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ABSTRACT 

 

Most bacterial infections can be correlated to contamination of consumables such 

as food and water. Upon contamination, boil water advisories have been ordered to 

ensure water is safe to consume, despite the evidence that heat-killed bacteria can induce 

genomic instability of exposed (intestine) and distal cells (liver and spleen). We 

hypothesize that exposure to components of heat-killed Escherichia coli O157:H7 will 

induce genomic instability within animal cells directly and indirectly exposed to these 

determinants. Mice were exposed to various components of dead bacteria such as DNA, 

RNA, protein or LPS as well as to whole heat-killed bacteria via drinking water. Here, we 

report that exposure to whole heat-killed bacteria and LPS resulted in significant 

alterations in the steady state RNA levels and in the levels of proteins involved in 

proliferation, DNA repair and DNA methylation. Exposure to whole heat-killed bacteria 

and their LPS components also leads to increased levels of DNA damage. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

Evidence indicates a relationship between an infection originating from a 

bacterial source and instability of the genome (Lax and Thomas 2002). However, a 

substantial lack of knowledge about possible mechanisms involved in the development 

of genomic instability has interrupted the progression of research in this area. Many 

questions have remained unanswered; for example: why are there only a small number 

of cancer cases reported as being caused by bacterial infection? Do the bacteria have to 

be alive to induce instability in the genome? What is the mechanism responsible for 

induction of genome instability? 

I hypothesize that exposure to heat-killed bacteria determinants may trigger 

genome instability of exposed and distal cells. Thus, the focus of this thesis is on the 

analysis of influence of heat-killed bacteria or their determinants on present new findings 

supporting the hypothesis of the bystander-like effect, and the molecular mechanisms 

thought to be involved in inducing genome instability. 

1.1. Escherichia coli O157:H7 

 

 The serotype of E. coli identified as O157:H7 was first isolated in 1982, when a 

number of people in Michigan and Oregon developed clinically distinctive 

gastrointestinal illness when they consumed contaminated hamburger meat (Riley et al,. 

1983). Analysis of stool samples from infected victims identified serotype E. coli 

O157:H7 contamination. Since the initial report of an outbreak, sporadic cases (Pai et al., 

1988) and full outbreaks (Duncan, et al. 1986), resulting from acute and chronic exposure 
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to these bacteria have been on an increase within Canada, United States and the United 

Kingdom. 

 E. coli is a facultative anaerobic chemoorganotrophs, capable of both respiratory 

and fermentative metabolism.  Certain strains of E. coli serve a useful function in the 

human body by suppressing the growth of harmful bacterial species and by synthesizing 

appreciable amounts of vitamins (Riley et al., 1983). E. coli colonizes the lower intestinal 

track of animals and survives when released into the natural environment, allowing 

widespread dissemination to new hosts. E. coli is responsible for infections of the enteric, 

urinary, pulmonary and nervous systems.  E. coli O157:H7 is an enterohemorrhagic 

strain, producing large quantities of one or more related potent toxins that cause severe 

damage to the lining of the intestine (Riley et al., 1983). The acute disease caused by the 

bacterium is called hemorrhagic colitis and is characterized by severe cramping and 

diarrhea.  

 Patients with infections from pathogenic E. coli present a wide spectrum of 

clinical manifestations of symptoms, including but not limited to severe abdominal 

cramps, watery diarrhea (which can later develop into bloody diarrhea), and little or no 

fever (Griffin et al., 1988). Infections can also be asymptomatic occurring without bloody 

diarrhea (Belongia et al., 1991).  The intensity of infection of the intestinal tissue has 

been associated with Hemolytic-uremic syndrome (HUS) and thrombotic 

thrombocytopenic purpura (Control, 1999) and has the potential to become fatal (Pavia et 

al., 1990). 
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 E. coli O157:H7 are also known as Enterohaemorrhagic E. coli (EHEC) based on 

their capability of producing Shiga toxin (Stx) (O’Brien et al., 1983). Stx are believed to 

be the major precipitants of the vascular lesions responsible for the formation of 

histopathological basis of HUS (Richardson et al., 1988). After ingestion of the EHEC, 

Stx are released within the intestinal portion of the digestive system and are subsequently 

absorbed across the epithelium into the circulation (Hurley et al., 2001). When the Stx  

reaches a target cell, the Stx binds to the glycolipid receptor globotraiosylceramide 

(Gb3), which is expressed in the vascular tissue of organs such as the intestinal tract 

(Proulx et al., 2001). Proulx et al. (2001) identified that the internalization by receptor-

mediated endocytosis is followed by the interaction of Stx with subcellular components 

that results in protein synthesis inactivation, DNA damage or apoptosis. Also, the Stx 

produced by E. coli O157:H7 could induce mRNA expression, such as endothelium-1, 

which could additionally lead to cell damage/death (Bitzan et al., 1998). 

1.2 Sources of Bacterial Contamination 

 Humans are exposed to foreign bacteria daily through contact with many sources 

such as computer keyboards, phones and door handles. Most exposures to bacteria are not 

harmful to humans; however, exposures have been identified as major causes in medical 

pandemics in countries around the globe.  

1.2.1. Sources of Exposure 

Food- and water-borne transmission of bacteria is the most important means of 

spreading bacterial infection (Riley et al., 1983). In Europe, approximately 14,000 cases 

of human bacterial infection between 2000-2005 were identified through the consumption 
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of contaminated vegetables. Of these 14,000 cases 62% were analysed and serogroup E. 

coli O157 was identified as the cause (Fisher and Meakins, 2006). 

Another method of exposure and more crucial to this thesis, is the exposure of an 

organism through contaminated drinking water (CDC, 1999).  It is estimated in the 

United States, during a single outbreak in Milwaukee in 1993, 403,000 individuals were 

infected by a pathogen within the water supply (MacKenzie et al., 1994). Another case of 

waterborne bacterial infection occurred in North Battleford, Saskatchewan, where 

approximately 6,000 people developed gastroenteritis in April 2001 (Stirling et al., 

2001). 

Waterborne outbreaks of enteric disease occur during at least two possible events 

(Barwick et al., 2000). First, drinking water supplies are not sufficiently monitored and 

treated for contamination from surface water such as fecal matter (Barwick et al., 2000; 

Kondro et al., 2000). This may be caused by lack of monitoring equipment, improper 

scheduled testing of the water or lack of training of individuals responsible for the 

maintenance of water quality. The second possible cause occurs when surface water, 

which is contaminated by pathogens (e.g., E. coli O157:H7), is used for recreational 

purposes. Lakes and rivers in arid areas are preferred locations for larger communities as 

well as intensive livestock operations. An infamous and widely publicized case in recent 

Canadian history was in a small community named Walkerton, Ontario.  In May 2000, a 

contamination of E. coli O157:H7 and Campylobacter spp. was identified at Pump 

Station 5 of the municipal water supply. In total, a community of 4,800 citizens reported 

2,300 cases of gastroenteritis, 65 were hospitalized, 27 developed HUS and several 

individuals died (Hrudey et al., 2003). A formal inquiry was held by the Government of 
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Canada which identified the cause of the outbreak to be from E. coli O157:H7 and 

Campylobacter spp. Further analysis identified the source of the bacteria to be surface 

run off of fecal matter from nearby livestock farms combined with human error in the 

processing of the water.  

Bacterial contamination of a water source was also observed in 1996 in multiple 

schools within the City of Sakai, Japan. Japan Health Services reported that ten patients 

were identified as being ill due to bacterial contamination. Bacteria most likely were 

transmitted through the ingestion of food or water contamination between 1991 and 1995. 

However, in 1996, there were 9,451 cases and 12 deaths from E. coli O157:H7, 

representing patients from multiple outbreak including the Sakai City, Japan incident 

(Michino et al., 1999). Health officials were notified when an alarming number of young 

children were hospitalized for symptoms associated with bacterial infection of the gastro-

intestinal tract. Indicators of the infection were abdominal pain, diarrhea, bloody 

diarrhea, fever, vomiting and/or nausea, suggesting an E. coli O157:H7 infection. 

Scientists also identified that the children being diagnosed with these symptoms all 

attended a small school in the City of Sakia, Japan. 

Teachers and school board representatives in Japan had encouraged students to 

eat food prepared and provided by the school cafeteria. All of the food in question had 

been consumed, and therefore it was difficult to identify the specific cause of the 

outbreak. Further interviews by food inspectors and public health nurses, using a 

questionnaire to determine the day of onset, identified contamination from a nearby white 

radish sprout farm. The outbreak was identified as E. coli O157:H7 in the water supply to 

the farm producing the consumed vegetables (Michino et al., 1999). 
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1.2.2. Sources of Contamination 

Most common source of contamination of water is at the point where run-off from 

fields enters the water cycle and finally into rivers and lakes. Reviews conducted of 

waterborne bacterial outbreaks over the past 50 years within North America, determined 

that over 68% of waterborne bacterial outbreaks were preceded by high intensity 

precipitation events (Curriero et al., 2001). In most of the cases, excess of heavy rains or 

abnormally high rates of water from snowmelt caused intense runoffs from nearby farms. 

The excess water accumulates within nearby rivers and lakes that are major sources of 

drinking water for communities.  

Farm run-off has been identified as a source of water contamination for the 

surrounding geographical areas (Girones et al., 2010). Livestock manure is a major 

source for E. coli O157:H7 and is an identified source for surface-water contamination 

(Kondro, 2000; Johnson et al., 2003). Concerns about the risk of contamination from 

agricultural practices were raised at numerous public hearings during the development of 

the pump station in Walkerton during 1976. Poor geographical location and lack of 

monitoring allowed contaminated water from the surrounding area to enter shallow wells 

and eventually resulted in contamination (Hrudey et al., 2003).  

Research on E. coli O157:H7 has indicated that the duration of the bacteria to 

incubate within the host is approximately two to eight days (Boyce et al., 1995; Nataro 

and Kaper, 1998). The duration of symptomatic E. coli O157:H7 infection was estimated 

to be after a 14 – 16  days of incubation, using data from outbreaks including daycare 

facilities in Minnesota from 1988 (Armstrong et al., 1996). The possibility of secondary 

transmission of E. coli O157:H7 (person to person) accounts for as little as four percent 
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of reported infections (Seto and Hoskins 2007), indicating that the major source of 

infection is from consumption of a contaminated food/water source. Due to this concern 

and other health related illnesses associated with waterborne bacteria, the Government of 

Canada developed a multi-barrier approach for water quality protection.  This multi-

barrier approach is an integrated system of processes, procedures and tools that 

communally prevent or reduce the risk of drinking water being contaminated in a “source 

to tap” model (Figure 1.1) (Lim et al., 2002). 

In Canada, from 1986 to 1993, approximately 150 suspected bacterial outbreaks 

from contaminated drinking water sources were reported to Health Canada (Bryan, 

1996). In recent studies, there were 20,000 infections identified and 100 deaths associated 

with contamination in the USA annually. These recent outbreaks, combined with medical 

records, suggest that drinking water may be a substantial source of bacteria causing 

endemic (non-outbreak related) gastroenteritis (Daniel et al., 2002). Within a three-year 

span in the early 1990s, of the 205 children under the age of 15 years from Alberta 

diagnosed with HUS, 77% were likely infected by E. coli O157:H7 (Rowe et al., 1998). 

Lethbridge and regions of southern Alberta have been identified as a high livestock 

density area and has one of the highest levels of gastroenteritis in Canada stemming from 

E. coli O157:H7 (Khakhria and Johnson, 1996).  

1.2.3. Preventative Methods 

“Source to tap” refers to the continuous monitoring of drinking water from wells, 

lakes, rivers, etc., through the treatment process and testing at numerous residential 

locations within the community. Under this approach (Figure 1.1), all potential controls 

and limitations are identified. Limitations could include risks of pathogens or 
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contaminants passing through the barrier. Independently, the barriers may be inadequate 

to kill pathogens, but together an integrated network of procedures, offers greater 

assurance that the water will be free of pathogens (Lim et al., 2002). This method is also 

identified to help with the sustainability of water supply systems. 

A multi-barrier approach to water monitoring, treatment, distribution and early 

detection is the most contemporary method used to ensure the quality of the water 

provided to civilians, however, this approach is not 100% guaranteed to prevent such 

outbreaks. Failure of the multi-barrier (five point water treatment monitoring system) was 

the reason for such a large portion of the population in Walkerton becoming ill 

(O’Connor, 2002). Drinking water regulations in the United States and Canada are based 

on the occurrence of fecal indicator bacteria within the water. 

1.2.4. Thermal Treatment 

 When fecal contamination is detected, the suggested actions promoted by Health 

Canada (2009) and the U.S. Centers for Disease Control and Prevention (CDC) is to 

order the citizens of the area to either drink only bottled water or issue a “Boil Water 

Advisory/Boil Water Order”.  Boil water advisories and boil water orders are notices to 

the public that they are to boil their tap water before using it in their homes for drinking, 

washing and cooking. These measures are identified as preventative measures to protect 

the public from waterborne infectious agents that could be found in the water.  

 Boil water advisories/orders can be ordered if an unacceptable amount of bacteria, 

parasites or viruses are detected in a water system. Quality monitoring occurs at all points 

along the “source to tap” monitoring system and can be issued at any time during the five 
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point water treating method. If the water has an unacceptable level of turbidity at the 

source, the government may also order the water to be boiled. These conditions may stem 

from inadequate filtration, insufficient or ineffective disinfection during treatment or the 

possibility of re-contamination during distribution. Water is to be brought to a roiling boil 

at 100
o
C, for a minimum of one minute, to ensure the safety of the water to consume 

according to Health Canada’s Boil Water Advisory Page (2008).  

1.3 Bystander Effect 

  It is generally accepted that any damaging effect (stressor) from an external 

source (e.g., radiation) will induce damaging effects on cells directly exposed to the 

stressor (Rzeszowska-Wolny et al., 2009). It was thought that no effects would be 

experienced in cells that had no direct exposure to the stressor. This traditional view has 

been challenged by reports of neighbouring and distal cells (that are not exposed to the 

stressor) expressing damage maintenance behaviour. Observed changes included: sister 

chromatid exchange (Nagasawa and Little, 1992), chromosome aberrations (Prise et al., 

1998) and cell transformation (Sokolov et al., 2007). The phenomenon is known as the 

bystander effect. For irradiated cells, the bystander effect is defined as the recognition of 

the occurrence of biological effects in non-irradiated cells as a result of exposures of 

different or distal cells (Mothersill and Seymour, 2001; Little et al., 2002).  

 Nagasauce and Little (1999) initially identified the bystander effect by analyzing 

the effects of cells exposed to α-particles. However, with the use of gene expression 

analysis as an end point, it was shown that the effects of the stress are transmittable from 

irradiated cells to non-irradiated cells (Azzam and Little, 2004). Upregulation of the p53 
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stress response pathway in response to potential DNA damage was supported by the 

observation that p53 was phosphorylated on serine 15 and micronuclei formation was 

stimulated in bystander cells. This response was not restricted to cells irradiated with α-

particles, but the effect was observed in non-irradiated cells as well.  

Further studies on the mechanisms underlying the induced bystander effect by 

radiation have identified mediating factors. Intracellular and extracellular oxidants, such 

as reactive oxygen species (ROS) contribute to the effects on distal naïve cells. An 

increase in the presence of ROS correlated directly with the enhanced secretion of 

cytokines such as interleukins 1, 8, growth factor-β and tumour necrosis factors (Morgan, 

2003).  

Similar to chronic infections, the production of ROS has been identified to assist 

in the promotion of the bystander effect phenomena to distal cells.  ROS are produced 

during infection (Ohshima et al., 1994), and correlate with the effectiveness of the 

bystander response. However, since the bystander effect initiated from exposure to an 

ionizing radiation source, we can propose that chronic infection can stimulate the 

appearance of a bystander response using similar mediatory factors for communicating to 

distal cells. The bystander-like effect in response to bacterial infection may destabilize 

the genomes of neighboring/distal cells not exposed to infection. 

1.4. Carcinogenesis Induced by Bacterial Infection 

 

1.4.1. History 

After the onset of cancers, based on the consumption of tobacco, infections as a 

group in toto may be the most important cause of cancers in humans that is preventable 
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(Kuper et al., 2000). Early observations identified bacteria present at sites of carcinomas 

(Lax and Thomas, 2002).  This concept created an uneasy and controversial history of 

carcinogenesis which has evolved our understanding and treatment of tumourogenic and 

infectious processes (Lax and Thomas, 2002). The theory that microorganisms may be a 

causative agent contributing to the appearance of cancer had many fallacious leads. 

Initially, exploration of the origins of cancer hinted that yeast were the cause of cancer or 

that a cause must be smaller than a cell (Kuper et al., 2000). 

Carcinogenesis is a prolonged and complex process that can take years to 

transform a regular cell to a cancerous cell. Initially, mutations allow a cell to break free 

of its cell cycle control (normal growth-control mechanisms). This cell must proceed to 

proliferate while avoiding destruction by the immune system. Once a small tumour has 

formed, angiogenesis (formation of blood vessels to provide essential oxygen and 

nutrients to the tumour) must occur before it is allowed to grow further (Carmeliet and 

Jain, 2000). With the formation of blood vessels, the cancerous cells attain a channel to 

transport to other parts of the body and settle to form tumours elsewhere.  Early studies 

identified bacteria at sites of carcinogenesis; however, researchers did not identify the 

long time lag between infection and the development of carcinogenesis. Therefore, the 

presence of bacteria did not mean causation in the case of the development of cancer.  

Despite original interest in the field, research into infectious agents causing cancer 

failed to have any major significant advances until the 1960s. Within the past half 

century, research has expanded in the fields of epidemiology and infectious disease 

biology, epidemiological and serological methods and the biological knowledge base for 
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understanding infectious agents (Kuper et al., 2000). A major cause for this interest is the 

theory that significant portions of cancers being treated today are preventable.  

In 1772, bronchogenic lung carcinomas frequently appeared  in areas of the lung 

with pulmonary scars from tuberculosis, thus implicating Mycobacterium tuberculosis as 

possible cause of lung cancer (Onuigbo, 1975). In the middle of the 19
th

 century, Rudolf 

Virchow made one of the first epidemiological observations on the relationship between a 

chronic inflammation and the origins of cancers (Balkwill and Mantovani, 2001). It was 

also Peyton Rous, in 1939, who demonstrated the oncogenic potential of the cottontail 

rabbit papillomavirus Kuper et al.,2000 ). Rous was the first scientist to demonstrate 

cancer may have an infectious agent with his research demonstrating an RNA virus 

causing carcinogenesis. In the late 1960s, the response to the field of infectious cancer 

causing viruses sparked the US Government to create the US Virus Cancer Program. 

