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Abstract

Music Information Retrieval aims to automate the access to large-volume music data,

including browsing, retrieval, storage, etc. The work presented in this thesis tackles

two non-trivial problems in the field.

First problem deals with music tags, which provide descriptive and rich informa-

tion about a music piece, including its genre, artist, emotion, instrument, etc. At

present, tag annotation is largely a manual process, which often results in tags that

are subjective, ambiguous, and error-prone. We propose a novel approach to verify

the quality of tag annotation in a music dataset through association analysis.

Second, we employ association analysis to predict music genres based on features

extracted directly from music. We build an association-based classifier, which finds

inherent associations between music features and genres.

We demonstrate the effectiveness of our approaches through a series of simulations

and experiments using various benchmark music datasets.
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Chapter 1

Introduction

Music is such a big part of human culture that we listen to it on a daily basis to

alter our moods, express emotions, and convey other kinds of information. People

around the world create more new music on any given day than a single person can

consume in that same day; just think how many free jam sessions might be happening

at this very instant around the world. Furthermore, no one can possibly listen to all

of the music available today, even if one spends her or his entire lifetime listening to

it non-stop.

Consider the following: an average lifespan of a Canadian resident is 80 years

[1], which is approximately 42 million minutes; the Gracenote1 database contains

information about more than 130 million tracks. Even if each track was just one

minute long, no one on this planet has lived long enough to be able to listen to all

of the music available. Albeit Gracenote maintains one of the largest databases that

contain information about music, it does not have a record of every single music piece

produced.

In addition, vast amounts of music exist only on vinyl, magnetic tapes, scores

written on paper, and other analog media, waiting to become digitalized. However,

rapid advances in technology, like data storage and the Internet, and more recently, the

mobile computing, in many ways help facilitate the process of converting analog data

such as books, film, and music into digital format. Moreover, the growing demand for

1www.gracenote.com.
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1.1. MUSIC INFORMATION RETRIEVAL

diverse and rich listening experiences drives these advances.

It is easy to see how this might happen. For example, many people enjoy listening

to music while engaging in various sport activities. This demand for portable access

to music encourages some companies to produce tiny devices with large amount of

storage. Meanwhile, other companies develop better compression and streaming algo-

rithms, and yet another group of companies take those old favourites from the vinyl

and put them into the ears of many eager listeners.

Since anyone can consume only a small fraction of all the music in the world,

then there needs to be a way to find the right recording for any occasion. Hence,

we need to facilitate the effective navigation of our colossal digital collections and

speedy retrieval of relevant music. This is just one of many fundamental problems

that concerns researchers in the area of Music Information Retrieval (MIR) [18].

1.1 Music Information Retrieval

MIR is a fast growing multidisciplinary area that attracts researchers from a wide

range of disciplines, such as library science, information retrieval, audio engineering,

musicology, cognitive science, psychology, and computer science. The latter drives

MIR by advancing technologies that not only increase the speed and capacity of our

devices, but also their intelligence.

Because of the improvements in storage and compression, we are able to keep a

large amount of music on very small devices, such as the Micro SD cards. Thus,

large collections of music become portable. Moreover, advances in multimedia and

networking enable us to listen to streaming audio on the go and wirelessly, while

advances in signal processing contribute to many tasks, such as source separation,

instrument/voice recognition, song identification, and even automatic music genre

and mood classification.

The following are some examples of how MIR-related research finds its way into

2



1.1. MUSIC INFORMATION RETRIEVAL

our daily lives. There are smartphone programs, such as Shazam2 or SoundHound3

that analyse the music being listened to and recognize much of it. Consequently, their

users gain access to information about music to which they are listening. Websites

like Last.fm4, Pandora5, Slacker6 and Spotify7 are able to offer customized listening

experiences to their users through algorithms that recommend songs and automati-

cally create playlists based on factors such as the listener’s mood, genre preference,

and listening history.

As outlined by Li et al. [29], all of the MIR tasks can be divided into the following

eight categories.

Data management is a task of organizing, storing and accessing music. As the

amount of music grows daily, so does the need to be able to access it easily. The

challenge here is how to apply various data indexing techniques to manage music.

Association mining is the process of detecting correlations between different acous-

tic features, between music and other documents, and between music features and

other aspects of music. In this thesis, we examine the first and the last of the three.

In Section 2.3.5, we provide additional information about association mining in MIR.

