmethylated on both strands. MspI is an isoschizomer of HpaII which 

cleaves CCGG sites in DNA regardless of CpG methylation status. The absolute percent 

of double-stranded unmethylated CCGG sites was calculated by relating the data of HpaII 

and MspI digests. Data are presented as mean values ± SD, * - p<0.01, Student’s t-test, 

Dunnett’s test and Tukey-Kramer test.  

A. DNA methylation changes observed 24 hours after the whole body and 

head exposure;  
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B.  DNA methylation changes seen 7 months after the head exposure. 
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Figure 6.2. Cranial irradiation leads to altered methylation 

 Of the LINE1 promoter, resulting in elevated expression 

 of LINE1 ORF1 in the spleen of exposed rats. 

Methylation status of LINE-1 was determined by the COBRA assay, involving 

bisulfite modification of genomic DNA, subsequent PCR amplification and digestion of 

PCR product with BstUI and RsaI enzymes. Sizes of the DNA fragments were 

determined using the 50bp DNA Step Ladder (Promega, Madison, WI).  

A. PCR amplification of 163 nt fragment from LINE-1 promoter.  

B. Methylation dependent retention of pre-existing BstUI restriction sites. 

Unmethylated CpG cytosines (underlined) at CGCG recognition sequence 

(squared) can be lost by bisulfite conversion (sequence in bold), resulting in uncut 

bands (163 nt). Methylation at both sites allows the cleavage, resulting in 

fragments of 80 and 83 nt (seen as one band). 

C. CpG methylation dependent retention of cytosine (underlined) at 

GGCACG sequence results in generation of RsaI recognition site (squared and in 
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bold), leading to cleavage of the 163 nt fragment into fragments of 48 and 115 nt. 

Loss of methylation at CpG cytosine will prevent the cleavage. 

 D. Quantification of BstUI cut fragments. The “Y”axis shows the percent of 

cleaved 163 nt fragment presented as an average (with SD).  

E.      Quantification of RsaI cut fragments. The “Y”axis shows the percent of 

cleaved 163 nt fragment presented as an average (with SD).  

F.        Levels of LINE-1 ORF1 transcript detected by RT-PCR; steady state RNA 

levels relative to those of control animals are shown as the mean + SD. * - 

significant, 95% confidence limit, p<0.05; # - 90% confidence limit, p< 0.1 

(Student’s t-test). 
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Figure 6.3. Altered expression of DNA (cytosine-5) methyltransferases, 

methyl-binding protein MeCP2 and proliferating cells nuclear antigen (PCNA) in 

spleen of rats 24 hours post whole-body or localized cranial irradiation. 

Lysates of spleen tissue were subjected to immunoblotting using antibodies 

against DNMT1, DNMT3a, DNMT3b, MeCP2, PCNA and actin (loading control).  

Protein levels relative to those of control animals are shown as the mean + SD; *p 

<0.0167, Student’s t-test with Bonferroni correction for multiple comparisons, Dunnett’s 

test, Tukey-Kramer test). Representative western blots from among 5 independent 

technical repeats of the experiments are shown.  
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Figure 6.4. Altered expression of DNA (cytosine-5) methyltransferases, 

methyl-binding protein MeCP2 and proliferating cells nuclear antigen (PCNA) in 

spleen of rats 7 months post localized cranial irradiation. 

Lysates of spleen tissue were subjected to immunoblotting using antibodies 

against DNMT1, DNMT3a, DNMT3b, MeCP2, PCNA and actin (loading control).  

Protein levels relative to those of control animals are shown as the mean + SD; ** - 

significant, 99% confidence limits, p <0.01, Student’s t-test, Dunnett’s test, Tukey-

Kramer test; *- significant, 95% confidence limit, p <0.05, Student’s t-test, Dunnett’s 

test, Tukey-Kramer test). Representative western blots from among 5 independent 

technical repeats of the experiments are shown. Black bars – control animals; gray bars – 

animals subjected to cranial irradiation. 
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Figure 6.5. Histone methylation levels in rat spleen upon whole body and 

localized cranial irradiation. 