With the creation of such a program, molecular biologists gathered to develop new 

hypotheses and identify viruses had causative agents of cancer. Unfortunately, focus on 

the research analysing the bacteria involved was left until decades later (Kuper et al., 

2000).  

In the 1990s, it was estimated that levels as high as 15% of the cancers worldwide 

have originated from an infectious agent, exceeding global totals over a million cases per 

year (Pisani et al., 1997). Within the developed world, this number is estimated to be 

lower, due to highly monitored and efficient screening of food and water supplies.  
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1.4.2. Viral Infections and Carcinogenesis 

 Carcinogenesis occurring from viral infection such as hepatitis B virus (HBV) 

and human papillomavirus (HPV) is widely accepted primarily due to the mechanistic 

effects of cellular transformation (Kuper et al., 2000). There are three main mechanisms 

identified to cause cancer with viral infections. These mechanisms appear to involve: 

chronic inflammation; direct transformation of cells; and immune-suppression of the 

host. 

Sustained exposure to a virus could induce chronic inflammation, commonly 

accompanied by formation of ROS and reactive nitrogen species (RNOS) by phagocytes 

at the site of inflammation (Ohshima et al., 1994). ROS and RNOS have the ability to 

alter enzyme activity, gene expression and to damage DNA. These events occur along 

with chronic inflammation resulting in repeated cycles of cell damage, compensated by 

cell proliferation, favouring carcinogenesis (Cohen et al., 1991). This process increases 

the rate of cell division and simultaneously promotes an increase in DNA damage and 

tumourigenesis. 

 Infectious agents (viruses) may directly transform cells, through the process of 

inserting active oncogenes into the host genome. Directly, this has the potential to inhibit 

the ability of the cell to activate tumour suppressor genes/mechanism. Another potential 

effect of viral infection is oncogene activation in the host cell, causing an increase in 

proliferation, promoting tumourigenesis. Finally, viral infectious agents could induce 

immuno-suppression, usually originating from infections (Kuper et al. 2000). 
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It is important to note that infectious agents (particularly viruses) that have been 

hypothesized as being oncogenic, are generally highly prevalent within the host 

population (Zur Hausen, 1999).  However, virus-associated malignancies are rare among 

infected individuals and usually occur after a chronic infection.  

1.4.3. Bacterial Infection and Carcinogenesis 

 The induction of cancer, based on a previous infection is a highly debated subject. 

The role of viruses, such as Hepatitis B virus (HBV) in the process of carcinogenesis, is 

more widely accepted because of the direct mechanistic effects of gene expression 

alterations resulting from cell transformation (Kuper et al., 2000). Induction of 

carcinogenesis by bacterial infection remains controversial due to the lack of 

evidence/research dedicated to supporting the correlation between infection and cancer 

development. This controversy is based on the argument of the unknown molecular 

mechanism(s) that could promote the development of carcinogenesis.  

 This field of carcinogenesis was revolutionized when Helicobacter pylori was 

identified as a source of chronic infections in the digestive tract of its host. This infection 

has been identified to cause stomach ulcers, followed by a onset of gastric carcinomas 

(Parsonnet et al., 1991) and mucosa-associated lymphoid tissue (MALT) lymphomas  

(Wotherspoon et al., 1991). The data to identify the precise mechanism of infectious 

agents inducing carcinogenesis is currently unavailable; however, an image is emerging 

that several bacteria have the ability to contribute to different stages of tumourigenesis.  

Today, the International Agency for Research on Cancer (IARC) has identified 

that there is insufficient evidence to recognize some pathogens as carcinogenic to 
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humans.  The pathogens are human papilloma viruses (HPV) and hepatitis C viruses, 

human immunodeficiency virus type 1 (HIV-1) and human T-cell lymphotrophic virus 

type 1 (HTLV-I). Helicobacter pylori, Opisthorchis viverrini and Schistosoma 

haematobium have recently been added to this list. This list is relatively new and other 

pathogens such as E. coli O157:H7 bacteria can potentially be added as causes of 

carcinogenesis (Herrera et al., 2005). 

1.4.3.1. Epidemiology Study  

 The relationship between bacteria and the onset of carcinogenesis is not accepted 

given that much of the evidence is based on epidemiological studies, which are open to a 

range of interpretations (Falk et al., 2000). Animal models provide a tool for testing 

evidence in support of the theory that bacteria could induce cancer. Efforts have been 

dedicated to identify similarities between animal models and real world epidemics. 

However, bacterial effects within animals are often different from those observed in 

humans. A common method is the use of H. pylori infection of Mongolian gerbils for the 

induction of gastric adenocarcinoma similar to that of human infection (Ikeno et al., 

1999).  Several other experiments have used mice as a model organism to identify the 

effect of infection of multiple bacterial species on the genome. In general, major 

similarities were identified between the studies such as increases in proliferation, 

increases in avoiding apoptosis and alterations in gene expression (Nedrud et al., 1999).  

 Most of the past research has been focused on H. pylori, which is linked to gastric 

carcinoma with MALT lymphomas.  H. pylori infect the gastric mucosa of approximately 

half of the world’s population. Although infection is asymptomatic in approximately 85% 

of patients, H. pylori is an important pathogen because in the remaining 15%, the 
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infection is associated with development of peptic ulcer disease or gastric cancer which is 

the second leading cause of cancer death world-wide (Peek and Blaser, 2002). Most of 

the research to support bacteria causing carcinogenesis is based on H. pylori; however, 

other bacterial infections have been known to have a link with cancer and infection. A 

strong case for the epidemiological support is Salmonella enterica serovar Typhimurium 

(S. typhi), which could lead to chronic bacterial carriage in the gallbladder (case control 

study comparing an outbreak case in New York in 1922 with test animals) (Lax and 

Thomas, 2002). Another outbreak with supporting data indicating that bacteria were able 

to induce carcinogenesis occurred in Aberdeen in 1964, where carriers of the Gram-

negative bacteria Salmonella enterica were more likely to contract hepatobiliary 

carcinoma than controls (Caygill et al., 1994) .  Analysis of the data also suggested a 

strong association between chronic carriers, incidence of and hepatobiliary carcinoma 

and the development of tumourigenesis in infected individuals (Mager, 2006).   

1.4.3.2. Immunological Mechanisms  

 Although evidence based on epidemiological studies is persuasive, the data 

identifying the complete molecular mechanisms of genome instability caused by infection 

remains unclear. A theory has emerged indicating that chronic inflammation can lead to 

formation of reactive oxygen species and reactive nitrogen oxide intermediates that cause 

DNA damage (Rouse and Jackson 2002). The cellular response was further supported by 

the analysis of Helicobacter felis (H. felis) infected mice (Kocazeybek et al., 2003). 

Chronic infections also upregulate signaling molecules supporting the idea that a 

bystander-like effect could be the cause of other cells emitting a stress response within 

the host. The idea that distant naive cells may also be affected by receiving a signal from 
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exposed tissues is similar to a phenomenon described for genotoxic stress exposure and 

gene therapy termed the bystander effect (Mothersill and Seymour, 2001; Little, et al., 

2002). The activation of an ERK (extracellular signal-regulated kinases) pathway may 

result in up regulation of transcription factors that support angiogenesis, proliferation, 

and avoidance of apoptosis (Lara-Tejero et al., 2000).  It is important to note that not all 

infections lead to inflammation. H. pylori may infect millions globally, but in most cases 

the infection does not cause any health concerns or inflammatory responses from the 

tissue, resulting in about 10% of infected individuals contracting carcinomas or ulcers 

(Rolig et al., 2011). 

1.4.3.3. Angiogenesis 

 

 Angiogenesis is a physiological process that involves induction and growth of 

blood vessels throughout the human body (Penn, 2008). All cells require some form of 

transport to deliver the essential nutrients needed for the growth of cells. Angiogenesis, 

while being fundamentally important during development and tissue repair, is also 

important in the process of transitioning tumour cells from a dormant state to one that is 

malignant. Tissue development for the blood vessels is induced by a chemical signal, 

vascular endothelial growth factor (VEGF) (Ria et al., 2003).  

 VEGF is part of the system that restores the oxygen supply to tissues when blood 

circulation is inadequate. Normally, it is activated during embryonic development, 

however if tissue damage is detected, or if a blood vessel is blocked and a bypass is 

required, then an increase in VEGF signalling must take place (Holmes et al., 2007). 

When overexpressed, VEGF can contribute to alteration of a tumour cluster from benign 
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(non-spreading) to malignant, resulting in the release of cells or chemical signals through 

the blood stream of the individual. 

 Bacterial infection affects the expression of the VEGF signal by activating the 

Rho pathway in infected cells. This pathway  is a major target of bacterial toxins. Rho 

proteins are pivotal in the cellular control and the consequences of the deregulation has 

yet to be fully investigated (Lax and Thomas, 2002).  Researchers are not sure what 

mechanism bacteria use to alter the Rho pathway, but they have identified the potential 

that toxins such as Cytotoxic necrotizing factor (CNF) produced by E. coli that is directly 

affected by the Rho protein and effecting DNA synthesis, inhibiting cytokinesis and 

modulating apoptosis factors (Lax and Thomas, 2002 ).  

 Focal adhesion kinase-1 (FAK), part of the Rho protein family, is recognized as a 

molecular switch, and plays a crucial role in control of cell proliferation, apoptosis, gene 

expression and multiple other common cell functions (Lax and Thomas, 2002). 

Researchers have hypothesized that the bacterial toxins (potentially the Shiga toxins) 

interact with Rho protein families, such as FAK, and are the most effective method of 

developing inflamed tissue into tumourous cells (Lax, 2005). The interaction between 

bacterial toxins and the Rho proteins occurs rapidly as the bacteria attach to the host cells, 

and in most cases, the activation is irreversible (Lax, 2005). 

1.4.4.  Promotion of Proliferation 

 The process of growing or multiplying by rapidly producing new cells is a highly 

conserved process in eukaryotic cells (Celli and Finlay, 2002). It is also known that 

deregulated proliferation can promote chromosomal instability by facilitating the 
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acquisition of alterations in genes encoding such as loss of tumour suppressor genes 

(Coschi and Dick, 2012).  Proliferation of cells is controlled by many factors that help 

monitor cell growth, alter cell division or halt division when applicable. Neoplasia, the 

abnormal proliferation of benign or malignant cells, is caused by many factors, one being 

the disruption of cyclin dependent kinase (CDK) pathways (Pasz-Walczak et al., 2001). 

 Cyclins are a family of proteins that control the progression of cells through the 

cell cycle by activating cyclin dependent kinase (CDK) pathways (Kuper et al., 2000). 

Bacteria have evolved to utilize this pathway to induce alteration in Cyclin D1, a 

regulatory subunit of a quaternary protein containing CDK kinase that assists in 

regulation of cell progression through the cell cycle (Lax, 2005). The expression of genes 

like Cag E, promotes the activation of the cell cycle regulatory molecule Cyclin D1.  

Cyclin D1 can interact with other sub-units of regulatory factors (CDK4 and CDK6),  

impeding the cell-cycle inhibitory function of the retinoblastoma protein (pRB).  

Although direct mechanisms have not been identified, bacterial toxins are known 

to modulate intracellular signalling pathways directly related to the development of 

tumours and some toxins have been shown to activate extracellular signal-regulated 

kinases  (Lax, 2005). Activation of such signals stimulates the cell to synthesize DNA 

and to promote proliferation.  It has been identified in Pasteurella multocida, that 

promotion of these two signals is correlated with promotion of RhoA-mediated signal 

transduction that results in  FAK activation (Thomas et al., 2001) This activation allows 

newly formed cells to bond to existing tissue surrounding the infected area to continue 

proliferation and avoid apoptosis. 



 
 

20 
 

1.4.5. Suppression of Apoptosis 

Apoptosis is programmed cell death in which transformed cells are prevented 

from proliferating and developing into tumours (Navarre and Zychlinsky, 2000).  

Bacteria, such as H. pylori, also have the capability to release tumour necrosis factor α 

(TNF-α) from CD8
+ 

T cells (Lax and Thomas, 2002) . The TNF-α binds with a 

membrane receptor on the infected cell (TNF-R), which contains a death domain (DD) 

(Lax and Thomas, 2002). This domain is essential for interaction with TNF-receptor 

associated factors (TRAFs). This domain also interacts with (NF)-кB (nuclear factor) and 

inhibits apoptosis of the cell. 

The DD also interacts with TNF-receptor-associated death domain protein 

(TRAD) and Fas-associated death domain (FADD). This interaction results in the 

manipulation of the Caspase cascade (alternatively known as the “executioner proteins”) 

that results in inhibition of BAX and BAK.  BAX (BCL-2-Associated X protein) is a pro-

apoptotic protein that interacts with organelle membranes (believed to interact with 

mitochondria) and initiate a cascade-signalling pathway to induce apoptosis (Thomas et 

al., 2001). BAK (Bcl-2 homologous antagonist/killer) is another pro-apoptotic protein 

that interacts with mitochondria to induce apoptosis (Figure 1.1). 

Although the exact mechanism of avoidance of apoptosis is still debated among 

scholars, a common idea is that the introduction of the TNF-α factor has a direct effect on 

the cell’s ability to self-regulate its life cycle (Yu et al., 2000). Test results indicate that 

CNF (which also suppresses apoptosis) toxin found in many E. coli, induces an increase 

in COX2 (cyclooxygenase subunit II) levels (Thomas et al., 2001). Overexpression of 

COX2 has been identified to cause the development of tumours through the 
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overexpression of Bcl-2 (B-cell lymphoma 2) and the suppression of apoptosis (Lax and 

Thomas, 2002).  However, in colorectal cancers, cells treated with H. pylori have been 

identified to produce COX2 and cytokines (Romano et al., 1998) and have been linked to 

tumour invasiveness (Gupta and DuBois, 2001). The exact mechanism is yet to be 

proven, however research on colorectal cancer is being conducted.  

1.4.6. Evasion of the Immune System  

 The human immune system is in a constant battle with bacteria. The biological 

“arms race” has also been a focus for the study of bacterial infection and their ability to 

evade the immune system to survive (Finlay and Mcfadden., 2006). A wide range of 

bacteria has evolved and incorporated methods of monitoring and evading phagocytes. 

1.4.6.1. Modulation of the Pathogen Surface 

 E. coli  have evolved techniques to evade the immune system by altering their 

appearance (Yu et al., 2012) . The immune system acts on surface signal recognition of 

foreign invaders to identify and neutralize the bacteria. Some bacteria have developed a 

carbohydrate capsule to mask their surface (identity), as well as a process to accumulate 

proteins from the host organism and incorporate them into the capsule (Finlay and 

Mcfadden., 2006). This mimicry and camouflage is used by many pathogenic and non-

pathogenic bacterial species to prevent phagocyte clearance. The bacterial capsule is not 

a solid shell, having pores which allow filamentous adhesion (by fimbriae and pili) to 

host cells (Finlay and Mcfadden., 2006). 

 Bacterial capsules are an effective method of hiding many bacterial surfaces and 

avoiding opsonisation. Even with the capsule, the host immune system could potentially 
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identify predominant structures on the bacterial surface as key signatures (Christie et al., 

2005).  Bacteria have developed methods of altering these molecules so that they are less 

recognizable within the host. The most common modulation of bacterial surfaces, for 

Gram-negative bacteria, is alteration of the lipid A structure found in the LPS outer cell 

wall. Bacteria have sensor molecules and enzymes (e.g., Salmonella has a two-

component sensor PhoP/PhoQ) that assesses host environment and modifies the structure 

of Lipid A using a Lipid A palmitoyltransferase (PagP) (Kawasaki et al., 2004). This 

modification makes Lipid A 100-fold less active for the immune responses to identify 

and eliminate.  

1.4.6.2. Bacterial Subversion of Phagocytes 

  The actual size of bacteria, makes them ideal phagocyte targets and therefore 

bacteria have developed methods of avoiding phagocytosis (Finlay and Mcfadden, 2006). 

Many bacteria secrete several type 3 secretion system (T3SS) effectors that neutralize 

phagocyte activity. An example is secretion of YopH, a tyrosine phosphatase that 

dephosphorylates key actin cytoskeleton proteins such as paxilin and p130cas, that 

disrupts the structure of actin, causing an alteration in cell activity (Finlay and Mcfadden, 

2006). 

 Many bacteria, which are internalized, generally try to avoid destruction in a 

phagosome. Most infectious bacteria try to avoid phagocytes by inhibiting inflammation 

of host cells, but some pathogens activate inflammatory pathways. T3SS secretions of 

effectors bind to caspase pathways and activate downstream pro-inflammatory pathways 

creating a niche (Finlay and Mcfadden, 2006). These niches for pathogens can cause 

serious inflammatory diseases and provide host cells with ideal proliferating conditions 
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that will further promote the infection/inflammation process
 
(Finlay and Mcfadden, 

2006).  

1.4.6.3. Blockade of Acquired Immunity 

 Most pathogens avoid an acquired immune response by avoiding any interaction 

with the immune system, and only a very few pathogens have direct interference with 

acquired immunity. H. pylori produce a vacuolating toxin (VacA), which blocks T cell 

proliferation. T cells are lymphocytes, which are a group of white blood cells that are 

essential for cell-mediated immunity (without antibodies). VacA inhibits the receptor/IL-

2 signalling pathway, resulting in a decrease of nuclear factor activated T cells (NFAT), 

which is a global regulator of immune response genes (Gebert et al., 2003). 

 Another strategy is to secrete enzymes such as IgA (Immunoglobulin A) proteases 

that degrade immunoglobulin (antibodies). IgA is an antibody that is found on mucosal 

surfaces, indicating that it is important for humoral defence (Cerutti and Rescigno, 2008). 

The IgA protease is an ideal tool for bacteria because of its ability as an auto-transporter 

mechanism and self-cleavage reaction to secrete itself out of the bacterium mimic the 

host cell’s ability to neutralizing threats before they reach the cells (Kaetzel et al., 1992). 