Sequence mining involves looking at music through time by examining elements

like rhythm, chord sequence, and music structure. Compared to other categories, there

are fewer works published in sequence mining, mostly focused on music transcription.

Classification, one of the more important tasks in MIR, involves splitting a music

collection into various categories. Some of the popular tasks include artist/genre

classification, singer/instrument identification and mood/emotion detection. In this

thesis, we focus on genre classification.

Clustering is also concerned with splitting a music collection into different groups.

2www.shazam.com.
3www.soundhound.com.
4www.last.fm.
5www.pandora.com.
6www.slacker.com.
7www.spotify.com.
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However, it is different from classification because there are no predefined categories

or class labels. In music, clustering mainly aims to find groups based on music simi-

larities.

Similarity search is a task that embraces a broader notion than classification or

clustering. Here, the researchers examine the music feature space and use it to com-

pute the distance between different music pieces. They focus on searching for music

based on an approximate description of one or two other music pieces. Thus, someone

browsing a music collection may be able to find pieces similar to the ones that he or

she heard before.

Music summarization is similar to text summarization [29], it focuses on generat-

ing the most informative and compact description of music. Until now, most music

summarization was generated manually. However, with the rapid increase in volume

of many digital collections, automated approaches are currently in high demand.

Data visualization consists of two sub-tasks: visualizing individual music pieces

and visualizing entire music collections. The first one is concerned with visualizing

metadata and audio content of a single music document. This is useful in cases where

a consumer attempts to gauge the content of a music piece, similar to skimming

a book before buying it. The second visualisation task is also oriented around a

consumer, where one might want to discover new music by navigating through an

entire repository in some intuitive way.

1.2 Contribution

All of the terms and concepts mentioned in this section are further explained in

the following chapters.

Although much effort goes towards automating music tag annotation and propa-

gation, our work is among the initial efforts to verify the quality of these. We propose

using association analysis to verify the quality of tags within a given music reposi-

4



1.3. OUTLINE

tory [5]. Not only can we test whether the new tags entering an existing repository

are consistent with the ones already in that repository, we can also use our approach

to verify the quality of the tag annotation process by which music tags are obtained.

We also propose to use association analysis for music genre classification [6]. It is

worth noting that we are not the first to classify music via association rules. Neubrath

et al. [37] apply association mining to discover relation between two folk music ontolo-

gies: genre and region. We discuss it in further detail in Section 2.3.5. Our approach

is different, because we employ a data mining technique called association rule min-

ing [21]. It is a supervised learning approach that consists of two components. First,

we build a statistical model of the given data, and then we apply this model to classify

new data.

The work outlined in Chapter 4 explores the feasibility of applying association rule

mining to music genre classification. During our work, we find that there are some

inherent associations between audio characteristics and human assigned music genre

labels. Thus, association analysis is applicable in MIR for classification purposes.

Furthermore, it is comparable to existing classification methods. However, we believe

there are many ways to improve our proposed method, which we leave to future work,

as discussed in Section 5.2.

Our work contributes specifically to the following MIR tasks: data management,

association mining, classification, and similarity search. More generally, any individ-

ual user or a corporation maintaining a database of descriptive tags about music could

indirectly benefit from the findings in our work. Additional beneficiaries are the con-

sumers of products and services surrounding such repositories; for example, anyone

who uses online radio and recommendation services, such as Last.fm and Pandora.

5



1.3. OUTLINE

1.3 Outline

This thesis is organized as following. First, we unfold all of the underlying concepts

and ideas in Chapter 2. Starting with a brief overview of music data in Section 2.1.1,

following by an in-depth look at tags and the tag annotation process in Section 2.2.

Then, in Section 2.3, we examine in detail the central idea of this thesis, association

analysis. This is followed by an overview of classification in Section 2.4 with the focus

on music genres. In this chapter, we also expose previous works.

In Chapter 3, we propose an approach to use association analysis towards verifying

music tag annotation. We first outline it in Section 3.2 and present the issues in

Section 3.3 that prevent us from testing the approach directly. To overcome these

issues, we set up a series of simulations and discuss their outcomes in Section 3.5.

In Chapter 4 we present a classifier that is based on rules, which we mine using

association analysis. We start by explaining the how we set up the experiments in

Section 4.2, which includes the particulars of the classifier and the goals that we wish

to achieve. Then we show the results of our experiments in Section 4.3 and follow up

with brief discussions in Section 4.4.