Acidic spleen tissue lysates enriched in histones were subjected to 

immunoblotting using antibodies against histone H3K9me3, H4K20me3 and total 

histones H3 and H4 as loading controls. Levels relative to those of control animals are 

shown as the mean + SD. Representative blots from among 3 independent experiments 

are shown, *p <0.0167, Student’s t-test with Bonferroni correction for multiple 

comparisons, Dunnett’s test, Tukey-Kramer test.  

A. Histone methylation changes observed 24 hours after whole body and 

head exposure;  

B. Histone methylation changes seen 7 months after head exposure. 
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7. FINAL DISCUSSION AND CONCLUSIONS 

Currently cancer is the leading cause of death in Canadians, and the number of 

new cases in Alberta alone is expected to double to more than 26,000 cases per year by 

2025 (Alberta Cancer Board, 2006).  Most cancer patients undergo radiation diagnostics 

and are also treated with radiotherapy (RT).  Ionizing radiation (IR), along with being an 

important diagnostic and treatment modality, is a potent tumor-causing agent, and the risk 

of secondary radiation treatment-related cancers is a growing clinical problem (Simmons 

et Laws, 1998; Brada et al, 1992). Notwithstanding, their molecular etiology remains 

elusive. Now some studies propose to link secondary RT-induced cancers to the 

enigmatic phenomenon of bystander effects, whereby the exposed cells signal damage 

and distress to their naïve neighbors and result in genome destabilization and 

carcinogenesis (Mothersill et Seymour, 2004; Hall, 2003).  

 

7.1 RADIATION-INDUCED BYSTANDER EFFECTS 

Bystander effects can be seen in  naïve cells  which were in contact with  directly 

irradiated cells, or in the naïve cells  which received certain irradiation ‘distress’ signals 

from  directly exposed cells via  a growth medium. A variety of extended bystander effect 

studies have been performed using  cell culture models, tissue explants, spheroids 

(Persaud et al, 2005), and reconstructed human tissue models (Sedelnikova et al, 2007, 

Belyakov et al, 2005). As a result, bystander effects are now accepted as a ubiquitous 

consequence of IR exposure (Mothersill et Seymour, 2004).  IR-induced bystander 

effects include a wide range of genetic alterations such as chromosome aberrations, sister 

chromatid exchanges, deletions, duplications, gene mutations and amplifications. These 
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molecular changes influence gene expression, cellular proliferation, senescence, and cell 

death. Importantly, they are thought to be linked to radiation-induced malignant 

transformation (Mothersill et Seymour, 2004; Mothersill et Seymour, 2003; Goldberg et 

Lehnert, 2002).  

Bystander effects also manifest themselves in the whole-organism environment. 

Yet, compared to the bystander effect data based on cell cultures, conclusive data on 

somatic bystander effects in vivo are relatively uncommon (Mothersill et al, 2007; 

Koturbash et al, 2007; Koturbash et al, 2006; Hall, 2003; Goldberg et Lehnert, 2002).  

Prior to our studies, it was shown that IR exposure led to a release of soluble 

‘clastogenic’ factors into the circulating blood. These factors are capable of inducing 

chromosome damage in cultured cells. This clastogenic activity was found in the plasma 

of radiotherapy patients and individuals accidentally exposed to IR (Marozik et al, 2007; 

Emerit et al, 1995; Emerit et al, 1994; Pant et Kamada, 1977; Goh et Summer, 1968).  

Bystander effects were shown to be important within an exposed organ.  When 

the lung base was irradiated, significant molecular and cellular damage was observed in 

the shielded lung apex (Khan et al, 2003; Khan et al, 1998). Similar within-the-organ 

bystander effects were observed during partial liver irradiation (Brooks, 2004; Brooks et 

al, 1974).  

Yet, no data existed on the bystander effects in an organ other than an exposed 

one. With this in mind, we focused on analysis of the existence and mechanisms of 

radiation-induced bystander effects in vivo. To do so, we generated three in vivo models:  

• an in vivo mouse model whereby half of  an animal body was exposed and 

the other half was protected by  a lead shield; 

 168



• an  in vivo mouse model of cranial exposure, where the head of the 

experimental animal was exposed to ionizing radiation, while the rest of 

the body was protected with the medical-grade lead shield; 

• an in vivo rat model of cranial exposure, where the head of the 

experimental animal was exposed to ionizing radiation, while the rest of 

the body was protected with the same kind of a lead shield. 

Using these models, we analyzed both the induction and persistence of bystander 

effects and evaluated their epigenetic nature.  

The main findings of this thesis are that: 

1. Bystander effects occur in vivo in distant skin and spleen following 

half-body or cranial irradiation. 

2. Radiation exposure leads to the induction of DNA damage in 

distant bystander tissues in vivo. DNA damage in bystander tissues 

was present several hours after radiation. 

3. Epigenetic changes are involved in the generation and/or 

maintenance of bystander effects.  

4. Specifically, bystander tissues exhibited significant and persistent 

changes in the levels of global and locus-specific DNA 

methylation. Bystander tissues also showed changes in the 

expression of DNA methyltarnsferases and methyl-CpG binding 

proteins. Contrarily, histone methylation patterns were not altered 

in the bystander tissue. 
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5. Bystander tissues exhibited altered levels of microRNAs and 

changed expression of the enzymes involved in microRNA 

maturation and microRNA-mediated translational inhibition. 

6. Bystander tissues altered the levels of apoptosis, cellular 

proliferation and p53. 

7. Bystander effects are tissue specific. Specifically, we noted that 

bystander changes in the spleen tissue were much more 

pronounced then in the skin. This can be explained by higher 

radiation sensitivity of the spleen tissue. 

8. Bystander effects are strain and species-independent, but there are 

some mouse strain differences. Apoptotic and proliferative 

responses as well as gene expression were somewhat different 

between C57Bl/6 and Balb/c mouse strains. 

9. Bystander effects are persistent. Molecular changes in bystander 

tissue persisted through 4 days after irradiation and were still 

detectable 7 months post exposure. 

10. Bystander effects are sex-specific. Changes in the male bystander 

spleen tissue were distinct from the female bystander spleen. 

Gonadectomy led to somewhat diminished but still detectable sex 

differences. 
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Having studied the cellular and molecular grounds of radiation-induced bystander 

responses in vivo, we propose the following model to describe an in vivo bystander 

phenomenon (see Figure 7.1) 

According to our model, the previously described radiation-induced changes in 

directly exposed cells or tissues such as DNA strand breaks (Koturbash et al, 2005; 

Yokota et al, 2005), epigenetic perturbations (Loree et al, 2006; Koturbash et al, 2005; 

Pogribny et al, 2005; Kovalchuk et al, 2004b) altered gene expression (Cassie et al, 

2006; Loree et al, 2006; Besplug et al, 2005; Kovalchuk et al, 2004a), and genome 

instability (Morgan, 2003a; Little, 1999; Little, 1998) can be transmitted to un-irradiated 

bystander cells or tissues (Kovalchuk et Baulch, 2008; Koturbash et al, 2008; Koturbash 

et al, 2007; Sedelnikova et al, 2007; Koturbash et al, 2006b).   Transmission occurs most 

likely via the blood. 

We propose reactive oxygen species (ROS) such as superoxide and hydrogen 

peroxide (Azzam et al, 2003; Lyng et al, 2002; Lyng et al, 2000; Mothersill et Seymour, 

1998), short RNAs (Koturbash et al, 2007), Ca2+ ions (Lyng et al, 2006, Shao et al, 

2006; Lyng et al, 2002; Lyng et al, 2000) and cytokines (Facoetti et al, 2006; Bonner, 

2003; Iyer et Lehnert, 2000) to be  signaling molecules that communicate the radiation-

induced bystander effects.  

The in vivo bystander effects exhibit a strong sex-specificity (Koturbash et al, 

2008; Koturbash et al, unpublished) and potentially can contribute to carcinogenesis 

(Mothersill et Seymour, 2004; Mothersill et Seymour, 2003; Goldberg et Lehnert, 2002). 
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7.2 SIGNIFICANCE AND RELEVANCE TO HUMAN HEALTH. 

Today one third of people are likely to get cancer, and more than half are likely to 

receive some form of radiotherapy. While modern cancer radiation therapy has led to the 

increased patient survival rates, the risk of secondary radiation treatment-related 

deleterious complications and adverse effects is becoming a growing clinical problem 

(Simmons et Laws, 1998; Brada et al, 1992). A bystander effect is a negative 

complication in radiation oncology, and it is probably linked to secondary radiation 

carcinogenesis (Mothersill et Seymour, 2004; Hall, 2003).  

Prior to our study, however there has been no firm and conclusive evidence that 

the IR-induced bystander effect in vivo is operational (Goldberg, 2003; Hall, 2003; 

Goldberg et Lehnert, 2002). Furthermore, information on mechanisms of the bystander 

effect in vivo was scarce.  

We saw that radiation-induced changes in the bystander spleen include: γ-H2AX 

foci accumulation (Koturbash et al, 2008), global genomic DNA hypomethylation and 

histone modifications (Koturbash et al, 2007), changes in gene expression (Koturbash et 

al, 2008), altered apoptosis and proliferation processes (Koturbash et al, 2008), as well as 

profound dysregulation in the miRNAome (Koturbash et al, 2007). All these phenomena 

are known to be signs of genome instability and are linked to tumorigenesis (Mothersill et 

Seymour, 2004; Mothersill et Seymour, 2003; Goldberg et Lehnert, 2002) (Figure 7.2).  

Prior to clinical trials, experiments with animal models could be very useful in 

uncovering the existence and mechanisms of the somatic bystander effect.  

The results obtained while using the animal model systems can potentially be 

extrapolated to different animals and humans. 
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7.3  FUTURE DIRECTIONS: 

1) IR is a well-known carcinogen and IR-induced hematological 

malignancies are the most common IR side effects. Would bystander-

mediated changes ultimately result in a higher frequency of leukemia 

and/or thymic lymphoma? This question remains unanswered up to now. 

To address this important issue, cranially exposed animals need to be 

monitored for 6 month to analyze the frequency of occurrence of 

hematologic malignancies. The first sign of thymic lymphoma 

development in mice is breathing difficulty and enlarged thymus. The 

average weight of an adult mouse thymus is 0.01 g, and a thymic 

lymphoma is defined as a malignancy resulting in an enlarged thymus 

weight >0.1 g. Another sign is spleenomegaly. Should any of these signs 

be observed, this may be indicative of the development of the secondary 

bystander-induced blood malignancy, leukemia or lymphoma. Leukaemias 

and lymphomas can be diagnosed by microscopic examination of blood, 

bone marrow, spleen and thymus, as recommended (Boulton et al, 2002; 

Plumb et al, 1998).  

2) Another important question to answer – what is the signal that 

spreads bystander effects? One could predict the involvement of reactive 

oxygen species (ROS), cytokines, and short RNAs in blood, exposed, and 

bystander tissue (Koturbash et al, 2007; Shareef et al, 2007; Facoetti et al, 

2006). Tissue and blood samples required for measuring ROS levels 

(Amer et al, 2003; Yamato et al, 2003; Kobayashi et al, 2001), cytokines 
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(Neininger et al, 2002; Sullivan et al, 2000) and short RNAs (Kovalchuk 

et al, 2007; Koturbash et al, 2007) can be collected at different time after 

cranial exposure to determine the immediate (30 min – 2 hours after 

irradiation) and long-term (96 hours after irradiation) effects of exposure 

to ionizing radiation. The first time-point can be used for evaluating 

existence of early post-exposure changes, whereas the second one can be 

used for the detection of persistence of the aforementioned factors.   

3) What impact does radiation- induced dysregulation of brain 

function have on the development of radiation-induced bystander 

effect in somatic organs? It is very important to determine if radiation-

induced brain changes partake in bystander effects. This could be done by 

comparing effects of IR damage and other kinds of stress- or trauma-

induced brain damage on distant organs. To answer this question, stroke 

conditions can be simulated in one group of animals (Kolb et al, 2007; 

Metz et al, 2005; Gonzalez et Kolb, 2003); another group of animals will 

receive stress treatment: fear conditioning (Norris et Strickland, 2007; 

Cloutier et al, 2005; Cordero et al, 2003), dietary restriction (Fitting et al, 

2007; Smith et Metz, 2005) or immobilization stress (Gagliano et al, 2008; 

Grimée et Wülfert, 1995). Epigenetic effectors, such as global DNA 

methylation (Kovalchuk et al, 2007, Koturbash et al, 2007; Pogribny et al, 

2005; Koturbash et al, 2005), main histone modifications (Kovalchuk et 

al, 2007; Koturbash et al, 2007; Pogribny et al, 2005), and levels of 

expression of DNA methyltransferases and methyl-binding proteins 
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(Loree et al, 2006; Koturbash et al, 2006b), as well as a miRNA profile 

(Kovalchuk et al, 2007; Koturbash et al, 2007) can be evaluated in 

somatic organs (spleen, liver) to compare bystander tissues from cranially-

exposed animals and a control group. The most recent studies suggest that 

epigenetic mechanisms are involved in the stress response (Darnaudéry et 

Maccari, 2007), what makes this research extremely important nowadays.   

4) Taking into consideration that localized cranial exposure can lead 

to detectable bystander effects in distant somatic organs (Koturbash et al, 

2008; Koturbash et al, 2007), we could infer the influence of somatic 

organ exposure on a protected brain. Would radiation exposure to 

somatic organs result in bystander-effects in the distant shielded brain 

tissue?  Direct brain exposure to ionizing radiation can lead to profound 

functional and morphological changes in brain tissue (Limoli et al, 2004; 

Tofilon et Fike, 2000; Schulthesis et al, 1995), declines in hippocampal 

proliferation and neurogenesis, cognitive dysfunction, learning and 

memory deficits (Monje et Palmer, 2003; Monje et al, 2002), and gene 

expression alterations (Silasi et al, 2004).  Recent data suggest that 

ionizing radiation can lead to the blood-brain barrier disruption (Nordal et 

Wong, 2005; Kaya et al, 2004; Li et al, 2003). This potentially can lead to 

the deleterious changes in brain tissues described above. To evaluate the 

possible existence and mechanisms of the exposed somatic tissue-derived 

bystander effect in brain, a rat model can be developed, where 

experimental animals will receive a clinically relevant dose of radiation to 
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the liver, while the rest of the animal body will be protected by a medical-

grade lead shield. Animals can be sacrificed 4 and 90 days following 

irradiation, to see immediate and delayed changes.  The molecular and 

cellular changes can be studied in liver, brain and blood.  Molecular and 

cellular changes in the brain may be correlated with behavioral patterns. 

Such an approach would allow us to detect the deleterious effects, if any, 

that radiotherapy may have on the shielded brain tissue. Such studies will 

help us understand, at least in part, the enigmatic phenomenon of cancer 

and cancer-treatment related fatigue.  
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Figure 7.1 The scheme proposed to describe molecular and cellular events 

contributing to the in vivo bystander effects and their repercussions. 
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Figure 7.2.  Possible linkage between radiation-induced  

bystander effects in vivo and carcinogenesis. 
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