These mechanisms produce proteins possessing an amino-terminal signal sequence (with 

features required for passage through the sec translocon), a passenger domain and a 

carboxy-terminal β-domain (Henderson et al., 1998). Proteins mediate their own 

translocation (hence the term autotransporter) across the outer membrane by virtue of 

their b-domains; the b-domain forms a pore in the outer membrane through which the 

passenger domain of the molecule is translocated to the cell surface (Henderson et al., 

1998). 
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1.4.7. Chronic Inflammation 

 Chronic inflammation is a common feature of infections, which is associated with 

induction of pro- and anti-inflammatory cytokines (Kawai et al., 2004). Inflamed cells 

generate mediators such as free radicals, prostaglandins and cytokines that interact in 

different phases of the inflammation process. Chronic exposure to these mediators leads 

to an increase in cell proliferation, mutagenesis, oncogene activation and angiogenesis 

(Shacter et al., 2002). Free radicals (ROS or RNOS) serve as a protection mechanism by 

killing invading pathogens; however, they also have the capability to induce a state of 

cell destruction or proliferation and provide a selective advantage for clones of cells with 

DNA damage. ROS and RNOS can oxidize and damage DNA either directly or through 

interactions with other free radicals or cellular components (Burcham et al., 1998). 

 Chronic inflammation could also spawn carcinogenesis through nitric oxide and 

its derivatives produced by phagocytes. Nitric oxide can oxidize to nitrogen dioxide, 

which can directly induce DNA damage. The nitric oxide also has the ability to react with 

a superoxide anion to form peroxynitrite, which may be cytotoxic itself or can decompose 

into hydroxyl radicals and nitrogen dioxide. This also induces lipid peroxidation, which 

itself could interact directly with DNA to cause mutations, e.g., 4-hydroxynonenal 

(Burcham et al., 1998). Once DNA damage has occurred, the cell with the DNA damage 

has the potential to give rise to a clone of altered cells, an event that is enhanced by the 

proliferative response of the host cells to compensate for tissue damage caused by the 

initial inflammation. 

 Prostaglandins are a group of fatty acid derivatives generated by COX, and are 

involved in numerous body functions such as the contraction and relaxation of smooth 
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muscle, the dilation and constriction of blood vessels, control of blood pressure, and 

modulation of PGE-2 (prostaglandin-E2) (Balzary & Cocks, 2006). COX is released by 

blood vessel walls in response to inflammation, which acts on the brain to induce fever, 

as well as other organs directly involved in the stress response system (spleen) and the 

filtration of the blood  (liver) (Byrne et al., 2003). Theories have been developed that 

recognize the potential for tissues with a large vascular flow to be affected by a distant 

infection by the interaction between distant cells and prostaglandins released by infected 

cells, providing support for distal tissues being affected by phenomena like the bystander 

effect (Byrne et al., 2003).  

1.5 Epigenetic Alteration and Mechanisms of Genome Instability 

 Epigenetic modification refers to changes in gene expression that do not involve 

alteration of the original DNA sequence of a cell and that is reversible and transmitted 

during the mitosis and meiosis (Portela and Esteller, 2010). Epigenetic modification can 

include processes that contribute to the regulation of chromatin structure, genome 

integrity/instability, alterations in the expression of tissue specific genes, embryonic 

development, replication timing, genomic imprinting and chromosome inactivation (most 

common is X-chromosome inactivation in female embryogenesis) (Portela and Esteller, 

2010). Epigenetic changes include reversible DNA methylation, histone modifications 

and small non-coding RNA-induced silencing. Histone modifications are universal and 

evolutionally conserved and a required component of the epigenetic mechanism of 

transcriptional regulation in eukaryotic cells, DNA methylation can occur in both 

prokaryotic and eukaryotic cells. Epigenetic modification involving mammalian genomic 

DNA involves methylation at the 5’ position of the cytosine (C) residue within the 
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cytosine-guanine dinucleotide (CpG), resulting in the formation of 5-methylcytosine 

(m5C) (Portela and Esteller, 2010) as well as hydroxymethylation.  Hypermethylation of 

gene promoters or hypomethylation of various parts of the genome, may contribute to 

autoimmune disease development or potential carcinogenesis/tumourigenesis (Portela 

and Esteller, 2010).   

Epigenetic alterations have been correlated with carcinogenesis in human patients, 

but evidence from test models lack the specific epigenetic changes capable of inducing 

carcinogenesis (Koturbash et al., 2009). Although genetic and epigenetic alterations have 

been characterized in diverse cancers, the crucial steps that result in cancer remain 

unknown. More important, it is unknown how damage is transmitted from direct 

exposure (inflamed tissues infected by bacteria and/or its components) to the distal 

organs. Early detection of such events has been shown using whole bacteria and filtered 

water contaminated with bacteria, indicating that such exposures can trigger substantial 

molecular responses directly in exposed and distal cells (Koturbash et al., 2009). 

1.5.1. γH2AX 

 H2AX in one of the many genes coding for the H2A histone, a major 

component of the nucleosome, and therefore essential for the structure of  chromatin. In 

eukaryotes, DNA wraps around the nucleosome, consisting of core histones H2A, H2B, 

H3 and H4. H2AX has been shown to be phosphorylated at serine 139, altering it to 

become γH2AX.  H2AX is involved in DNA repair and becomes phosphorylated soon 

after the appearance of double strand breaks (DSBs) and has been implicated both in 

homologous recombination and non-homologous end joining DNA repair pathways 

(Burma et al., 2001). H2AX is thought to have a function in recruitment of DNA repair 
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factors and DNA-damage signalling proteins. Hyper phosphorylation of H2AX may be 

linked to chromatin fragmentation prior to apoptosis (Park et al., 2003). 

1.5.2. DNMT1 

 DNA methyltransferases (DNMTs) are the enzymes involved in cytosine 

methylation. Mammalian DNMTs are composed of three main structural regions. The 

first region is the N-terminal regulatory domain, responsible for the localization of 

DNMTs in the nucleus. The N-terminal domain plays a regulatory role, and contains a 

proliferating cell nuclear antigen-binding domain (PBD), a nuclear localization signal 

(NLS), a cysteine-rich zinc finger DNA-binding motif (ATRX), a polybromo homology 

domain (PHD), and a PWWP tetrapeptide chromatin-binding domain (Tang et al., 

1994).The second region is the C-terminal catalytic domain, which consists of several α-

helical and β-sheet structures and is characterized by the presence of six conserved amino 

acid motifs, namely I, IV, VI, IX and X (Hermann et al., 2004). Motif I and X fit together 

to form a large part of the binding site for the methyl donor (S-adenosyl-L-methionine, 

SAM). Motif IV contains a prolyl-cysteinyl dipeptide that provides a thiolate to the active 

site. Motif VI contains a glutamyl residue that protonates the 3 position of cytosine. 

Finally, the third region is the central linker, which consists of repeated GK dipeptides 

(Tang et al., 1994).  

DNA methyltransferase 1 (DNMT1) activity is required for maintenance of DNA 

methylation, which is needed for proper organization of chromatin domains. DNMT1 

recruits chromatin-modifying enzymes including HDAC1, HDAC2 and histone 

methyltransferase Suv39h1 (Geiman et al., 2004). This suggests that DNMT1 may play 

an important role in transcriptional regulation
 
and chromatin remodelling in mammalian 
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cells (Geiman et al., 2004). Aberrant DNA methylation
 
may be involved in 

carcinogenesis as a result of; 1) increased
 
frequency of point mutations in a gene because 

of deamination of 5-methylcytosine
 
to thymine, 2) possible association of aberrant DNA 

methylation
 
with the loss of alleles, and 3) repression of gene transcription through

 

methylation of CpG islands in regulatory regions of specific
 
genes, including tumour-

suppressor genes. Over expression of DNMT1 has been detected in several human 

cancers(Etoh et al., 2004). In reference to gastric cancer, it has been reported that 

DNMT1 mRNA
 
expression levels were significantly higher in cancer tissues

 
than in 

normal gastric mucosae (Etoh et al., 2004).  

In past studies, it was found that increased DNMT1 mRNA expression correlated
 

significantly with the CpG island methylator phenotype (defined
 
as frequent DNA 

hypermethylation of C-type CpG islands, that
 
are methylated in a cancer-specific but not 

an age-dependent
 
manner) in gastric and colorectal cancers (Etoh et al., 2004). Current 

research has indicated that DNMT1 expression was also
 
increased in gastric cancers, 

suggesting
 
that DNMT1 over expression has some significance during gastric

 

carcinogenesis. DNMT1 protein over expression showed no significant
 
correlations with 

either the cellular type (gastric type
 
versus intestinal type) or the presence, absence, or 

degree
 
of intestinal metaplasia (a precancerous lesion for adenocarcinomas

 
with an 

intestinal phenotype), in corresponding noncancerous
 
mucosae, suggesting that DNMT1 

protein over expression is associated
 
with gastric carcinogenesis regardless of the cellular 

origin
 
or phenotype (Etoh et al., 2004). 



 
 

29 
 

1.5.3. DNMT3A and DNMT3B 

DNMT3A and DNMT3B are similar in their primary structure; however these 

enzymes are coded by different genes located on different chromosomes and regions of 

chromosomes 2p23 and 20q11.2, respectively (Xie et al., 1998). This methyltransferase, 

methylates CpG dinucleotides, without preference for hemimethylated DNA, and is 

responsible for the de novo methylation of DNA. DNMT3A and DNMT3B activity is 

usually reduced significantly within adult organisms and is primarily used during the 

development of the embryo to silence genes no longer required, or detrimental to survival 

of the embryo. The expression of DNMT3A is ubiquitous, while DNMT3B is expressed at 

very low levels in most tissues except testis, thyroid and bone marrow (Xie et al., 1998). 

Past research has identified an increase in DNMT3B in tumour cell lines indicating that 

DNMT3B may play a significant role in the development of tumourigenesis (Robertson 

et al., 1999).  

The architecture of the DNMT3A and DNMT3B enzymes is consistent with the 

general structure of the DNMTs. The DNMT3A and DNMT3B domains are hypothesized 

to interact with the chromatin, and the regulatory regions of these enzymes have the 

capability to bind with various transcriptional repressors (Kim et al., 1998). DNMT3A 

can bind co-repressor RP58, oncogenic factor PML-RAR or HP1b protein, whereas 

DNMT3B can be associated with Sin3a SUMO-1/Ubc9 and ATP-dependent chromatin 

remodelling enzyme (hSNF2H).  

DNMT3A and DNMT3B may also interact with DNMT1 and activate HDAC1, 

which deacetylates histones and represses gene transcription. This indicates that 

DNMT3A and DNMT3B may be involved in chromatin remodelling associated with 
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modulation of gene transcription. DNMT3A exhibits a lower level of enzymatic 

methyltransferase activity as compared to DNMT1. This may indicate that DNMT3A 

requires a small protein or co-factors for optimal activity. Furthermore, DNMT3A 

exhibits a preference for methylation sites that are flanked by pyrimidines. Although 

DNMT3A is highly specific for CpG methylation, this enzyme is also able to methylate 

cytosine at the CpA and CpT dinucleotides; however, function of this DNA modification 

is still unknown (Ramsahoye et al., 2000). 

1.5.4. MeCP2 

Another important enzyme, which plays a major role in mammalian development 

and correlates with chromatin-associated gene silencing, due to methylation maintenance, 

is labelled as MeCP2. MeCP2 (Methyl CpG binding protein2) plays a significant role in 

methylation-mediated gene silencing and chromatin remodelling of hemi-methylated 

regions of a chromosome (Fan and Hutnick, 2005). MeCP2 specifically recognizes 

methylated regions of DNA and represses gene transcription, either directly affecting 

DNA or interacting with known co-repressor proteins, which include members of histone 

deacetylase protein families.  MeCP2-associated methylation is identified as specific to 

lysine 9 of histone H3. These proteins are able to form complexes with HDAC, co-

repressor (Sin3a) and ATP-dependent chromatin remodelling proteins, which are 

involved in the stabilization of heterochromatin (Fuks et al., 2003). MeCP2 is also known 

to set up a relapsing cycle of repression within mammalian cells, which may be required 

for maintenance of repressed genes initially, but could also promote additional rounds of 

methylation following histone modification. DNMT1 and MeCP2 associate together in 

order to perform maintenance methylation of the genome (Fuks et al., 2003). 
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1.6 Possible Role of Bacterial Infection in Inducing Genomic Instability 

 Modern agricultural practices (mostly livestock) have become one of the largest 

contributors of water contamination (Kondro, 2000). Research conducted within recent 

years has identified that heat- killed bacteria (whether pathogenic E. coli O157:H7 or 

non-pathogenic DH5α) induce genome instability (Koturbash et al., 2009). It was 

identified that water containing only heat-killed bacteria continued to have the capacity to 

induce genome instability in the host. The effect remained even after water contaminated 

with heat-killed bacteria was filtered through a 0.45 µm filter. This indicates that whole 

bacteria are not required to induce genetic and possibly epigenetic changes, but rather 

only a single component of the bacteria.   

 Bacterial components could be present within a solution, separate from the 

breakdown of bacterial cells. It has been hypothesized that these components may induce 

cell proliferation in mucosal cells (Olaya et al., 1999). LPS has been proposed as a 

potential component of bacteria capable of inducing genome instability in the host. This 

assumption is supported by tests conducted in vitro with an assortment of bacterial 

components provided within water extracts (Olaya et al., 1999). Some Gram-negative 

bacteria posses a glycolipid component in their outer wall, called LPS. LPS are known to 

interact in cell proliferation and cell signalling mechanisms of infected cells (Luderitz et 

al., 1982). LPS possess the capability of surviving heat-shock exposure without major 

alterations to structure or function (Rietschel et al., 1993).  

 Genome instability is a fundamental event in carcinogenesis, permitting the 

initiated cell to alter and evolve into transformed cells resulting in tumourigenesis 
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(Coleman and Tsongalis, 1999).  It has been hypothesized (Luderitz et al., 1982) that LPS 

can induce genome instability by primarily two mechanisms: 

1) Repeated exposure of cells to LPS causes an inflammatory response resulting in 

production of free oxygen radicals, inducing DNA damage. It has been 

demonstrated (Yamada et al., 2006) that exposure to relatively low doses of LPS 

significantly increases the concentration of H2O2 (hydrogen peroxide, an active 

oxygen species).  

2) Repeated LPS treatment accelerated urothelial proliferation  (Kawai et al., 2004). 

Cell proliferation can be caused by cytokines, induced by an immune response, 

caused by the signalling effects of LPS. Epidermal cells, capable of accelerated 

proliferation, consist of several kinds of cytokines including IL-6, TNF, and IL-8 

and are known to be involved in the process of pathogenesis and proliferation of 

cells exposed to environmental stressors (Kawai et al., 2004). This indicates that 

the cytokine network, induced by LPS, may play a significant role in cell 

proliferation in inflammation-induced hyperplasia.  There may also be a 

possibility that cytokines such as TNF (Kudo et al., 2009) and IL-8, which have 

chemotactic, and angiogenesis activity, may be involved in the development of 

the tumours. 

 LPS were isolated in the 1930s (Bolvin et al., 1933) and their structure had been 

determined to consist of three distinct regions: (i) a hydrophilic lipid A moiety, 

responsible for the endotoxic properties of LPS (Du et al., 1999), (ii) core nucleotides 

(five known structures identifies as R1, R2, R3, R4 and K12) made up of three 3-deoxy-

D-manno-2-octulosonic acid (KDO) and three heptose residues situated along variable 
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sugars attaching the lipid A structure (Netea et al., 2002) to the third structure, (iii) the O-

polysaccharide antigen (accessible to the host immune system inducing response) (Netea 

et al., 2002) (Figure 1.2). Lipid A is a unique lipid found in bacteria and consists of a 

phosphorylated β-1,1-linked glucosamine disaccharide, on which long fatty acid chains 

are attached (Rietschel, 1982; Rietschel et al., 1987).  Lipid A is hypothesized to be 

responsible for induction of the expression of the cytokines by the LPS structure, 

although KDO and the polysaccharide component could also cause this activity 

(Rietschel et al., 1987). Finally, the O-polysaccharide antigen component of LPS has 

been identified to posses over 170 serotypes, in E. coli yet only a few have been 

implicated in diseases in humans (Gibbs et al., 2004). 

Studies on a range of Gram-negative bacteria have produced information supporting 

the idea that LPS from certain bacterial strains such as E. coli and Salmonella spp., are 

more potent than that of other strains (e.g. Bordertella pertussis). Even more interesting, 

LPS from E. coli can stimulate macrophages, inducing expression of tumour necrosis 

factor α (THF-α), various interleukins, macrophage inflammatory protein 2 (MIP-2), 

interferon γ (IFN-γ) and macrophage chemotactic protein 5 (Hirschfeld et al., 2001).  

Expression of these genes can be associated with variation in the structure of the LPS 

molecule. Lipid A of E. coli, consists of a biphosphorylated β-1,6-linked glucosamine 

disaccharide substituted with a 3-hydroxyl myristoyl (C14:0) group at the 2,2`, and 3` 

positions of where the 2` and 3` fatty acid chains are esterified (Rietschel et al., 1987). 

Lipid A isolated from other species might differ in terms of the presence of 2,3-diamino-

2,3-dideoxy-D-glucose instead of D-glucosamine, and number of acyl groups, chain 

lengths, symmetrical distribution or substitution of phosphate groups (Figure 1.3) (Seydel 
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et al., 2000). Research by the Ulrich Seydel group has identified that the conical shape of 

LPS, such as the one seen in the LPS structure of E. coli, gives LPS high activity with 

cell wall proteins as compared to the LPS possessing a cylindrical conformation 

identified in Porphyromonas gingivalis (Schromm et al., 2000). 

Based on published data (Netea et al,. 2004), researchers have proposed a 

hypothesis of why the conical orientation of E. coli LPS can induce cellular homeostatic 

instability (Figure1.4). When the Lipid A in the LPS molecule assumes a conical 

structure, Toll-like receptors (TLRs) can be engaged, which are a major component of 

LPS-mediated signalling (Du  et al., 1999). CD14 on the cell membrane binds to the LPS, 

then transfer lipopolysaccharide to the receptor TLR4, which is the signalling chain of the 

receptor complex. CD14 is a glycolipid-anchored membrane glycoprotein expressed on 

cells of the myelomonocyte lineage including monocytes, macrophages, and some 

granulocytes. They function as receptors for the complex of LPS and LPS-binding 

protein (LPB). These cell surface domains trigger activation of intracellular signalling 

complexes, composed of interleukin receptors and adaptor proteins. This can lead to 

nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-KB) and transcription of cytokine-encoding genes (Golenbock and Fenton , 2001). 

Overall, several suggestions can be drawn from the existing literature: 

 Ingestion of contaminated food and water is a source of genomic instability of 

exposed and distal cells identified as the  bystander-like effect 

 Induction of genome instability is potentially caused by an epigenetic 

modification 

http://www.biology-online.org/dictionary/Membrane_glycoproteins
http://www.biology-online.org/dictionary/Cells
http://www.biology-online.org/dictionary/Lineage
http://www.biology-online.org/dictionary/Monocytes
http://www.biology-online.org/dictionary/Macrophages
http://www.biology-online.org/dictionary/Granulocytes
http://www.biology-online.org/dictionary/Function
http://www.biology-online.org/dictionary/Receptors
http://www.biology-online.org/dictionary/Complex
http://www.biology-online.org/dictionary/Protein
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 Events involved in the regulation of cellular functions are essential 

components of genome stability 

It is still unclear whether infection with pathogenic E. coli is associated with 

carcinogenesis. Knowledge of molecular pathways involved in induction of genomic 

instability in response to infection is still missing.  Analysis of chromatin structure in 

cells exposed to pathogens, identification of the component of the bacteria capable of 

induction of the genomic instability, and identification of the molecular pathways leading 

to it need to be further explored. 

1.7 Hypothesis 

 

The current study aims to identify the component of the heat-killed bacteria (E. coli 

O157:H7) that induces genomic instability of cells directly exposed to the bacteria and 

the naive cells of distal tissues affected by the bystander effect in in vivo exposed mice. 

Exposure to heat-killed bacteria will result in alteration of genomic stability 

of the exposed cells. Therefore it is hypothesized that components of the 

aforementioned bacteria (DNA, RNA, proteins or LPS) will result in alteration of 

genomic stability of the exposed cells. Additionally, it is hypothesized that distant 

naive cells may also be affected by receiving a signal from exposed cells, by a 

bystander-like phenomena. Finally, it is hypothesized that Lipopolysaccharides 

(LPS) from Escherichia coli O157:H7 Gram-negative bacteria is a triggering agent 

to induce genomic instability  
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Figure 1.0. The Multi-Barrier Approach to ensure the ingested water meets safety 

standards. Federal-Provincial-Territorial Committee of Drinking Water of the Federal-

Provincial-Territorial Committee on Environmental Occupational Health and the Water 

Quality Task Group of the Canadian Council of Ministers of the Environment (Lim et al., 

2002). 
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Figure 1.1.  Apoptosis. Tumour necrosis factor α (TNF-α) acts through a membrane 

receptor (TNF-R) whose death domain (DD) interacts with TRAFs, that regulate the 

nuclear factor (NF)-κB, suppressing apoptosis. TNF-α also interacts with caspase-8 

through TRAD and FADD to activate the caspase cascade affecting the Bax and Bak 

pathways. (Lax and Thomas, 2002). 
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Figure 1.2. Structural components of LPS consisting of a lipid component (lipid A) 

and polysaccharide chains. Various bacterial species are represented. β-1,6-linked 

glucosamine disaccharide substituted with two negatively charged phosphate and 

saturated fatty acids carrying radicals; R1, R2 and R3.   P. gingivalis
a
, superscript a 

indicating an anaerobic organism. (Netea et al., 2002). 
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Figure 1.3. Structural alterations in LPS structures. A) Hexaacyl asymmetrical lipid 

A from E. coli creates a conical conformation. B) Pentaacyl asymmetrical structure of 

lipid A from Porphyromonas gingivalis. C) Tetraacyl symmetrical lipid A precursor 

adopts a strictly cylindrical shape. (Seydel et al., 2000). 
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Chapter 2: Genomic instability in liver cells caused by an LPS-induced bystander-

like effect  

 

Abstract 

 

 Bacterial infection has been linked to carcinogenesis; however, there is lack of 

knowledge of molecular mechanisms that associate infection with the development of 

cancer. Research indicates that the pathogenic ability of  bacteria is not a significant 

factor in induction of genome instability of exposed in mice or distal non-exposed tissue 

(Koturbash et al., 2009). We analyzed possible effects of the consumption of heat-killed 

E. coli O157:H7 cells and cellular components on genome instability of naïve liver cells. 

Four week old mice were provided water supplemented with whole heat-killed bacteria or 

bacterial components (DNA, RNA, Protein or LPS) for a two week period. Additional 

groups of mice were provided a two week sample of water with supplements of whole 

heat-killed bacteria or its components, followed immediately by an additional two weeks 

of receiving uncontaminated tap water before sacrificing. Liver samples were collected, 

post mortem, for analysis of the response of naïve tissues to the bacteria or their 

components. Liver cells responded to exposure of whole heat-killed bacteria and LPS 

with alteration in levels of proteins involved in proliferation, DNA methylation (de novo 

or maintenance) (MecP2, Dnmt1, Dnmt3a and 3b) or DNA repair (Ape1 and Ku70) as 

well as with changes in the expression of genes involved in stress response, cell cycle 

control and bile acid biosynthesis.  Other bacterial components analysed in this study did 

not lead to any significant changes in the tested molecular parameters. This study 

suggests that lipopolysaccharides are a major component of Gram-negative bacteria that 

induce genomic instability within naïve cells of the host. 
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2.1. Introduction 

 

  There is clear evidence linking environmental exposures to the onset of 

carcinomas (Parkin et al., 2005).  Viral infections such as HIV, HCV and HBV have a 

prominent effect on the development of carcinomas during and after infection. The 

influence of some bacteria on the effects of genome stability is significant but not widely 

accepted. Helicobacter pylori and its association with the development of gastric cancer 

is one of the best examples (Suerbaum, & Michetti, 2002). Presence of a common 

intestinal bacteria such as E. coli may facilitate the development of various malignancies 

(Horie et al., 1999). E. coli infections can also be associated with hematological and non-

hematological malignancies (Brook et al., 1998).  

Bacteria can promote carcinogenesis by induction of chronic infection, leading to 

disruption of the cell cycle and alterations in cell growth and DNA damage (Ferrero et 

al., 2000). Even though a link between cancer induction and bacterial infection exists, it 

is unclear if living or heat-killed cells, or even remnants of the bacteria can trigger 

genome instability and cancer. Yamamoto et al. (1992) conducted tests which exposed 

urinary bladders to heat killed E. coli, which resulted in a 40x enhancement of 

tumourigenesis in pre-initiated tumour sites.  The most common organs in which 

infection-associated malignancies take place are within the liver, colon and stomach 

(Yamamoto et al., 1992). 

The liver is continuously exposed to a variety of antigens and toxins derived from 

the gut, where ingested substances are absorbed into the blood stream (Jirillo et al., 

2002). The liver is exposed to bacterial determinants and/or toxins through its 
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physiological role of detoxification of the blood; specifically, the hepatocytes are 

involved in clearance of endotoxins (Jirillo et al., 2002).  

 Exposure to bacterial pathogens and/or their components most frequently occurs 

through consumption of contaminated food or water. Contamination is more frequently 

identified in rural communities with a high frequency of large livestock farms (Gannon et 

al., 2005). Upon identification of water contaminated by E. coli O157:H7, Health Canada 

imposes a boil water advisory. Boiling of contaminated water is intended to kill the 

bacteria and prevent infections, but bacterial remnants such as proteins and LPS remain 

intact and have the capability to interact with cells of the gastro-intestinal tract. Even 

though, epidemiological evidence identifies links between bacterial infection and cancer 

induction, it is still unclear, which/if any, component of the heat-killed bacteria could 

produce a genomic instability response in naïve cells of the host. Based on the literature, 

it can be hypothesized that exposure to heat-killed bacteria or their components, causes 

genomic instability in cells that does not require direct contact with a bacterial cell or its 

constituents. This response may represent a bystander-like effect. 

The purpose of this study was to analyze of genome stability of an indirect target 

organ (liver) in mice following digestive tract exposure to DNA, RNA, protein or LPS 

extracted from heat-killed bacteria. Another objective was to analyse the ability of the 

mouse organs to react to initial exposure to bacteria/bacterial components and return to a 

physiological level comparable to the control.  
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2.2. Methods  

 

2.2.1. Animal Model 

Four-week-old C57BL/6 male mice and all subjects were handled and cared for 

according to the requirements set by the Canadian Council for Animal Care and Use. The mice 

were housed in cages with a 12 hr light/dark cycle and provided water (with or without treatment) 

and food pellets ad libitum. Water consumption, food intake and body weight were monitored for 

any significant changes. Mice were housed in groups according to the determinant from the 

bacteria they were exposed to (e.g., all mice in one compartment would receive the LPS-rich 

solution). The two and four week groups were housed within the same component with half of the 

mice removed for each temporal experimental endpoint. 

  The bacteria were grown to OD600 0.2, and then 1.25 ml of bacterial suspension 

was heat-killed and added to one litre of water to get approximately 6x10
6
 bacteria/litre. 

For this study, six treatment groups were created: Group 1 (control, tap water); Group 2 (heat-

killed bacteria); Group 3 (DNA prepared from group #2); Group 4 (RNA from group #2); Group 

5 (protein from group #2); Group 6 (LPS from group #2). Animals (eight per experimental group) 

were sacrificed either immediately after treatment (4 animals in each group) or two weeks later (4 

animals in each group). Concentrations provided to the animals were; DNA at 430 µg/L, RNA at 

72.7 µg/L, protein at 9.6 µg/L and LPS was 50 µg/L. The concentration of DNA, RNA, protein or 

LPS used in the experiment was approximately is ~15,000-fold higher than what was expected to 

be produced from amount of bacteria stated earlier: DNA extracted from a single E. coli cell 

weighs ~ 5x 10
-9
 µg, thus 6x10

6
 bacteria would weigh 30x 10

-3
 µg, which ~15,000-fold less 

DNA than was used in the experiment. Also, typical bacterial cell contains 0.1 pg of RNA; 

thus 6x10
6
 bacteria would yield 0.6 µg of RNA, which 200-fold less than used in our 
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experiment. Average bacteria contain approximately 200 x10
-9
µg of protein (Zubkov et al., 1999); 

thus 6x10
6
 bacteria would yield 1.2 µg of protein, or 8 times less than used in our experiment. 

The use of increased concentrations of DNA, RNA and protein was intentional to ensure a large 

concentration of bacterial components was present in the water to induce a response to the 

contaminant. Proportionally higher concentration of bacteria in water was not possible to achieve 

without causing the water to be turbid.  During the experiment, the treated animals did not 

consume more water than the non-treated animals. Animals in the four week test group received 

normal water for two weeks following initial treatment (Figure 2.0). Animals were sacrificed 

either 2 or 4 weeks (dependant on the test group) after the start of the treatment. Liver and muscle 

tissue samples were harvested and processed for molecular testing or fixed in paraformaldehyde 

for immunohistochemical analysis.  

2.2.2. DNA extraction 

  DNA was extracted from the E. coli using a Qiagen DNAeasy kit (Qiagen) in 

accordance with the manufacturer’s specifications. Please refer to Qiagen DNAeasy kit 

DNA Extraction from Cell Culture section for protocol. Heat-killed E. coli O157:H7 were 

provided by Dr. James Thomas (University of Lethbridge). 

2.2.3. RNA Extraction 

 RNA was extracted from the E. coli using TRIzol® Reagent following the 

manufactures protocols. 

 2.2.4. Bacterial Protein Extraction  

 One ml of bacterial suspension was centrifuged at 5,000 x g for 20 minutes at 4
0
C. 

Next, 500 µl of Lysis buffer (1% Sodium Dodecyl Sulphate) was added and each sample 
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was   sonicated for 30 seconds. Cell debris was removed by centrifugation at 10,000 x g 

for 30 minutes. Supernatants containing the proteins were transferred to new tubes. 

2.2.5. Lipopolysaccharide Extraction 

 The cells were harvested by centrifugation (Eppendorf ® 5415R Centrifuge) at the 

speed of 1,000 rpm for 15 minutes. Approximately 500 mg of dried bacterial cells were 

re-spun in 15 ml of 10 mM Tris-HCl, pH8.0, 2 mM MgCl2, DNase (100 µg/ml) and 

RNase (25 µg/ml). The cell suspension was compressed twice at 15,000 psi, followed by 

two 30 second bursts of sonication (Braunsonic® 1510). Once again, 100 µg/ml of DNase 

and 25 µg/ml of RNase were added into solution.  

The cell suspension was then incubated for two hours at 37
0
C. Five ml of 0.5 

EDTA (tetra sodium salt)/10 mM Tris (pH 8.0), 2.5 ml of 20% SDS/10 mM Tris  (pH 8.0) 

and 2.5 ml of 10 mM Tris-HCl (pH8.0) were added to a final volume of 25 ml. The 

sample was then vortexed and centrifuged at 50,000 g for 30 minutes at 20
0
C to remove 

peptidoglycan. The supernatant was collected into separate 1.5 ml tubes. Pronase was 

added to the final concentration of 200 µg/ml. The samples then were incubated overnight 

at 37
0
C with constant agitation. Two volumes of 0.375 mM MgCl2/95% EtOH was added, 

mixed and cooled to 0
0
C.  After it had cooled, the sample was centrifuged at 12,000 g for 

15 minutes at 0-4
0
C. The pellet was re-spun in 25 ml of 0.1 M EDT, 2% SDS, 10 mM 

Tris-HCl (pH 8.0).  The sample was once again sonicated at ¾ intensity for a 30 seconds 

burst and set to incubate at 85
0
C for 30 minutes. Upon removal of the sample, it was 

allowed to cool to room temperature and the pH was brought to 9.5 with addition of 4N 

NaOH. Next, pronase was added to a final concentration of 25 µg/ml followed by 

incubation at 37
0
C overnight with constant agitation. 
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Samples were taken out of the incubator and 0.375 mM MgCl2/95% EtOH was 

added and mixed /cooled to 0
0
C in a -20

0
C refrigerator.  After it had cooled, the sample 

was centrifuged at 12,000 g for 15 minutes at 0-4
0
C. The pellet was re-spun in 25 ml of 

0.1 M EDTA, 2% SDS, 10 mM Tris-HCl (pH 8.0).  The sample was once again sonicated 

at ¾ intensity for a 30 second burst, then centrifuged at 1,000 rpm for five minutes to 

remove insoluble Mg/EDTA complexes. The pellet was washed in a small volume of 

water, re-centrifuged and the previously saved supernatant was added again. MgCl2 was 

added to a final concentration of 25 mM and centrifuged at 200,000 g for two hours. 

Finally, the pellets were spun in distilled water. The final product was a total extract of 

LPS and possible other components of the bacterial cell wall (impure LPS rich solution). 

 The above-mentioned procedure for purification of LPS does not completely 

exclude addition of portions of the bacterial cell wall (Darveau & Hancock, 1983). Other 

components such as proteins may also be included in the LPS rich solution, therefore the 

extract is identified as a crude LPS-rich solution. 

2.2.6. mRNA expression analysis and semi-quantitative RT-PCR 

Total RNA was extracted from 100 mg of the mouse liver tissue using 1 ml 

TRIzol® Reagent (Invitrogen, Burlington, ON) according to the manufacturer’s 

instructions. After homogenization, using a plastic pestle, RNA extraction was completed 

following the TRIzol® protocol. Tissue from the four animals exposed for two weeks to 

LPS or to whole heat-killed bacteria, as well as control animals were used for the gene 

expression analysis. The mRNA expression analysis was performed by Genome Quebec 

(Montreal, QC) with an Illumina MouseWG-6 v2.0 Expression BeadChip. Data produced 

from the Chip assay, was analysed using an Ingenuity IPA Network Analyser and 
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significance was calculated with the use of ANOVA and Significance analysis of 

microarrays (SAM) test. 

RT-PCR was carried out on a Bio-Rad Laboratory’s CFX96 Real-Time PCR 

Detection System (Mississauga, Ontario), using Taq DNA polymerase (Fermentas, 

Burlington, Ontario). Each reaction contained 2 µl of cDNA, prepared with RevertAid
TM

 

H Minus First Strand cDNA Synthesis Kit (Fermentas, Burlington, Ontario), 10 pM of 

forward and reverse primers, 2 mM MgCl2, Taq buffer with KCl, and 0.625 units of Taq 

DNA polymerase.  Specific primers were designed by myself using integrated DNA 

Technology primer design software (Oligo Perfect™ Designer) (Table 2.0).  

Primers for the analysis were designed to amplify exon sections, with the use of 

the online exon library provided by Invitrogen®. Table 2.0contains the sequence for the 

forward and reverse primers, size of cDNA fragment produced and the ideal annealing 

temperature identified using temperature gradient analysis. A heat-map showing ANOVA 

analysis of the mRNA expression, was produced with the assistance of IPA Network® 

program.  

2.2.7. Immunohistochemical Analysis   

Paraffin embedding and sectioning of the tissue was conducted at Pantomics 

(Richmond, CA) with a predetermined random pattern of tissue placement on the slide 

created by a random third party. Tissue sample labels were recorded and replaced with a 

random numbered system to ensure no predetermined knowledge was given to either 

Pantomics or the individual quantifying the data visualized by the fluorescent probes. 

Staining of the slide consisted of a DAPI staining and fluorescent antibody probe for 
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PCNA and γ              (both probes were provided by Santa Cruz Biotechnology, 

Santa Cruz, CA).   

Slides were baked at 60
0
C to fix the tissue to the slide and immediately placed 

into 100% xylene to start the deparafinization and rehydration process. The slides were 

transferred to baths of 100% ethanol followed by baths with decreasing concentrations of 

ethanol (95%, 80% and 70%, respectively) and then placed in 1x PBS for 15 minute 

intervals in each bath. Slides were placed in 10 mM sodium citrate buffer (6.0 pH) and 

microwaved to a boil for 10 minutes on high power followed by a 20 minute interval of 

cooling at room temperature. The slides containing tissue were fixed in 300 µ  of 4% 

paraformaldehyde in 1x PBS for 20 minutes at room temperature and then washed in 1x 

PBS (three times for five minute intervals).  

The slides were treated with goat serum/1x PBS (1:200) for 1.5 hours at room 

temperature followed by a wash consisting of three intervals of five minutes each in 

unused 1x PBS. The primary antibody (either PCNA or γH2AX at 1:500 and 1:350, 

respectively) was added to goat serum/1x PBS (1:200) overnight at 4
0
C. The slides were 

washed (similarly to previous cycles) to remove excess antibodies and goat anti-mouse 

serum (1:200) for PCNA antibody and anti-rabbit 594 serum (1:200) for γH2AX 

antibodies was added. These solutions also contained fluorescent probes (secondary 

antibodies containing a fluorophore) that bind to the specific antibodies (either PCNA or 

γH2AX) and emit fluorescent light indicating location of the specified proteins. Slides 

were washed again in 1x PBS for four intervals of five minutes each and then in 300 µl of 

DAPI staining (5  in 1x PBS) for one minute. Slides were then dehydrated by being 

submerged in a bath for 1x PBS followed by baths with increasing concentration of 
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ethanol (70%, 80% and 95%, respectively) and then placed in a 100% ethanol bath for 15 

minutes intervals in each bath. Cover slides were then mounted over the samples with 

Entellan® Rapid Mounting Media containing xylene.  

 Samples were examined with a Zeiss confocal microscope and quantified without 

prior knowledge of the predetermined pattern created by an independent third party. Each 

tissue sample was digitally sectioned into several equal portions and cells expressing 

PCNA or γH2AX were recorded by counting.   

2.2.8. Western Blot Analysis  

Tissue samples for protein analysis were snap-frozen in liquid nitrogen 

immediately after extraction from the mice. Tissues were sectioned (~25 mg), washed 

thoroughly, sonicated in 1% SDS and small aliquots of extracts were isolated for protein 

analysis using Bradford dye reagents from BioRad (Hercules, CA).  Tissue samples were 

placed in 300 µl of 1% SDS within a 1.5    microcentrifuge tubes. Tissues were lysed 

with the use of a sonicator.  

 Protein quantification was completed with the use of a spectrophotometer. Each 

sample was diluted to 1/10 in distilled H2O and 25 µ  of the diluted sample was placed in 

a new cuvette. To each sample, 1.25 µ  of Bradford dye (diluted in 1:5 concentration in 

double distilled H2O) was added and mixed thoroughly. Samples were loaded into the 

spectrophotometer (595 nm) and data was transferred to Microsoft Excel® to identify 

aliquots to be used in Western Blot analysis. Each sample aliquot was standardized to be 

2 mg/ml. 
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Equal amounts of protein (~20 µg) were used for SDS polyacrylamide gel 

electrophoresis at 150V for one hour (Laemmli, 1970).  Smaller predicted proteins such 

as PCNA (36 kDa) and MeCP2 (53 kDa) were identified using a 12% polyacrylamide 

gel; Ku70 (70 kDa), DNMT3a (85 kDa) and DNMT3b (96 kDa) were identified using a 

10% polyacrylamide gel and DNMT1 (138 kDa) with an 8% gel. Each protein extract 

was analyzed three times to ensure significance of the results.  

Proteins were transferred to PVDF membranes (GE Healthcare Biosciences, 

Piscataway, NJ). A piece of PVDF membrane, equal in size to the gel and activated in a 

100% methanol bath for one minute, was placed in direct contact with the gel. The gel 

and membrane were placed in a BioRad® blotting apparatus applying pressure and an 

electrical current to ensure the proteins within the gel were transferred to the membrane. 

The apparatus was placed in a tank filled with 1X blotting buffer consisting of an electric 

charge of 100V for 60 – 90 minutes to ensure complete transfer. 

Membranes were removed from the blotting buffer and stained with Ponceau S 

Stain to ensure the transfer was complete and then distained in distilled water. The 

membrane containing the proteins were activated in a bath of 100% methanol for one 

minute and submerged in a blocking solution consisting of 5% milk (2% fat) in 1X PBS-

Tween for one hour. The blocking solution was removed and replaced with a primary 

antibody solution (0.5% milk [2% fat] in PBS-Tween [5%]) to incubate overnight on a 

shaker at 4
0
C. The primary antibody solution was removed and the membrane washed 5x 

in 1x PBS, for five minutes each wash. Then, a secondary antibody was diluted, in 0.5% 

milk in PBS-Tween, and then was added and the membranes left on the shaker for three 
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hours. A second wash cycle to ensure removal of excessive antibodies was conducted 

(five times for five minutes each interval). 

After an additional wash in 1X PBS for 10 minutes, the antibody binding was 

visualized by an ECL PLUS immunoblotting detection system (GE Healthcare 

Biosciences). The reaction produced a chemiluminescence signal that was captured by 

GE ECL Hypefilm (GE healthcare Biosciences). The membrane was then rinsed in 

distilled water, to remove the ECL and incubated with an Actin antibody (1:10000 

dilution) in a 5% milk (2% fat) medium (repeat of the secondary antibody and detection 

method), which was used as a loading control.  

2.2.9. Statistical analysis 

 To identify significant alterations, statistical analysis of the data was conducted 

for every experiment with a significance confidence level of a minimum of 95% 

(p .0.05). A comparison between different treatments was performed, using ANOVA for 

continuous responses and statistical tests for contingency tables such as Fisher’s exact 

test. The analysis of data was performed using the software packages Stat View and 

Analyze It for Excel and checked using the statistical analysis program SPSS 15.  

2.2.10. Image J 

Image J is a computational analysis tool used to identify alterations in expression 

of Western blot analysis. Image J is a Java-based image processing program allowing for 

the comparison of exposure of fluorescent probes to a pre-determined value (control). 

Image J can calculate area and pixel value statistics of user-defined selections and 
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intensity threshold objects. The exposure is calculated to a value based on the threshold 

and transferred to Microsoft Excel for statistical analysis. 

2.3. Results 

 

2.3.1. Experimental set-up and tissue selection for experiment 

To analyze whether or not exposure to heat-killed bacteria and their components 

(DNA, RNA, protein or LPS) triggers any changes in genome instability and cell 

proliferation in exposed animals, drinking water was supplemented with heat-killed E. 

coli O157:H7 in the amount of 6x10
6
 bacteria per litre of water, or 440 µg/L of DNA, 73 

µg/L of RNA, 100 µg/L of complete protein extracts or 50 µg/L of crude LPS for two 

week duration of exposure. Based on the supplement received, the test subjects (C57BL/6 

male mice) were divided into six test groups; Control, DNA exposure, RNA exposure, 

protein exposure, LPS-rich solution exposure, and exposure to whole heat-killed bacteria. 

The liver was chosen as an indirect target organ, because of its capacity to detoxify the 

host blood from possible toxins and pathogens (Jirillo et al., 2002). Muscle cells were used as a 

control that should be neutral to bacterial exposure. 

2.3.2. Exposure to LPS from heat-killed bacteria leads to increased expression of PCNA 

in liver cells  

Protein analysis identified a significant increase in the expression of PCNA in 

animals exposed to heat-killed whole bacteria (E. coli O157:H7) (1.41 fold increase) or 

LPS (1.26 fold increase) when compared to the control group for a 2 week exposure 

duration (Figure 2.1). Analysis of samples from the four week group showed that PCNA 

levels in these two groups were still increased, as compared to the control, albeit to a 
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lower extent. Exposure to whole heat-killed bacteria led to a 1.2 fold increase and LPS 

exposure has an increase by 1.19 fold  (Table 2.0). Other treatment groups did not show 

any significant alteration in the expression of PCNA.  

To support the data obtained by Western Blot analysis, an immunofluorescence 

analysis of PCNA protein was performed on tissues paraffin embedded on microscope 

slides. We also found a substantial increase in PCNA in the liver tissue of animals 

exposed to both the whole heat-killed bacteria and LPS (Figure 2.2.A). Exposure to 

bacteria triggered a significant increase of 1.46 fold in the two week test group and 1.27 

fold in the four week test group as compared to control, respectively. Exposure to LPS 

resulted in an increase in PCNA expression of 1.38 fold and 1.24 fold in two week and 

four week test groups, as compared to the control, respectively (Figure 2.2.B & C). 

2.3.3. Exposure to LPS from heat-killed bacteria leads to increased levels of γH2AX 

 Immunofluorescence analysis identified an alteration in the level of γH2AX 

between test groups (Figure 2.3).  Exposure to the whole heat-killed bacteria resulted in 

an increase in γH2AX detection of 2.7 fold for the two week group and 3.25 fold for the 

four week group. Exposure to the LPS has resulted in a 1.95 fold increase in detection of 

γH2AX for the two week group and a 3.3 fold for the four week exposure group. 

Exposure to other bacterial components did not result in an altered level of γH2AX 

(Table 2.2). 
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2.3.4. Exposure to LPS from heat-killed bacteria leads to an increase in the frequency of 

DNA damage in the liver tissue 

To analyse whether any DNA damage was induced by infection within the tissue 

of the liver, different proteins that could be activated in response to genomic stress-

induced DNA damage were profiled. First, we tested the protein level of Ape1, involved 

in base excision repair pathways. A significant decrease in expression of Ape1 was 

identified when animals were exposed to LPS (1.19 fold decrease) and whole heat-killed 

bacteria (1.13 fold decrease) in the two week group (Table 2.3) as compared to the 

control. All other determinants did not result in any significant difference in expression 

compared to the control. In the four week group, levels of expression returned to 

comparable levels to those seen in the control group (Figure 2.4).  

Second, we tested the level of Ku70 protein, which is involved in non-

homologous end-joining of damaged DNA; NHEJ is the predominant double strand break 

repair pathway in mammalian cells (Kocazeybek et al., 2003). A 2.5 fold increase was 

observed upon exposure of the mice to whole heat-killed bacteria and a 1.67 fold increase 

upon LPS exposure (Figure 2.5). In contrast, levels of Ku70 were not changed in animals 

exposed to DNA, RNA and protein purified from the heat-killed bacteria. Levels of Ku70 

returned to levels comparable to the control group after two additional weeks of recovery; 

bacterial LPS exposure resulted in a return to levels identified within the control group 

(Table 2.4). 
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2.3.5. Exposure to LPS from heat-killed bacteria leads to an increase in expression of 

maintenance and de novo DNA methylation enzymes 

It has been previously identified that genomic instability is accompanied by an 

alteration in DNA methylation. It can be hypothesized that epigenetic regulation of 

genome stability, in part occurs as a result of the action of proteins involved in the 

methylation of the genome (Li et al., 2012). We first analyzed the level of proteins 

involved in maintenance of DNA methylation, such as MeCP2 and Dnmt1. The level of 

both of these proteins was increased in whole-bacteria and LPS treatment groups (Figure 

2.6).  

MeCP2 protein levels were significantly increased after two weeks of exposure to 

LPS (1.2 fold increase) and remained increased in four week samples (1.28 fold 

increase). Exposure to the whole heat-killed bacteria resulted in a significant increases in 

expression by 1.76 fold in the two week sample and by1.37 fold in the four week samples 

(Table 2.5). All other samples did not have any significant alterations in expression of 

MeCP2. 

 Analysis of Dnmt1 upon exposure to LPS showed a significant 1.25 fold increase 

in the two week sample, and a 1.24 fold increase in the four week sample. Exposure to 

whole bacteria also resulted in increase in the level of DNMT1 protein: 1.71 fold and 

1.67 fold increases were observed in the two and four week samples, respectively (Figure 

2.7, Table 2.6).  

The protein level of an enzyme involved in de novo DNA methylation, DNMT3A, 

also increased upon exposure to whole bacteria and LPS samples. A two week exposure 
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resulted in a 1.96 fold increase for whole bacterial exposure and a 1.25 fold for LPS 

exposure.  The analysis of four week samples showed that the levels of DNMT3A 

dropped and showed no significant alteration of expression levels as compared to the 

control group; there was a 0.97 fold change in LPS samples, and 1.001 fold change in 

whole bacteria samples (Figure 2.8). 

The level of DNMT3B protein, also involved in de novo DNA methylation was 

increased upon exposure to whole bacteria and LPS samples. A two week exposure 

resulted in a 1.57 fold increase for whole bacterial exposure and a 1.18 fold for the LPS 

exposure.  Analysis of the four week samples identified a significant increase in 

DNMT3B protein expression within liver tissues of animals exposed to LPS (124.8 fold 

increase) but no significant difference for animals exposed to whole heat-killed bacteria 

compared to the control group (Figure 2.9). Analysis of MeCP2 (Table 2.6), DNMT1 

(Table 2.7) and DNMT3A (Table 2.8) in DNA, RNA and protein treatment groups did 

not show any significant changes. 

2.3.6. Exposure to LPS or whole heat-killed bacteria leads to alterations in mRNA 

expression within liver tissues 

Since only exposure to whole bacteria and LPS triggered changes in proliferation 

and DNA methylation, the microarray analysis only used tissue from animals exposed to 

whole bacteria or LPS. Results identified alterations in expression of many genes. To 

decrease the number of genes with altered expression, only genes that have been 

identified to have an expression of 2 fold higher or lower than the control expression 

were considered for further analysis. Whole heat-killed bacteria exposure increased the 

expression of interleukin L1, 6, 4, 17B and Tumour Necrosis Factor, and decreased 



 
 

57 
 

expression of Glycine C-Acetyltransferase genes. LPS exposure increased the expression 

of CCL6, FADS2, PLIN2, PNRC1 and RXRA genes. A number of transcripts  were 

altered in similar manner upon the exposure to the heat-killed bacteria and LPS. DUSP1, 

GADD45G, TFF3, ESM1, MMD2, GSTA1, CYP7A1 and ALAS1 genes changed their 

transcription levels in response to both whole heat-killed bacteria and LPS (Figure 2.10).   

To confirm the changes in expression of the aforementioned genes, real-time 

quantitative polymerase chain reaction (RTPCR) analysis was performed. RTPCR 

confirmed upregulation of the DUSP1 gene, which was found to be upregulated by 2.7 

fold in response to LPS and by 2.2 fold in response to whole bacteria. Results also 

confirmed an increased expression of the gene ALAS1 in the LPS group (a 5.21 fold 

increase was indicated in the microarray) but not in the whole bacteria group (Figure 

2.10.B i and ii). 

Microarray analysis identified a significant decrease in transcription levels of the 

GADD45G, TFF3, ESM1, MMD2, GSTA1 and CYP7A1 genes. RTPCR was used to 

confirm microarray analysis and quantify expressions of these genes.  TFF3 expression 

was found to decrease 12 fold and 8 fold for the test groups exposed to LPS and bacteria, 

respectively (Figure 2.10.B iii). Expression of the ESM1 gene was identified to decrease 

9.5 fold for the test group exposed to LPS and 7.9 fold for the group exposed to whole 

bacteria (Figure 2.10.B iv). Expression of MMD2 gene was decreased by 8 fold and 3.8 

fold for test groups exposed to LPS and whole bacteria, respectively (Figure 2.10.B v). 

Exposure to LPS decreased the expression of GSTA1 by a 3.58 fold, whereas exposure to 

whole bacteria did not change GSTA1 expression, as measured by RTPCR (Figure 

2.10.B.vi). CYP7A1 gene expression was decreased by 2.5 fold for LPS groups and 1.7 
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fold for the group exposed to whole bacteria (Figure 2.10.B vii). GADD45G gene 

expression decreased by 5.1 fold in response to LPS and by 5.0 fold in response to whole 

bacteria (Figure 2.10.B viii). 

2.4 Discussion 

 

Previously, it was shown that exposure to heat-killed bacteria resulted in an 

increase in cell proliferation and genome instability of non-exposed liver cells (Koturbash 

et al., 2009). This research attempted to identify which component of bacteria triggers 

this response. Exposure to LPS and not to DNA, RNA or proteins resulted in an increase 

in the level of PCNA, the level of Ku70 protein and the levels of proteins coding for 

DNA methylation enzymes. Furthermore, it was identified that a set of 8 genes (DUSP1, 

GADD45G, TFF3, ESM1, MMD2, GSTA1, CYP7A1 and ALAS1) were upregulated 

upon exposure to whole bacteria and LPS in liver. Below we discuss these findings in 

detail. 

2.4.1. PCNA, γH2AX and Ku70 levels increase in liver cells of animals exposed to whole 

bacteria and LPS 

PCNA amounts increased in liver tissue after two weeks of exposure to whole 

bacteria and LPS. No such increase was observed upon exposure to DNA, RNA or 

protein extracts prepared from heat-killed bacteria. It is important to note that PCNA 

levels remained significantly higher even after two weeks of recovery (four week 

sample). High levels of PCNA are associated either with an increase in cell proliferation 

or with an increase in DNA damage. It is interesting to note that such a response may not 

necessarily be triggered by direct exposure of liver cells to LPS. In fact, in healthy mice, 
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most of the bacteria and LPS molecules probably do not penetrate the mucous layer of 

the intestine. It cannot be excluded, however, that a small amount of LPS is absorbed into 

the portal blood and passed through the liver cells. Thus, it is possible that the increase in 

PCNA levels is in part due to direct contact of liver cells with LPS. Is the increase in 

PCNA due to cell proliferation (cell division) or due to damage to DNA? Unfortunately 

this study did not distinguish between these two possibilities.  

Exposure to LPS can result in direct or indirect damage to DNA via ROS or 

RNOS pathways (Sanlioglu et al., 2001).   Thus, the increase in PCNA levels could 

reflect an increase of DNA repair activity. Also, without continuous exposure to the 

pathogenic bacteria and/or its components, the levels of DNA damage and thus DNA 

repair will potentially decrease, requiring fewer proteins such as PCNA. This could 

explain the lower levels of expression detected from the four week samples compared to 

the two week test, although these levels were still significantly higher in four week 

samples than in the control. Exposure to DNA, RNA and protein did not induce any 

significant alterations in PCNA expression.  

 γH2AX immunofluorescence analysis identified that exposure to LPS and heat-

killed bacteria caused an increase in the phosphorylation of the H2AX protein. This 

increase is correlated with an increase in the level of Ku70 protein as shown with 

Western Blot analysis. The increase in the γH2AX phosphorylation identifies DNA 

alteration, mainly DNA strand breaks. Changes to DNA structure lead to multiple 

epigenetic modifications including phosphorylation of serine 139 on histone H2A. 

Recruitment of γH2AX activates homologous recombination and non-homologous end 

joining DNA repair pathways (Burma et al., 2001). These results are supported by 
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previous research conducted by Koturbash et al., (2009), where it was identified that 

heat-killed bacteria (pathogenic or non-pathogenic) induced higher levels of γH2AX 

within the liver tissue, indicating the presence of DNA double strand breaks and 

instability within the genome.  

Exposure to whole bacteria or LPS induced an alteration in expression of DNA 

repair proteins within the liver. Ku70, a NHEJ protein, was significantly increased in 

whole bacteria and the LPS exposure groups of the two week samples, indicating a large 

increase in the level of DSBs. However, for the same group, the BER protein Ape1 was 

shown to have lower expression. Ku70 is a key component in the NHEJ process, that is 

known to be the predominant method of DSB repair (Kuper et al., 2000). LPS and other 

endotoxins increase expression of NF-ĸB that in turn correlates with expression of COX-

2 (Wadleigh et al., 2000). NF-ĸB is an inducible transcription factor that regulates a wide 

variety of genes that have been identified to respond to inflammatory signals (Baeuerle 

and Baltimore, 1996). Um et al., (2001) has shown that Ku70 expression correlates with 

the expression of NF-ĸB and COX-2, potentially affecting cell proliferation. Cells with 

inhibited COX-2 and/or NF-ĸB genes were identified to have limited ability to repair 

their DSBs and proliferate (Lim et al., 2001). 

The amount of proteins associated with methylation of the genome, whether due 

to de novo synthesis or maintenance, Dnmt3A and Dnmt3B significantly increased with 

LPS and bacterial exposure but not in response to other molecules.  The constitutive 

expression of MeCP2 is caused by its ability to perpetuate its own expression. This 

cycling of expression results in continual expression of the MeCP2 protein and potential 

to repress genes and manipulate chromatin structure (Chahrour et al., 2008).  In this 
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experiment, the expression of DNMT1, 3A and 3B returned to normal levels in animals 

that were allowed to recover by consuming uncontaminated water for the additional two 

week period after the initial exposure. This may indicate reversibility of potential changes 

in DNA methylation. This may also suggest that constant presence of a causative agent, 

such as LPS, is required for triggering changes in DNA methylation. 

The results identify that the naïve cells, distant from the exposed tissue, can be 

affected by exposure to LPS and whole heat killed bacteria. This indicated that within the 

two week exposure to multiple components of the bacteria, LPS was identified to be a 

key bacterial component inducing a response in distal cells and responsible for potential 

genomic instability. Altered levels of PCNA and γH2AX, increased expression of Ku70 

and proteins involved in DNA methylation, in response to bacteria and LPS supported the 

hypothesis that a bystander-like effect induced genomic instability.  

2.4.2. Exposure to LPS and whole bacteria result in changes in the expression of eight 

different genes 

Microarray analysis of liver cells in animals exposed to LPS or whole heat-killed 

bacteria showed differential expression of eight genes that were verified with RTPCR. 

Altered expression of the eight genes (DUSP1, GADD45G, TFF3, ESM1, MMD2, 

GSTA1, CYP7A1 and ALAS1) could have detrimental effects on the host.  Dual specificity 

phosphatase 1 (Dusp1) expression was found to be altered in fibroblasts exposed to 

oxidative/heat stress and upon stimulation with growth factors (Abraham and Clark, 

2007). In this study, Abraham and Clark identified Dusp1 as having a potential role in the 

cellular response to environmental stress as well as in the negative regulation of 

proliferation and an inflammatory response. An increase in expression of Dusp1 may 
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have occurred to assist in the cells’ ability to survive the shock of the LPS-induced 

reaction (Hammer et al., 2006). 

An increased expression level of the gene coding for aminolevulinic acid synthase 

1 (Alas1) protein was also identified. This nuclear encoded mitochondrial enzyme is the 

first and rate-limiting enzyme in the heme biosynthetic pathway (Red Blood Cell (RBC) 

production). The production of RBCs could accelerate with influx of this specific protein 

and any other in an eight step process (Abraham and Clark, 2006). Tumour cells may 

increase the expression of enzymes in this process, to assist in the production of RBCs, to 

oxygenate new tumour cells throughout the body.  

Growth arrest and DNA-damage-inducible 45 gamma (Gadd45g) is a protein, 

identified as a stress sensor, that modulates the response of mammalian cells to 

genotoxic/physiological stress and modulates tumour formation. The transcription of the 

aforementioned gene has been quantified at alternative levels in response to stressors 

inducing growth arrest (Abell et al., 2007).  Gadd45g protein also responds to 

environmental stresses by mediating the activation of p38/JNK pathway via 

MTK1/MEKK4 kinase (Abell et al., 2007). A decrease in transcription level of Gadd45g 

gene inhibits the production and dimerization of MEKK4, allowing cellular proliferation, 

differentiation, inflammation and tumourigenesis (Ip and Davis, 1998).  

Another mRNA with decreased gene transcription level was identified as Tff3 

(Trefoil factor 3).  The function of the encoded protein is not well defined; however it is 

predicted to stabilize the mucus layer and affect healing of the cells themselves. Recently, 

Tff3 has been identified to be involved in the immune response (Paulsen et al., 2008). 
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This research has identified very low levels of the Tff3 protein during liver and 

gastrointestinal tissue damage, and high levels of Tff3 gene transcription briefly after the 

tissue was repaired. Our analysis showed that the transcription level of Tff3 was increased 

within the two week of exposure to whole heat-killed bacteria of LPS. It remains to be 

shown whether similar changes would be found within the four week sample group.  

The expression of the gene coding for endothelial cell-specific molecule 1 (Esm1) 

protein was found to be lower in liver cells from the LPS and whole bacteria group. Esm1 

is regulated by cytokines, identifying potential involvement in pathogenic infections. 

Esm1 expression has been shown to be increased in the presence of pro-angiogenic 

growth factors, such as VEGF (vascular endothelial growth factor) or FGF-2 (fibroblast 

growth factor 2).  A significant decrease in transcription of Esm1 gene, correlates with 

previously reported decrease in transcription level of pro-angiogenic growth factors such 

as VEGF or FGF2 genes (Béchard et al., 2001).  

Macrophage differentiation associated 2 (Mmd2) was reduced in expression for 

LPS and whole heat-killed bacteria test groups. Mmd2 is involved in the immune 

response and in differentiation of monocytes to macrophages. Since the response to 

bacteria/LPS may trigger an immediate immune response upon which monocytes 

differentiate into macrophages, it can be suggested that the expression of Mmd2 is no 

longer required at two weeks post exposure. It is possible that Mmd2 expression was 

increased in the first two days of exposure and then decreased at two weeks post 

exposure. It remains to be shown whether Mmd2 levels would return to normal levels 

after a two weeks recovery period.  
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Glutathione S-transferase alpha 1 (Gsta1) mRNA was downregulated in our 

experiments. Gsta1 has enzymatic functions associated with the detoxification of 

electrophilic compounds such as carcinogens, environmental toxins and products of 

oxidative stress. These highly polymorphic enzymes alter the susceptibility of the 

organism to carcinogens, toxins and alter the effectiveness of some pharmaceutical drugs. 

The decrease in expression identified in our experiment implicated that the liver tissue 

was highly susceptible to damage caused by ROS.   

Finally, analysis showed a decrease in the steady state RNA levels of the 

cytochrome p450 family 7, subfamily a, polypeptide 1 (CYP7A1) gene. Cyp7a1 is 

involved in drug metabolism and synthesis of bile acid and steroids from cholesterol 

within liver tissue. Conversion of cholesterol into bile acid is controlled by this protein 

and is the main process of removing cholesterol from the body (Holt et al., 2003). 

Removal of cholesterol from the body is important to the overall homeostatic state of 

organism. Even though there seems to be no connection with an immune response for this 

particular protein, altered levels affect the entire organism through inhibition of 

elimination of cholesterol.  

This work is the first to show that a heat-killed bacterial component known as 

LPS can lead to distinct molecular changes in the liver. It is important to note, that many 

changes in liver cells after a two week exposure to LPS returned to levels similar to the 

control group, indicating the recovery period for such as alteration is short. However, it is 

also important to note, that changes in the levels of protein and expression of mRNAs in 

liver samples after exposure to whole heat-killed bacteria were more pronounced than 

after the exposure to LPS.  This indicates that LPS may contribute to genome instability 
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caused by bacterial contaminants in the intestine or blood, but it is not the only 

component. Toxins released by the bacteria upon death may also have some negative 

effect. Since filtering the water would not remove released toxins (such as Shx), it is 

possible that exposure to these toxins may had an additive effect to changes in the 

stability of cells in direct contact or distal naïve. 

PCNA is used to identify the proliferation of cells; however, it has also been 

identified to be associated with the DNA damage repair process (Shivji et al., 1992). The 

results from this experiment indicate a positive correlation between PCNA and γH2AX, 

which could be interpreted as a possible increase in proliferation and/or an increase in 

DNA damage within the liver tissue.  Another possible product of the bacterial exposure 

is circulating inflammatory and anti-inflammatory cytokines produced by affected cells 

of the host (Murata et al., 1998). Further research with the expansion into the 

inflammatory or anti-inflammatory field is required to identify every component of the 

bacteria that could induce the effects of carcinogenesis on liver tissue. Another remaining 

question is whether the bystander effect can induce genomic instability in other organs 

and tissues throughout the body. Thus our study may serve as a roadmap for further 

analysis of toxic and genotoxic effects of water contamination. 
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Figure 2.0. Experimental design to analyze potential genomic alterations induced in the 

liver cells of mice. Four-week-old animals received treatment water for two weeks. First set of 

four animals (per group) was sacrificed immediately after this treatment, whereas the second set 

of four animals was sacrificed in two weeks, after receiving normal tap water.    
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Figure 2.1. Western blot analysis of PCNA protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant increases 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

Table 2.1. Western blot analysis of PCNA quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

 

 

 

 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100±1.9 100±3.1 

DNA 102.6±3.6 100.1±0.4 

RNA 103.2±5.1 101.5±6.15 

Protein 103.7±7.4 101.3±4.9 

LPS *126.8±9.0 *119.3±10.0 

Bacteria *141.0±12.3 *120.9±2.5 
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C. 

 

Figure 2.2. Immunohistochemical analysis of liver tissue samples stained with DAPI 

staining and Green Fluorescent antibody for PCNA. A, Images of liver samples taken 

from individual animals within test Group A (2 Week sample). B, Images of liver 

samples taken from individual animals within test Group B (4 Week sample). C, 

Quantification of PCNA-positive cells. Bars represent the average (with SD) number of 

PCNA cells. Asterisks show significant differences from control. 

 

Table 2.2. Imunohistochemical analysis of PCNA protein expression quantified. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test detected via analysis of images. Asterisks identify significant increases 

from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 1.0±0.05 1.0±0.06 

DNA 1.0±0.04 1.02±0.03 

RNA 1.05±0.1 1.03±0.05 

Protein 0.95±0.03 1.0±0.03 

LPS *1.4±0.1 *1.2±0.02 

Bacteria *1.5±0.2 *1.3±0.04 
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B. 

 
Figure 2.3. Immunohistochemical analysis of liver tissue samples stained with DAPI 

staining and Green Fluorescent antibody for γH2AX. A. Images taken from animals 

in the group exposed to tap water (control), DNA, RNA, protein, LPS and whole heat-

killed bacteria. B. Bars show the average (with SD) fold difference in number of γH2AX-

positive cells between treated and control groups. Asterisks show significant difference 

from control. 

 

Table 2.3. Imunohistochemical analysis of γH2AX protein expression quantified. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test detected via analysis of images. Asterisks identify significant increases 

from non-exposed controls. 

 

 

 

 

 

 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 1.0±0.05 1.0±0.08 

DNA 1.0±0.04 1.0±0.03 

RNA 1.0±0.02 1.1±0.1 

Protein 1.0±0.02 1.0±0.07 

LPS *2.0±0.16 *3.3±0.14 

Bacteria *2.7±0.11 *3.2±0.20 
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Figure 2.4. Western blot analysis of Ape1 protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant decrease 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

Table 2.4. Western blot analysis of Ape1 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant decreases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±3.6 100.0±2.6 

DNA 93.8±7.6 93.6±3.8 

RNA 95.9±7.7 93.6±2.4 

Protein 97.7±8.7 92.0±4.6 

LPS *81.3±7.8 99.5±5.0 

Bacteria *87.7±5.7 101.3±6.4 
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Figure 2.5. Western blot analysis of Ku70 protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant increase 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

 

Table 2.5. Western blot analysis of Ku70 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±2.3 100.0±1.3 

DNA 102.1±4.6 100.3±5.0 

RNA 106.6±7.4 96.7±5.1 

Protein 105.1±5.8 104.9±14.5 

LPS *167.4±12.4 100.2±8.13 

Bacteria *250.5±27.2 107.1±7.9 
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Figure 2.6. Western blot analysis of MeCP2 protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant increase 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

Table 2.6. Western blot analysis of MeCP2 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

 

 

 

 

 

 

 

 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±3.1 100.0±4.6 

DNA 99.5±12.8 103.2±6.1 

RNA 95.4±6.3 107.6±9.0 

Protein 94.1±12.7 105.4±6.5 

LPS *120.6±3.9 *128.4±8.1 

Bacteria *175.6±14.4 *137.1±7.1 
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Figure 2.7. Western blot analysis of Dnmt1 protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant increase 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

Table 2.7. Western blot analysis of Dnmt1 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±5.7 100.0±3.6 

DNA 99.1±2.7 106.2±11.8 

RNA 97.8±1.9 95.9±23.5 

Protein 99.0±1.5 101.0±15.3 

LPS *125.6±11.5 *123.6±9.5 

Bacteria *171.1±15.3 *167.2±14.8 
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Figure 2.8. Western blot analysis of Dnmt3A protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks and bars show significant increase 

from non-exposed controls through the analysis of data using one way ANOVA test. 

 

Table 2.8. Western blot analysis of Dnmt3A quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±0.9 100.0±1.1 

DNA 100.3±1.1 103.3±7.4 

RNA 99.3±1.8 97.1±3.5 

Protein 89.9±14.1 97.1±6.0 

LPS *125.4±13.7 106.3±7.9 

Bacteria *190.9±27.3 101.9±0.3 
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Figure 2.9. Western blot analysis of Dnmt3B protein levels in liver tissue of mice 

exposed to whole heat-killed E. coli O157:H7 bacteria and DNA, RNA, protein, and 

LPS extracted from heat-killed bacteria. Bars show the average protein levels (with 

SD) as compared to the control set at 100%. Asterisks show significant increase from 

non-exposed controls through the analysis of data using one way ANOVA test.  

 

Table 2.9. Western blot analysis of Dnmt3B quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±3.2 100.0±2.1 

DNA 106.4±6.2 106.2±7.1 

RNA 96.5±0.2 97.8±4.7 

Protein 103.2±8.8 102.7±7.4 

LPS *118.8±4.9 *124.8±11.1 

Bacteria *157.8±6.3 97.7±11.5 
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Table 2.0 Sequence of the forward and reverse primers for RT-PCR analysis from 

liver samples. All primers created with the DNA Technology primer design software 

(Oligo Perfect™ Designer). 

 

Protein Direction Primers 

Ideal 

Temp. 

Size 

(kbp) 

DUSP1 
Forward 5’-ACCTTAAAAGCCCCATCACC-‘3 

57.6
o
C 1.9 

Reverse 5’-AAATAAGGACCAGCTCCCATG-3’ 

GADD4

5G 

Forward 5’-CGGACTCTGGGAATCTTTACC-3’ 
57.6

o
C 1.5 

Reverse 5’-CAGAGTCATTGTGCGATCCA-3’ 

TFF3 
Forward 5’-CATTTTGAAGCTGTCCAGGC-3’ 

60.0
o
C 4.3 

Reverse 5’-GACTCCTGGCTCCTTTATTGG-3’ 

ESM1 
Forward 5’-AGGAAGTGAGATATTGGAAGCTG-3’ 

54.7
o
C 7.8 

Reverse 5’-CCAGAGATGAGAAGTGATGGG-3’ 

MMD2 
Forward 5’-GCACCATTACCTTCTACTCCC-3’ 

52.4
o
C 46.4 

Reverse 5’-AATGTATGCCTTGGTCTCCC-3’ 

GSTA1 
Forward 5’-AGCCAGGACTCTCACTAGAC-3’ 

57.6
o
C 0.875 

Reverse 5’-ACTTCTCTTCAAACTCCACCC-3’ 

CYP7A1 
Forward 5’- TCCAAGAACCACACCATGAG-3’ 

55.6
o
C 4.1 

Reverse 5’-CCTTTCTGTAGTCCTGGCTTG-3’ 

ALAS1 
Forward 5’-GGGCACTGGTCGGTTTAG-3’ 

52.4
o
C 7.79 

Reverse 5’-GACTCGGGATAAGAATGGGC-3’ 
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iv) 
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vii)  

 

viii) 

 

Figure 2.10. Exposure to LPS and Bacteria alters mRNA levels in mouse livers. A. 

Clustering of differential expression of genes with the use of control as a standard. Red 

denotes high expression levels, whereas green denotes low expression levels. B. RTPCR 

gene expression analysis of i) Dusp1, ii) Alas1, iii) Tff3, iv) Esm1, v) Mmd2, vi) Gsta1, 

vii) Cyp7A1, viii) Gadd45g. Bars show normalized expression levels (with SD) of 

aforementioned genes in control and two exposed groups, whole heat-killed bacteria and 

LPS groups. Normalization was conducted with Actin transcription levels. 
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Chapter 3. Genomic instability in spleen cells is caused by an LPS-induced 

bystander-like effect 

 

Abstract 

 

 The possibility that bacterial components such as LPS could induce genomic 

instability in distal tissues of the mouse was analysed. Four week old male mice were 

provided water supplemented with whole heat-killed E. coli O157:H7 bacteria or 

components of the bacteria (DNA, RNA, proteins and LPS). Protein analysis of spleen 

tissue identified increased PCNA levels and the levels of DNA methyltransferases and 

DNA repair proteins. Spleen cells responded to exposure of whole heat-killed bacteria 

and LPS with alteration in the level of PCNA proteins, DNA methylation proteins 

(MecP2, Dnmt1, Dnmt3a and 3b) and DNA repair proteins (Ape1 and Ku70).  Other 

bacterial components analysed in this study did not lead to any significant alteration in 

protein expression. The data suggests that lipopolysaccharides are a bacterial component 

capable of inducing genomic instability in the naïve cells of an exposed host. 
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3.1. Introduction 

 

Worldwide, it is estimated that between 34 and 76 million people will perish from water- 

related diseases by 2020 through the  ingestion of contaminated water with bacteria such 

as E. coli O157:H7 (Gleick, 2002). Furthermore, epidemiological analysis has identified 

a correlation between infection and the onset of cancer (Lax and Thomas, 2002). 

Bacterial based inflammation has been identified to be a preventable cause to many forms 

of malignancies worldwide, but mechanisms responsible for oncotransfromation have yet 

to be identified. Researchers have attributed the occurrence of water contamination in 

rural areas to the presence of a large number of livestock farms (Gannon et al., 2004). 

Boiling contaminated water kills the bacteria and prevents infections, but the bacterial 

remnants such as proteins and LPS remain intact.  

Even though a link between cancer induction and bacterial infection exists 

(Suerbaum & Michetti, 2002), it is unclear how heat-killed bacteria can induce genome 

instability in cells. LPS, one of the most studied and well recognized pathogen associated 

molecular patterns (PAMPs) and a major component of the outer membrane of Gram-

negative bacteria. In this thesis, it is hypothesized to be a component of  Gram negative 

bacteria that can induce genome instability. It is predicted that LPS bind to LPS Binding 

Protein (LPB), located on the exterior of eukaryotic cell membranes (Doe et al., 1978). 

The binding of LPS stimulates TLR4 pathways, inducing release of inflammatory 

cytokines that are required to induce an immune response (Hsu et al., 2011).  LPS 

induced pathways and reactions have been identified, but precisely which cells are 

directly and indirectly stimulated by LPS in vivo is still being perused (Doe et al., 1978). 
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Upon encounter with macrophages, LPS initiates a cascade of events resulting in release 

of inflammatory mediators and tissue factors (Wang and Yadav, 2006). 

In vivo, LPS injected intravenously or intraperitionealy, have demonstrated a 

cellular response within spleen tissue and cause the migration of splenic neutrophils 

(Kesteman et al., 2008). The spleen, the largest lymphoid organ in human body is rich in 

immune cells, is sensitive to foreign signals, and is involved in the body’s response to 

defend and destroy harmful agents and pathogens (de Porto et al., 2010). Research has 

reported that when the spleen is not directly exposed to heat-killed bacteria (Koturbash et 

al., 2009), its cells are still stimulated to response from cells through the phenomena 

identified as the bystander effect. This research did not identify which component of the 

Gram-negative bacteria caused the response. It is hypothesized that exposure to heat-

killed bacterial components can cause genomic instability in cells and that cells do not 

require direct contact with components of the pathogen. It is further hypothesized that 

LPS can be the molecules that lead to a bystander-like response. LPS is thought to trigger 

a response resulting in activation of various cell types and the production of multiple 

cytokines in the host (Yadav et al., 2006). 

 The purpose of this study was to analyze the influence of whole heat-killed 

bacteria or bacterial components, DNA, RNA, protein or LPS on an indirect target organ 

(spleen) of mice after a two week exposure to contaminated water.  
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3.2. Method   

Please refer to Chapter 2 for a complete explanation of the methodology. For 

these experiments, analysis was conducted on spleen tissues from our murine samples. 

3.3. Results 

To determine whether or not exposure to heat-killed bacteria or its components 

(DNA, RNA, protein or LPS) can trigger changes in genome instability and cell 

proliferation in spleen tissue not exposed to the determinants but induced by the 

bystander-like effect, mice were supplied with drinking water supplemented with heat 

killed pathogenic Escherichia coli (O157:H7) in the amount of 6x10
6
 bacteria per litre of 

water, or 440 µg/L of DNA, 73 µg/L of RNA, 100 µg/L of complete protein extracts or 

50 µg/L of LPS rich extracts for a two week duration of exposure. Based on the 

supplement received, the mice were divided into six main groups. Each experimental 

group was split into two subgroups: half of all animals were sacrificed two weeks after 

exposure, whereas the other half was kept an additional two weeks during which they 

received tap water. This was done to observe if any of the animals would return to a 

normal homeostatic state after two weeks of consumption of normal water. 

 Spleen tissue was selected for analysis based on its ability to respond to an 

immune response to bacterial infection (Kesteman et al., 2008). The spleen is not in 

direct contact with the pathogenic bacteria and/or its components, but it has been 

suspected that the spleen function (filtration of the blood) may be induced by a distant 

signal through signals transferred through the blood stream (Koturbash et al., 2007). 
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3.3.1 Exposure to LPS from heat-killed bacteria leads to an increased PCNA levels in the 

spleen tissue.  

PCNA is a common protein used to identify the cellular process of proliferation. 

Primarily, it is a co-factor to DNA polymerase, assisting in the replication of the DNA of 

a cell, but it is also known as a protein associated with the process of post-replication 

repair (PRR), in response to DNA damage (Lehmann and Fuchs 2006). Our analysis 

showed no significant change in PCNA levels two weeks after exposure to water spiked 

with various bacterial extracts (Figure 3.0). In contrast, analysis of spleen tissue after two 

weeks of recovery (the four week group) identified a significant increase in the 

expression of the PCNA protein in the spleen tissue of mice exposed to LPS (1.91 fold 

increase) and whole heat-killed bacteria (1.85 fold increase) (Table 3.0). Exposure to 

other components did not result in any significant change (Figure 3.0).  

Immunofluorescence analysis of the spleen tissue supported Western Blot data, 

identifying a significant increase in the LPS and bacterial exposure compared to the 

control and other exposure groups for the four week test groups (Figure 3.1).  Exposure 

to LPS and heat killed bacteria indicated a significant increase in expression of PCNA 

protein, compared to the control and the other test groups. No significant differences 

were observed for the two week groups (Table 3.1).  

3.3.2. Exposure to LPS from heat-killed bacteria leads to an increase in the level of Ape1 

and Ku70 proteins in spleen tissue.  

 Protein analysis of specific DNA damage repair proteins, was targeted to identify 

the effects of determinants on genomic stability of spleen cells. Initial Ape1 analysis 

identified a significant increase in expression for the exposure groups of LPS and whole 
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heat-killed bacteria compared to the control group (Figure 3.2).  The two week samples 

yielded significant increases in expression of Ape1 in the exposure group of the heat-

killed bacteria (1.09 fold increase) and the test group exposed to LPS (1.11 fold increase). 

The four week samples exposed to LPS and whole heat killed bacteria resulted in a 

significant increase in Ape1 expression with values of 1.21 and 1.20 fold, respectively 

(Table 3.2).  

 Analysis of Ku70 protein expression was conducted and indicated a significant 

increase in the amount of Ku70 protein for the test groups exposed to LPS (1.14 fold 

increase) and whole bacteria (1.11 fold increase) for the two week exposure test. This 

increase continued during the four week test for LPS (1.28 fold increase) and for the 

whole heat-killed bacterial test group (1.28 fold increase) (Table 3.3). Other exposure 

groups did not show any significant alterations to the expression of the Ku70 protein 

(Figure 3.3). 

3.3.3. Exposure to LPS from heat-killed bacteria leads to an increase in protein 

expression involved in maintenance and de novo methylation in spleen tissues.  

To test whether exposure to bacterial components resulted in changes to the level 

of proteins involved in DNA methylation, protein levels of the DNA methyltransferases 

Dnmt1, Dnmt3a and Dnmt3b and a protein that binds to methylated DNA, MeCP2 were 

analysed. Dnmt1 showed significant alterations in the exposure groups for the protein, 

LPS and whole heat-killed bacteria. Protein exposure from the heat-killed bacteria caused 

a 1.25 fold increase in Dnmt1 level at two weeks exposure. LPS and bacterial exposure 

resulted in significant alterations in Dnmt1 levels in the two week exposure group; there 

was a1.65 fold and 1.64 fold increase upon exposure to LPS and whole heat-killed 
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bacteria, respectively (Figure 3.4).  Exposure to DNA and RNA did not yield significant 

expression alterations compared to the control. Dnmt1 was not changed in any 

experimental groups of the four week group (Table 3.4). 

MeCP2 levels were increased significantly upon a two week exposure to RNA 

(1.15 fold increase), proteins (1.41 fold increase), LPS (1.5 fold increase) and to whole 

heat-killed bacteria (1.54 fold increase). There was a significant increase in expression of 

MecP2 upon exposure to proteins (1.27 fold increase), LPS (1.28 fold increase) and 

whole bacteria (1.24 fold increase), but no significant expression was identified for the 

group exposed to RNA from the heat-killed bacteria for our four week test groups (Figure 

3.5). Exposure to DNA did not result in any significant changes to the spleen cells’ 

expression of MeCP2 in either two or four week test groups (Table 3.5). 

To analyze whether exposure to bacterial determinants changed the expression of 

de novo methyltransferases, the protein levels of Dnmt3A and Dnmt3B were analyzed. 

Dnmt3A protein production was identified as significantly increased in the exposure 

group of the LPS with a 1.29 fold increase and whole heat-killed bacterial exposure 

group with a 1.34 fold increase (Figure 3.6, Table 3.6). Dnmt3B expression analysis 

identified an increase in expression during the two week time period for the groups 

exposed to LPS and whole heat-killed bacteria. LPS exposure increased the expression of 

the Dnmt3A protein in the spleen tissue by 1.27 fold, while whole heat-killed bacteria 

exposure resulted in a significant increase of 1.48 fold (Figure 3.7). Exposure to DNA, 

RNA and protein determinants did not result in altered expression of de novo 

methyltransferase proteins in the two week samples. All levels of expression for Dnmt3A 
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and B returned to levels comparable to the control group for the four week test groups 

(Table 3.7).  

3.4. Discussion 

 

Alternating protein expression within the spleen, by exposure of distal cells to 

LPS is further support for the bystander-like phenomena. Previous reports showed that 

heat-killed bacteria had the ability to cause an effect on distal naive cells to lose genomic 

stability (Koturbash et al., 2009). This work also identified that the causative agent was 

apparently smaller than whole heat-killed bacteria since filtered water contaminated with 

bacteria still resulted in changes in genome stability (Koturbash et al., 2009). The work 

reported here has identified that a major component of the Gram-negative cell membrane 

of E. coli O157:H7, LPS induced significant alterations within the spleen cells originally 

distant from the exposure.  

Cellular DNA is constantly exposed to a wide spectrum of exogenous and 

endogenous factors; therefore a variety of DNA repair pathways have evolved, protecting 

cells from DNA damage (Lodish et al., 2004). Ape1 is abundant in human cells and 

accounts for nearly all of the basic site DNA repair activity (Wang et al., 2004). The 

results indicate that LPS is a component of the bacterium that could possibly activate 

Ape1 expression within distal cells in a manner similar to exposure to whole heat-killed 

bacteria. Ape1 not only acts as a repair protein, but also as a protein that participates in 

the response to oxidative stress, regulation of transcription factors, cell cycle control, and 

apoptosis (Evans et al., 2000). LPS, is a major source for ROS and RNOS that could 

induce damage of DNA in cells (Sanlioglu et al., 2001). Ape1 was independently 
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determined to be an oxidation reduction factor and given the alternative name of Ref-1 

(Xanthoudakis et al., 1992). Increases in expression of this protein are associated with 

increased exposure to radical oxygen species and a precursor of cancer cell formation 

(Xanthoudakis et al., 1992). 

  Changes in the level of Ku70 protein animals treated with LPS support the 

hypothesis that LPS is one of the major components from Gram-negative bacteria that 

induces DNA damage (genomic instability) within distal cells of the spleen. The key 

element of the NHEJ pathway is the Ku70–Ku80 heterodimer, which binds to DNA 

double strand damage and recruits DNA protein kinase catalytic subunits, DNA ligase 

four and XRCC4 intervene in the final ligation step (Valerie et al., 2003).This mechanism 

of DNA repair, however, is non-conservative, because it may lead to erroneous re-joining 

of  broken chromosome ends, causing a loss or amplification of chromosomal material, 

and even translocation (Khanna and Jackson., 2001). 

A ‘‘caretaker’’ role has been proposed for the NHEJ pathway, and down 

regulation of the system was reported in more advanced and metastatic malignancies as 

compared with benign lesions or less aggressive tumours (Burma et al., 2006). Other 

studies indicate that NHEJ itself may cause chromosomal rearrangements (Rothkamm et 

al., 2001). This activation may be a response to failure of other repair mechanisms, such 

as nucleotide excision repair that plays such an important part in defending the genome 

from instability and loss of genomic material. On the other hand, the increase in Ku70 

protein expression may be related to high proliferation rates that enhance the likelihood 

of DNA breaks requiring a more reactive DNA repair system. Data indicates that a 
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substantial up regulation of the key element of the NHEJ pathway is mainly correlated 

with tumour cell proliferation rate. As the NHEJ system is an error-prone mechanism 

(Gaymes et al.,  2002), this up regulation could increase the genotoxic effect from 

bacterial infections.  

PCNA expression levels in the two week group was comparable to the control, but 

became significantly higher after the additional two week exposure to uncontaminated 

tap water.  Increased PCNA expression could be associated with an increase in 

proliferation or an increase in DNA damage. In the murine cultured cells, LPS has been 

identified to cause an increase in proliferation of exposed spleen cells (Tough et al., 

1997). The increase in proliferation may perpetuate genome instability with an increase 

in the number of cells with altered genome expression or damage, increasing the potential 

for the development of tumourigenesis. 

 DNA methylation has been found to influence a variety of processes that affect 

DNA integrity and function.  Genomic expression variations could be altered with 

epigenetic manipulation from the effects of methylation on the genome. It is possible that 

hypermethylation of tumour-suppressor genes, leading to gene inactivation, results in a 

selective growth advantage of the transformed cells (Laird and Jaenisch, 1994). In this 

experiment, maintenance methylation and de novo methylation associated proteins were 

identified to be overexpressed for the LPS group and bacterial exposure group compared 

to the control group.  

Changes in the level of proteins involved in proliferation, replication, DNA repair 

and DNA methylation could be a result of the increase of cells producing similar amounts 
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of proteins, identified by signs of increased proliferation. It can also be suggested that 

exposure of the intestine to whole heat-killed bacteria or LPS and probably to some 

degree, to protein and RNA may trigger genomic instability in non-exposed spleen cells. 

It can be further hypothesized that such changes may contribute to malignancy. Immune 

responses have been associated with alterations in methylation by the recognition of CpG 

dinucleotide lacking DNA methylation as foreign. Aberrant levels of DNA methylation 

have the possibility of activating T-cells auto-reactivity and immunity (Teitell and 

Richardson, 2003). 
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Figure 3.0. Protein expression analysis of PCNA from spleen tissue exposed to DNA, 

RNA, protein, LPS rich solution or whole heat-killed bacteria. Protein expression 

variations from mouse models representing each test group by Western Blot analysis Bars 

represent average expression of the protein (with SD) detected compared to the control 

set at 100%. Asterisks show significant increase from non-exposed controls through the 

analysis of data using one way ANOVA test 

 

Table 3.0. Western blot analysis of PCNA quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±4.6 100.0±6.5 

DNA 103.8±7.6 110.3±12.5 

RNA 85.2±11.9 110.9±21.8 

Protein 94.6±14.8 108.2±18.5 

LPS 98.0±24.0 *190.9±14.2 

Bacteria 100.5±0.2 *185.3±13.1 
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C. 

 

Figure 3.1. Immunohistochemical analysis of spleen tissue samples stained with 

DAPI and Green Fluorescent antibody for PCNA. A, Spleen samples taken from 

individuals within test Group A. B, Spleen samples taken from individuals within test 

Group B. is quantified data from images. C, Bars represent PCNA expression detected in 

nucleus of cells. “Y” axis shows the average (with SD) number of PCNA-positive cells. 

Asterisks show significant difference from control. 

 

Table 3.1. Imunohistochemical analysis of PCNA protein ecpression quantified. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test detected via analysis of images. Asterisks identify significant increases 

from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±4.8 100.0±9.1 

DNA 105.8±6.4 109.2±12.3 

RNA 98.6±4.7 114.6±23.6 

Protein 102.1±9.3 111.5±19.6 

LPS 105.6±6.9 *191.3±18.9 

Bacteria 106.2±7.2 *184.0±9.6 
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Figure 3.2. Protein expression analysis of Ape1 from spleen tissue samples for each 

group. Protein expression variations from mouse models representing each test group by 

Western Blot analysis, Bars show average (with SD) expression of the protein detected 

compared to the control set at 100%. Asterisks show significant increase from non-

exposed controls through the analysis of data using one way ANOVA test 

Table 3.2. Western blot analysis of Ape1 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±2.2 100.0±4.6 

DNA 100.3±4.5 99.2±1.9 

RNA 102.3±6.9 95.7±9.3 

Protein 98.8±10.1 98.5±5.7 

LPS *111.0±3.4 *121.7±6.5 

Bacteria *109.2±6.7 *120.1±2.9 
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Figure 3.3. Protein expression analysis of Ku70 from spleen tissue samples for each 

group. Protein expression variations from mouse models representing each test group by 

Western Blot analysis. Bars show average (with SD) expression of the protein detected 

compared to the control set at 100%. Asterisks show significant increase from non-

exposed controls through the analysis of data using one way ANOVA test  

 

Table 3.3. Western blot analysis of Ku70 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±3.9 100.0±2.3 

DNA 105.3±4.5 99.7±15.5 

RNA 101.2±2.9 100.3±5.91 

Protein 97.4±13.2 93.5±11.3 

LPS *114.7±1.1 *128.0±5.32 

Bacteria *111.8±2.2 *128.6±2.3 
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Figure 3.4. Protein expression analysis of Dnmt1 from spleen tissue samples for each 

group. Protein expression variations from mouse models representing each test group by 

Western Blot analysis. Bars show average (with SD) expression of the protein detected 

compared to the control set at 100%. Asterisks show significant increase from non-

exposed controls through the analysis of data using one way ANOVA test  

 

Table 3.4. Western blot analysis of Dnmt1 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±5.3 100.0±2.5 

DNA 107.5±10.6 108.9±12.4 

RNA 105.9±6.0 95.8±4.4 

Protein *125.8±3.51 94.8±6.5 

LPS *165.9±12.7 91.8±10.5 

Bacteria *163.5±16.3 94.5±11.2 
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Figure 3.5. Protein expression analysis of MecP2 from spleen tissue samples for each 

group. Protein expression variations from  mouse models representing each test group by 

Western Blot analysis. Bars show average (with SD) expression of the protein detected 

compared to the control set at 100%. Asterisks show significant increase from non-

exposed controls through the analysis of data using one way ANOVA test  

 

 

Table 3.5. Western blot analysis of MecP2 quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±2.6 100.0±2.2 

DNA 99.5±1.4 106.4±12.5 

RNA *115.7±12.3 *118.1±10.2 

Protein *141.9±18.0 *127.3±10.7 

LPS *150.0±10.4 *128.5±19.2 

Bacteria *154.4±2.3 *124.8±12.6 
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Figure 3.6. Protein expression analysis of Dnmt3A from spleen tissue samples for 

each group. Protein expression variations from mouse models representing each test 

group by Western Blot analysis. Bars show average (with SD) expression of the protein 

detected compared to the control set at 100%. Asterisks show significant increase from 

non-exposed controls through the analysis of data using one way ANOVA test  

 

Table 3.6. Western blot analysis of Dnmt3A quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±1.3 100.0±4.3 

DNA 101.2±2.9 103.6±6.1 

RNA 104.8±4.8 100.5±1.1 

Protein 107.8±8.4 101.3±5.1 

LPS *128.7±7.4 101.7±6.4 

Bacteria *134.1±18.4 101.3±3.5 
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Figure 3.7. Protein expression analysis of Dnmt3B from spleen tissue samples for 

each group. Protein expression variations from mouse models representing each test 

group by Western Blot analysis. Bars show average (with SD) expression of the protein 

detected compared to the control set at 100%. Asterisks show significant increase from 

non-exposed controls through the analysis of data using one way ANOVA test  

Table 3.7. Western blot analysis of Dnmt3B quantified with Image J. program. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test. Asterisks identify significant increases from non-exposed controls. 

 

Test 

2 Week Average ± 

SD 

4 Week Average ± 

SD 

Control 100.0±2.1 100.0±4.8 

DNA 106.4±6.2 106.2±7.1 

RNA 96.5±0.2 97.8±4.7 

Protein 103.2±8.8 102.7±7.4 

LPS 125.8±4.9 104.8±11.1 

Bacteria 157.8±6.3 97.7±11.5 
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Chapter 4. Effects of LPS on direct exposure to intestinal tissue via water 

contamination 

 

Abstract 

 

 The gastrointestinal mucosa is in contact with all ingested liquids and is in direct 

contact with external antigens on a daily basis. Bacteria inducing inflammation of the 

intestinal tissue are known to induce an immune response (either local or systemic). 

Exposure to an LPS rich solution from the membrane of Gram-negative bacteria induces 

an inflammatory response and an increase in PCNA expression within multiple cell lines 

of intestinal tissue. 
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4.1. Introduction 

 

 Rural areas containing a large number of livestock facilities have been identified 

as problematic areas for contamination caused by run off from fields into the water 

source producing large numbers o f gastrointestinal illnesses (Gannon et al., 2004). One 

bacterial strain identified as a contaminant in the food/water supply is Escherichia coli 

O157:H7. E. coli O157:H7 has been recognized for decades as a pathogen responsible for 

several disease outbreaks in North American and throughout the world (Karmali et al., 

1985; Karmali, 1989)
 
. These bacteria have been identified as a contaminant associated 

with severe cramping, watery/bloody diarrhea, inflammation of the intestine, Hemolytic-

uremic syndrome (HUS), thrombotic thrombocytopenic purpura and potential death 

(Griffin et al., 1988).   

 Cases of infections have been identified to be a preventable cause to many forms 

of malignancies worldwide, but mechanisms responsible for the oncotransformation of 

the cells have yet to be identified (Lax and Thomas, 2002). In rural Canada, where a large 

number of livestock farms are located, contamination of surface water has occurred 

frequently and has propelled the Government of Canada to introduce and impose multiple 

boil water advisories across the country (Gannon et al., 2004). Boiling of water 

containing bacterial contaminants results in apparent neutralization of its pathogenic 

abilities, resulting in clean, safe water for consumption. Nevertheless, recent research has 

identified that the consumption of bacterial water contaminants can induce genomic 

instability of naive tissues (Koturbash et al., 2009) possibly by the phenomenon termed 

the bystander-like effect. Epidemiological analysis of bacterial outbreaks identifies a 
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possible correlation with infections and onset of gastrointestinal cancer (Falk et al., 

2000). 

 A possible reason for the continuous influence is that the remaining 

components of the bacteria could induce a response from the tissue. Lipopolysaccharides 

(LPS) are a major component of the Gram-negative bacterial cell wall and have the 

capability of surviving a heat-shock treatment that would neutralize the pathogenic 

bacteria (Gao et al., 2006). It is hypothesized that LPS is a bacterial component that 

induces genome instability and produces inflammation of the tissue. LPS binds to the 

receptors on the exterior of eukaryotic cells, stimulating TLR4 pathways, interacting with 

NF-κB of infected cells. The NF-κB pathway is a protein complex that is involved in 

transcription of DNA and is known to act in response indigenous cytokines and to viral 

and bacterial antigens, and stress caused by chemical agents such as free radicals, 

cytokines and bacterial/viral antigens (Gilmore, 2000). NF-κB plays a key role in 

regulating the immune response to infection and, incorrect regulation of NF-κB has been 

linked to the onset of inflammation and in some cases, cancer (Albensi and Mattson, 

2000). 

The purpose of the study is to analyze alteration in the expression of PCNA 

protein in the intestine of mice upon direct contact with whole heat-killed bacteria or its 

components (DNA, RNA, protein and LPS). 
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4.2. Methods 

Please refer to Chapter 2 for a complete explanation of the methodology. For 

these experiments, the analysis was conducted on intestinal tissues samples from the mice 

experimental groups. 

 

4.3. Results 

 

 Intestinal tissue from animals exposed for two weeks to DNA, RNA and protein 

extracts from heat-killed bacteria remained unaltered in the structure or expression of 

PCNA, compared to the control animals. In contrast to the previous test groups, the LPS 

and whole heat-killed bacterial exposure groups showed increased levels of PCNA 

protein. A 1.40 and 1.42 fold increase in LPS and whole bacteria groups, respectively 

was identified for the two week exposure group. Protein analysis identified a continual 

increase in expression of LPS (1.34 fold increase) and whole heat-killed bacteria (1.34 

fold increase) for the four week samples. The analysis also identified that the four week 

exposure group of animals that consumed proteins from these bacteria also had PCNA 

levels significantly increased by 1.33 fold (Figure 4.1, Table 4.0). 

4.4. Discussion 

 

 The gastrointestinal mucosa is in continuous contact with external antigens from 

food and water consumed by an individual. Increasing population and demand on our 

resources will increase the requirement to ensure that consumables are pure and 

knowledge about contaminants is expanded. Increased mobility and mortality warrants 

further research and alteration to preventative measures in order to protect individuals 
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who consume bacterial contaminated water. Further analysis of the pathogenic effects 

bacterial agents is required to facilitate treatment of patients as well as to establish 

preventative treatments.  

 Ingestion of LPS extracts caused an alteration to the principal structure of cells 

within the intestinal tissue of mice. Figure 4.0 A and B identify the presence of PCNA; 

however intestinal tissue is continuously sloughed off, therefore a high level of 

proliferation is expected within these tissue samples (Bullen et al., 2006). Both small and 

large intestines are composed of four distinct cell layers: the mucosa, the submucosa, the 

muscularis externa and the serosa (Lloyd and Gabe, 2007).  The mucosa consists of a 

layer of epithelium, and below lies the lamina propria, a connective tissue layer 

containing blood vessels, lymphatics, and some lymphoid tissue. Within portions of the 

intestinal tract, the mucosa forms villi (finger-like structures). Each villus contains a 

dense capillary network and blood vessels, which drain into lymphatics forming a plexus 

in the lamina propria (Leedham et al., 2005). These crypts contain intestinal epithelial 

stem cells, which allow repopulation and repair of the small intestinal mucosa. Scattered 

throughout the lamina propria and submucosa of the small intestine, predominantly the 

ileum, are visible aggregates of lymphoid tissue known as Peyer’s patches with flattened 

mucosa overlapping. The lamina propria is separated from the submucosa by a thin inner 

circular layer and an outer longitudinal layer of smooth muscle known as the muscularis 

mucosae (Tennyson et al., 2005). 

 In our experiments, intestinal tissue expressed an increase in PCNA detection 

within the two and four week samples. The intestinal tissue did not recover from the 

initial two week treatment after a two week recovery period. This delay in recovery 
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indicates that exposure to E. coli (even after heat treatment) induced alterations within the 

cells in direct contact with whole bacteria or the LPS component of their outer cell 

membrane.  Interesting to note is the fact that even though intestinal tissue is identified as 

a highly proliferating tissue, there was a substantial increase in PNCA production in the 

exposed intestinal cells. Exposure to the protein extract from the bacteria resulted in an 

increase in expression of PCNA, but had no effect on the primary structure of the 

intestinal cells themselves. It has been hypothesized that these changes could be 

suppressed by blocking the endotoxin activity using a monoclonal CD14 antibody or a 

CD18 peptide that could neutralize LPS binding, thus inhibiting leukocyte infiltration 

into the inflamed tissue (Chan et al., 2009). 
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A.  
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B. 
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C. 

 

Figure 4.0. Immunohistochemical images of intestinal tissue samples stained with 

DAPI and Green Fluorescent antibody for PCNA. A, Intestinal tissue samples taken 

from individuals within test Group A. B, Intestinal tissue samples taken from individuals 

within test Group B. Quantification of PCNA-positive cells. C.  Bars represent the 

average (with SD) number of PCNA cells. Asterisks show significant differences from 

control. 

 

Table 4.0 Imunohistochemical analysis of PCNA protein expression quantified. 

Average±SD represents the average protein expression±standard deviation, compared to 

the control test detected via analysis of images. Asterisks identify significant increases 

compared to controls. 

Test 2 Week Average ± SD 4 Week Average ± SD 

Control 100.0±2.6 100.0±5.3 

DNA 106.2±8.2 98.6±4.6 

RNA 98.6±4.3 105.1±6.0 

Protein 100.5 ±5.3 *132.5±4.6 

LPS *140.1±7.6 *134.2±5.7 

Bacteria *142.3±3.2 *133.9±2.4 

 

 

* 
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5.0 GENERAL DISCUSSION AND CONCLUSION 

 

 Bacteria, even with the lack of molecular evidence, have been hypothesized to be 

the cause of millions of carcinomas worldwide (Parsonnet et al., 1991). Originally, based 

on epidemiological studies, research today continues to gradually produce evidence to 

identify molecular pathways that suggests that bacteria can induce instability in the 

genome. Pathogenic E. coli, are a common bacterial cause of intestinal infection 

worldwide, and are slowly being accepted as a Gram-negative bacteria responsible for a 

large numbers of carcinomas in humans (Lax and Thomas, 2002).  

 Heat-inactivation of bacterial contaminated water is used by health officials in 

Canada to treat water in order to allow the water to be safely consumed. However, recent 

research from Koturbash et al. (2009) identified that bacteria induce alterations in 

intestinal tissues. This effect was identified in distal tissues in the form of changes in the 

expression of various proteins involved in cell proliferation, DNA repair and DNA 

methylation. Finally, filtered water (0.45μm filter to ensure whole bacteria are removed) 

induced the same alteration to distal cells identifying a potential for bacterial components 

to induce genomic instability. This phenomenon identified as a bystander-like effect 

influences the alteration in distal naive cells of organs such as the liver and spleen; 

however the exact method of inducing these alterations is not yet identified. 

 The results presented in the previous chapters of the thesis provide support to our 

hypotheses that LPS as a component of the heat-killed E. coli could induce genome 

instability. These alterations in the expression of DNA repair proteins and an increase in 

γH2AX, indicating the presence of a bystander-like effect, had an influence on the 
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genome stability of naive cells. Accumulation of DNA damage caused by the infection of 

distal tissues could disrupt cellular regulation and contribute to genome instability of the 

tissue. Also, alteration in the expression of proteins involved in DNA methylation 

indicates presence of an epigenetic influence on the distal cells of the organism. 

 The purpose of this study was to identify which bacterial component could induce 

genome instability in intestinal tissue, and transmit the same reaction via a bystander-like 

effect in the distal organs, liver and spleen. 

 

5.1. Major Findings: 

 

1. Exposure to whole heat-killed bacteria influenced an alteration in protein 

expression in exposed and distal cells with the bystander-like effect being a 

potential mediator to transmit the effects. 

2. Identification of lipopolysaccharides (LPS) as one of the major components 

causing bacterial effects on the immediate target organ – intestine and on the 

distal non-target organs spleen and liver. not identified to target the hypotesis 

3. LPS influence bystander-like effects on distal naive tissue such as spleen and 

liver. These effects are (and may not exclusive to) increased proliferation, DNA 

damage and alteration in the methylation of the genome.  

4. Total protein extracts from heat-killed E. coli O157:H7 also has an influence on 

the host cells in direct contact of proliferation of the intestinal cells and the state 

of the (normal or healthy) spleen and liver cells.  
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6.0. Future Directions 

 

As mentioned earlier, this field of study is relatively new, and extensive research 

is being conducted to support the hypothesis that bacteria may influence genomic 

stability and may be tied to carcinogenesis. The results presented, identify LPS as 

a major component of the bacteria that influences the host cells in the same 

manner as the whole bacteria. However, the results also imply that LPS may not 

be the only component of the bacteria that could induce alterations to the stability 

of the genome. Studies are required to understand the complete mechanistic 

approach of bacterial influences on genome stability. The following are 

suggestions of possible future studies in this area of research.  

The expansion into the human cell line analysis is essential to the 

understanding and the implementation of this research/field for the creation of 

preventable steps or treatment of water contamination.  Another important 

question to consider is: Do LPS induce genome instability and inflammation in 

human intestinal tissue similar to murine samples, and what molecular 

mechanisms are influenced by the endotoxins? With new technology (e.g., three 

dimensional cell line analysis), it is possible to purchase human intestinal cell 

lines (multiple cell lines structurally arranged as seen in nature) from MatTek 

Corporation (Walle et al., 2005) and to perform similar studies on human tissue. 

Also, a new detection method, HEK-Blue
TH

 LPS Detection Kit from InvivoGen 

allowing the research to detect LPS and ensure quantity of the LPS extract.  

1. PCNA is an essential component of the DNA replication machinery functioning 

as the accessory protein for DNA polymerase δ (Pol δ), required for processive 
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chromosomal DNA synthesis and DNA polymerase ε (Pol ε) (Kelman, 1997). 

However, evidence suggests that PCNA plays a different role in replication, than 

in repair of the genome. The link between PCNA and DNA damage is the tumour 

suppressor protein, p53, which is a transcription factor that inhibits replication of 

the genome during unfavourable conditions by regulating cell cycle progression 

and cell viability (Levine, 1997).  p53 has been identified to mediate the 

expression of PCNA protein for the control of cellular division as PCNA directly 

binds two p53-inducible proteins , GADD45 and p21 (Xiong et al., 1992). These 

interactions may regulate, PCNA dependant DNA replication (Waga et al., 1994). 

p53 may directly control DNA replication and repair by modulating levels of 

PCNA in cells. The aforementioned connection identifies the possibility that 

PCNA expression could correlate with the response to DNA damage. In order to 

decisively identify proliferation alteration within exposed or distal tissues, further 

analysis with Ki-67 protein must be performed. Ki-67 protein is thought to be an 

indicator of cells actively proliferating (Alison, 1995). Ki-67 protein is expressed 

during all active phases of cell cycle (G1, S, G2 and mitosis), but is absent during 

the resting stage (G0) of the cell cycle, making it an ideal marker to identify cell 

proliferation (Scholzen and Gerdes, 2000). The question of “Does exposure to a 

LPS rich solution induce proliferation in distal cells through a bystander-like 

effect” has been analysed in this thesis, but further tests must be conducted to 

verify the aforementioned results. 

2. E. coli O157:H7 are known to produce toxins that promote its pathogenic effects 

in host cells. These toxins are called “Stx”. E. coli O157:H7 produce Stx that fall 
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under two main categories. The first category identified as Stx1, consists of toxins 

such as Stx1c (Friedrich et al., 2003), and Stx1d (Burk et al., 2003).  The second 

group is identified as Stx2 and consists of a range of toxins such as Stx2c2 

(Jelacic et al., 2003), and Stx2g (Leung et al., 2003).  These toxins are capable of 

inducing damage to cells, and could transmit their effects to other distal cells 

though a bystander-like effect or could travel themselves through the 

bloodstream. Analysis of distal tissue with real-time PCR rather than DNA based 

methods could identify genes responding to these toxins (Kuezius et al., 2004).  

These toxins produced by the bacteria, have been analysed, but no extensive 

research has focused on the potential to influence distal cells by bystander-like 

signalling. The toxins could be the factors involved in triggering alterations in 

methylation and DNA damage.  The question that needs to be considered is: Do 

the toxins produced by EHEC have any influence, either on the directly exposed 

or distal cells in response to heat-killed E. coli O157:H7?  

3. The bystander-like signalling needs to be further researched as well as other 

components of the bacteria that may induce genome instability. A possible 

explanation is that the intestinal cells may release inflammatory cytokines into the 

bloodstream. Therefore, any tissue with a high vascular flow will accumulate 

these circulatory inflammatory cytokines, influencing their genomic stability. 

Although cytokines have been identified as potential signalling mechanisms for 

the bystander effect, there is a list of molecules that could influence the distal 

cells, and may include (but is not limited to) the production of reactive oxygen 

species (ROS) and short RNAs  (Koturbash et al., 2007). The bystander-like 
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effect needs to be further researched by looking at of the inflammatory response 

mounted by the host immune system, and its contribution to alteration in genomic 

DNA/expression of naive cells. 
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