Finally, in Chapter 5 we draw some concluding remarks and expose future direc-

tions on using association analysis for both verification of music tag annotation and

classification of music into genres.

6



Chapter 2

Background

In this chapter, we start with an overview of music data and the associated challenges

in Section 2.1.1. We leave tag annotation-specific challenges for Section 2.2, where we

examine the sources of music tags and current approaches to verifying them.

In Section 2.3, we describe the principal component of this thesis, association

analysis. After introducing this data mining technique, we formulate the problem

and illustrate it with an MIR related example. In the same section, we also present

some previous works in MIR that use association analysis.

Then, in Section 2.4, we present the problem of classification in MIR. From all

classification tasks in MIR, we focus on music genre classification. Thus, in this

section, we outline the kinds of features that are used in predicting music genres. We

also give a brief outline of discretization, a data mining technique, which we employ

in order to make the features suitable for our approach. Then we present several

classifiers that were successfully applied to music genre classification. We also outline

the established approaches to evaluating classifier performance that we use in our

work.

2.1 Music Data

2.1.1 Types of Music Data

There is a natural distinction between two types of music data: the actual sound

and its metadata. Of course, the actual sound is not data; it is a unique event

7



2.1. MUSIC DATA

occurring in time and space. Hence, when we talk about actual sound data, we refer

to whatever is stored on various media such as vinyl records, magnetic tapes and now

in digital formats. Metadata, then, is the information about this event that we store

and use. There are many types of metadata, ranging from descriptions of sound to

instructions on how to produce sound. For example, Johann Sebastian Bach would

write a set of instructions on how to reproduce a certain sequence of sounds using

a particular instrument. However, the sound that he produced from his own sheet

music would be different depending on the instrument, the room and even his mood

at the time. Musical Instrument Digital Interface (MIDI) devices use similar type

of instructional metadata. MIDI carries event messages, which contain information

about the sound such as pitch, tempo, instrument, effects, and clock signals. This

information is very compact and easy to manipulate. It is stored in digital format and

is used to reproduce the sound very accurately. However, it is limited in such a way

that it cannot reproduce any sound, but only the sound generated by MIDI devices

in the first place. If prescriptive metadata contains instructions on how to produce

sound, then the descriptive type of metadata simply describes it. For example, we

often categorize music into genres, such as rock, blues and country. We also often

name songs and remember their original authors. This kind of information does

nothing for reproduction of the sound, but it describes the different attributes of that

sound. In music repositories, this type of metadata is commonly referred to as music

annotations. These annotations are the focus of this thesis.

Most digital music libraries nowadays store musical annotations along with the

audio and use it to help organize their collections. They often describe artists and

music using terms like upbeat, jazzy, happy, and danceable. For example, the database

maintained by Gracenote, mentioned in Chapter 1, has information about the content

of audio compact discs. Gracenote provides its data to companies like Nullsoft8 and

8www.nullsoft.com.
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2.1. MUSIC DATA

Apple9 for use with their popular music players Winamp and iTunes, respectively.

These databases include information such as music genre, artist, and release year,

which is useful for organizing and browsing of music. Music annotations are stored in

the format of textual tags, like “rock” and “jazz”. These tags make it easier for a user

to browse and even search the contents of a large music repository without spending

time to listen to each song individually.

2.1.2 Challenges

Most of actual music data is copyrighted. This means that researchers and devel-

opers must each purchase a copy of every song that they want to work with. Further-

more, if they are to collaborate or compare their approaches, they must ensure that

the music collections used in their experiments are identical between them. This is

very unsustainable, and only slows the research and development of anything related

to actual music data.

In addition to financial burdens, there are also computational challenges in MIR,

such as dealing with the sequential nature of music. Music happens in time, or through

time, and we cannot fully describe it without using temporal information. There are

various techniques, with their own challenges, which deal with time. A standard

approach in MIR is to break the music piece into short timeframes or windows and

look for patterns across them; these windows can be overlapping, adjacent or sparse.

For example, the Latin Music Dataset described in Section 4.2.2 includes features

extracted from first, middle and last 30 seconds of each song; Silla [23] shows that

using all three together achieves higher classification accuracy than using only features

from any individual timeframe. The challenges of looking for patterns across time

include, but are not limited to, determining the number of frames and determining

the location of said frames. Furthermore, they include the development of algorithms,

which model patterns and structures across time, which is an area in machine learning

9www.apple.com.
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2.2. TAG ANNOTATION

with many open questions [41].

Another challenge is the fact that music is a cultural phenomenon, which changes

over time. Consider, for example, the case of building a schema for music genre

classification, where each genre known to us is considered and placed in some hierarchy

of genres. Over time, new genres will be introduced into the music world, which the

established schema is obviously not able to handle. Thus, a desirable approach is one

that is flexible enough to handle such changes.

The lack of data, which is of good quality and large size, poses another serious

challenge to researchers in MIR. Nonetheless, the situation is constantly improving,

especially with the recent release of the Million Song Dataset (MSD) in February

2011 [8]. Shortly after, in 2012, the Million Song Dataset Challenge [34] attracted

further attention to the MSD. It was set up to help bridge the gap between real life

data in the industry and individual researchers. The MSD Challenge also encouraged

reproducible, open evaluation of algorithms and approaches in MIR. In addition, in

2012, Schindler et al. [44] released an addition to MSD called the Million Song Dataset

Benchmarks (MSDB). It expands the number of content-based features and provides

genre and style tags for supervised learning tasks. Despite their seemingly large size,

both MSD and, by extension, MSDB datasets are still quite small when compared in

size to the industry repositories with billions of tracks.

We discuss the issues specific to tag annotation in Section 2.2.1, where we also

consider the sources of metadata, because these issues are closely related to their

respective sources.

2.2 Tag Annotation

As mentioned in Section 2.1.1, music tags can help with organizing and browsing a

music collection. This is mainly because they are very precise and compact. Because

of how they are generated, tags carry the exact information needed for a given task.
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Furthermore, they are very popular because they are not restricted by copyrights.

Even though in some cases, such as Pandora’s situation, access to metadata is very

restricted, most music metadata is freely available for use. Moreover, many companies

create Advanced Programming Interfaces to enable outside developers to use their

metadata. Usually, this results in the appreciation of said metadata’s value and

popularity, as outside developers enable and enhance the said data and its use.

2.2.1 Music Tags and Related Issues

Sources of Music Tags

In his work, Pachet identifies three types of metadata creation: manual, cultural

and acoustic [39].

The first type involves people ranging from experts to amateurs performing an-

notation manually by listening to individual tracks and tagging them accordingly.

This process introduces subjectivity, ambiguity and errors into the metadata created,

and thus, makes it difficult to maintain the metadata in large databases [38]. Web

sites like Pandora pride themselves on the accuracy of their annotations because they

employ expert musicologists to generate their annotation tags manually. Albeit this

approach is proven to be financially expensive, experts rarely disagree and the result-

ing annotations are of the highest quality possible.

The second type of metadata, cultural, comes mostly from the application of vari-

ous crowdsourcing methods or from the analysis information about users’ behaviours.

For example, the recommender system in use by iTunes10 and Last.fm websites em-

ploys one of the prominent approaches in this category called collaborative filtering.

This method involves examining which songs the users listen to and then, based on

that information, predicting what preferences or tastes an individual user might have.

One of the main issues with this and other crowdsourcing methods is the cold start

problem. Simply put, if there is no user data to begin with, then no recommendations

10www.itunes.com.
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can be made. This motivates the research of content-based approaches, which brings

up the third type of metadata creation described by Pachet [39].

Acoustic is perhaps the most objective of the three types, as it mainly involves

signal processing and statistical approaches. This process produces metadata informa-

tion like the average number of beats per minute or a presence of a certain instrument

in a given track. However, there is still a large gap between human perception of sound

and that, which we can represent with computers. Hence, some acoustic metadata,

such as instrument recognition, is still generated manually. This is because automatic

methods are less precise than human efforts in many annotation tasks, particularly in

genre recognition [32, 19] and instrument [17] recognition.

Larger music repositories with numerous contributors are especially sensitive to

such issues as described above.

Types of Music Tags

During the annotation process, we can distinguish between two types of tags that

an annotator may use.

One type of tags comes from a discrete set, which contains all possible situations

for the corresponding characteristic it describes. For instance, a tag may describe

whether an instrument is present or not, then each instrument would have its own

location in the characteristics space and the corresponding tag would come from the

set {present, not present}

The second type comes from a set only one element, that tag. Because it is hard

to determine all possible tags for a given characteristic, especially when new tags are

introduced over time. In the case of genres, for example, many researchers are moving

away from a single-label genre assignment, since the styles of many compositions tend

borrow from multiple genres at once. In this case, when an annotator assigns a tag

{rock} to some music, the same music may also display styles of {country} or {blues}.
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Hence, the only way to fit all possible genre assignments into one complete set of tags

is to use a different tag for each possible combination of all genres. Not a desirable

strategy, especially when new genre distinctions are regularly introduced into the

music culture. Therefore, most practitioners choose to assign each genre tag from

a set containing one element {present}. In this way, each tag comes from its own

dimension in the characteristics space and does not interfere with others. In addition

to allowing for more flexibility, this also creates difficulties. Some researchers study

this as a multi-label problem, further discussed in Section 2.4.4.

Although association analysis, described in Section 2.3, naturally deals with mul-

tiple tags assigned to a single piece of music, our genre classification experiments

described in Chapter 4 use single-labeled data, so exactly one genre tag per music

piece. This is because the genre information in the data we use is represented by the

first of the two types of tags presented in this section.

Missing Information

Annotators often do not use a predetermined set of tags during the annotation

process. This creates a situation of uncontrolled vocabulary, which means that anyone

can use any word to describe any piece of music. Because of this, the tags in a

single music repository become diluted, since many tags share the same meaning.

Uncontrolled vocabulary also leads to multi-label situations. More importantly, a

problem of missing information creeps in.

Suppose that one annotator listens to a song and determines that it should have

a tag “happy” and moves onto the next song. This does not mean that there is only

one word in existence, which describes that song. Usually others come along and add

more tags. However, if the song has no violins in it, rarely would someone tag it “no

violins”. This is the case with Last.fm data, where the annotators will tag a presence

of a certain characteristic, but not necessarily its absence.
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Hence, this type of data becomes unusable for conventional machine learning tech-

niques, and requires different approaches. This problem of missing information affects

many MIR tasks, especially classification. To deal with it, many approaches are pro-

posed, such as automatic tag prediction and propagation; a common one is to verify

the tag annotations manually.

2.2.2 Verifying Tag Annotation

Having bad initial tags is detrimental to most tasks in MIR; hence, their verifica-

tion is very important. Whether it is the annotation process or the tags themselves

that are verified in a given repository, many efforts are focused towards ensuring good

quality of metadata.

One of the most conventional methods is to ensure that during the manual anno-

tation process, more than one person annotates each music piece and a certain level

of agreement is reached before the tag is applied. For example, Kim et al. [24] pro-

pose MoodSwings, a game that collects music mood labels from players; it enforces

some agreement between annotators through game design. The game pits two play-

ers against each other, and their goal is to agree on the mood of several music clips

with very limited feedback from each other. Gathered in this way, the mood anno-

tations with high agreement are considered to be of high quality and become useful

for various tasks, such as automatic playlist generation and automatic prediction and

propagation of mood tags. This game also deals with another big issue outlined in

Section 2.2.1, the cost of hiring people to annotate music manually. By making it fun,

Kim et al. encourage people to volunteer their time to tagging music [24].

Laurier et al. [26] use a different approach, as they study the agreement between

a large community and experts in mood classification task. They create a semantic

mood space from tag annotations found on last.fm website, which serves a community

of over 30 million users who are very active at annotating music with mood tags.
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Then, they compare the mood represented in this space with existing representations

from psychological studies, and show that there is agreement between experts and

the large community. Their work was inspired by Sordo et al. [48], who study the

agreement between genre annotation created by the last.fm community and experts

from MP3.com and find that there is some agreement, but not always, as in the case

of the rock genre. This stresses the importance of verifying annotations, especially

when large communities annotate a music repository.

Good quality tags are important in all areas of MIR, particularly classification,

where researchers are working to bridge the gap between music signal and human

perception of it. Since the main way of gaining insight into human perception and

understanding is from testimonials and music annotations created by people serve

as such, the presence of erroneous or ambiguous tags is contrary to these efforts.

Obtaining good quality tags is detrimental to both parts of this thesis - association

analysis and genre classification. Furthermore, the problem of missing information

also causes issues in music genre classification. Association analysis, however, is not

impeded very much by this problem; instead, it reflects it, which makes it suitable

to verify tag annotations in a music repository, and even the tag annotation process

itself.

2.3 Association Analysis

Association analysis [2] attempts to discover the inherent relationships among data

objects in an application domain. Such relationships are represented as association

rules. An example of such application domain is the shopping basket analysis in

supermarkets, where one tries to discover the relationships among the items purchased

by customers. For instance, the association rule {milk, eggs} → {bread} implies that,

if milk and eggs are bought together by a customer, then bread is likely to be bought

as well, i.e., they have some inherent statistical relationships [21].
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We can use association analysis in MIR to examine music tags in a repository. Each

music piece or track in the repository can have multiple tags associated with it. Each

tag represents a specific characteristic or feature that either objectively or subjectively

describes the track. Although many music tags are subjective, when grouped together,

they contain some patterns. We can look for these patterns and examine them.

The patterns that occur frequently can help reveal interesting information about the

music in a repository. Additionally, we can derive rules from these patterns, which

indicate associations between tags and possibly between different acoustic features in

a repository. Although association analysis is very common to some areas, like market

analysis [21], it is new to MIR and that makes it interesting to study.

2.3.1 Problem Formulation

We follow Ness et al. [36] in their formulation of the music tag annotation process as

follows. Given a set T = {t1, t2, ..., tn}, where each ti ∈ T is a tag, and a set M = {m1,

m2, ..., mr}, where each mj ∈M corresponds to a music piece. Then each music piece

mj can be considered as an annotation vector A = (a1, a2,· · · ,an), where ak > 0 if tag

ti has been associated with the piece, and ak = 0, otherwise. These ak’s, referred to

as semantic weights, describe the strength of the semantic correspondence between a

tag and the music piece. When mapped to a binary assignment of {0, 1}, the semantic

weights can be interpreted as class labels, i.e., whether a tag is assigned to the music

piece or not; in this thesis, we always assume binary assignment. Naturally, each music

piece can be annotated by multiple tags [36, 42], which makes them appropriate for

association analysis.

Before proceeding with association analysis, we first derive a transactional style

dataset D = {d1, d2, · · · , dr} from the set of music pieces M . There are two ways to

form it based on the set of n transaction items, which is already represented as the

set of tags T = {t1, t2, ..., tn}.

16



2.3. ASSOCIATION ANALYSIS

One way to form D is by creating two items, ti0 and ti1 from every ti. In this

way, a transaction dj will contain the item ti0 if ak = 0 and ti1 otherwise. In case

of missing values, the transaction dj will contain neither item ti0 nor ti1. If any ti

has a non-binary assignment, then we would create additional items ti2, ti3, etc, so

long as one discrete set of items/labels describes all possibilities of the characteristic

corresponding to ti.

The second way to form D is by adding an item ti to dj if the corresponding

ak = 1. The case when ak = 0 is handled the same way as missing values, no item is

added to dj. This is the most common approach and it requires that all tags be of

the second type, described in Section 2.2.1.

When we formulate our problem as described above, the music annotation set M

becomes a transactional set D suitable for association mining.

2.3.2 An Example

There are many illustrations of association analysis in the data mining literature

like the shopping basket analysis example [21]. Since MIR is at the center of this thesis,

let us consider an appropriate hypothetical situation. Suppose we have a small music

repository and tags from four distinct categories: mood/emotion, activity, instrument,

and genre. For the sake of simplicity, we have only six music pieces with only one tag

per category. We split the repository into two genre categories and annotate the music

pieces accordingly, as illustrated in Table 2.1. This example will help demonstrate

how to derive the frequent itemsets and association rules in the following two sections,

titled accordingly.

2.3.3 Frequent Itemsets

We consider the itemsets that appear in many transactions to be frequent. The

threshold that separates the frequent items from the infrequent depends on the task

and is determined by whomever is overlooking the data mining process. This threshold
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Table 2.1: Example music repository.

is measured in terms of minimum support, which is the percentage of transactions that

contain the item in question. Given a set of items I:

support(I) =

∑r
j=1 sign(I)

r
, where sign(I) =

 1 I ⊆ dj

0 otherwise

(2.1)

Figure 2.1 illustrates the transactional form of the example dataset in Table 2.1

and all of the combinations of five items with their corresponding support in the

example dataset.

The set of frequent itemsets contains a set of closed itemsets [21], which are those

whose support is greater than the support of each of its immediate supersets. The set

of closed itemsets, in turn, contain a set of maximal itemsets [21]. A frequent itemset

is considered maximal when none of its immediate supersets is also frequent. This

relationship can be generalized as:

maximal itemsets ⊆ closed itemsets ⊆ frequent itemsets ