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Abstract

Technologies like IEEE 802.16j wireless mesh networks are drawing increasing attention of

the research community. Mesh networks are economically viable and may extend services

such as Internet to remote locations. This thesis takes interest into a planning problem in

IEEE 802.16j networks, where we need to establish minimum cost relay and base stations to

cover the bandwidth demand of wireless clients. A special feature of this planning problem

is that any node in this network can send data to at most one node towards the next hop,

thus traffic flow is unsplittable from source to destination.

We study different integer programming formulations of the problem. We propose four

types of heuristic algorithms that uses greedy, local search, variable neighborhood search

and Lagrangian relaxation based approaches for the problem. We evaluate the algorithms

on database of network instances of 500-5000 nodes, some of which are randomly gener-

ated network instances, while other network instances are generated over geometric dis-

tribution. Our experiments show that the proposed algorithms produce satisfactory result

compared to benchmarks produced by generalized optimization problem solver software.
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Chapter 1

Introduction

Access to information has become very important in the modern life. The Internet, the

staple source of information today, is growing richer and larger everyday. The demand on

network bandwidth is also growing as the services and contents on the Internet become

increasingly data intensive. In this context, broadband access to the Internet has become an

important issue.

The success of cellular telecommunication industry has led the business and research

community to further consider the importance of wireless access to the Internet. Many

devices like laptops, personal digital assistants, etc. are widely used, and require wireless

access to the Internet. To address this demand, the wireless industry has also been deliver-

ing technologies such as WiFi, WiMAX, GSM 3G, etc. Historically, wireless subscribers

connected to base stations which were attached to wired networks. Later, when the de-

mand for coverage grew, network relaying was introduced extend coverage. The benefit

of this was two fold: first, it facilitated the expansion of networks, and second, it gave a

wireless alternative to the cable access networks for last mile connectivity. Future wireless

systems are expected to meet higher demands on the quality of service in terms of data rate,

reliability, and cost, among others.

The research in this thesis deals with the design of wireless networks and relaying. It

essentially intends to optimize the establishment cost of a wireless network given informa-

tion about demand, capacity, cost of subscribers, relays and base stations.

In the following section we discuss the development of wireless technologies, the driv-

ing forces behind the development, and some open questions. We focus particularly on

IEEE 802.16j family of wireless mesh networks, which is the underlying technology con-

sidered in this thesis.
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1.1 Background

Wireless mesh network [4] is a communication technology where wireless nodes commu-

nicate with each other in a mesh topology. In a mesh network communication, devices

are generally categorized into clients, routers, and gateways. In such networks all gate-

ways may directly provide a service (for example Internet) and routers relay the data that

must flow between subscribers and gateways. Wireless mesh networking has been used

in technologies such as IEEE 802.11, IEEE 802.15, IEEE 802.16, etc [130]. assumed as

the carrier provider for the design problem Following the great success of WiFi (IEEE

802.11) in replacing old wired computer networks from households and offices, the focus

of the industry and research has been towards eliminating the cost to setup and maintain

the cabling for broadband metropolitan area network. This led to the development of IEEE

802.16, which is now serving as the backhaul1 of broadband wireless access for wireless

metropolitan area network (WMAN) [9]. The inter-operable implementations of the IEEE

802.16 family of wireless network standards is popularly known as WiMAX [9]. The IEEE

Standards Board established a working group in 1999 to develop standards for broadband

WMAN. In February 2004 this group published the first draft for IEEE 802.16. In this

stage the subscriber stations (SS) were supposed to be immobile and in line-of-sight with

the base stations (BS) [134].

The next significant development was the introduction of IEEE 802.16e-2005, deal-

ing with mobility of the subscribers and non-line-of-sight communication between SS and

BS, better support for quality of service, use of Scalable Orthogonal Frequency Division

Multiple Access, etc [134]. Even with this development practical problems existed, such

as signal-to-noise-ratio at the cell edge, coverage holes that existed due to shadowing and

1In a hierarchical telecommunications network the backhaul portion of the network comprises the inter-
mediate links between the core network, or backbone network and the small subnetworks at the edge of the
entire hierarchical network (Wikipedia).
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non-light-of-sight connections, the access requirement of non-uniform distributed traffic in

densely populated areas, etc. In competition with 3G and wired broadband providers, the

WiMAX protocols had to ensure more reliability, had to fill coverage holes, had to support

for maximum mobility. These challenges are conflicting to each other. Increasing data

rate reduces reliability. On the other hand, increase in reliability of service would reduce

coverage area (i.e. the cell size). Reduction of cell size would result in necessity of higher

number of BSs to cover a given area, which would increase the cost of the network [134].

The most promising solution at that point was to insert some low cost relay stations (RS)

between the SSs and BSs, which will route data in between. These relays are used to extend

the capacity and coverage area of the network, and bridge the coverage holes such as areas

in the shadows of buildings and thereby enhance the quality of end-to-end communication

[75]. IEEE 802.16j was an amendment to IEEE 802.16e. It proposed the mobile multi-hop

relay (MMR) network, which takes advantage of the multi-hop wireless connectivity where

data between a BS and SS can be relayed through a RS [75].

IEEE 802.16j widened the scope of WiMAX in terms of increasing throughput and

coverage, giving a solution to the coverage holes inside buildings, and it made it easy to

extend temporary coverage to densely populated areas. The network architecture introduces

many complexities within the already challenging environment of radio access networks

with mobility support [75], for example channel access scheduling in terms of frequency

and time, frequency reuse, RS and BS placement, resource (frequency, time) allocation,

etc [134]. In the following paragraphs we give examples of different types of research

conducted in IEEE 802.16j networks to get a high level idea about them and then survey

research on wireless network design problems which are similar to the problem considered

in this thesis.

In wireless communication the stations in the network share the same communication

medium and interference may occur. To resolve this situation, network resources such as

3



time and frequency were split in time slots and frequency channels. Data transmission is

assigned a slot in time as well as a frequency channel so that nodes that interfere with each

other receive different time slots and channels. Given some network stations in an area,

and resources like time slots and frequency channels, a question is how to allocate these

resources to the stations so that the stations can transmit data without interfering other

stations, and ensuring the best use of these resources. Medium Access Control (MAC)

provides access control mechanisms to wireless medium that make it possible for sev-

eral stations to communicate within a multiple access network that incorporates a shared

medium. A frame is a digital data transmission unit that includes a sequence of bits making

it possible for the receiver to detect the beginning and end of the data unit in the stream of

bits called frame synchronization sequence. If a receiver is connected to the system in the

middle of a frame transmission, it ignores the data until it detects a new frame synchro-

nization sequence. Zhang et. al. studied the performance of a MAC protocol for IEEE

802.16j networks [164]. Tao et. al. in [150] proposed a new frame structure to optimize

relay-based transmissions in IEEE 802.16e networks. Methods to reduce the overhead of

traffic relaying in the network were proposed in [109]. Erwu et. al. in [56] proposed a

down link bandwidth allocation algorithm designed to dynamically allocate resources on

the down link for RSs transmission based on the per frame bandwidth requirement. Tao

et. al. [151] proposed an aggregation scheme for traffic on the relay links (i.e., BS-RS or

RS-RS links) to reduce the system overhead and thus improve the efficiency of utilization

of the MAC frame. Kwon et. al. proposed a scheduling scheme for the relay stations in

IEEE 802.16j MMR networks in [108]. To enable MMR networks satisfy traffic demand

from different user groups Erwu et. al. proposed a bandwidth allocation scheme in [56]. In

the context of applying spatial reuse, an analytical model was used to investigate the system

capacity with varying number of RSs and their transmission power [74]. Sundaresan et. al.
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in [149] proposed scheduling algorithms to help spatial reuse gains from the two hops2 of

the relay-enabled network. Paschos et. al. in [131] showed that spatial reuse could mitigate

the capacity loss, while they were studying an analytical model to investigate cell capacity

with two-hop coverage extension. Other than these there has been a substantial amount of

research focusing on the locational design of wireless networks.

Architectural and topological planning for networks have been a well investigated area

for different wireless networks. Amaldi et. al. used an integer programming model, and a

number of algorithms based on greedy and tabu search [78] to determine better locations

of BSs to cover different traffic densities [8]. A big problem for the cellular phone industry

was to migrate from 2G to 3G networks in such a way that minimum number of cells are

used with minimized associated cost to satisfy the user demands. Abusch-Magder in [2]

proposed a heuristic3 algorithm to determine cell sites, the heuristic worked on ranking cells

based on data generated in simulation and periodic removal of cells from the simulation

model.

Initial studies on the design of IEEE 802.16j system have been carried out by Lin et.

al. [119]. The work presented in [118] formulates an integer programming model on IEEE

802.16d networks and proposes heuristic algorithms to solve the problem of designing a

minimum cost backhaul wireless network (with BSs) to satisfy SS demands without vio-

lating capacity constraints at the BSs. A numerical case study has been presented in the

following work by Lin et. al. in [116] to find the optimal location of a relay to maximize

the system throughput within the RS-BS cell coverage in 802.16j networks. The work,

however, does not address the issues related to the planning of multiple relays. Fu et. al.

2A hop is an intermediate link in a sequence of links connecting two network devices. On the Internet,
data packets go through several routers before they reach destination. Each time the packet is forwarded to
the next router is called a hop.

3A heuristic is a computational technique for problem solving that does not guarantee optimality of the
solution. It is a simple algorithm based on some idea or observation applied on a difficult problem that is
thought to produce an acceptable solution.
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[69] studied the problem of network deployment and radio resource reuse in IEEE 802.16j

MMR networks and a heuristic-based placement of RSs was introduced. The capacity of

an IEEE 802.16j network for up link transmissions using cooperative diversity was evalu-

ated in [157]. The outcome of this research can be used for analyzing the trade-off between

relay deployment cost and capacity improvement.

Yu et. al. in [163] described an integer programming formulation for placement of RS

and BS with an objective to minimizing the cost of their establishment under the constraint

on traffic demand from the users. Standard branch and bound techniques were used to solve

the problem. Although this approach could solve problems of small instances, it could not

handle large instances of metropolitan scale. A clustering approach was applied to the same

problem in [162]. A heuristic algorithm was proposed by Lin et. al. [117] to obtain the

minimum number of RSs in an MMR network.

In 2009 Niyato et. al. [129] presented a relay centric hierarchal optimization model

for jointly optimizing the radio resource management and network planning for the RSs in

MMR networks. The objectives were to maximize the utilization of the RSs, and obtain the

optimal amount of reserved bandwidth. In another algorithm they formulated optimization

problem based on chance-constrained assignment problem to obtain the optimal decisions

on relay placement and base station selection.

In 2010 Ge et. al. [73] published a paper on using IEEE 802.16j technology to improve

vehicle to infrastructure communication in vehicular wireless network. They assumed the

locations of vehicular SSs known, and based on that information tried to obtain the optimal

placement of RSs such that the end to end capacity is maximized. This study incorporated

a highway mobility model and formed the problem as a nonlinear optimization model. The

solution of such a model guarantees maximal end to end capacities to SSs.

6



1.2 Research Problem

The problem considered in this research is a special case of IEEE 802.16j network planning,

where we have at most one layer of relays between the SSs and BSs. It is also assumed

that a SS can get service from at most one RS or BS, and a RS can route data through

at most one BS. This is to make sure that all data packets routed between SSs and BSs

in this network are sequenced in order they were generated, thus simplifying the overall

design of the network protocol. Throughout the rest of the thesis we call this property

‘unsplittable flow’ property of the problem. The objective of the problem is to determine

the optimal placement of BSs and RSs given a set of candidate sites, demand of the SSs,

cost and capacity information of the BSs and RSs. Such placement would also guarantee

the optimal association between BS-RS, RS-SS and BS-SS to ensure quality of service

parameters such as speed, coverage, throughput, etc.

Why this design problem is computationally hard and why it is interesting will be dis-

cussed in detail in later parts of this thesis. We represent the problem in integer program-

ming formulations. We propose local search based heuristic algorithms to get a good ap-

proximated solution in short computational time. We also propose Lagrangian relaxation

based approaches on the problem.

1.3 Organization of the Thesis

Although there is a good volume of literature addressing WiMAX wireless network design

problems both from industry and research, we could not find any literature specifically

addressing the problem studied in this thesis. However, we discuss different optimization

problems which are related to our research problem such as Set Cover, Capacitated Set

Cover, Bin Packing and Unsplittable Maximum Flow in Chapter 2. We also review the

7



available literature on these problems to get an idea about how researchers have addressed

these NP-hard problems.

In Chapter 3 we present two integer programming models of the network design prob-

lem. We also introduce local search and a variable neighborhood search based heuristic

algorithm for minimum cost network design.

Chapter 4 presents another integer programming formulation of the network design

problem and a Lagrangian relaxation based heuristic algorithm for minimum cost network

design. This heuristic also gives us a lower bound to the solution.

Chapter 5 presents the experimental results based on the algorithm described in Chapter

3 and 4.

Chapter 6 concludes the thesis with future research directions.
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Chapter 2

Related Research

In previous chapter we have reviewed different problems in wireless mesh network and

IEEE 802.16j in particular. We observed that IEEE 802.16j introduced different optimiza-

tion problems relating to placement of network stations, scheduling and allocation of time

and frequency channel, etc. Majority of these problems are intended to maximize use of

bandwidth capacity, minimize cost, reduce relaying overhead, maximize system through-

put, maximize reuse of radio resources, etc. The research under this thesis deals with a

wireless network planning problem of optimal cost placement of wireless relays and base

stations under certain constraints of capacity and flow. From the definition of the problem

presented in section 2.1, we see that the problem is characterized by location-allocation,

capacity, flow conservation and cost minimization properties. Later in sections 3.1.1, 3.1.2

and 4.1 we have formulated three mathematical models to represent the problem. It is also

evident from the model in section 4.1 that our research problem can be modeled in terms of

packing and covering constraints. This model uses some trees that combinatorially main-

tain the properties of capacity constraint, flow conservation and unsplittable flow, which

are explicitly used to formulate models in sections 3.1.1 and 3.1.2. We could not find any

literature exactly addressing our research problem, and therefore we review problems that

contain different aspects of our research problem with the intention of finding guidance

about approaches to solve our research problem.

We compare our research problem to three classic computationally hard problems Set

Cover, Bin Packing and Capacitated Set Cover and establish that our research problem

generalizes all these three problems, and thereby prove its computational hardness. These

problems have the notion of location-allocation, capacity, cost and flow, that most network

research problems contain. It is interesting to study these problems to see how different al-

9



gorithms applied to these problems can be useful to solve network design problems. We re-

view the research conducted on these three problems to see what solution approaches have

been applied to handle these problems and measure the quality of solution those achieved.

Since our research problem, by its definition, also relates to unsplittable flow problems, we

also review the research literature available in this area. In the rest of this thesis we will

refer to our research problem as ‘WiMAX planning problem’.

2.1 Problem Statement

The WiMAX planning problem has a set of wireless subscriber stations (SS) with their

bandwidth demands, and some candidate sites where we can establish wireless relay sta-

tions (RS) and base stations (BS) to cover the demands of SSs. The cost of establishment

and bandwidth capacities for these RS and BS are also given. In addition, the channel gains

1 between the locations of candidate sites and SSs, and between RS candidate sites and BS

candidate sites can also be obtained. We assume that there is no power control mechanism

at either end of the channel. From these channel information we can find which RSs and

BSs are close to a SS to connect with, and which BSs are around a RS to connect. The

problem we need to solve in this network is to minimize the total cost of establishing RSs

and BSs to cover the demands of all the SSs. Another constraint intended to enhance the

performance of the network in design is that traffic from any SS or RS in this network can-

not be split when sent to the next hop. This means that all the demand of a SS has to be

served by no more than one RS or BS. Similarly all the traffic going through a RS has to be

served by no more than one BS. Thus we are supposed to choose a subset of RS and BS,

and assign traffic to no more than one link for each SS, and do the same for all the open

RSs while connecting to BSs. BSs and RSs are nodes in the wireless network responsible

1The ability of a receiver station to recover the signal that was sent by its peer.
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BS-1 BS-2

RS-1

RS-2

SS-1
SS-2

SS-3

Figure 2.1: Example problem instance

for routing data. Generally BSs have greater capacity, coverage area and installation cost

than that of RSs. In the context of this problem, we assume that BSs are connected to a

high speed wired network, as a result a SS must connect to a BS to get Internet service. RS

have extended the coverage area of the network.

The problem has two aspects: first is the optimal cost selection of candidate sites for

RSs and BSs such that they have enough capacity to meet the demand of the SSs. The

second aspect is routing traffic from SSs to open BSs through open RSs. We will show that

the problem is computationally hard from both of these aspects.

A graph denoted by G = (V,E) [27] is a collection V of vertices and a set E of edges.

An edge is a pair of vertices. A graph is tripartite [3] if and only if the set of vertices of

the graph can be partitioned in 3 independent sets. An independent set in a graph is a set

of vertices, where now two of these vertices are adjacent. In graph theoretic terminology

the network topology for the mentioned problem can be modeled as a tripartite graph. A

SS can be adjacent to BSs or RSs. A RS can be adjacent to SSs and BSs. The graph is

tripartite, because it is formed by three disjoint sets – set of BS, set of RS and set of SS,

where there is no internal connectivity between the elements of any of these sets.

Figure 2.1 presents an example of the WiMAX planning problem with 3 SSs, 2 RSs

11



Table 2.1: Bandwidth demand, traffic capacity and installation cost in the example problem
instance

Bandwidth Demand Bandwidth Capacity Installation Cost
BS-1 50 15
BS-2 50 30
RS-1 40 20
RS-2 35 10
SS-1 10
SS-2 15
SS-3 10

BS-1

BS-2

RS-1

RS-2

SS-1

SS-2

SS-3

Figure 2.2: Tripartite graph representation of example problem instance
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and 2 BSs. The dashed circles represent the coverage areas of the BS/RS in the center. The

bandwidth demand for the SSs, and the traffic capacity and installation cost for the RSs

and BSs are given in Table 2.1. Figure 2.2 gives the tripartite graph representation of the

example problem instance in Figure 2.1.

This problem can be modeled by a minimization problem in a weighted graph G =

(V,E), where V represents the set of candidate sites and SSs, E represents the connectivities

between the vertices. Let S, R, B be the set of SSs, RSs and BSs, and V = S∪R∪B.

There is an edge between each RS r ∈ R and each SS s ∈ S, if the channel gain between

them is greater than a given threshold. Similarly edges exist between elements of B and

S, and elements of R and B depending on the channel gain. Graph G is a tripartite graph

because there are no edges between elements of S to elements of the same set, and the

same applies for B and R. Each s ∈ S has a bandwidth demand of ds. Each of the RSs have

a bandwidth capacity limit cr, it caps the total amount of bandwidth for the SSs connected

to it. Similarly, each BS has bandwidth capacity limit cb that limits the amount of data

that can arrive at the node. Each of r ∈ R and b ∈ B has establishment cost of fr and fb,

respectively.

We define the incoming flow at RS r ∈ R′ as li(r), and the outgoing flow as lo(r). Flow

li(r) is defined as: li(r) = ∑s∈S:ms(s)=r ds,∀r ∈ R′. By flow conservation at RS, lo(r) =

li(r). By capacity constraint on RS lo(r) ≤ cr. Similarly, the flow at BS b ∈ B′ lb =

∑ms(s)=b,s∈S ds+∑mr(r)=b,r∈R′ lo(r),∀b ∈ B′ by capacity constraint is limited by cb, i.e. lb ≤

cb. The total installation cost of the network is F = ∑r∈R′ fr +∑b∈B′ fb. A feasible solution

to this problem is a subset B′ ⊆ B and subset R′ ⊆ R, and mappings ms : S→ B′ ∪R′ and

mr : R′→ B′. This mapping has to satisfy constraints involving flow conservation at RSs,

capacity constraints at BSs and RSs. Since ms and mr are functions, they naturally satisfy

the unsplittable flow property. The optimal solution is the minimum F over all feasible

solutions.
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BS-1 BS-2

RS-1

RS-2

SS-1
SS-2

SS-3

Figure 2.3: Optimal solution for the example problem instance

BS-1

BS-2

RS-1

RS-2

SS-1

SS-2

SS-3

Figure 2.4: Optimal solution in the tripartite graph representation of the the example prob-
lem instance

Figure 2.3 provides the optimal solution for the WiMAX planning problem with un-

splittable flow in Figure 2.1. The BSs and RSs with filled marks constitute the optimal

solution with establishment cost F = 10+15 = 25.

Figure 2.4 presents the optimal solution in the tripartite graph. The bolded edges rep-

resent the used links and the BSs and RSs in double circle represent the selected nodes for

the optimal solution. Table 2.2 presents the bandwidth utilization in different BSs and RSs

in the optimal solution.

In the following four sections we cover four related optimization problems, which are

special cases of the of the WiMAX planning problem. We describe the nature of these
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Table 2.2: Bandwidth utilization in the optimal result of the example problem instance
Traffic Capacity Bandwidth Utilization

BS-1 50 35
BS-2 50 0
RS-1 40 0
RS-2 35 35

problems, and try to take a look at the solution approaches proposed by different researchers

and the quality of the results obtained.

2.2 Bin Packing Problem

The bin packing problem (BP) is an NP-complete combinatorial optimization problem

where the primary aim is to pack a finite number of items using the minimum number

of bins [10]. Sometimes BP involves other constraints such as capacity, weight, cost, and

priority of items, etc. The BP problem has been widely studied due to its various appli-

cations in job scheduling [154], industrial balancing [29], computer network design [37],

etc. In this section we are looking into the nature of BP problem, its relationship with the

WiMAX planning problem, and the research literature available on it.

Given a set N = {1, ...,n} of items with weights wi, i = 1,2,3, ...,n, the BP problem

consists of finding the minimum number of k bins of capacity C necessary to pack the

items without violating the capacity constraints [10]. In other words, the problem is to

partition a set of items into a minimum number of subsets, such that the sum of the weights

of the items in each subset is less than or equal to C.

To establish the relationship between the WiMAX planning problem with BP, we sim-

plify the WiMAX planning problem relaxing constraints and making assumptions. We

consider the special case where no RS is there in the network, and all the SSs have all the

BSs in their transmission range. Here we give a polynomial time reduction of BP problem
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to the WiMAX planning problem. Since BP problem is known to be NP-complete, the

polynomial time reduction of BP to WiMAX planning problem proves the NP-hardness of

the latter problem.

Lemma 1 The WiMAX planning problem is NP-hard.

Proof: We use the notation introduced at the beginning of this section and the notation for

the WiMAX problem in section 2.1. We construct an instance of the WiMAX planning

problem as follows:

1. Let S, be the set of SSs which contain n elements, i.e. S = {s1,s2, ...,sn}. Let the

bandwidth requirement of si is wi, for i = 1,2,3, ...,n. Let R be empty set. Let B

consist of n BSs.

2. Let C be the capacity of all BS.

3. Let all the BSs have installation cost of 1.

4. Let G be a complete2 bipartite graph.

This reduction can be done in polynomial time. We claim that the BP has a solution in k

bins, if and only if the corresponding WiMAX planning problem has a feasible solution

with cost at least k. This is because, the k bin solution of the BP corresponds to the subset

of BSs with size of the subset as k. Since BP has a polynomial time reduction to a restricted

version of WiMAX planning problem, WiMAX planning problem must be NP-hard. This

completes the proof of NP-hardness of the WiMAX planning problem. �

Many computer-assisted approaches have been developed to solve BP problems. In

1990 Martello and Toth described a branch and bound procedure widely known as MTP

2A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a
unique edge.

16



[124] which is considered as the basic reference in different research and comparative stud-

ies. Another exact method using several bounds, reduction procedures, heuristics, and

a branch and bound procedure using a new branching scheme was proposed in 1997 by

Scholl et. al. in [140]. Schwerin et. al. [143] showed that MTP provides significantly

better results using a bound derived from the cutting stock problem. Valério de Carvalho

proposed a column generation and branch and bound based exact algorithm [152]. Valério

de Carvalho in 2002 published another paper [153] where he reviewed several linear pro-

gramming (LP) formulations for BP problems. He analyzed the relations between the cor-

responding LP relaxations, and their relative strengths, and referred to branching schemes

which can be used. The study found Gilmore–Gomory model [76, 77] a better suited LP

model to solve BP. Crainic et al. further reduced optimality gap3 on [124] and developed

faster methods to obtain more accurate lower bounds [46, 47].

Two of the fastest heuristics for the approximate solution of BP are the well-known

First-Fit Decreasing and Best-Fit Decreasing greedy algorithms [124]. In First-Fit De-

creasing, the items are first placed in order of non-increasing weight. Then they are picked

up one by one and placed into the first bin that is still empty enough to hold them. When no

bin is left in which the item can fit in, a new bin is started. In case of Best-Fit Decreasing

the best-filled bin4 that can hold it can be used to fill an item. This makes the algorithm

slightly more complicated, but no better. Both heuristics have a guaranteed worst-case

performance of 11
9 Opt + 4, where Opt is the number of bins in the optimal solution [42].

Friesen and Langston [68] presented constant factor approximation algorithms for a more

general version of BP in which a fixed collection of bin sizes is allowed, and the cost of

a solution is the sum of sizes of used bins. Correa and Epstein [45] considered a special

version of BP with controllable item sizes, where each item has a list of pairs consisting of

3the difference between a best known solution and a value that bounds the best possible solution.
4the bin that will have least amount of space left after containing the item.
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an allowed size for the item, and a negative penalty associated with it. The goal is to select

a pair for each item so that the number of bins needed to pack the sizes plus the sum of

penalties is minimized.

Heuristic approaches are very useful for problems, for which deterministic methods are

often unable to find the solution within a reasonable time. Kao et. al. described a stochastic

approach to solve BP in [97]. In 1994 Hubscher et. al. [89] proposed a tabu search with

influential diversification algorithm.

The genetic algorithm community has also been taking interest into BP problem. E.

Hooper et. al. [87] reviewed the application of genetic algorithm to the packing prob-

lems. It reviewed 2-dimensional packing problems and their solution using genetic algo-

rithm focusing on problem classifications, genetic operators, and other strategies. Earlier

Falkenauer [58] described a hybrid grouping genetic algorithm for BP in 1996. It used

a grouping approach, the genetic algorithm works with whole bins rather than with indi-

vidual items. Crossover consists of choosing a selection of bins from the first parent, and

forces the second parent to adopt these bins. Any bins in the second parent which conflict

with the adopted bins have their items displaced. Local search is used to replace them into

the solution: free items are swapped with non-free items to make fuller bins which contain

few large items rather than many small items. Any remaining free items are re-inserted

into new bins using the First-Fit Decreasing method. Mutation enforces a few random bins

to have their items displaced and then re-inserted via the local search procedure. Other

genetic algorithms are presented in [53, 59, 91, 137]. Later in 2002 Fleszar et. al. [65]

proposed a few new heuristics to BP, the most effective of them being based on the variable

neighborhood search (VNS) metaheuristic5 [82] and using new lower bounds proposed by

[61].
5Metaheuristics are computational frameworks that optimizes a problem by iteratively trying to improve a

candidate solution with regard to a given measure of quality. These algorithms, do not guarantee an optimality
of solution.
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In 2004 Levine et. al. [112] proposed an ant colony optimization (ACO) [52] approach

to solve BP. The paper presents a pure ACO approach, as well as an ACO approach aug-

mented with local search algorithm. Test results showed that the hybrid evolutionary ap-

proach could outperform the pure ACO approach for certain problem classes. In the same

year Alvim et. al. [7] proposed a hybrid improvement procedure with several features: the

use of lower bounding strategies; the generation of initial solutions by reference to the dual

min-max problem; the use of load redistribution based on dominance, differencing, and un-

balancing, and an improvement process utilizing tabu search. This approach outperformed

many of the previous benchmarks, and proved its robustness to perform competitive on

all 11 classes of test problems, whereas most approaches reported in the literature could

perform well on a subset of the 11.

Meta-heuristics such as simulated annealing [31] and tabu search [122, 145] have been

applied to solve higher dimensional BP problems. Evolutionary algorithms [135] including

genetic algorithms [93, 120, 161] have also been applied. Most of the evolutionary and ge-

netic algorithms are hybridized with heuristic placement routines. These algorithms search

for optimal input sequence of items, and the placement routine determines the packing

of inputs in sequence into bins [121]. In 2006 Bansal et. al. [16] proposed an approxi-

mation algorithm based on combination of randomized rounding of the optimal solution

of LP relaxation to get to a partial integer solution. A more recent study of 2007 Liu et.

al. [121] formulated a multi-objective two-dimensional mathematical model with multi-

ple constraints for BP problems. To solve it a multi-objective evolutionary particle swarm

optimization [100] algorithm has been proposed.

Another recent work by Baldi et. al. [127] introduced the generalized BP problem,

where given a set of items characterized by volume and profit and a set of bins with given

volume and cost, aim is to select the subsets of profitable items and appropriate bins to

optimize the cost of the used bins and the profit derived by loading the selected items.
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The generalized BP problem thus generalizes many other packing problems, including the

BP problem, the variable cost and size BP problem [71], Knapsack problem, etc. The

paper also presents two mixed integer programming formulations of the problem. One of

these yields an efficient column generation based lower bound method, as well as first fit,

best fit, and column generation-based upper bound procedures. New instance sets are also

introduced and analyzed here, with the results showing that the proposed procedures are

efficient and the bounds are tight.

2.3 Set Covering Problem

Set covering (SC) problem [70] is one of the oldest and most widely studied problems

in combinatorial optimization. SC problems are computationally difficult optimization

problems that have great theoretical significance as well as practical use in areas such as

scheduling [14, 11], resource allocation [139], VLSI [6], etc. SC problems arise in differ-

ent practical situations of operations research, machine learning, planning, data quality and

data mining, etc. The SC problem was proved NP-hard [96].

Let U be a set of m elements, and P = {p1, p2, p3, ..., pn} be a collection of subsets of U.

Set covering problem is selecting fewest possible subsets from P that include every element

in U. U is called the ground set or the set universe. A set cover of U is a subset P′ of P

satisfying ∪p∈P′ p = U . In SC problem we intend to find the set cover P′ with minimum

cardinality.

To establish the relationship between the WiMAX planning problem with SC, we sim-

plify the WiMAX planning problem by relaxing constraints and making assumptions. We

restrict to the special case where no RS is there in the network, and all the SSs have a de-

mand of 1 (unit demand). We also assume that all the BSs can serve the demands of all the

SSs, which are in their transmission range.
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Let U be the set of m SSs and P be the set of n BSs, i.e. P = {p1, p2, p3, ..., pn}, where

BS pi has within its communication range a subset of SSs. Let the establishment cost of BS

pi be ci, for i = 1,2,3, ...,n. The construction of this special case of the WiMAX planning

problem is a reduction to min-cost SC problem. Considering all the BSs have installation

cost ci = 1 for i = 1,2,3,...,n, WiMAX planning problem can be further reduced to the SC

problem.

The issue of exact resolution of NP-hard problems like SC by algorithms has been

actively studied over the last two decades, and a number of optimal algorithms have been

experimented. Most of these algorithms are based on tree-search procedures such as branch

and bound. Two classical exact solution approaches have been discussed in [15, 20], which

can solve small size problems at considerable computational cost. Balas et. al. in [15] re-

port on the implementation and computational testing of an algorithm, based on the cutting

planes from conditional bounds, feasible primal and dual solutions, subgradient optimiza-

tion of a Lagrangian function, and implicit enumeration with branching rules. Beasley

et. al. [20] present a 3 step algorithm for the SC problem that combines a dual ascent

procedure, a subgradient optimization procedure starting from an initial set of Lagrange

multipliers equal to the dual variables from previous step, and solving the dual of the linear

programming relaxation of the SC problem.

In 1990 Fisher et. al. [64] presented an optimal solution algorithm based on a dual

heuristic. The algorithm could handle SC problems up to an instance where the size of the

ground set is 200 and there are 2000 subsets. In the same year Karmarkar [98] proposed

an interior-point approach to solve 0-1 integer programming problems. He converted the

SC problem to non-convex quadratic programs over polytopes. Experiments using his al-

gorithms with the Steiner triple systems [70] was published in the following year 1991 by

Karmakar et. al. [99]. The algorithm produced the best known covers for all test instances,

however, they observed that a local optima was encountered during solution and the effect
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caused by the local optima was very large running time for large instances of problems.

Beasley et. al. [23] combined a Lagrangian heuristic, feasible solution exclusion con-

straints, and an improved branching strategy to enhance Beasley’s previous algorithm [20]

and solved problem instances with size of the ground set up to 400 and there were up to

4000 subsets. Harche et. al. [83] developed an exact algorithm, which was capable of solv-

ing large sparse instances of SC problems. These optimal solution algorithms are based on

tree-search procedures. Harche et. al. named it the Column Subtraction Algorithm. More

recent results using exact resolution techniques are presented in [66, 80, 155].

The pioneering research proposing approximation algorithms for SC problem with a

worst-case analysis are presented in [95, 123, 41]. These approaches use natural greedy

algorithm. This algorithm chooses to include one of the sets of maximum residual cardi-

nality into the solution in every step of its greedy choice. In 1974 Johnson [95] showed that

the greedy algorithm gives an approximation ratio of lnm. In 1996 Slavı́k [147] presented

analysis on lower order terms of approximation ratio for the greedy algorithm and showed

that the greedy minimum SC algorithm achieved a tighter ratio of O(logm). Lovász [123]

used a linear programming relaxation that approximates SC within a ratio of lnm. In [54],

using semi-local optimization techniques, a 1
2 + ln|P∗|-approximation algorithm was given

by Duh et. al., here P∗ is the maximum cardinality set in P. Other researches around

approximation of minimum SC by polynomial algorithms are presented in [86, 79, 132].

Chvatal [41] extended the work of Johnson to the weighted version of SC. In this case the

greedy algorithm chooses to include one of the sets, maximizing the ratio between resid-

ual cardinality and weight, into the solution in each step of its greedy choice. Analysis of

the low-order terms of the approximation ratio for the linear programming approach was

provided by Srinivasan [148].

Researchers also used Probabilistically Checkable Proof (PCP) theorem [12] to deal

with the quality of possible approximation of SC problem. Feige [60] showed that mini-
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mum SC cannot be approximated with an approximation ratio better than (1− ε) lnm, for

every ε > 0. This result exhibits the large gap between quality of approximation achiev-

able in polynomial time and results that can be obtained in exponential time. Bourgeois et.

al. [28] presented a review of recent works on approximating minimum cost SC problem.

Recently Åstrand et. al. [13] in 2010 presented a distributed algorithm that finds minimum

SC. They worked with minimum weight SC problem and proposed an f -approximation

algorithm (here f is the maximum frequency of an element). A computational comparative

study of different approximation algorithms for SC problem can be found in [81].

In the year 1980 Vasco et. al. [15] presented implementation and computational testing

of several versions of a SC algorithm. They used different cutting planes obtained from

conditional bounds. The algorithm used a set of heuristics to find prime covers, another

set of heuristics to find feasible solutions to the dual linear program which are needed

to generate cuts, and sub-gradient optimization to find lower bounds. It also uses implicit

enumeration with branching rules. Another heuristic solution procedure for SC is presented

in [156]. In 1990 Beasley [21] presented a Lagrangian heuristic algorithm and reported that

his heuristic gave better quality results than algorithms in [15, 156], for problems involving

up to ground set of size 500 and 5000 subsets.

Later in 1993 Jacobs and Brusco [94] developed a heuristic based on simulated anneal-

ing and reported on SC problems with up to ground set size of 1000 and 10000 subsets.

In the same year Sen [144] presented results from experiments with a simulated annealing

optimization technique for solving the minimum cost SC problem. Experimental results

indicated that the algorithms were good to find optimal result for small size problems, and

also could find acceptable solutions for mid size instances. The increase in running time of

the algorithm with increase in problem size was polynomial.

Some of the research on SC problem used ACO approach. Lessing et. al. [111] in

2004 studied the behavior of different ACO variations to solve SC problem. Ren et. al.
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[138] presented an ACO approach to SC problem. They proposed a constraint oriented

solution construction method. The construction works as follows: while adding a subset to

the partial solution, the algorithm randomly selects an uncovered element from the base set

and only considers the subsets covering the element. This process decreases the candidate

solution components and accelerates the speed of the algorithm. A local search procedure

is incorporated with this. The local search aims at eliminating redundant subsets from

the partial solution and replaces subsets with more effective ones while maintaining the

feasibility of the solutions. Crawford et. al. in 2009 added a post preprocessing stage with

ACO to get better results on SCP problem [48]. Although this improved the solution, it

took relatively longer computational time.

Earlier in 2006 Yagiura et. al. presented a 3-flip neighborhood local search method in

[160]. The main feature of this local search was the 3-flip neighborhood which is the set

of solutions obtainable from the current solution by exchanging at most three subsets. The

search was allowed to visit the infeasible regions, and incorporated a strategic oscillation

technique realized by adaptive control of penalty weights. The problem size was reduced

by using information from the Lagrangian relaxation, this was very important to solve very

large instances.

Liepins et al. [114, 115] investigated genetic algorithms for SC problems with two

types of crossover operators in conjunction with three penalty functions and two multi-

objective formulations. Their results are encouraging and point to the greedy crossover,

and tight upper bounds for cost of completion of covers (as a penalty function). Feo et. al.

[62] pursued a non-deterministic method for solving SC problem. The procedure is based

on Chvatal’s greedy approach [41]. In order to improve upon Chvtal’s approach they intro-

duced randomization. Huang et. al. [88] introduced a genetic algorithm based approach for

SC problems. The paper described the procedure for generating a new penalty function to

produce better results. In addition it demonstrated that uniform crossover is more efficient
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than the greedy crossover. The paper also proposed a mutation operator that can approach

the optima from both sides of feasible/infeasible borders, and thereby accelerates the con-

vergence to the optimal solution. Huang’s approach performed better than the results of

Feo. et. al. [62]. In 1996 Basely et. al. [22] proposed a genetic algorithm-based heuristic

for non-unicost SC problems. The proposal had several modifications to the basic genetic

procedures including a new fitness-based crossover operator (fusion), a variable mutation

rate and a heuristic feasibility operator tailored specifically for the SC problem. The per-

formance of the algorithm was evaluated on a large set of randomly generated problems.

Computational results showed that the the heuristic is capable of producing high-quality

solutions.

Some of the researchers considered SC problem for very large data sets, especially

when the data is disk resident. Berger et al. [24] was concerned with parallelizing the

heuristic for SC problem. They allowed multiple computing entities with shared memory

to choose sets at the same time. This work also used randomization to ensure that multiple

processors do not pick sets which cover the same elements redundantly. This algorithm

assumed full random access to the memory for all the processors. A very recent study in

2010 by Cormode et. al. [44] observed that the natural greedy algorithm for SC problem,

that picks up the set with largest number of uncovered items at every step, does not work

for very large data sets. This is because the natural greedy algorithm makes random access

to the disk, which is costly in comparison to linear scans. This paper proposes an algorithm

which finds a solution close to that of greedy, and is more efficient to implement using

modern disk technology.
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2.4 Capacitated Set Covering Problem

In this section we consider the set covering problem with capacity constraints, the Capac-

itated Set Covering (CSC) problem [34]. CSC problem can be seen as a generalization of

the bin packing problem that include several types of bins. Given a set of elements U, each

element with its demand, a set P of subsets of U (types of bins), and an upper bound on

subset capacity, the objective is to partition the elements into a minimum number of copies

of the subsets (bins) so the total demand of elements assigned to each set copy does not ex-

ceed the upper bound on set capacity. The CSC problem is an NP-hard problem [34], and

is a natural generalization of a real world problems that capture practical scenarios where

resource limitations are present. As an example, the goal in the minimum Steiner tree

problem [90] is to find the minimum cost subgraph connecting terminals to a root. We can

consider this as a set cover problem. To show that we consider each graph cut separating

a subset of terminals from the root as an element, and each edge in the graph is consid-

ered a set that covers every cut that the edge crosses. With the terminals having bandwidth

requirements, and the edges having capacities, this corresponds to a CSC problem.

Let U = {1,2,3, ...,n} be a ground set of elements, and let P be a collection of sets

defined over U (i.e. P ⊆ 2U , with 2U the set of all subsets of U). Each P′ ∈ P has a non-

negative cost w(P′) associated with it. A cover C is a collection of sets such that their union

is U .

To define CSC, Carr et. al. [34] assumed that each set P′ ∈ P has a capacity k(P′)

associated with it, meaning that it can cover at most k(P′) elements. The goal was to find a

cover of minimum cost that maintains the capacity constraints.

CSC problems are basically two kinds: soft capacities problem and hard capacities

problem. In case of soft capacities, an unbounded number of copies of each covering

object is available. For hard capacities each covering object (P′ ∈ P) has a bound m(P′) on
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the number of available copies. Thus, a cover C is a multiset of input sets that can cover all

the elements, while C contains at most m(P′) copies of each P′ ∈ P, and each copy covers

at most k(P′) elements. [40]

Bansal et. al. [18] perceived CSC problem in a slightly different way. Here the elements

of U have demands d : U → R+, each element in P have supplies s : P→ R+. The goal

here is to find a minimum cost subset P′ ⊂ P such that for each element e, the total supply

of sets in P′ that cover e is at least d(e).

To establish the relation between WiMAX planning problem with CSC (as defined by

Bansal et. al. [18]), we simplify the WiMAX planning problem to a special case where no

RSs are there in the network. We construct an instance of the WiMAX planning problem

as follows:

1. Let U be the set of SSs with demand d(e) for all e ∈U .

2. Let R be empty set.

3. Let P be the set of BSs with non-negative installation cost w(P′) and capacity k(P′)

for all P′ ∈ P. BS P′ ∈ P can serve a subset of SSs UP′ ⊆U .

As per definition of CSC, the above construction on an instance of WiMAX planning

problem produces an instance of CSC with bound on multiplicity m(P′) = 1 on the number

of available copies of P′ ∈ P.

In 1981 L. Wolsey published a research [159] on submodular6 set covering problems

and proposed an approximation algorithm. This algorithm used the classical greedy al-

gorithm in [41] for set covering problem. It selects a set whose addition to the cover

maximizes the ratio of the increment of processed demand to the set cost. Thus, the ap-

proximation factor relies on k, as the maximum possible increment of processed demand
6Let f be an integer valued function defined over all subsets of a finite set of elements E. Function f is

submodular if f (S)+ f (T )≥ f (S
⋂

T )+ f (S
⋃

T ) for all S,T ⊆ E.
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due to the addition of a single set to the cover. Thus Wolsey’s proposed algorithm is an Hk

approximation algorithm for CSC problems, where Hk = 1+ 1
2 + ...+ 1

k , k is the maximum

capacity of a set P′ ∈ P. This algorithm is applicable to both the hard and soft capacity

versions of CSC. Later in 2007 Alfandari [5] was studying capacitated facility location

problem with soft capacities and proposed an (1+ ε)Hn-approximation algorithm for any

ε > 0, n is the number of elements in the universal set U . Since this algorithm does not

consider the edge distances, it can be used for CSC problem with soft constraints.

Earlier in 2000 Carr et. al. [34] investigated the usefulness of a standard integer pro-

gramming (IP) formulation and its linear programming relaxation (LP) for finding good

approximations of capacitated covering problems. They observed that the ratio between

integer optimal solution and optimal solution to the linear programming relaxation can be

arbitrarily large for capacitated covering problems. It is because of this fact that a good

approximation guarantee cannot be obtained from the linear programming relaxations of

capacitated cover problems. Carr et. al. proposed introduction of a new class of simple

inequalities to the linear program, called the flow cover inequalities, to strengthen the linear

programming relaxation. They showed that for particular instances of capacitated covering

like minimum knapsack and capacitated network design, that these inequalities could yield

better IP/LP ratios. Carnes et. al. [33] used flow cover inequalities proposed by Carr et.

al. to develop a primal-dual schema for capacitated covering problems. The primal-dual

algorithms by Carnes et. al. was tested on three special cases of CSC – Minimum Knapsack

Problem, Single-Demand Facility Location Problem and Single-Item Lot-Sizing Problem.

These algorithms could achieve a worst case performance guarantee of 2. More recent

works on capacitated covering problem can be found in [40, 57, 72].

In 2010 Berman et. al. [25] proved that CSC problems can be approximated by a

polynomial time algorithm with approximation ratio r+ 1.357 if the underlying uncapac-

itated version can be approximated with ratio r by the same algorithm. In the same year
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Chakrabarty et. al. [35] considered the correlation between CSC, and the underlying stan-

dard set cover problem. They tried to exploit information from the matrix A to make a

good approximation to the CSC problem. Chakrabarty et. al. proposed to reduce the ap-

proximability of CSC to the problem of bounding the integrality gaps of the standard LP

relaxations of 0,1-covering problems. They considered two classes of such problems. The

first is the Underlying 0,1-Multicover Problem, which is the family of weighted set multi-

cover7 instances defined by matrix A. The second is the Priority Covering Problem that

is obtained from the CSC instance, and priorities πP′ and πe for all sets P′ ∈ P, elements

e ∈U , and π : U ∪P⇒ Z+. In this case a set P′ covers element e, if e ∈ P′, and if πP′ ≥ πe.

Chakrabarty et al. showed that if α and β are upper bounds on the integrality gaps in the

Underlying 0,1-Multicover Problem and Priority Covering Problem respectively, the CSC

has a O(α+β) approximation for the given instance.

A question left open in [35] was the significance of matrix A being a network matrix8.

In 2011 Bansal et al. [17] addressed this specific case and proposed an O((log log smax)
2)

approximation to the CSC problem, where smax is the largest supply. Another very recent

work by Chan et. al. [36] improved over the work by Bansal et. al. and proposed an

O(log log N) approximation for CSC, where N is the number of elements in the universal

set.

In another study Chang et. al. in 2011 [38] considered a special case of the CSC prob-

lem with maximum cardinality of a set fixed to 2. Interestingly for this problem the cor-

responding uncapacitated set covering problem is the maximum matching problem, which

is polynomially solvable. Chang et. al. proposed a 1.5 approximation algorithm for this

7the usual generalization of standard set cover where an element may wish to be covered by several
distinct sets, instead of just one.

8Let G = (V,E) is a directed graph9 and let T = (V,E ′) be a directed tree. Let C be the E ′×E matrix
defined as follows. Take a′ ∈ A′ and a= (u,v)∈ A and let P be the undirected u−v path in T . Define Ca′,a :={
+1 if a′ occurs in forward direction in P, -1 if a′ occurs in backward direction in P, 0 if a′ does not occur in
P.}Matrix C is called network matrix generated by T = (V,E ′) and G = (V,E) [142].
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special case of CSC.

2.5 Unsplittable Flow Problem

In the unsplittable flow problem (UFP) [103], given a graph with edge capacities and a set

of source nodes and destination nodes, and bandwidth requirements associated with each

of the destination nodes, we are supposed to find a set of source-destination paths to satisfy

the demands in the destinations such that there is exactly one path between a source and a

destination. The demand of each destination must be routed so that the total flow through

any edge is at most its capacity. The single source UFP was introduced by Kleinberg [103]

in 1996. In this problem, data must be routed simultaneously from the one source node to

the destinations in the given graph.

UFP is a generalization of edge-disjoint path problem [103], where every edge has

a positive capacity, and every commodity has a demand which should be routed in an

unsplittable manner. It is an NP-hard variant of maximum flow problem [103]. If we

relax the constraints that each source-sink flow should use exactly one path, and if all

sources coincide at a vertex and all the sinks at a vertex, it reduces to the maximum flow

problem which is solvable in polynomial time. The problem can also get reduced to other

polynomial time solvable problems like minimum cost flow, if there is cost associated on

the edges, depending on the objective.

The WiMAX planning problem prohibits the splitting of flow between SSs and BSs,

i.e. data in this network flows through no more than one path between a SS and the BSs.

This nature of traffic relates the problem in hand with the UFP. In this section we study

single-source case of UFP, the different optimization variants of it, and try to see what

approximation and heuristic approaches have been applied on the problem.

Let G = (V,E) be a directed graph with edge capacities u : E → R+ and cost function
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c : E → R+, a designated source vertex s ∈ V and k commodities each associated with a

terminal ti and a demand di ∈ R+, 1 ≤ i ≤ k. Here R+ is the set of positive real numbers.

The single source UFP asks for a feasible unsplittable flow which can route di units of

commodity i along a single s− ti path for each i without violating the capacity constraint

of any edge e ∈ E. Here we use T ⊆ V to denote the set of k terminals, |T | = k, |V | = n,

|E|= m [102].

An unsplittable flow f contains a set of paths {P1,P2, ...,Pk}, where Pi starts at the

source s and ends at ti. The cost of a path Pi is defined as C(Pi) = ∑e∈Pi ce and the cost c( f )

of a flow f is given by c( f ) = ∑e∈E ce fe, (with fe as the total flow on edge e, i.e. ∑e∈Pi di).

From the available literature [103, 51, 105] we can identify four main optimization

versions of the problem:

1. Maximization: What is the routable subset of terminals of maximum total demand?

In other words, we are to find a subset of T1 ⊆ T which can be routed unsplittably

such that ∑i∈T1 di is maximized?

2. Routing in Rounds: What is the minimum number of rounds we can partition the

terminals into, such that terminals in the same round are unsplittably routable?

3. Congestion: What is the smallest value by which we can multiply all the capacities

to satisfy all the demands?

4. Minimum Cost: What is the least flow cost to route all the commodities with un-

splittable flow?

To establish a relation between the WiMAX planning problem with UFP, we consider

minimum cost single source UFP first. Given an instance of WiMAX planning problem,

we construct an instance of UFP. We simplify the WiMAX planning problem and restrict

it to a special case where there is only one BS s′ in the network. Let T be the set of k SSs
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with demand di associated with SS ti for i = 1,2, ...,k. Since UFP has capacities and costs

on the arcs of the network, we will replace the BS and each of the RSs in the network as a

couple of vertices connected by a directed edge. We associate the capacity and cost of the

BS and RSs on this new edge. Let r′ be any RS connected to BS s′ and set of SSs T ′r . In

the new graph RS r′ will be represented as adjacent vertices r and rin, and a directed edge

with capacity ur and cost cr on the edge from rin to r. The value of ur and cr will be the

same as capacity and cost on RS r′. Each SS t ∈ Tr has a directed edge towards rin, the

capacity of this edge is set to +∞ and the cost is set to 0. r has a directed edge towards BS

s′ with capacity and cost on the edge set to +∞ and 0 respectively. The same is done for

BS s′. Figure 2.5(a) presents an instance of WiMAX planning problem, and Figure 2.5(b)

presents the UMF relaxation Figure 2.5(a).

Following the definition of UFP, if there is a unsplittable flow f with cost c( f ) satis-

fying all the demand of the elements of T in the network instance constructed above, the

corresponding instance of WiMAX planning problem has a feasible solution with the same

cost. The converse is also true.

We can extend the above construction to a case where there is more than one source

S⊂V in G, and the unsplittable flow has to ensure a single path between si ∈ S to all ti ∈ T

to satisfy all di. This is a relaxation of WiMAX planning problem where we allow RSs to

connect to multiple BSs, however they have to route the demand for a particular SS through

exactly 1 BS.

The first constant factor approximations for single source UFP were given by Klein-

berg [103, 102]. He assumed that the minimum of edge capacities is greater or equal to the

maximum demand (the no bottleneck assumption) and scaled the demands and capacities

such that all capacities are at least 1 and all demands are at most 1. The algorithms pre-

sented here are based on rounding methods for converting fractional flows into unsplittable

flows. The fractional flow for single source UFP is the classical max flow problem [67] or
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Figure 2.5: Example of transforming WiMAX planning problem to UFP
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min cost flow, depending on the objective. Kleinberg’s algorithm finds a set of trees in G

such that every node of G is in at least one such tree. Such set of trees is called the tree

cover of G. Every tree in this tree cover set contains the amount of demand corresponding

to the terminals that are in the tree. These trees are subgraphs of G with terminals as the

leaves of the tree. Each of these trees in tree cover set also have a small subset of edges

in G. Such a tree cover can be obtained from G by running a depth first search on a span-

ning tree of G, while making sure that the total demand in a group is within predefined

bounds. The root node from each of these trees is chosen (as leader), and a path is found

from this (leader) node to the source. Thus the terminals in each tree are routed to their

leader using the edges of the tree and concatenating this path with the path from the leader

to the source the unsplittable flow is obtained. The demand maximization algorithm routes

(1−O(
√

dmax)OPTd , where OPTd is the optimal value for version concerning with maxi-

mizing total demand. Kleinberg’s algorithm routes all demands unsplittably with conges-

tion at most (1+O(
√

dmax/OPTc)OPTc. Here OPTc is the optimal value for the congestion

minimization version. If dmax < 7/4−
√

3 and a maximum fractional flow exists, the total

demand can be unsplittably routed in 2 (two) rounds. Kleinbuerg gave 16-approximation

algorithm for minimum congestion in directed graphs, and 8.25-approximation in the undi-

rected case.

Kolliopoulos et. al. [106, 104, 105] also adapted the no bottleneck assumption of Klein-

buerg. Algorithms presented in [105] first found the max flow. Information from max flow

is then used to allocate capacity to different subproblems, where each subproblem contains

demands in a fixed range. A separate near-optimal solution to each subproblem is found

and the solutions are then combined. This paper presented a (3.23+o(1))-approximation

for both directed and undirected graphs in the case of minimum congestion. They give

1.68 approximation algorithm for congestion with a simultaneous performance guaran-

tee 3.23 + o(1) for cost denoted by (1.68,3.23 + o(1)) simultaneous approximation on
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both directed and undirected graphs. The best known existing result [103] at that time for

undirected graphs was simultaneous (7.473,10.473) approximation for cost and congestion.

Concerning maximum routable demands, [105] showed that their algorithm could route at

least .075 of the optimum. Concerning the number of rounds, [105] showed how to route

all the demands in at most 13 times the optimum number of rounds. The work in [106, 104]

are developments on the research presented at [105]. Kolliopoulos et. al. in [106] gave a

(3, 2)-approximation for congestion and cost.

In 1999 Dinitz et. al. [51] assumed the no bottleneck condition, and another assumption

called the cut condition. The cut condition states that for any set S of vertices of G that

does not contain the source s, the total demand of the terminals within S is at most total

capacity of the edges entering S. For the congestion minimization problem, they obtain an

unsplittable flow where the increase in congestion is at most dmax. Dinitz et. al. showed

that the congestion on any edge a is at most fa + dmax, given fractional flow f satisfying

all demands in an instance where the no bottleneck condition holds. The assumption that

all capacities are at most 1, gives an unsplittable flow with congestion at most 2. Thus

Dinitz et. al. improved the congestion bound to 2. They showed that any splittable flow

satisfying all demands can be turned into an unsplittable flow while increasing the total

flow through any edge by less than the maximum demand [51]. Their algorithm had a

congestion rate of (3+2
√

2), while assuming that there might be bottleneck on some edges.

Concerning number of rounds, they showed that all the demands can be routed unsplittebly

in 5 rounds. Concerning maximum routable demands, their algorithm can satisfy 22.6% of

the total demand by unsplittable routing. Dinitz et. al. extended results to the case when

the cut condition is not satisfied. For this case they derived a 2-approximation algorithm

for congestion, 5-approximation algorithm for number of rounds, and 4.43- approximation

for maximum routable demand.

Earlier in 1990, Lenstra et. al. [110] show that the minimum congestion problem cannot
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be approximated within less than 3/2, unless P = NP. Another negative result was due to

Erlebach et. al. [55], who prove that for arbitrary ε > 0 there is no (2−ε,1)-approximation

algorithm for congestion and cost unless P = NP.

In 2002 Skutella [146] improved the (3,2)-approximation algorithm for congestion and

cost of Kolliopoulos et. al. [106, 104] to a (3,1)-approximation algorithm. Skutella also

assumed that no edge in his instance graphs could be a bottleneck, i.e. min ui ≥ max

di. He named the instances that satisfied this assumption as balanced instances, and the

violating ones as unbalanced instances. Instances in which maximum demand is ρ times

the minimum capacity for ρ> 1, are ρ−unbalanced. Skutella showed that, unless P=NP,

congestion cannot be approximated within less than (1+
√

5)/2 for the case of (1+
√

5)/2-

unbalanced instances. Let f j
i (e) is the flow on edge e. The algorithm here starts with a

fractional flow f 1
0 of minimum cost satisfying all demands. If the algorithm ever finds an

edge with 0 flow, it is removed. Otherwise, it considers the demands in non-decreasing

order. At each iteration i, the terminal with the next smallest demand di is processed. The

flow from the previous iteration f 1
i−1 is used to set new edge capacities ui

e. Thus, a di-

integral feasible flow f 0
i with cost at most the cost of the previous flow is obtained. This

flow is di-integral and satisfies all demand, therefore there is at least one path Pi from s to

ti and all edges on this path have at least di flow. Hence, the demand of terminal ti can be

routed along Pi and the flow on this path is then decreased by di. The flow at the end of this

iteration is denoted by f 1
i . The algorithm ends with a set of paths P1,P2, ...,Pk along which

demand for each terminal can be routed from the source. The flow on any edge e is at most

f 1
0 (e)+dmax and the cost of the flow is less than the cost of f 1

0 .

More recently in 2007, Peng et. al. [133] considered the minimum cost version of

single source UFP, and proposed (3+ 2
√

2,1)-approximation algorithms for minimizing

congestion and cost.

Some of the works mentioned in the literature applied branch and bound based exact
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methods to solve UFP. Pióro et. al. [136] reported that application of branch and bound

based methods on UFP is limited to at most medium sized networks (around 20 nodes).

This is why the heuristic methods seems to be promising to get a good solution in reason-

able processing time. Greedy algorithm (GA) has been the most intuitive approach to solve

the UFP. The natural greedy algorithm [102] for UFP processed all connections in one pass

and either allocate the processed request to the shortest path or reject the request if such

feasible path does not exist. A modification of greedy called bounded greedy algorithm

(BGA)[107, 102] works in the following steps: Let L be a suitable chosen parameter. Re-

ject the request if there is no feasible path of the length at most L hops. Otherwise accept

the request. Another version of GA, careful BGA (cBGA)[107], orders the requests ac-

cording to their demands starting with the heaviest. cBGA accepts a request if there exists

a feasible path for the request such that after routing the request the total flow on at most√
|E| edges of the path is larger than half of their capacity, where |E| is the total number

of edges in the input instance. Walkowiak [158] proposed two new heuristic algorithms

to address the unsplittable flow problem: Greedy Algorithm with Preemption (GAP) and

Greedy Algorithm with Preemption and Flow Deviation (GAPFD). These algorithms can

be applied for flow optimization in networks of various size and topology. The key idea of

their algorithms centers around the preemption and re-optimization of already established

connections. In this case preemption is done by removal of already established connections

from the network to enable establishment of other connections. This paper also presents

result from numerical experiments, where performance of existing heuristics [107, 102]

have been compared with algorithms proposed. Reported results show that GAPFD out

performs other algorithms.

A generalization of UFP is multiple sources unsplittable multicomodity flow problem,

where there is a set of sources S = {si, i > 1} instead of a single source s and demands

are requested between terminal pairs (si, ti). The unsplittable flow solution in this case
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has paths Pi connecting each of the ti ∈ T to exactly one of si ∈ S. These problems are

also found in different practical world scenarios and mentioned in literature as unsplittable

multicomodity problem, this class of problems is proven to be NP-hard [39]. Unsplittable

multicomodity problem has been investigated by researchers with different objectives such

as minimizing cost [113], minimizing congestion [26], etc. In 2000 Barnhart et al. [19]

proposed an exact method for this problem, the limitation though is it cannot handle in-

stances beyond small size networks. Approximation algorithms [39, 49] have also been

used to solve the problem. In 2009, a meta heuristic approach based on ACO was proposed

[26]. Masri et. al. [125] in 2011 studied the single path multi-sources multi commodity

communication flow problem (MMCF) in the context of a computer network. Messages

are to be routed in a capacitated network including a set of source nodes and terminals.

Each edge in the network is characterized by a capacity, a transmission delay and a cost.

Masri et. al. proposed a mathematical formulation of the MMCF as a 2-objective optimiza-

tion problem that minimizes the overall cost and delay. Structural constraints are respected

as the capacity on the edges and the single path for routing messages. A solution of the

proposed model provides for each request the assigned source node, the transmission path

as well as the bandwidth allocated along the path. They proposed an ACO meta heuris-

tic to solve the problem. The algorithm implements an iterative reverse path construction

strategy so that the ants start from the terminals and move until reaching the source. At

each iteration, a uniobjective nonlinear subproblem is solved to optimize the bandwidth

allocation for each generated path, so that the transmission rates of the sources will be set

by the routing algorithm [125]. Masri et. al. also proposed a lower bound approximating

the total delay.
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2.6 Summary

In this chapter we have reviewed the available literature on four classical NP complete

problems – Set Cover, Capacitated Set Cover, Bin Packing and Unsplittable Flow Problem.

We have established that restricted versions of our research problem is polynomially re-

ducible to these problems, and thereby also NP complete. No polynomial time algorithms

are known to solve NP complete problems, the same applies to our research problem. If the

problem instances have few BS, RS and SS, we can exhaustively enumerate the possible

solutions and pick the best result. But when the input instances have large number of BSs,

RSs and SSs, exhaustive search for the best solution would take exponentially large time

with respect to the input size.

We have studied how different approximation and heuristic algorithms were applied on

Set Cover, Capacitated Set Cover, Bin Packing and Unsplittable Flow Problem in Section

2.2 - Section 2.5 of this chapter. We are convinced on applying heuristics/meta heuristics

based solution space search to approximate a near-optimal result in reasonable computa-

tional time and resource.

In the light of literature reviewed in the chapter, we have implemented 2 variations

of local search and variable neighborhood search based heuristic approaches. They are

presented in Chapter 3. We have also formulated the WiMAX planning problem as a set

cover instance, and have applied Lagrangian relaxation based heuristic approaches to get

lower bounds on the problem, they are presented in Chapter 4.
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Chapter 3

A Combinatorial Approach to Solve WiMAX Planning
Problem

The first approach that we have taken towards solving the WiMAX planning problem is

making mathematical formulations of the problem and using off the shelf mathematical

programming solver software to obtain solutions. The intention is to see how good cur-

rently available software can solve these problems. In this chapter we present two math-

ematical formulations of the WiMAX planning problem, and compare them. In chapter 5

we have presented a third formulation based on column generation and used Lagrangian re-

laxation on the model. We have used mathematical problem solver software ILOG CPLEX

12.1.0 [92] and observed their long running time for different instances. This motivated us

to design algorithms that would be able to quickly produce near optimal results. We present

few variations of greedy heuristics on the problem. We also present few variations of local

search on the problem. We also propose a variable neighborhood search framework that we

have implemented and tested. All the heuristic algorithms described in this chapter have

graph G = (V,E) as input. All these algorithms intend to produce a solution A ⊆ (R∪B).

The experimental results using these algorithms are presented in Chapter 5.

3.1 Modeling the Problem

In this section we present two integer programming (IP) formulations through which we can

express the WiMAX planning problem. Both of these have the same objective function, but

they differ in modeling the constraints. The first one has discrete variables on the vertices

and edges, and variables representing the flow on the connections between RSs and BSs.

This formulation has capacity constraints, flow conservation constraints, and unsplittable
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flow constraints. The second formulation has discrete variables on the RSs and BSs, and

on all the paths between SSs and BSs. This model has capacity constraints and unsplittable

flow constraints. However, it does not have explicit flow conservation constraint.

3.1.1 Model Based on Flow Conservation and Capacity

Let S be the set of SSs, R be the set of RSs and B be the set of BSs that can be used to satisfy

demands of elements in S. Let ds be the demand of SS s ∈ S, fr and fb be the installation

costs for r ∈ R and b∈ B respectively. Let cr and cb be the bandwidth capacity for RS r ∈ R

and BS b ∈ B respectively. Let Sr be the set of SSs within the communication range of RS

r, and Rb be the set of RSs within the communication range of BS b and Sb be the set of SSs

within the communication range of BS b. We define variables: yr, yb corresponding to each

of the RS and BS, xrs corresponding to the SS-RS edges, xbs corresponding to the SS-BS

edges, xbr corresponding to the edges between BS-RS connections, and zbr corresponding

to the flow through RS r to BS b. The variables are described as follows:
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yr ∈

 1 if r is chosen

0 otherwise

yb ∈

 1 if b is chosen

0 otherwise

xrs ∈

 1 if s is served by r

0 otherwise

xbs ∈

 1 if s is served by b

0 otherwise

xbr ∈

 1 if r is served by b

0 otherwise

zbr: the total demand of r served by base station b

The problem of satisfying the SSs’ demands by minimum cost installation of RS and

BS can be formulated as follows:

Minimize ∑
r∈R

yr fr + ∑
b∈B

yb fb
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Subject to:

∑
r∈R

xrs + ∑
b∈B

xbs = 1,∀s ∈ S (3.1)

yrcr ≥ ∑
s∈Sr

xrsds,∀r ∈ R (3.2)

∑
b∈B,r∈Sb

zbr = ∑
s∈Sr

xrsds,∀r ∈ R (3.3)

∑
b∈B,r∈Sb

xbr = yr,∀r ∈ R (3.4)

crxbr ≥ zbr,∀r ∈ R,b ∈ B : r ∈ Sb (3.5)

ybcb ≥ ∑
r∈Rb

zbr + ∑
s∈Sb

xbsds,∀b ∈ B (3.6)

The objective is to minimize the total establishment cost of BSs and RSs. Constraint

(3.1) ensures that each of the SSs are served by exactly one RS or BS. Equation (3.2) is the

capacity constraint for RSs and ensures that no RS can take more inflow than its capacity.

Equations (3.3) and (3.5) makes the flow conservation constraint on RSs, it ensures that the

summation of all the outflows from a RS must be always greater than or equal to the inflow

of the RS. Constraint (3.4) ensures that each of the open RSs are served by exactly one BS.

Equations (3.6) is the capacity constraint on BSs, it makes sure that the total incoming flow

to a BS from its adjacent RSs and SSs are less than or equal to its capacity.

3.1.2 Model Based on SS-BS Path and Capacity

We adapt the same notation for coverage area, capacity and installation cost of RS and

BS, and demand of SS, as we assumed in the previous model. We define variables: yr, yb

corresponding to each of the RS and BS, xsrb corresponding to the path from SS s to BS
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b going through RS r, xsb corresponding to the SS-BS paths that does not go through any

relay, xrb corresponding to the paths between RS r and BS b. The variables are described

as follows:

yr ∈

 1 if r is chosen

0 otherwise

yb ∈

 1 if b is chosen

0 otherwise

xsrb ∈

 1 if s is served by b through r

0 otherwise

xsb ∈

 1 if s is served directly by b

0 otherwise

xrb ∈

 1 if r is served by b

0 otherwise

The problem of satisfying the SSs’ demands by minimum cost installation of RS and

BS can be formulated as follows:

Minimize ∑
r∈R

yr fr + ∑
b∈B

yb fb
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Subject to:

∑
r∈Rs, b∈Br

xsrb + ∑
b∈Bs

xsb = 1,∀s ∈ S (3.7)

yrcr ≥ ∑
s∈Sr, b∈Br

xsrbds,∀r ∈ R (3.8)

ybcb ≥ ∑
r∈Rb, s∈Sr

xsrbds + ∑
s∈Sb

xsbds,∀b ∈ B (3.9)

xrb ≥ xsrb,∀r ∈ R, s ∈ Sr, b ∈ Br (3.10)

∑
b∈Br

xrb = yr,∀r ∈ R (3.11)

yb ≥ xrb,∀b ∈ B, r ∈ Rb (3.12)

As it was in the previous model, objective function for this model is to minimize the

total establishment cost of BSs and RSs. Constraint (3.7) ensures that each of the SSs

are served by exactly one RS or BS. Equations (3.8) and (3.9) are the capacity constraint

for RSs and BSs, they ensure that no RS or BS can take more inflow than their capacity.

Equation (3.11) is the unsplittable flow condition on relays making sure that a RS can be

served by exactly one BS. Constraint (3.10) enforces that if a subscriber is getting served

by BS b through RS r, than RS r is also getting served by BS b, however RS r is getting

served by BS b does not necessarily mean all SS s∈ Sr are getting served through this path.

Equation (3.12) states that a RS r can be served by BS b only if the BS is open, but not the

other way around, meaning that an open BS b is not necessarily serving all its adjacent RS

r ∈ Rb.
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3.1.3 Comparison Between the two Models

Both these two formulations have been tested on small size instances of the WiMAX plan-

ning problem, and produced the same optimal solutions. The second model has constraint

(3.10) and (3.12), which generates one constraint for each of the paths between SSs and

BSs going through RSs, and RSs and BSs. When the WiMAX planning problem has a lot

of RSs and BSs in a small area (meaning a dense graph), the total number of such paths

are large. We figured while trying to run large instances of the problem the second instance

exhausted the memory of the computer we have been running the experiments on. To be

more specific, any instances larger than 2000 nodes (1200 SSs, 500 RSs, 300 BSs) crashed

in the computer we were running experiments on. The first model, on the other hand, could

run with larger instances. Because of this fact, we used the first model presented in Sec-

tion 3.1.1 for our experiments. In the rest part of the chapter we will be referring to the

formulation in Section 3.1.1 as the IP model for WiMAX planning problem.

We have used a numerical optimization problem solver software ILOG CPLEX 12.1.0

[92] to run the IP models for different instances of the WiMAX planning problem. We

observed that as the input size was growing, the instances was taking very long time to

get the optimal solution. The reason behind is the WiMAX planning problem has large

integrality gap property.The integrality gap is the maximum ratio between the difference

of solution cost of an IP and its LP relaxation to solution cost of an IP, i.e. Integrality

Gap = (Solution o f IP−Solution o f LP relaxation o f the IP)
Solution o f IP . To see how this gap can be arbitrarily

large for the WiMAX planning problem instances we consider the following scenario. We

consider a very simplified special case of the WiMAX planning problem. We suppose we

have no RS in the network, and there is only one SS with demand 1, and only one BS with

capacity c > 1 and installation cost f . In the optimal IP solution of this problem the BS is

established to serve the SS, and the solution cost is f . In the LP relaxation of the problem,
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the SS is also assigned to the same BS, and it is using 1
c fraction of the BS capacity, and

hence the solution cost for the LP relaxation would be f
c , their ratio is f ÷ f

c = c. This c

can be arbitrarily large, regardless of the demand of the SS and the establishment cost of the

BS. Thus solution of an IP can be arbitrarily larger than its LP relaxation, which can couse

a very large integrality gap. CPLEX finds an initial feasible solution (used as the incumbent

solution), and the solution to LP relaxation to a problem, and calculates the integrality gap.

CPLEX uses branch-and-bound algorithm and applies different cuts to the problem space

to improve both the solutions until the integrality gap reduces to 0. Since the WiMAX

planning problem has inherent property of large integrality gap, CPLEX takes very long

to finish. We, therefore, focus on heuristic approaches to find near optimal solution to the

WiMAX planning problem. Subsequent sections present heuristic algorithms that we have

experimented with on instances of WiMAX planning problem.

3.2 Greedy Algorithms

The greedy algorithms select SSs, RSs and BSs in different orders, and make SS-RS, SS-

BS and SS-BS assignments in such a way that the unsplittable flow, capacity and flow

conservation constraints are preserved. While making these assignments the algorithms

prefer to make assignment with already open BS or RS rather than opening a new one. At

the same time the algorithms prefer to open RS/BS with lower installation cost in some

cases, or lower installation cost per unit capacity in the others.

Algorithm 1 presents G-4, one of the 10 greedy algorithms we have designed. The

greedy algorithm selects each of the SSs in descending order of their demand and assigns

it to an adjacent RS or BS which has sufficient capacity to cover the demand. The algo-

rithm prefers already open RSs or BSs than opening new ones. The algorithm also prefers

assigning subscribers to already open RSs than assigning to already open BSs. If no open
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RS or open BSs are available adjacent to a SS, only then it chooses to open a RS with the

minimum installation cost. When there is no such RS, the algorithm chooses to open a BS

with minimum cost.

Once assignment for all SSs are done, we are possibly left with a subset of the RSs

carrying traffic from SSs, that are not assigned to any BSs. The open RSs are selected in

the descending order of total traffic flow coming to them. These RSs are assigned to one of

their adjacent BS with maximum residual capacity. Here, residual capacity is the capacity

of a BS/RS left after satisfying demand of a set of SSs. If no such open base station is

available, an adjacent BS with the minimum establishment cost is opened to carry the flow.

This greedy algorithm fails if any SS (or RS) is found whose demand (or flow) cannot

be satisfied by any of its adjacent RSs or BSs. Otherwise this greedy algorithm successfully

finds a subset of RSs and BSs which can satisfy the bandwidth demand at all the SSs.

Algorithm 1 Greedy G-4
Input: G = (V,E)
Output: Solution A = R′∪B′ : B′ ⊆ B,R′ ⊆ R

1: Begin
2: for each SS in decreasing order of demand do
3: Assign the SS to one of its adjacent RS/BS chosen according to following order:
4: 1. Open RSs with max residual capacity
5: 2. Open BSs with max residual capacity
6: 3. Closed RSs with min cost
7: 4. Closed BSs with min cost
8: end for
9: for each open RS in decreasing order of flow do

10: Assign the RS to one of its adjacent BS according to following order:
11: 1. Open BSs with max residual capacity
12: 2. Closed BSs with min cost
13: end for
14: End

The strategy of the greedy algorithm varies depending on the order of SSs and RSs

chosen for assignment, the preference of using already open RSs/BSs vs. opening closed

ones. While choosing a RS/BS for assignment to a SS or RS, the choice can be made on

different properties such as residual capacity, installation cost, cost per unit-capacity, etc.
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In general all the greedy variations we have implemented prefer to satisfy SSs and RSs in

decreasing order of demand, and flow respectively. All these algorithms also prefer to use

an open BS/RS prior to opening a closed one. The greedy choice properties of different

greedy algorithms are summarized in Table 3.1. Algorithm G-3 differs from all others in

that it selects SSs in increasing order of demand and assigns RS/BS, while others do the

opposite.

The greedy algorithms are all fast, i.e. they can compute solution for input instances

with thousands of nodes in milliseconds. The solutions obtained by the greedy algorithms

and their running times have been reported in Chapter 5.

3.3 Local Search Algorithms

The local search [1] is a meta heuristic algorithm that can be used on problems which can be

modeled as finding a solution from a set of candidate solutions that optimizes some given

quality parameters of the solution. The search process projects the solutions into a space

(often called the solution space). Local search starts with a candidate solution, and looks

for its neighboring solutions to find a better one. As soon a better neighboring solution

is found, the search moves its center to the better solution found and keeps moving to its

neighbor in the solution space as soon as it gets one better. This process stops when a local

optimum is obtained.

The local search algorithms described in this section have graph G = (V,E) as input.

The local search starts with an initial solution to the problem Ainit . All these algorithms

produce solution ALocOpt ⊆ (R∪B). In one step the algorithm searches over its neighbors

in the solution space, and moves to a neighboring solution whenever it finds a better one,

and resumes the search centering around that solution. The searching process stops when

a local minima ALocOpt is reached.
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Algorithm 2 Local-Search
Input: An initial solution Ainit
Output: Solution ALocOpt better or equal to Ainit

1: Begin
2: A← Ainit
3: repeat
4: ALocOpt ← Search-Neighborhood(A,1)
5: if ALocOpt is better than A then
6: A← ALocOpt
7: else
8: ALocOpt ← Search-Neighborhood(A,2)
9: if ALocOpt is better than A then

10: A← ALocOpt
11: end if
12: end if
13: until no update is made over one round of the loop
14: ALocOpt ← A
15: return ALocOpt
16: End

The general framework of the local search algorithms we are proposing is presented

in Algorithm 2. Given an initial solution Ainit the algorithm first searches if there is a

feasible solution in any subset of RSs/BSs Ainit with size |Ainit | − 1, where |Ainit | is the

number of open BS/RS in Ainit . If no such feasible solution is available, the algorithm

closes a RS/BS in the solution and replaces it with a RS/BS with lower installation cost,

and checks whether it can be a feasible solution after the replacement. The function Search-

Neighborhood is presented in Algorithm 3. The local search moves its center to a better

solution as soon as it finds a feasible one, and resumes the search centering that solution.

Let A be the candidate solution given to Search-Neighborhood function as input, and let

A′ ⊆ A, E ′ ⊆ E,E = (R∪ B) \ A. Local search can have variations depending on how

subsets A′ and E ′ are constructed, and how the CheckFeasibility function is implemented.

We have implemented three variations of the local search. The first implementation

of local search (LS-1) has A′ = A and E ′ = E. CheckFeasibility uses a variation of G-

4 presented in Algorithm 1, where the greedy algorithm can only use open RSs/BSs for

allocation, thus does not open any closed RSs/BSs. If with a given set (A) of open RS/BS,
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the greedy algorithm can make a successful assignment of all the SSs to RSs/BSs and RSs

to BSs such that the demands of all SSs are satisfied, A is considered a feasible solution.

Algorithm 3 Search-Neighborhood
Input: Solution A and neighbourhoodsize
Output: Best feasible solution A in the neighborhood

1: Begin
2: for every a ∈ A′(A′ ⊆ A) in decreasing order of installation cost do
3: Close a from A
4: if neighbourhoodsize = 2 then
5: for every e ∈ E ′(E ′ ⊆ E,E = ((B∪R)\A)) in increasing order of installation cost do
6: if installation cost of e is less than a then
7: Open e in A
8: CheckFeasibility(A)
9: if A is feasible then return A1

10: end if
11: Close e in A
12: end if
13: end for
14: end if
15: if neighbourhoodsize = 1 then
16: CheckFeasibility(A)
17: if A is feasible then return A
18: end if
19: end if
20: Open a in A
21: end for
22: return A
23: End

The second implementation (LS-2) constructs subset A′ by randomly picking elements

from A, and does the same to construct E ′ from E. The CheckFeasibility function here uses

the Max Flow [30] algorithm to test feasibility. It considers the problem instance with the

SSs, open RSs and open BSs as a flow network with SSs as sources and BSs as destina-

tions. It has capacity constraints on RSs and BSs, and flow conservation on the RSs. If

the maximum cumulative flow that can be pushed from the sources to destinations through

open RSs and BSs is equal to the sum of demands of all the subscribers, CheckFeasibility

function returns feasible. This feasibility checking does not guarantee the unsplittable flow

property of the problem, i.e. it might happen that the CheckFeasibility function has con-

sidered A ⊆ (B∪R) as feasible which might not be feasible with unsplittable flow. Thus
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the solution that LS-2 returns might not be feasible with unspittable flow. A greedy add

procedure is applied to the outcome of the local search which checks whether the outcome

of local search is feasible with unsplittable flow, if not it adds RSs/BSs to this solution until

the solution becomes feasible. The greedy add procedure works in two steps. In the first

step, it considers the flows between SS-RS/BS and RS-BS. Assume SS s ∈ S sends flows

through RSs Rs ⊆ R and BSs Bs ⊆ B. The algorithm picks all SS s ∈ S in an arbitrary order

and assigns to the element of Rs∪Bs which was carrying the most flow from SS s and had

enough residual capacity to take the full flow from SS s. If no such RS/BS can be found,

SS s remains unsatisfied in this step. The same is done for RS-BS assignments. In the

second step the G-4 algorithm is applied to the result from first step to open new RSs/BSs

and make assignments for SSs and RSs that were unsatisfied in the first step.

From the experimental results it was observed that LS-1 was taking too long time to

run on one of the instance classes we used. The reason was the class of data was very

sparse and in such instances trying to replace a RS/BS exhaustively by all closed RSs/BSs

was not producing any feasible solutions. The third implementation of local search (LS-3)

was designed based on this observation. In this implementation A′ = A, however, while

choosing to add node e ∈ E ′ to the solution, it only considers the RSs/BSs which can

potentially offset the effect of closing node a∈ A′ from the solution, and thereby constructs

the subset E ′. If node a is a RS, and Sa is the set of subscribers adjacent to it, E ′ contains

the set of RSs and BSs adjacent to the elements in Sa. If node a is a BS, Sa and Sr are the set

of SSs and RSs adjacent to it respectively, E ′ contains the RSs and BSs adjacent to Sa and

BSs adjacent to Sr. The set E ′ for each of the RSs and BSs were constructed through a step

of pre-computation before the start of the loop in Algorithm 2. The feasibility checking

done here in the same way as in LS-1.

All the local searches produce better results than the greedy algorithms. However, the

expense of the improvement was the longer running time. The numeric results are presented
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in Chapter 5.

3.4 Variable Neighborhood Search Algorithms

Although local search procedure is very effective in searching solutions to different opti-

mization problems, it suffers the problem of getting stuck to a local minima. A Variable

Neighborhood Search (VNS) [126] algorithm is mostly based on local search with the dif-

ference that whenever local search procedure gets stuck to a local minima, VNS procedure

restarts the local search from a different initial solution and keeps track of the best avail-

able local minima. This process stops at a defined condition. VNS can be also thought

as a multi-start local search process to find the best amongst the local optima. Like all

others, these algorithms described have graph G = (V,E) as input, and produces solution

A⊆ (R∪B). The VNS algorithm is presented in Algorithm 4.

Algorithm 4 VNS
Input: G(V,E)
Output: Best local minima Abest

1: Begin
2: Start with an initial solution Ainit
3: Abest ← Ainit
4: k← kinit
5: A← Ainit
6: repeat
7: A← Local-Search(A)
8: if A is a better solution than Abest then
9: Abest ← A

10: k← 1
11: elsek← k+1
12: end if
13: A← GenerateKthNeighbor(A,k)
14: until there is no update on Abest for 3 consecutive rounds of the loop
15: return Abest
16: End

The VNS procedure described in Algorithm 4 starts with an initial solution Ainit . This

initial solution is generated by the best result from all the greedy procedures described
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in Table 3.1. Abest keeps track of the best solution produced. In each iteration of the

loop the VNS procedure calls the local search described in Algorithm 2. If local search

produces a better solution than Abest , Abest gets updated with the new solution. After

each call to local search, Ainit gets updated by procedure GenerateKthNeighbor(Ainit ,k),

here k is the distance between current solution in hand and the kth neighboring solu-

tion. GenerateKthNeighbor(Ainit ,k) performs k operations on Ainit to update it. In each

of these k operations GenerateKthNeighbor(Ainit ,k) randomly decides to perform one of

three operations: (a) randomly deleting a node from Ainit , (b) randomly adding a node

from (R∪B)\Ainit to Ainit . or (c) replacing a random node from Ainit by a combination of

(a) and (b). The initial value of k is kinit . It gets incremented every time the local search

fails to get a better solution, and is reset to kinit otherwise. kmax is the upper bound on k,

which for our implementation is set to |Ainit |.

In this implementation of VNS we have used LS-3. The experimental results showed

that LS-1 was slow on problem instances generated from a random geometric distribution,

which was an incentive to the design of LS-3. LS-3 took a little more time than LS-1 on

the randomly generated problem instances because of the pre-computation step, however it

was faster on problem instances generated from random geometric distribution.

3.5 Summary

In this chapter we have presented two mathematical formulations of the WiMAX planning

problem, and made a comparative study between them. We have presented few heuris-

tics - greedy algorithms, local searches and variable neighborhood search algorithms that

can find sub optimal solutions to the problem. In Chapter 5 we present the data specific

performance of these algorithms and make a comparative study.
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Chapter 4

A Lagrangian Relaxation Based Approach to Solve
WiMAX Planning Problem

In sections 3.1.1 and 3.1.2 we have presented two mathematical formulations of the WiMAX

planning problem. The first model based on flow conservation and capacity was the most

natural way of modeling the problem. It had constants on capacity of BSs and RSs, flow

conservation at RSs, and unsplittable flow constraint at the SSs and RSs. The second model

was simpler than the first one in terms of types of constraints on those paths. The second

model had paths from SSs to BSs, and capacity and unsplittable flow constraints. Although

the second was simpler than the first model in terms of constraints, it could not be used

for practical situations of large problem instances because of the very large number paths

and constraints for each of these paths. In this chapter we present another mathemati-

cal formulation of the WiMAX planning problem with simpler constraints than the both

models presented in the previous chapter. The IP formulation presented here has the same

objective as models presented in Section 3.1. The flow conservation, capacity constraints

or unsplittable flow constraints are modeled combinatorially using an equivalent set cover

formulation. This model considers a set of trees rooted at the BSs, with SSs as the leaves.

The tree can have height of 1 if no RS is present in the tree or 2 if the tree contains RSs

and SSs. Such a tree is a feasible tree if there is no violation of capacity in any of its RSs

or the root BS. These trees are ‘maximal’ in the sense that no feasible tree contain them,

while making sure that the capacity constraint at RSs and BSs are not violated. Such trees

have establishment costs, which are the sum of the costs of RSs and BS contained in the

trees. Given such trees the heuristic algorithms presented here select a sub-collection of

the trees so that the total establishment cost is minimized. We present Lagrangian Relax-

ation [63] based heuristic algorithms to solve the problem. The algorithms presented in
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this chapter also provides lower bound to the establishment cost. The problem with this

model though is that there can be an exponential number of such trees for a given problem

instance, which is difficult to generate and use for computation. We have presented some

heuristics to generate trees instead. The experimental results using the algorithm presented

here are presented in Chapter 5.

4.1 Modeling the Problem

As in Section 3.1, let G = (V,E) be a tripartite graph with E representing the adjacencies

amongst the vertices of G and V = S∪R∪B, where S is the set of SSs, R is the set of RSs

and B is the set of BSs. Let ds be the demand of SS s ∈ S, fr and fb be the installation

costs for r ∈ R and b ∈ B respectively. Let cr and cb be the bandwidth capacity of r ∈ R and

b ∈ B, respectively. Let T be the set of all possible trees that have the following properties:

1. They are connected subgraphs of G

2. Each of the tree are rooted at one BS b ∈ B

3. The height of a tree is at most 2

4. The node at level 0 is the root, the BS b ∈ B

5. Nodes at level 1 are SSs s ∈ S or RSs r ∈ R such that these SSs and RSs are adjacent

to BS b ∈ B

6. Nodes at level 2 are only SSs s ∈ S such that these SSs are adjacent to at least one

RSs in the tree

7. The allocations of SSs and RSs to the root BS, and allocations of SSs to RSs satisfy

capacity constraints at the RSs and the root BS. Let b be the root of a tree T with set

57



of RSs RT and set of SSs ST . Let Sb be the set of SSs connected to b and Sr be the set

of SS connected to RS r ∈ RT . The tree maintains cr ≥ ∑s∈Sr ds, ∀r ∈ RT and cb ≥

∑s∈Sb
ds +∑r∈RT ∑s∈Sr ds. The tree thus also maintains flow conservation property at

each RS, since cb ≥ ∑s∈Sb
ds +∑r∈RT ∑s∈Sr ds also implies cb ≥ ∑r∈RT ∑s∈Sr ds and

therefore any incoming traffic flow into a RS can be forwarded to the root BS of the

tree

With set of SSs ST , set of RSs RT and the root BS bT of tree T ∈ T , the establishment

cost of T , fT is given by:

fT = fbT + ∑
r∈RT

fr (4.1)

where fbT is the installation cost of the root BS of the tree. We define variables xT ∈

{0,1} corresponding to each tree T ∈ T . The problem of satisfying the SSs demands by

minimum cost installation of RS and BS can be formulated as follows:

Minimize ∑
T∈T

fT xT (4.2)

Subject to:

∑
T :s∈T

xT ≥ 1,∀s ∈ S (4.3)

∑
T :r∈T

xT ≤ 1,∀r ∈ R (4.4)

∑
T :b∈T

xT ≤ 1,∀b ∈ B (4.5)

xT ∈ {0,1}
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The objective is to minimize the total establishment cost. Constraint (4.3) is a set cov-

ering constraint ensuring that each of the SSs are served by one or several RS or BS.

Constraint (4.4) is a packing constraint on RSs, enforcing that a RS can get served by at

most one BS. Constraint (4.5) is also a packing constraint on BSs ensuring that a BS can be

root of at most one tree in the solution tree set. Variable xT gets the value of 1 when the tree

T is selected as a part of the solution, or 0 otherwise. If the value of xT is 1, root BS and

all RSs in the tree are placed, and the subscribers contained in the tree are allocated to the

BS and SS. A feasible solution to the problem is a set of such trees that includes all SS the

problem instance. The optimal solution is the set of trees with minimum total installation

cost.

This formulation of the WiMAX planning problem does not have explicit flow conser-

vation, capacity constraint or unsplittable flow constraint similar to what we have in the

formulations in Section 3.1. However, it maintains all these properties of the problem. By

their construction mechanism, the trees maintain flow conservation, capacity constraints

and unsplittable flow constraints. Constraint (4.5) enforces the fact that a BS in the solu-

tion can be the root of at most one of the trees T ∈ T (in the solution). Thus constraint

(4.5) also ensures that the capacity constraints at BSs are not violated, as long as the trees

are feasible. Constraint (4.4), states that a RS can be served by no more than one BS, which

enforces the unsplittable flow property into the model. Constraint (4.3) allows the provision

for a SS to be covered by multiple trees, however, each of the trees (by their construction)

covering a SS in the solution can serve the full demand of the SS by themselves, therefore

the subscriber can be allocated to any one of these trees without violating unsplittable flow

property at the SSs.

Given all possible trees on a problem instance, the above model can find out the opti-

mal solution for the WiMAX planning problem instance. However, the problem with using

this formulation is that the total number of trees maintaining the above properties can be
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exponential to the size of the problem. That is, given a problem instance, there can be very

large number of trees rooted at different base stations. For very small problem instances,

such trees can be generated exhaustively, and given those trees the model can obtain the op-

timal solution. However, as the problem size increases, the exhaustive process will become

computationally intractable.

In this context we decided on generating a set of trees (the tree generation process

is described in Section 4.2) using heuristics and using Lagrangian Relaxation [63] based

heuristic algorithm to find solutions to the WiMAX planning problem.

4.1.1 Lagrangian Relaxation

Lagrangian relaxation [84, 85] is a method of approximating difficult combinatorial opti-

mization problems in terms of simpler problems. The method penalizes the violations of in-

equality constraints using non-negative variables for the original problem, these are known

as ‘Lagrangian multipliers’. In this method, the difficult constraints of the IP are multiplied

by corresponding Lagrangian multipliers, and subtracted from the objective function to get

to a simpler problem, where the difficult constraints are not present.

As an example of the Lagrangian relaxation process, suppose we want to solve linear

programming problem min {cT x : Ax≥ b, x ∈Rn, A ∈Rm,n}, where the constraints Ax≥ b

are complicating. We want to use Lagrangian relaxation to simplify the LP. We introduce

the constraint to the objective function and obtain the unconstrained reduced LP: min {cT x

- ψT (Ax−b): x ∈Rn, A ∈Rm,n}, where ψ = {ψ1,ψ2, ...,ψm} are non negative Lagrangian

multipliers. This form of the LP is called the Lagrangian relxation of min {cT x : Ax ≥ b,

x ∈ Rn, A ∈ Rm,n}. In this case we have taken all the constraints of the original LP to

the objective of the Lagrangian relaxation, this is not the case always, sometimes a subset

of the constraints are taken to the objective in Lagrangian relaxation. The Lagrangian
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multipliers provide similar information about the problem as the LP dual variables does, we

can solve the LP relaxation of an IP, compute the dual variables and use them as Lagrangian

multipliers.

A very useful property of Lagrangian relaxation is that, if any fixed set of values are

given for ψ, the optimal solution to the Lagrangian relaxation will be no larger than the

optimal of the original problem. That is, let x′ be the optimal solution of original problem

and x′′ be the optimal solution of the Lagrangian relaxation. We observe that cT x′ ≥ cT x′−

ψT (Ax′ ≥ b)≥ cT x′′−ψT (Ax′′ ≥ b). The first inequality here is true because x′ is feasible

in the original, and the second is true because x′′ is optimal to the LR. Thus the solution

to the simpler problem (Lagrangian relaxation) gives a lower bound for the solution to the

original (difficult) problem, and gives useful information about the solution to the difficult

problem. The above inequality tells us that if we maximize with respect to the dual (model

presented in equation (4.9-4.11)), we obtain a tighter lower bound to the objective of the

original problem [128]. However, this Lagrangean relaxation bound is not tighter than that

of the LP relaxation.

Let πs, πr, πb be non negative dual variables (Lagrangian multipliers) corresponding to

each SS s ∈ S, RS r ∈ R and BS b ∈ B. We multiply the non negative right hand side of

constraint (4.3) by πs, constraint (4.4) by πr, constraint (4.5) by πb and subtract it from the

objective function (4.2) to obtain the Lagrangian dual objective:

L(π) = MinxT∈{o,1}{∑
T∈T

fT xT −πs( ∑
T :s∈T

xT −1)

−πr(1− ∑
T :r∈T

xT )−πb(1− ∑
T :b∈T

xT )},

∀s ∈ S,∀r ∈ R,∀b ∈ B (4.6)
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Here π is the vector containing πb∀b ∈ B,πr∀r ∈ R,πs∀s ∈ S. Thus we relax the model

in (4.2-4.5) into an unconstrained model (4.6) using Lagrangian relaxation. Our objective

is to find π∗ that maximizes L(π). Let f (T,π) be the cost of establishment of a tree T with

respect to dual variables π defined as follows:

f (T,π)xT = ∑
T∈T

fT xT −πs ∑
T :s∈T

xT +πr ∑
T :r∈T

xT +πb ∑
T :b∈T

xT ,∀s ∈ S,∀r ∈ R,∀b ∈ B

⇒ f (T,π) = ∑
r∈T

(πr + fr)+ ∑
b∈T

(πb + fb)−∑
s∈T

πs (4.7)

Using (4.7) we can describe the equation in (4.6) as the following equation (4.8). In the

remaining of this chapter we call f (T,π) defined in equation (4.7) the ‘reduced cost’ of T .

L(π) = MinxT∈{o,1} ∑
T∈T

f (T,π)xT −∑
r∈R

πr−∑
b∈B

πb +∑
s∈S

πs (4.8)

In the Lagrangian relaxation heuristic procedures we present here, we start with a feasi-

ble π. Since L(π) is a lower bound on the optimal solution to the original problem, we seek

to maximize L(π) in an iterative procedure. We calculate the XT based on the given π (see

Section 4.1.2). We use this XT to calculate π again (see Section 4.1.3). Every L(π), given

XT is a candidate for lower bound to the problem, the largest of which is the best lower

bound. We continue iterating through these two steps of calculating XT and π until some

stopping condition is met. We use π to reach to a feasible solution to the original problem.
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4.1.2 Calculating xT from π

Assume πs, πr, πb are fixed. From equation (4.7) we see that the ∑s∈S πs−∑r∈R πr −

∑b∈B πb, becomes a constant. Thus to maximize the value of L(π), we can compute xT ,

∀T ∈ T using the following rules:

1. xT = 1 iff f (T,π)< 0

2. xT = 0 iff f (T,π)> 0

3. xT ∈ {0,1} iff f (T,π) = 0

This Lagrangian dual objective L(π) is a lower bound on the objective of the of the

primal model presented in (4.2-4.5) for any selection of πs ≥ 0, πr ≥ 0 and πb ≥ 0 [141].

This is because, if xT is feasible then the constraint violations cannot be positive.

4.1.3 Calculating π from xT

The dual of the formulation in (4.2-4.5) is as follows:

Maximize ∑
s∈S

φs−∑
r∈R

φr−∑
b∈B

φb (4.9)

Subject to:

∑
s∈ST

φs− ∑
r∈RT

φr−φbT ≤ fT , ∀T ∈ T (4.10)

φs,φs,φs ≥ 0 (4.11)

We have already described a process to assign values for XT when values for πs, πr,

πb are fixed. Given XT fixed, we intend to calculate πs, πr, πb. To obtain πs, πr, πb, we
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can solve the formulation in equation (4.9-4.11) and use the values of φs, φs, φs for πs, πr,

πb respectively. The φs, φr, φb thus obtained are the optimal values to maximize objective

in equation (4.9). Since the model in equation (4.9-4.11) is the dual of model in equation

(4.2-4.5), optimal φs, φr, φb values for model in equation (4.9-4.11) are the optimal dual

variables for model in equation (4.2-4.5). The formulation in equation (4.6) is relaxation

of model in (4.2-4.5), therefore using φs, φr, φb obtained by solving model in equation

(4.9-4.11) as πs, πr, πb, given XT fixed, maximizes the lower bound L(u) in (4.6).

Computing an optimal multiplier vector by solving an LP is generally time consuming

for large problem instances. This is not suitable to be used inside an iterative process. We

have used an approach to find near optimal Lagrangian multipliers similar to the one used in

[32]. Caprara et. al. in [32] presented a heuristic approach that used Lagrangian relaxation

to approximate set covering problem. In this approach Caprara et. al. presented an iterative

procedure that starts with an arbitrary set of Lagrangian multipliers, calculates incumbent

solution (primal variables) based on the multipliers. They also proposed a heuristic that

allows to compute near optimal Lagrangian multipliers. This process is repeated until

the the incumbent solution cannot be further improved. We have used a similar approach

based on the proposal of Caprara et. al. [32]. Given these xT and values for πs, πr, πb,

the approach used by Caprara et. al. uses subgradient vector g(π) ∈ R|V | associated with a

given π. The idea of using subgradient vector follows from equation (4.7) and (4.8). Given

fixed XT , from equation (4.7) and (4.8) we have:

64



L(π) = ∑
T∈T

(∑
r∈T

(πr + fr)+ ∑
b∈T

(πb + fb)−∑
s∈T

πs)xT −∑
r∈R

πr−∑
b∈B

πb +∑
s∈S

πs

= ∑
T∈T

fT xT

+ ∑
b∈B

( ∑
T :b∈T

xT −1)πb

+ ∑
r∈R

( ∑
T :r∈T

xT −1)πr

+∑
s∈S

(1− ∑
T :s∈T

xT )πs (4.12)

In equation (4.12) we intend to maximize L(π). The ∑T∈T fT xT produces a constant

in this equation, given fixed XT . The terms (∑T :b∈T xT − 1), ∑r∈R(∑T :r∈T xT − 1) and

∑s∈S(1−∑T :s∈T xT ) also generates positive or negative constants, given fixed XT . The pos-

itive constants from (∑T :b∈T xT − 1), ∑r∈R(∑T :r∈T xT − 1) and ∑s∈S(1−∑T :s∈T xT ) pos-

itively contribute to the L(π), while negative terms contribute to the L(π) negatively. If

we adjust the elements of π vector by increasing the entries corresponding to the posi-

tive constants and and decreasing the ones corresponding to the negative constants, we get

higher value of L(π). Thus the terms (∑T :b∈T xT − 1), ∑r∈R(∑T :r∈T xT − 1) and ∑s∈S(1−

∑T :s∈T xT ) can be used as a direction of improvement for the π, as used in case of [32]. We

define vector g(π) as follows:

gs(π) = 1− ∑
T :s∈T

xT , ∀s ∈ S (4.13)

gr(π) = ∑
T :r∈T

xT −1, ∀r ∈ R (4.14)

gb(π) = ∑
T :b∈T

xT −1, ∀b ∈ B (4.15)
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These subgradients g(π) are then normalized. For normalization we multiplied g(π) by

the difference between upper bound and lower bound, and divided the product by ||g(π)||2,

where ||g(π)||2 = ∑(g(π))2, see equation (4.16). This is same as what has been done in

[32].

Our iterative procedure starts with an allocation of positive values to the Lagrangian

multiplier vector π using solution of G-4 (Algorithm 1) presented in Section 3.2, and gen-

erates a sequence of non negative Lagrangian multiplier vectors π0, π1, π2, ..., where π0

is the initial allocation. Given πk and its corresponding values for vector Xk(xT ),∀T ∈ T ,

πk+1 is computed using the following formula [32]:

π
k+1
i = Max{πk

i +λ
UB−L(uk)

||g(πk)||2 g(πk), 0}, f or i ∈ (S∪R∪B) (4.16)

In equation (4.16) UB is the upper bound on the WiMAX planning problem and λ > 0

is the step size. The UB is set to the best solution found. Initially it is computed by the

greedy heuristic G-4. λ is initially set to 0.1. It is updated after every p = 10 iterations

of subgradient generation. If the difference between the best and worst lower bounds is

more than 1%, the current value of λ is halved. If the difference is less than 0.1%, the

current λ is multiplied by 1.5 [32]. Based on equation (4.16) and rules to update the step

size first variation of Lagrangian relaxation algorithm (LR-1 presented in Algorithm 8) has

been implemented.

4.2 Tree Generation

The model in (4.2-4.5) uses a set of trees T . We have already discussed in Section 4.1

this set T can have very large number of trees for the large instances in the best case,
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and why it is not feasible in terms of running time and memory to generate all of such

trees to construct set T . We construct T in a two step process. The first step uses greedy

approaches to generate the initial set of trees. At the end of each step we ensure that T

does not contain multiple copies of the same tree. The second step uses dual information

to generate more trees. In the following two subsections we discuss these two steps.

4.2.1 Greedy Tree Generation

Algorithm 5 Tree Generation
Input: G = (V,E), V = S∪R∪B
Output: Solution T = {T : T = bT ∪ST ∪RT}, bT ∈ B,RT ⊆ R,ST ⊆ S

1: Begin
2:
3: 1. Order all BS based on their capacity, cost, capacity-cost ratio, or in random order (both ascending

and descending) to construct the following set of ordered lists: Border = {B(cap,asc), B(cap,desc), B(cost,asc),
B(cost,desc), B(cost−cap.ratio,asc), B(cost−cap.ratio,desc), B(rand)}

4: 2. Order all RS based on their capacity, cost, capacity-cost ratio, or in random order (both ascending
and descending) to construct the following set of ordered lists: Rorder = {R(cap,asc), R(cap,desc), R(cost,asc),
R(cost,desc), R(cost−cap.ratio,asc), R(cost−cap.ratio,desc), R(rand)}

5: 3. Order all SS based on their demand, number of RS/BS adjacent to it (adjacency number), ration be-
tween demand and adjacency number, or in random order (both ascending and descending) to construct
the following set of ordered lists: Sorder = {S(dem,asc), S(dem,desc), S(ad j,asc), S(ad j,desc), S(dem−ad j.ratio,asc),
S(dem−ad j.ratio,desc), S(rand)}

6: for oB ∈ Border do
7: for oR ∈ Rorder do
8: for oS ∈ Sorder do
9: TreeGeneration-1 ( G, oB, oR, oS )

10: end for
11: end for
12: end for
13: End

In this step we used all the 10 versions of greedy algorithm presented in Section 3.2

to construct set T first. Apart from that, we have also used the procedure presented in the

Algorithm 5 and 6 to generate more trees. The algorithm judges BSs, RSs and SSs in dif-

ferent orders. For BSs and RSs, the ordering be can be done by installation cost, capacity of

the RS/BS, the ratio between installation cost and capacity for BR/RS, or random ordering.
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Algorithm 6 TreeGeneration-1
Input: G = (V,E), V = S∪R∪B, BS ordering oB, RS ordering oR, SS ordering oR
Output: Solution T = {T : T = bT ∪ST ∪RT}, bT ∈ B,RT ⊆ R,ST ⊆ S

1: Begin
2: for all BS b ∈ oB do
3: for all RS r ∈ oR do
4: if (r,b) ∈ E and b has enough residual capacity to cover the capacity of r then
5: Assign r to b
6: for all SS s ∈ oS do
7: if (s,r)∈ E, s has not already been assigned to any RS and r has enough residual capacity

to cover the demand of s then
8: Assign s to r
9: end if

10: end for
11: end if
12: end for
13: for all SS s ∈ oS do
14: if (s,b)∈ E, s has not already been assigned to any RS or BS, and b has enough residual capacity

to cover the demand of s then
15: Assign s to b
16: end if
17: end for
18: add this tree generated in steps(2−17) to T
19: end for
20: End

Given any of these ordering, this algorithm picks a BS, adds RS in accordance with the

order of RS given until the BS capacity is saturated, or the list of RSs adjacent to a BS is

saturated. Once done with allocating a RS, the algorithm add SSs (which has not already

been allocated to a RS) to the RS in accordance with the ordering of SSs, than considers

the next RS. After this, if the BS has more capacity left and some SSs exist (which has not

been allocated to any RS) adjacent to the BS the remaining SSs are allocated to the BS in

given order of SSs. After this step we have a tree, we add it to T , if it is not already existing

in the set, and proceed with the next BS in the given order.

With the list of trees T we obtain from the previous steps, we perform another step of

tree generation to increase the initial set of trees. In this step, we consider each tree T ∈

T (T = ST ∪RT ∪bT ), we take off each RS r ∈RT and set of all SSs S′(s∈ ST and (s,r)∈E)

from T . We try to replace r by another RS r1 ∈ (R \RT ) and add to this r1 as many SSs
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s1 ∈ (S\(ST \S′)) as possible without violating the capacity. Thus we generate a set of new

trees T1. We add the trees in T1 \T to T .

4.2.2 Tree Generation Using Dual information

From Section 4.2.1 we have a set of initial trees in the set T . We want to populate the set T

with more trees. We have discussed in Section 4.1.3 how the initial values of the Lagrangian

multipliers (π) can be calculated with the set of initial trees. This requires to solve the

LP relaxation of the set cover formulation and to use the optimal dual variables. Rather

than solving an LP to get the initial set of Lagrangian multipliers, heuristic algorithms are

presented in later part of this chapter that enables us calculate the initial set of π using

Lagrangian relaxation process (see detail in Section 4.3). These values of π are the entries

corresponding to different BSs, RSs and SSs.

For convenience of explanation, we use matrix representation of the set of trees, π-

variables, tree variables and tree costs to express the IP in (4.2-4.5). Let N be the matrix

containing the trees T ∈ T as columns. The number of rows in the matrix is equal to the

number of vertices in G, each row corresponds to an element of V = S∪R∪B. The column

of N corresponding to tree T ∈ T has an entry of 1 corresponding to all the SS s ∈ ST and

an entry of 0 for all s 6∈ ST , a -1 entry corresponding to every RS and the root BS contained

by T , and entry of 0 for rest of the BSs and RSs. Let CN be a column vector representing

the cost corresponding to columns in N, XN be the column vector representing variables

corresponding to the trees in N, and b be the right hand side column vector of (4.2-4.5).

Let π, be a column vector representing the dual variables.

We convert this IP to a LP ‘standard form’ [43] where the constraint matrix A = [B|N].

Here B is an identity matrix corresponding to the initial basic feasible solution. Let XB and

CB be the column vectors of variables and costs corresponding to columns in B. The model
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in (4.2-4.5) can be written as follows:

Minimize Z =CT
B XB +CT

NXN (4.17)

Subject to:

BXB +NXN = b (4.18)

From (4.18) we have:

XB = B−1b−B−1NXN (4.19)

From (4.17) and (4.19) we have:

Z =CT
B B−1b−CT

B B−1NXN +CT
NXN

= π
T b−π

T NXN +CT
NXN , π

T =CT
B B−1

= π
T b+(CT

N −π
T N)XN (4.20)

The equation (4.20) is the matrix representation of formulation in (4.6) and (4.8). We

are supposed to minimize Z. This set of trees in T are the columns in N. The column

generation process can be defined as adding a column vector N1 to the matrix N. Given π,

with respect to equation (4.20), we have πT b constant, therefore the new column should be

generated in a way such that (CT
N −πT N1) is negative. This means:
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−∑
b∈B

πbxb−∑
r∈R

πrxr +∑
s∈S

πsxs ≥ ∑
b∈B

fbxb + ∑
r∈R

frxr, ∀x ∈ 0,1

⇒ ∑
b∈B

( fb +πb)xb + ∑
r∈R

( fr +πr)xr−∑
s∈S

πsxs ≤ 0, ∀x ∈ 0,1 (4.21)

From equation (4.21) we see that a weight of ( fb + πb) associated with every BS b,

a weight of ( fr + πr) associated with every RS r, and a weight of −πs associated with

every SSs. In Algorithm 7 we present a greedy heuristic procedure that generates trees

intending to minimize the sum of these weights. This procedure is run iteratively with new

set of πb, πr, πs calculated over the entire set of trees T generated until that point at every

iteration. This procedure is iterated to generate a number of trees until we cannot generate

any more trees using the mentioned weights. This procedure is called column generation

in the literature. More details on column generation can be found in [50].

4.3 Applying Lagrangian multipliers to Solve WiMAX Plan-

ning Problem

In this section we propose two 3-phase heuristic procedures to improve the values for La-

grangian multipliers to obtain better approximation to the WiMAX planning problem. The

first implementation of Lagrangian relaxation (LR-1) is presented in Algorithm 8.

In the first phase of the 3-phase heuristic LR-1 we do the necessary initialization. The

second phase is an iterative process to generate a sequence of Lagrangian multiplier vectors

πk and corresponding vector Xk tree variables, until some stopping condition is met. In

each step of this phase the best set of Lagrangian multipliers π∗ (that corresponds to the

best lower bound found so far) is kept. The third and the final phase uses π∗ obtained from
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Algorithm 7 Column Generation
Input: G = (V,E), V = S∪R∪B, ( fb +πb)∀b ∈ B, ( fr +πr)∀r ∈ R, πs∀s ∈ S
Output: Solution T = {T : T = bT ∪ST ∪RT}, bT ∈ B,RT ⊆ R,ST ⊆ S

1: Begin
2: for all BS b ∈ B do
3: for all SS s ∈ S in decreasing order of πs do
4: if (s,b) ∈ E and b has enough residual capacity to cover s then
5: Assign s to b
6: end if
7: end for
8: for all RS r ∈ R in increasing order of ( fr +πr) do
9: f πr← ( fr +πr)

10: for all SS s ∈ S which has not already been assigned to any open RS/BS so far in decreasing
order of πs do

11: if (s,r) ∈ E and r has enough residual capacity to cover s then
12: Assign s to r
13: f πr← f πr−πs
14: end if
15: end for
16: end for
17: for all RS r ∈ R in increasing order of f πr do
18: if (b,r) ∈ E and b has enough residual capacity to cover the flow in r then
19: Assign s to r
20: end if
21: end for
22: Add the tree rooted in b generated in this loop to T ′
23: end for
24: for all BS b ∈ B do
25: for all RS r ∈ R in increasing order of ( fr +πr) do
26: if (r,b) ∈ E and b has enough residual capacity to cover flow equal to the capacity of r then
27: Assign r to b
28: for all SS s ∈ S which has not already been assigned to any RS in decreasing order of πs do
29: if (s,r) ∈ E and r has enough residual capacity to cover s then
30: Assign s to r
31: end if
32: end for
33: end if
34: end for
35: for all SS s ∈ S which has not already been assigned to any RS/BS in decreasing order of πs do
36: if (s,b) ∈ E and b has enough residual capacity to cover s then
37: Assign s to b
38: end if
39: end for
40: Add the tree rooted in b generated in this loop to T ′
41: end for
42: Add the trees in T ′ to T
43: End
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the second phase to construct a solution to the WiMAX planning problem. Algorithm 8

gives a high level description of the heuristic.

In the iterative phase of LR-1, first we compute vector X , using rules described in

Section 4.1.2 and reduced cost of the trees f (T,π) . After that we use π and X to compute

the new upper bound and lower bound. If this new upper bound is better than the best one

known so far, we update the best known upper bound with the newly computed one. If the

newly computed lower bound is better than the best lower bound known so far, we copy

the vector π in πold (vector corresponding to the best known lower bound), update the best

known lower bound and the π vectors with the new one, and compute πi+1 using formula

(4.16). In every 10th step of this iterative phase we update step size λ using the same rules

in [32]. If the newly computed upper bound is not better than the best one known so far,

the step size λ is halved, and vector π is set to πold . The iterative process terminates when

the improvement of lower bound over 100 steps is less than 1% or we reach a number of

iterations equal to 10× number o f nodes in the instance. This stopping condition is also

based on the proposal in [32]. After this phase terminates, we have obtained a lower bound,

and its corresponding π-vector, we name it π∗. We use this π∗ in the third phase to greedily

obtain a feasible solution to the problem instance.

Algorithm 9 presents the third phase of the heuristic procedure in Algorithm 8. In

this phase of constructing the final solution, the reduced cost f (T,π) (see equation 4.8) is

calculated for all the trees in T using π∗. The trees are sorted in ascending order of their

reduced cost. After this we enter into an iterative process with the list of trees in above

mentioned order. We pick the first tree, and add the BS and RS of this tree to the solution

Sol, then we check whether Sol can satisfy all the demands of SS in the network using

a method called CheckFeasibility() (see Section 3.3 on LS-1, LS-3 for detail), if Sol is

feasible we return the solution, otherwise we enter into the next iteration of the loop with

the next tree in order. The iteration stops when we have exhausted all trees in the ordered
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Algorithm 8 3-Phase heuristic algorithm LR-1
Input: G = (V,E), V = S∪R∪B, Set of trees T
Output: Solution Sol, Lower bound L(π)

1: Begin
2: Phase 1: Initialization
3: λ← 0.1
4: Upper bound UB← the cost of solution obtained by G4 (Algorithm 1)
5: Initialize Lagrangian multiplier vector π0 using G4 (Algorithm 1) such that the reduced cost of the trees

from G4 are negative, and reduced cost of all other trees become 0 or positive.
6: Initialize L(π0) using π0

7: i← 0
8: Phase 2: Iterative ascent procedure
9: repeat

10: Compute X i, given πi using rules described in Section 4.1.2
11: Compute new upper bound UBnew, given X i, πi using ConstructSolution(G,πi)
12: Compute lower bound L(πi)new, given X i and πi using equation (4.6)
13: if UBnew <UB then
14: UB←UBnew
15: end if
16: if L(πi)new > L(πi) then
17: πold ← πi

18: L(πi)← L(πi)new
19: Compute πi+1 using formula (4.16)
20: if (i%10 = 0) then
21: Update λ

22: end if
23: else
24: πi+1← πold

25: λ← λ/2
26: end if
27: i← i+1
28: until (Improvement of LB over 100 iterations is less than 1%) or (this loop iterates more than 10×

Number o f nodes in the instance times)
29: after this loop we have π∗ and that will be used in the next phase, and lower bound L(π∗)
30: Phase 3: Solution construction
31: Sol←ConstructSolution(G,π∗)
32: End
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list who have non-positive reduced cost. After this we apply an add procedure (described

in Section 3.3 for LS-2) on Sol obtained from the iterative step to make it a feasible solution,

and return it.

Algorithm 9 ConstructSolution
Input: G = (V,E), V = S∪R∪B, Lagrangian multipliers π∗, Set of trees T
Output: Solution Sol

1: Begin
2: Calculate reduced cost for all there T ∈ T using equation 4.8 and store the result in TreeRedCost
3: Sort trees using ascending order of TreeRedCost
4: for tree T ∈ T in ascending order of TreeRedCost with reduced cost of T not positive do
5: Add the BS and RSs of T to Sol
6: if CheckFeasibility(Sol) then
7: return Sol
8: end if
9: end for

10: Apply add procedure (described in Section 3.3 for LS-2) on Sol to make it a feasible solution
11: return Sol
12: End

Although the number of iterations of LR-1 was never larger than ten times the number

of nodes in each problem instance as observed by [32], the improvement of the lower bound

for LR-1 was slow. This led us to implement the second variation of Lagrangian relaxation

LR-2. LR-2 is also a 3 phase procedure. First phase of LR-2 has a subset of operations as

in LR-1. The 3rd phase is the same. The iterative phase (2nd phase) is different. The basic

difference between LR-1 and LR-2 is in the implementation of normalizing the subgradient

vectors, in the updating of the Lagrangian multipliers, and in the updating of step sizes.

LR-2 (as shown in our experimental experience presented in Chapter 5) is a faster process

obtaining better lower bounds in all instances. The main credit of this runtime improvement

goes to the way of updating step size used in LR-2. The LR-2 also does not calculate or

use any upper bound information, which also contributed to the run time enhancement.

Algorithm 10 presents a high level description of LR-2 heuristics.

The first phase of LR-2 heuristics initializes the step size λ to 0.01, initialize Lagrangian

multiplier vector π0 using information obtained from G-4, and calculates initial lower
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Algorithm 10 3-Phase heuristic algorithm LR-2
Input: G = (V,E), V = S∪R∪B, Set of trees T
Output: Solution Sol, Lower bound L(π)

1: Begin
2: Phase 1: Initialization
3: λ← 0.01
4: Initialize Lagrangian multiplier vector π0 using G-4 (Algorithm 1) such that the reduced cost of the trees

from G4 are negative, and reduced cost of all other trees become 0 or positive.
5: Initialize L(π0) using π0

6: i← 0
7: Phase 2: Iterative ascent procedure
8: repeat
9: if i 6= 0 then λ← λ/2

10: end if
11: Compute X i, given πi using rules described in Section 4.1.2
12: Compute πi

a using πi, X i and step size λ using equation (4.22)
13: Compute X i

a, given πi
a using rules described in Section 4.1.2

14: Compute lower bound aL, given X i
a and πi

a using equation (4.6)
15: Compute πi

b using πi, X i and step size 2×λ using equation (4.22)
16: Compute X i

b, given πi
b using rules described in Section 4.1.2

17: Compute lower bound bL, given X i
b and πi

b using equation (4.6)
18: if aL≤ bL then
19: while aL≤ bL do
20: λ← 2×λ

21: aL← bL
22: πi

a← πi
b

23: Compute πi
b using πi, X i and step size 2×λ using equation (4.22)

24: Compute X i
b, given πi

b using rules described in Section 4.1.2
25: Compute lower bound bL, given X i

b and πi
b using equation (4.6)

26: end while
27: else
28: while aL > bL do
29: λ← λ/2
30: bL← aL
31: πi

b← πi
a

32: Compute πi
a using πi, X i and step size λ using equation (4.22)

33: Compute X i
a, given πi

a using rules described in Section 4.1.2
34: Compute lower bound aL, given X i

a and πi
a using equation (4.6)

35: end while
36: end if
37: L(πi)← bL
38: pii← πi

b
39: until (Improvement of LB over 100 iterations is less than 0.1%) or (this loop iterates more than 10×

Number o f nodes in the instance times)
40: after this loop we have π∗ and that will be used in the next phase, and lower bound L(π∗)
41: Phase 3: Solution construction
42: Sol←ConstructSolution(G,π∗)
43: End
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bound L(π0) using π0. Given π and step size λ, we calculate two next lower bounds aL

and bL, which are in distance λ and 2× λ from the current L(π0). If bL > aL, we keep

doubling step size λ until we find a pair of lower bounds aL, bL with aL > bL. Otherwise

we keep halving step size λ until we have bL≥ aL again. Essentially, we use binary search

to get closer to the optimum step size. After this we update L(π) and its corresponding La-

grangian multiplier vector π with the best lower bound bL and its corresponding πb found

in this loop. We iterate through this process until we reach the same stopping condition as

in LR-1 algorithm. The phase 3 for LR-2 is same as that of LR-1.

Given πk and its corresponding values for vector Xk(xT ),∀T ∈ T , the updated La-

grangian multiplier vectors πk+1 is in case of LR-2 computed using the following formula:

π
k+1
i = Max{πk

i +λ
g(πk)

||g(πk)|| , 0}, f or i ∈ (S∪R∪B) (4.22)

In equation (4.22) λ is the step size. πk
i is the current Lagrangian multiplier vector,

π
k+1
i is the updated Lagrangian multiplier vector g(πk) is the direction of improvement (see

equation 4.13-4.15). This way of updating set of Lagrangian multipliers differs from LR-1

in that in this case we multiply the step size λ with the normalized direction of improvement
g(πk)
||g(πk)|| , where as in the previous case we used to multiply λ with the normalized direction

of improvement and the difference between upper and lower bounds. The difference of

normalizing g(πk) in case of LR-1 and LR-2 can be clearly observed from equation (4.16)

and (4.22). This heuristic was faster and obtained better lower bounds than LR-1.

The phase 1-2 of Algorithm 8 and 10 is intended to estimate some large feasible values

for Lagrangian multipliers π. Then in the phase 3 of these algorithms we construct a feasi-

ble solution using these π values. The largest values of for π can be obtained by solving the

model in (4.9-4.11) and use the optimal duals as π. In algorithm LR-3, we have replaced
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the phase 1-2 of Algorithm 8 (i.e. lines 2 29) with a call to ILOG CPLEX 12.1.0 [92] to

solve the model in (4.9-4.11) and used the optimal duals as Lagrangian multipliers as π for

phase 3 to obtain a feasible solution to the problem. This algorithm gives us L(π) obtained

from optimal dual variables, and a solution constructed from that π.

4.4 Summary

In this chapter we have described two Lagrangian relaxation based heuristic algorithms to

approximate WiMAX planning problem. The test results and analysis on the data specific

cases are presented in Chapter 5.
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Chapter 5

Experimental Results

In this chapter we present the experimental evaluations of the algorithms presented in Chap-

ter 3 and Chapter 4. In Section 5.1 we discuss the experimental setup and data used for

the experiments. Section 5.2 presents the solutions obtained by CPLEX, sections 5.3-5.5

present the experiment results obtained by our greedy, local search and VNS algorithms

respectively. Section 5.6 presents results obtained from algorithms presented in Chapter 4.

Finally Section 5.7 summarizes all the results.

5.1 Experimental Setup and Data

All the algorithms presented in Chapter 3 and 4 were implemented using C++ program-

ming language. The experimental results presented in this chapter were generated using a

computer with AMD Athlon ii X4 630 processor and 8 GB of RAM.

We have reported test results on 19 problem instances of 500-5000 nodes. These in-

stances have been generated over a varying distribution of sparsities, installation costs, de-

mands of SSs, capacities of RSs/BSs, etc. Instances ta1− ta5 and tb1− tb5 are randomly

generated tripartite graphs with vertex set comprising of SSs, RSs and BSs, and edge set

comprising of SS-RS, SS-BS and RS-BS connectivities. Instances tc1− tc5 and te1− te4

are generated from a geometric distribution of SSs, RSs and BSs on a two dimensional

plane. Transmission ranges are defined for BS and RS. BS-SS and BS-RS links have been

established when SSs/RSs were within the transmission range of a BS. SS-RS links have

been established between SSs and RSs, when the SSs were within transmission range of

RSs, and BS-RS links have been established between RSs and BSs, when the RSs were

within the transmission range of BSs. The demands of SSs, installation costs of RSs and
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Table 5.1: Problem instances
Instance Name of Number of Total number Number Average

Type Instances SSs / RSs / BSs of Nodes of Edges Degree

R
an

do
m

G
ra

ph
s

ta1 300 / 125 / 75 500 14031 28.06
ta2 600 / 250 / 150 1000 55502 55.50
ta3 1200 / 500 / 300 2000 220914 110.46
ta4 2400 / 1000 / 600 4000 888378 222.09
ta5 3000 / 1250 / 750 5000 1387895 277.58
tb1 450 / 187 / 113 750 31358 41.81
tb2 750 / 313 / 187 1250 86257 69.01
tb3 1500 / 626 / 374 2500 346598 138.64
tb4 2400 / 1000 / 600 4000 888133 222.03
tb5 3000 / 1250 / 750 5000 1389378 277.88

G
eo

m
et

ri
c

G
ra

ph
s

tc1 300 / 125 / 75 500 540 1.08
tc2 600 / 250 / 150 1000 1125 1.13
tc3 1200 / 500 / 300 2000 2162 1.08
tc4 2400 / 1000 / 600 4000 4415 1.10
tc5 3000 / 1250 / 750 5000 5842 1.17
te1 300 / 125 / 75 500 641 1.28
te2 600 / 250 / 150 1000 1919 1.92
te3 1200 / 500 / 300 2000 6247 3.12
te4 2400 / 1000 / 600 4000 11491 2.87

BSs were randomly generated from natural distribution, capacities of RSs and BSs were

randomly generated from a natural distribution for both of the instance classes. The num-

ber of SS, RS and BS, the number of edges, and average degree of nodes in each of the

problem instances are presented in Table 5.1. From the average degree we observe that the

geometric instances are much sparser than randomly generated instances.

5.2 ILOG CPLEX

In Table 5.2 we report computational results by using ILOG CPLEX 12.1.0 [92]. All the

instances were ran on CPLEX using a time limit of 180 minutes. Instances ta1− ta5 and
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Table 5.2: Results from CPLEX
Instance Problem Establishment Integrality Running Time

Type Instance Costs Gap (Min.)

R
an

do
m

G
ra

ph
s

ta1 447 94.05% 180
ta2 1327 94.18% 180
ta3 1624 96.60% 180
ta4 1854 99.92% 180
ta5 2110 99.94% 180
tb1 501 98.88% 180
tb2 1372 98.30% 180
tb3 1613 97.35% 180
tb4 2029 96.90% 180
tb5 2464 99.91% 180

G
eo

m
et

ri
c

G
ra

ph
s

tc1 4610 0.00% ≤ 0.002
tc2 10724 0.00% ≤ 0.002
tc3 25678 0.06% ≤ 0.002
tc4 56464 0.00% ≤ 0.002
tc5 72895 0.00% ≤ 0.002
te1 3618 0.00% ≤ 0.002
te2 6587 0.04% ≤ 0.002
te3 9564 0.27% 0.02
te4 23028 0.00% 0.05

tb1− tb5 reached 180 minutes and yet had integrality gap around 94%− 99%. Instances

tc1− tc5 and te1− te4 finished running and optimal results for them have been reported.

5.3 Greedy Algorithms

Figure 5.1 presents the performance of greedy algorithms on 4 large instances. The hori-

zontal line represents the value solution obtained by CPLEX in at most 3 hours. The points

represent the establishment cost that different greedy algorithms scored. The lower the val-

ues in the y-axis, the better the solution. Any point below the horizontal line means that

the respective algorithm outperformed CPLEX. for the random graphs ta5 and tb5, as pre-
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Figure 5.1: Performance of Greedy Algorithms for 4 large instances

sented in Figure 5.1(a) and 5.1(b), all the greedy algorithms outperformed CPLEX except

GA-6,7 and 8. For the geometric graphs tc5 and te4, as presented in Figure 5.1(c) and

Figure 5.1(d), CPLEX reported the optimal solution, all the greedy results report higher

establishment cost than CPLEX. Amongst different variations of greedy GA-6,7 and 8 out-

performed others.

All the greedy algorithms mentioned in Table 3.1 have been applied to the instances. In

general our greedy algorithms are fast, they take few milliseconds to run. Most of greedy

algorithms could outperform results generated by CPLEX in all the randomly generated

problem instances except two instances - ta1 and tb1. These instances are relatively smaller

than other instances, for which CPLEX took around 3 hours to obtain results (with 94% and

99% integrality gap). Although greedy algorithms could produce results quickly, they could

not outperform CPLEX in these two instances. Generally for the rest of randomly gener-
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ated problem instances, at least one (or more) of the greedy methods have outperformed

CPLEX in terms of establishment cost and running time. GA1 outperformed CPLEX in

6 out of 10 randomly generated problem instances but could not score the lowest estab-

lishment cost in comparison with the other greedy algorithms. GA2 outperformed CPLEX

in 8 out of 10 randomly generated problem instances and scored 5 lowest establishment

cost in comparison with the other greedy algorithms. Performance of GA3 was identical

to GA2. GA4 and GA5 performed identically well on the randomly generated problem

instances. They outperformed CPLEX in 8 out of 10 random trees and scored the lowest 5

establishment cost values. GA6 performed poorly, it outperformed CPLEX in only two of

the instances, and could not score any lowest establishment costs in comparison with other

greedy algorithms. GA7 and GA8 performed the worst on the data instances, they did not

outperform CPLEX nor other greedy methods. GA9 and GA10 produced identical results

and outperform CPLEX in 8 out of 10 random trees and scored 5 lowest establishment

costs.

For the problem instances generated from geometric distribution (tc1− tc5, te1− te4)

none of the greedy algorithms could get to the optimal solutions obtained by CPLEX.

Amongst the greedy algorithms on these instances GA6, GA7 and GA8 performed better

than others. GA6 obtained best greedy results on 7 instances out of 9 problem instances

generated from geometric distribution. For each of these instances the best results obtained

by the greedy algorithms were 5.9% close to the optimal solutions produced by CPLEX on

average. The installation costs and running times of different variations of the greedy algo-

rithm on the problem instances have been reported in Table 5.3 and Table 5.4 respectively.
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5.4 Local Search Algorithms

Algorithms LS-1, LS-2 and LS-3 have a time limit of 180 minutes, after which the algo-

rithm would stop and report the current best solution, otherwise they stop if no improve-

ment on solution is obtained after exhaustively checking their neighbourhoods. The es-

tablishment costs obtained by local search algorithms for different problem instances have

put in contrast in Figure 5.2 and Figure 5.3. Figure 5.2 presents the establishment costs

obtained by local search algorithms in contrast to each other and benchmark obtained by

CPLEX. Similar to the previous charts presented on greedy algorithms, the horizontal line

represents solution obtained by CPLEX, any point below that line is an improvement over

CPLEX, and the lower the point with respect to Y axis the better solution the algorithm has

produced. Figure 5.3 presents 4 instances of the geometric graphs, in the rest 5 instanes

our algorithms could obtain optimal solution and therefore all the points were falling on

the horizontal line representing CPLEX benchmarks.

All the local searches produced significantly better solutions than greedy and CPLEX

for instances ta1− ta5 and tb1− tb5, except for two cases: ta1 and tb1. For problem

instance ta1, LS-1 and LS-3 have underperformed CPLEX while LS-2 algorithm have

outperformed CPLEX producing the smallest establishment cost. For problem instance

tb1, LS-1 and LS-3 have outperformed CPLEX while LS-2 algorithm have underperformed

CPLEX.

For instances tc1−tc5 and te1−te4 all the local searches improved the solution quality

when compared to the greedy algorithms. For these instances, CPLEX could find optimal

solutions. The local searches also could find the optimal results for some instances, and

could get 98.2% close to optimal for the others. In tc1− tc4 and in te1, the local search

algorithms have produced optimal solutions as produced by CPLEX. In the remaining four

of the problem instances generated from geometric distribution, CPLEX outperformed the
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Figure 5.2: Establishment cost of Local Search Algorithms and VNS for randomly gener-
ated problem instances
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local search algorithms. However the local search algorithms improved the solutions ob-

tained by the greedy algorithms.

Table 5.5 presents the running times of local search algorithms. As can be seen from

LS-2 was always more time consuming than LS-1. However, unless it reached the 180 min

limit, LS-2 could produce equal or better solutions than LS-1. This difference is not too

evident in case of instances generated from a geometric distribution, but it can be clearly

seen for randomly generated instances. The long time needed for LS-2 made it unsuitable

for using in a VNS framework. However, it indicated the usefulness of max flow informa-

tion to find better solution for the problem. LS-3 is an improvement of LS-1 and it obtained

better running time for all the instances generated from random geometric distribution On

the other hand, it increased the running time for random instances due to the extra precom-

putation it performs. The data table containing the establishment costs and running times

of these algorithms is presented in the appendix of the thesis.

Amongst the three local search algorithms LS-2 seemed to be getting better solutions as

soon as it could finish before 180 minutes. This algorithm, however, takes longer running

time than the two others and even VNS on both classes of problem instances. This is due

to computing max flow for feasibility tests, which makes it computationally more expen-

sive than feasibility tests in the two other local searches and VNS. Although LS-2 have

a prohibitive computational time, it gives a strong intuition about the potential of using

information from max flow to guide the local search and VNS.
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Figure 5.3: Establishment cost of Local Search Algorithms and VNS for geometric problem
instances

Table 5.5: Running time (minutes) of Local Search Algorithms and VNS
Problem CPLEX LS-1 LS-2 LS-3 VNS
Instance

ta1 180 0.005 1.044 1.011 1.77
ta2 180 0.069 12.267 1.097 1.72
ta3 180 0.288 180.803 2.588 8.199
ta4 180 2.549 180.039 7.219 39.275
ta5 180 13.151 180.021 18.367 111.574
tb1 180 0.018 3.318 1.025 1.166
tb2 180 0.066 47.951 2.108 3.744
tb3 180 1.31 180.008 3.821 19.482
tb4 180 2.246 180.133 7.146 59.631
tb5 180 22.12 180.007 28.057 217.167
tc1 ≤ 0.002 0.033 0.0384 1.001 1.764
tc2 ≤ 0.002 0.389 0.418 1.249 1.556
tc3 ≤ 0.002 24.385 4.962 2.399 6.184
tc4 ≤ 0.002 180.011 180.782 12.249 99.303
tc5 ≤ 0.002 180.033 180.33 24.254 274.286
te1 ≤ 0.002 0.068 0.11 1.781 2.045
te2 ≤ 0.002 1.42 1.627 2.701 3.65
te3 0.02 34.551 180 2.881 9.99
te4 0.05 180.01 180.961 19.309 237.014
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5.5 Variable Neighborhood Search Algorithms

The installation costs obtained by VNS algorithm on all the instances have been reported

in contrast with CPLEX and local search algorithms has been presented in Figure 5.2 and

Figure 5.3. The data table is presented in the appendix of this thesis. The running time has

been reported in Table 5.5. VNS outperformed the solutions obtained by greedy algorithms

in all instances. VNS also outperformed the solutions obtained by CPLEX for randomly

generated problem instances in all the cases except for ta1, where CPLEX solution was

better. In terms of running time on this instance class, VNS recorded better running times

than CPLEX (finished running in less than 3 hours), except for the case of tb5, where

VNS produced better solutions than CPLEX in a little longer running time. On randomly

generated problem instances VNS improved on the solutions obtained by LS-1 and LS-3 in

50% of the cases and produced the same establishment cost on the other 50%. On problem

instances generated from geometric distribution, VNS could obtain optimal solutions in

5 cases out of 9. In the other 4 instances (where VNS did not obtain optimal solutions)

VNS improved on the results obtained by LS-1 and LS-3 in 3 cases, and produced the same

result as LS-1 and LS-3 in the case of te3. As a whole on both the problem instance classes,

compared to LS-2, VNS outperformed in 47.37% of the cases, produced same installation

costs in 26.32% cases, and underperformed in 26.32% cases. It is interesting to observe

that LS-2 always produced better results than VNS, except when LS-2 reached 180 min

limit. The running time of VNS is longer than that of LS-1 and LS-3 for all the cases,

while for a number of instances VNS could finish earlier than LS-2. Compared to its base

searching mechanism (LS-3), VNS could produce better results in 60% cases on randomly

generated problem instances. For the other instance class it showed improvement in 30%

cases. The expense for the qualitative improvement that VNS made was the running time,

i.e. VNS algorithm was slowest amongst all proposed algorithms.
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Figure 5.4: Establishment cost and Lower bound (LB) for ta1 from different Lagrangian
Relaxation approaches

5.6 Lagrangian Relaxation Based Heuristics

We have discussed in Section 4.2 how we can generate a list of trees from the given problem

instances. We have generated two set of trees using algorithms described in Section 4.2.

The generation process of these tree sets (TreeSet-1, TreeSet-2) have the same initial steps

(described in Section 4.2.1). However their generation process differs in the step of generat-

ing trees with dual information (described in Section 4.2.2). In the algorithm for generating

trees using dual information (Algorithm 7), an input is ( fb +πb)∀b ∈ B, ( fr +πr)∀r ∈ R,

πs∀s ∈ S, which is the sum of tree costs and Lagrangian multipliers corresponding to all

the BSs, RSs and SSs. These Lagrangian multipliers (πb, πr, πs) here can be obtained in

two ways. One is using ILOG CPLEX 12.1.0 [92] to solve the model in (4.9-4.11) and

use the optimal duals as Lagrangian multipliers. The other is using the iterative process of

Lagrangian Relaxation (described in phase 1-2 of Algorithm 10) to obtain the Lagrangian
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Figure 5.5: Establishment cost and Lower bound (LB) for ta2 from different Lagrangian
Relaxation approaches
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Figure 5.6: Establishment cost and Lower bound (LB) for ta3 from different Lagrangian
Relaxation approaches
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Figure 5.7: Establishment cost and Lower bound (LB) for ta4 from different Lagrangian
Relaxation approaches
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Figure 5.8: Establishment cost and Lower bound (LB) for ta5 from different Lagrangian
Relaxation approaches
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Figure 5.9: Establishment cost and Lower bound (LB) for tb1 from different Lagrangian
Relaxation approaches
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Figure 5.10: Establishment cost and Lower bound (LB) for tb2 from different Lagrangian
Relaxation approaches
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Figure 5.11: Establishment cost and Lower bound (LB) for tb3 from different Lagrangian
Relaxation approaches

 200

 400

 600

 800

 1000

 1200

LR-1 on TS-1

LR-2 on TS-1

LR-3 on TS-1

LR-1 on TS-2

LR-2 on TS-2

LR-3 on TS-2

E
st

ab
lis

hm
en

t C
os

t

CPLEX Est. Cost
CPLEX LB

LB
Establishment Cost

Figure 5.12: Establishment cost and Lower bound (LB) for tb4 from different Lagrangian
Relaxation approaches
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Figure 5.13: Establishment cost and Lower bound (LB) for tb5 from different Lagrangian
Relaxation approaches

multipliers. To obtain TreeSet-1 we have used optimal duals as πb, πr, πs, and to obtain

TreeSet-2 we have used πb, πr, πs from the Lagrangian relaxation process of Algorithm 10

(phase 1-2). Table 5.6 presents the number of trees and total time requited to generate them.

On average TreeSet-2 has 21.72% more trees than TreeSet-1, and the generation process of

TreeSet-2 took 3.4% more time than that of TreeSet-1.

In Tables 5.7 and 5.8 we report computational results by using ILOG CPLEX 12.1.0

[92] on the tree based approach presented in Chapter 4. All the instances were ran on

CPLEX using a time limit of 180 minutes. Most of instances ta1− ta5 and tb1− tb5

reached 180 minutes and yet had integrality gaps. Instances tc1−tc5 and te1−te4 finished

running and optimal results (with respect to the subset of trees we generated) for them have

been reported. Table 5.7 presents the results obtained by CPLEX using TreeSet-1. Table

5.8 presents the results obtained by CPLEX using TreeSet-2. These results will be used to
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Figure 5.14: Establishment cost and Lower bound (LB) for tc1 from different Lagrangian
Relaxation approaches
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Figure 5.15: Establishment cost and Lower bound (LB) for tc2 from different Lagrangian
Relaxation approaches
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Figure 5.16: Establishment cost and Lower bound (LB) for tc3 from different Lagrangian
Relaxation approaches
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Figure 5.17: Establishment cost and Lower bound (LB) for tc4 from different Lagrangian
Relaxation approaches
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Figure 5.18: Establishment cost and Lower bound (LB) for tc5 from different Lagrangian
Relaxation approaches
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Figure 5.19: Establishment cost and Lower bound (LB) for te1 from different Lagrangian
Relaxation approaches
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Figure 5.20: Establishment cost and Lower bound (LB) for te2 from different Lagrangian
Relaxation approaches
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Figure 5.21: Establishment cost and Lower bound (LB) for te3 from different Lagrangian
Relaxation approaches
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Figure 5.22: Establishment cost and Lower bound (LB) for te4 from different Lagrangian
Relaxation approaches

compare the results obtained by algorithms presented in Chapter 4.

In Table 5.2 we reported optimal solutions obtained by running instances tc1− tc5

and te1− te4 in CPLEX with formulation in presented Section 3.1.1. In comparison with

those optimal results, the optimal solutions obtained using TreeSet-1 and TreeSet-2 with

formulation presented in (4.9-4.11) on the same instances have higher establishment costs.

Compared to optimal results reported in Table 5.7 for instances tc1− tc5 and te1− te4,

the optimal solutions obtained using TreeSet-1 as reported in Table 5.7 is 17.36% higher

on average. Compared to optimal results reported in Table 5.7 for instances tc1− tc5 and

te1−te4, the optimal solutions obtained using TreeSet-2 as reported in Table 5.8 is 17.27%

higher on average.

We have applied our proposed algorithms: LR-1, LR-2, LR-3 (presented in Section 4.3)

on tree sets TreeSet-1 and TreeSet-2. These algorithms provided us with a lower bound and
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some values of Lagrangian multipliers. We have used these multipliers to obtain a feasible

solution combinatorially. For each of the problem instances we plot the lower bounds and

establishment costs obtained by our three variations of Lagrangian relaxation on a graph.

We also draw horizontal lines with the establishment costs and lower bounds obtained by

CPLEX, this helps us measure how close our obtained solutions are in contrast to those

obtained by CPLEX on both the tree sets. Figure 5.4 – Figure 5.22 present these graphs for

the 19 problem instances. The establishment costs obtained by LR-1, LR-2, LR-3 on both

the data sets are higher or equal to the horizontal lines representing CPLEX benchmark, the

closer they are to the benchmark lines for establishment costs, the better is the performance

of the algorithm. The lower bounds obtained by our algorithms are always lower or equal

to the lower bounds obtained by CPLEX. In this case also, the close these points are to

the benchmark lower bound lines, the better is the performance of the algorithm. In some

cases, especially for geometric graphs, the benchmark lines overlapped. We have provided

the establishment cost and the lower bound data obtained by LR-1, LR-2, LR-3 in the

appendix of this thesis.

The algorithm LR-3 uses solution of model in equation (4.9-4.11) as Lagrangian mul-

tipliers to obtain feasible solution. The lower bound in case of LR-3 is same as the lower

bound obtained by CPLEX as presented in Table 5.7 and Table 5.8 for TreeSet-1 and

TreeSet-2 respectively. Algorithm LR-2 obtains better lower bounds than Algorithm LR-1

for all the input instances for both TreeSet-1 and TreeSet-2. On instances generated from

geometric distribution, LR-2 produced better lower bounds for TreeSet-1 than in case of

TreeSet-2. On randomly generated instances, LR-2 performed similar on TreeSet-1 and

TreeSet-2, it produced the same lower bounds in 7 out of 10 randomly generated instances,

on the rest 3 LR-2 on TreeSet-2 produced 6.92% better lower bounds on average.

The establishment costs obtained by LR-1, LR-2 and LR-3 are presented in Figure 5.4

– Figure 5.22 on TreeSet-1 and TreeSet-2. On instances generated from geometric distri-
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bution, LR-2 produced the best lower bounds for TreeSet-2 on 7 out of 9 such instances.

For randomly generated instances LR-1 obtained best lower bound on TreeSet-1 in 7 cases

out of 10. LR-3 performed poorly on both the tree sets on both set of input instances.

Table 5.9 presents the run times for LR-1 LR-2 and LR-3 on TreeSet-1 and TreeSet-2.

LR-2 recorded the best timings for both TreeSet-1 and TreeSet-2. On randomly generated

instances LR-2 on TreeSet-2 recorded the best timing in 9 out of 10 instances, with an

average 3.21% run time improvement compared to run time of LR-2 on TreeSet-1. On

instances generated from geometric distribution LR-2 on TreeSet-1 recorded the best tim-

ing on all instances compared to run time of LR-2 on TreeSet-2. For these instances LR-2

on TreeSet-2 also obtained same timings as LR-2 on TreeSet-1 on 7 instances out of 9.

Compared to LR-3 on TreeSet-1, LR-3 TreeSet-2 scored better timings on 8 out of 9 in-

stances generated from geometric distribution. LR-3 obtained an average 58.41% run time

improvement on TreeSet-2 compared to its running time on TreeSet-1. LR-1 on both tree

sets scored the longest running times.

To observe how different the Lagrangian multipliers πLR obtained by our Lagrangian

algorithms with respect to Lagrangian multipliers obtained from optimal dual variables

πCPLEX , we calculate the ratio between their difference and πCPLEX as follows: ||πCPLEX −

πLR||/||πCPLEX ||. We call it π-difference ratio. Table 5.10 presents this ratio for LS-1 and

LS-2 on both TreeSet-1 and TreeSet-2. Since LR-3 uses optimal dual variables obtained

by CPLEX, this ratio for LR-3 is 0, and we do not report them in this table. For randomly

generated instances, the Lagrangian multipliers closest to optimal dual variables obtained

by CPLEX is obtained by LR-2 on TreeSet-2, in 9 of these instances out of 10 LR-2 on

TreeSet-2 scored the lease gap. For instances generated over a geometric distribution, LR-2

on TreeSet-2 scored the best ratios in 5 instances out of 9.
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Table 5.6: Two Set of trees and their generation time (minutes)
Problem TreeSet-1 TreeSet-2
Instance #Trees Generation time #Trees Generation time

ta1 735 0.442 858 0.449
ta2 971 3.815 1038 3.996
ta3 1089 21.339 1521 22.488
ta4 1430 81.964 1709 90.957
ta5 1633 130.778 2022 141.129
tb1 871 1.695 1015 1.789
tb2 870 5.164 1153 5.318
tb3 1307 45.097 1617 47.361
tb4 1432 79.743 1690 88.607
tb5 1664 112.131 2184 117.508
tc1 298 0.033 329 0.033
tc2 568 0.049 631 0.049
tc3 800 0.114 968 0.115
tc4 1710 0.390 2037 0.393
tc5 2657 0.601 2806 0.606
te1 428 0.027 508 0.027
te2 1613 0.087 2424 0.087
te3 5264 0.594 5251 0.603
te4 6879 1.098 10191 1.101
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Table 5.7: Results from CPLEX for tree based approach on TreeSet-1
Instance Problem Establishment Integrality Lower Running Time

Type Instance Costs Gap Bound (Min.)

R
an

do
m

G
ra

ph
s

ta1 505 0.95% 380.996 0.216
ta2 857 32.28% 412.704 180.035
ta3 895 30.09% 481.492 180.048
ta4 922 42.15% 515.92 180.084
ta5 856 17.24% 569.263 180.06
tb1 603 0.40% 361.531 7.294
tb2 696 0.40% 419.921 32.532
tb3 1041 56.11% 414.292 180.027
tb4 988 47.26% 495.236 180.043
tb5 930 39.00% 532.748 180.088

G
eo

m
et

ri
c

G
ra

ph
s

tc1 4610 0.00% 4610 ≤0.001
tc2 10736 0.00% 10736 ≤0.001
tc3 25765 0.00% 25765 ≤0.001
tc4 56547 0.00% 56547 ≤0.001
tc5 73174 0.00% 73174 ≤0.001
te1 3628 0.01% 3628 ≤0.001
te2 6679 0.01% 6678.5 0.002
te3 9976 0.04% 9915.39 0.008
te4 25424 0.00% 25354.2 0.008
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Table 5.8: Results from CPLEX for tree based approach on TreeSet-2
Instance Problem Establishment Integrality Lower Running Time

Type Instance Costs Gap Bound (Min.)

R
an

do
m

G
ra

ph
s

ta1 505 1.61% 367.516 0.242
ta2 857 34.66% 412.704 180.12
ta3 895 30.97% 481.492 180.063
ta4 922 42.17% 515.92 180.044
ta5 856 32.15% 569.263 180.056
tb1 538 0.52% 340.9 2.896
tb2 555 5.63% 391.768 0.582
tb3 1041 55.44% 414.292 180.027
tb4 988 46.42% 495.236 180.056
tb5 930 39.00% 532.748 180.002

G
eo

m
et

ri
c

G
ra

ph
s

tc1 4610 0.00% 4610 ≤0.001
tc2 10736 0.00% 10736 ≤0.001
tc3 25765 0.00% 25765 ≤0.001
tc4 56557 0.00% 56557 ≤0.001
tc5 73190 0.00% 73190 ≤0.001
te1 3628 0.00% 3628 ≤0.001
te2 6694 0.00% 6693.5 ≤0.001
te3 9976 0.01% 9915.39 0.008
te4 25340 0.03% 25239.3 0.011

5.7 Summary

The local search based algorithms presented in chapter 4 could outperform the CPLEX

benchmarks for class ta1−ta5 and tb1−tb5 of problem instances in smaller computational

times. For instance class tc1− tc5 and te1− te4 our algorithms produced optimal result in
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Table 5.9: Running time (minutes) for different Lagrangian relaxation algorithms
Problem TreeSet-1 TreeSet-2
Instance LR-1 LR-2 LR-3 LR-1 LR-2 LR-3

ta1 0.097 0.002 0.013 0.098 0.002 0.004
ta2 0.390 0.005 0.068 0.389 0.004 0.017
ta3 1.398 0.009 0.189 1.380 0.009 0.038
ta4 6.078 0.044 0.628 5.969 0.041 0.166
ta5 10.535 0.061 1.206 11.670 0.057 0.415
tb1 0.259 0.006 0.031 0.356 0.006 0.008
tb2 0.327 0.006 0.064 0.431 0.007 0.011
tb3 4.937 0.023 0.265 6.754 0.021 0.072
tb4 6.262 0.049 0.581 9.429 0.044 0.164
tb5 9.402 0.073 0.832 15.291 0.067 0.212
tc1 0.003 0.181 ×10−3 0.001 0.003 0.020 ×10−3 0.195 ×10−3

tc2 0.010 0.001 0.002 0.018 0.001 0.001
tc3 0.039 0.001 0.003 0.045 0.001 0.001
tc4 0.171 0.005 0.015 0.188 0.006 0.005
tc5 0.287 0.008 0.027 0.297 0.008 0.014
te1 0.003 0.272 ×10−3 0.001 0.003 0.361 ×10−3 0.235 ×10−3

te2 0.019 0.001 0.002 0.029 0.001 0.001
te3 0.273 0.005 0.009 0.333 0.009 0.014
te4 0.623 0.011 0.031 0.675 0.011 0.017
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Table 5.10: π-difference ratio (in %) for different Lagrangian relaxation algorithms
Problem TreeSet-1 TreeSet-2
Instance LR-1 LR-2 LR-1 LR-2

ta1 93.594 90.247 95.188 88.473
ta2 95.006 91.456 95.010 91.451
ta3 98.988 96.941 99.387 96.941
ta4 100.531 99.242 100.531 99.143
ta5 99.471 98.465 99.471 98.465
tb1 101.033 92.400 99.279 83.891
tb2 98.559 95.188 99.832 93.245
tb3 107.033 100.386 106.858 100.373
tb4 98.887 98.334 99.166 98.306
tb5 98.587 97.833 98.587 97.776
tc1 76.481 75.843 77.481 76.697
tc2 80.148 79.323 80.704 79.591
tc3 81.075 80.811 81.312 80.887
tc4 79.638 79.226 79.948 79.003
tc5 80.918 79.535 80.221 78.970
te1 81.079 79.573 80.587 77.522
te2 78.712 75.415 81.580 78.197
te3 86.911 83.458 85.101 81.954
te4 89.671 85.655 87.876 82.300
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50% of the cases and results with worst gap of 3% to optimal solutions produced by CPLEX

on the other cases.

A big limitation of the local search and VNS algorithm is the exponential nature of

run time increase with respect to growth in problem instance size. This still remains an

issue to be addressed in order to use these algorithms to handle larger problem instances.

Future work to improve these algorithms is directed towards: exploiting the information

that can be available from max flow to guide the local search / VNS procedure without

using max flow for feasibility checking, and using more suitable data structures to reduce

computational time.

For the Lagrangian algorithms LR-3 produced the best lower bounds, however it uses

CPLEX to obtain the Lagrangian multipliers. LR-2 performed better amongst the La-

grangian algorithms that does not use CPLEX. LR-2 performed better on TreeSet-1 than

TreeSet-2. The lower bounds obtained by LS-2 on TreeSet-2, although not as good as those

of LS-2 on TreeSet-1, produces close scores to the corresponding TreeSet-1. Lower bounds

obtained by LS-2 on TreeSet-2 are better than lower bounds obtained by LR-1.

In terms of running time and π-difference ratios, LR-2 on TreeSet-2 outperforms all

others. If we consider a situation when we do not have access to CPLEX, LR-2 provides

good running times, lower bounds and π-difference ratios.

In terms of establishment costs, LR-1 outperformed LR-2 and LR-3. It is interesting to

observe that LR-3 (although using the best Lagrangian multipliers obtained from CPLEX

dual variables) is not producing the best establishment costs. This gives us intuition towards

scope of improvement in the phase 3 of Algorithm 8 and Algorithm 10.

Use of the iterative process of Lagrangian algorithm to obtain TreeSet-2 produced more

trees than what we got from using optimal dual from CPLEX from tree generation (as we

did to produce TreeSet-1). We used a greedy procedure to generate trees in this step us-

ing ( fb +πb)∀b ∈ B, ( fr +πr)∀r ∈ R, πs∀s ∈ S. The tree set with higher number of trees
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(TreeSet-2) led to quickly produce good π-difference ratios, lower bounds and establish-

ment costs. Another potential of enhancing these scores lie in producing better tree set by

smarter use of the Lagrangian multipliers.
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Chapter 6

Conclusion and Future Work

In this thesis we have presented a new network planning problem in IEEE 802.16j wireless

mesh network. We have also formulated several mathematical models to represent the prob-

lem and analyzed them. The understanding of algorithms and approaches applied to solve

the four NP hard problems as presented in Chapter 2 (Set Cover, Capacitated Set Cover, Bin

Packing and Unsplittable Flow) helped to develop insight into dealing with planning and

design problems in WiMAX, some of which we have reviewed in the introduction. From

a general perspective, design or planning of almost all wireless network (WiMAX, WiFi,

sensor network, etc) comes with the inherent limitation on capacity of equipment, location,

bandwidth, time or channel allocation, quality of service, scheduling, etc. Our study on

the four problems puts light on how the researchers of theoretical computer science have

handled similar problems and how their solutions and contributions can be helpful to solve

design or engineering problems of wireless network.

We have established that our research problem is NP hard by showing a polynomial time

reduction of Bin Packing to a restricted version of WiMAX planning problem. Since there

is no known polynomial time algorithm to solve NP hard problems, the optimal solution

to our problem also cannot be produced in polynomial time. If the problem instances have

few BS, RS and SS, we can exhaustively enumerate the possible solutions and pick the

best result. But when the input instances have large number of BS, RS and SS, exhaustive

search for the best solution would take exponentially large time with respect to the input

size. In this respect application of heuristics/meta heuristics based solution space search to

approximate a near-optimal result in reasonable computational time and resource seemed

to be intuitively the most promising approach for solving the problem. As a starting point,

we implemented local search and variable neighborhood search.
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We have experimented on the problem using heuristics based on different variations

of local search and a variable neighborhood search. We have tested the algorithms we

developed with different randomly generated network instances of size 500-5000 nodes.

We compared the results obtained by our algorithms with numerical optimization problem

solver called CPLEX [92]. Our algorithms could obtain optimal solution for a number of

input instances, find better solutions than obtained by CPLEX for some others, and obtained

a worst case integrality gap of 3% for the rest of the instances. These experiments and their

results have been reported in [101].

We have also modeled the WiMAX planning problem in a way similar to set covering.

This model has been used to apply Lagrangian relaxation. We have applied variations

of Lagrangian relaxation algorithms and analyzed the performance. Amongst the three

implementation of Lagrangian algorithms we implemented one has a fast running time

and thereby has potential to be used with other approaches on the problem. Also these

algorithms can be used in a framework where we fix part of the solution obtained by the

Lagrangian algorithms, and re-optimize the rest of the problem.

We have discussed in Chapter 5 that there is scope of improvement in the process of

obtaining a feasible solution to the problem (phase 3 of Algorithm 8 and Algorithm 10)

given values for Lagrangian multipliers. The next idea we are interested to try is tree fixing

and re-optimization. This means, given an instance of the problem, we will generate trees

using greedy, local search and Lagrangian relaxation, and use the last stage of Lagrangian

relaxation to obtain the Lagrangian multipliers, as we do with the algorithms presented in

Section 4.2 and 4.3. With these Lagrangian multipliers we will calculate the reduced cost

for all the available trees, and pick the tree with the least reduced cost. We will fix this tree

as a part of the solution, i.e. will take the RSs and BSs in the tree in the solution. We will

also allocate the SSs (which are in the tree) in the solution to these RSs and BSs in exactly

same fashion as it was in the tree. Than we remove the SSs, RSs and BSs of this tree from
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the problem instance, and re-optimize this reduced size instance using tree generation from

greedy, local search and Lagrangian relaxation, use the last stage of Lagrangian relaxation

to obtain the Lagrangian multipliers to further select trees with least reduced cost to fix it

in the solution. This process stops when all the demand of SS are served by RSs/BSs.

Since we proposed this WiMAX planning problem and could not find from the available

literature any real data to exactly fit the problem, we have used synthetic data to experiment

and validate efficiency of our proposed algorithms. It could be interesting to see how our

algorithms perform on real world network data, that would solidify our observations from

experimental results, and might strengthen our claims in the thesis.

Future research on the WiMAX planning problem can be driven towards a number of di-

rections. The first is development of approximation algorithms with better upper and lower

bound guarantee. We can use the Lagrangian relaxation process to guide the local searches

to obtain solutions with a lower bound guarantee. The second could be studying the signif-

icance of the solution to the corresponding max flow problem on the optimal/near optimal

of WiMAX planning problem. We have seen a similar approach taken on UFP. Thirdly, we

have developed integer programming (IP) formulations of the WiMAX planning problem

in [101]. It would be nice to study the relaxations of the IPs, and use primal-dual based

procedure on the problem.

We have applied VNS on the problem and reported results in [101]. It would be in-

teresting to see how variable neighborhood descent (VND) and variable neighborhood de-

composition search performs on the planning problem. We applied VND to the WiMAX

planning problem in earlier phases of our research, but it was slow in terms of running time,

and the solutions obtained from this algorithm was not as good as VNS considering their

comparative running times. This is why we did not use VND based approach in our later

phases of research. But this framework can be useful to quickly generate trees using La-

grangian relaxation method, for example. The idea is to look into the limited scope of some
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initial trees, calculate their Lagrangian multipliers, and thereby greedily generate trees with

negative reduced cost in that confined scope. If or when no more trees can be generated in

that initial scope, the scope of the trees is enlarged, and thereby generating more tree using

Lagrangian multipliers and reduced costs calculations. This enlarging of scope continues

until some stopping condition is met.
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Appendix A

Additional Experimental Data

Table A.1: Local Search Algorithm
Problem LS-1 LS-2 LS-3
Instance Estab. Running Time Estab. Running Time Estab. Running Time

cost (Min) cost (Min) cost (Min)
ta1 556 0.005 348 1.044 556 1.011
ta2 579 0.069 463 12.267 579 1.097
ta3 511 0.288 452 180.803 511 2.588
ta4 684 2.549 847 180.039 684 7.219
ta5 561 13.151 973 180.021 561 18.367
tb1 499 0.018 430 3.318 499 1.025
tb2 582 0.066 500 47.951 582 2.108
tb3 653 1.31 787 180.008 653 3.821
tb4 614 2.246 821 180.133 614 7.146
tb5 633 22.12 961 180.007 633 28.057
tc1 4610 0.033 4610 0.0384 4610 1.001
tc2 10724 0.389 10724 0.418 10724 1.249
tc3 25678 24.385 25678 4.962 25678 2.399
tc4 56464 180.011 56464 180.782 56464 12.249
tc5 73035 180.033 73827 180.33 73035 24.254
te1 3618 0.068 3618 0.11 3618 1.781
te2 6640 1.42 6640 1.627 6640 2.701
te3 9836 34.551 9908 180 9836 2.881
te4 23817 180.01 25009 180.961 23817 19.309
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Table A.2: VNS Algorithm
Problem Establishment Running time
Instance Cost (Min)

ta1 479 1.770
ta2 526 1.720
ta3 511 8.199
ta4 684 39.275
ta5 561 111.574
tb1 479 1.166
tb2 577 3.744
tb3 487 19.482
tb4 542 59.631
tb5 633 217.167
tc1 4610 1.764
tc2 10724 1.556
tc3 25678 6.184
tc4 56464 99.303
tc5 72980 274.286
te1 3618 2.045
te2 6610 3.650
te3 9836 9.990
te4 23717 237.014
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Table A.3: Lower bound for different Lagrangian relaxation algorithms
Problem TreeSet-1 TreeSet-2
Instance LR-1 LR-2 LR-1 LR-2

ta1 256.573 301.019 256.842 302.81
ta2 280.551 319.307 280.551 319.307
ta3 277.353 322.251 277.353 322.251
ta4 308.9 329.863 308.9 329.863
ta5 311.847 342.4 311.847 342.4
tb1 210.604 238.83 207.724 285.688
tb2 235.935 295.287 233.921 306.905
tb3 202.857 259.768 202.857 259.768
tb4 287.425 299.297 287.425 299.297
tb5 319.227 344.226 319.227 344.226
tc1 4476.62 4557.01 4484.76 4559.76
tc2 10378.2 10600.2 10297.5 10595.1
tc3 25526 25761.5 25488.2 25752.4
tc4 55420.1 56516.8 55384.1 56507.7
tc5 70720.5 73099.8 70506.9 72070.6
te1 3385.43 3577.41 3380.9 3562.25
te2 6092.87 6531.59 6005.15 6516.79
te3 8627.81 9493.2 8631.89 9384.06
te4 21137.9 24928.2 21009.6 24810
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Table A.4: Establishment cost for different Lagrangian relaxation algorithms
Problem TreeSet-1 TreeSet-2
Instance LR-1 LR-2 LR-3 LR-1 LR-2 LR-3

ta1 635 568 1162 607 679 969
ta2 734 708 1130 734 708 1130
ta3 789 917 1456 789 917 1456
ta4 940 1032 1212 940 1032 1212
ta5 748 975 1731 748 975 1731
tb1 741 777 792 829 777 922
tb2 704 728 1313 708 593 710
tb3 912 990 861 912 990 861
tb4 872 926 1240 872 926 1240
tb5 832 870 1456 832 870 1456
tc1 4675 4622 4967 4664 4622 4884
tc2 10778 10790 11809 10803 10756 11789
tc3 25834 25807 26719 25890 25765 26574
tc4 56889 56666 59036 56926 56626 59069
tc5 74434 73735 79789 74408 73544 79517
te1 3719 3685 3987 3707 3686 3883
te2 6987 7074 8331 7262 7094 8080
te3 11496 11437 15165 10764 11685 15413
te4 26723 26820 35841 27078 27237 35590
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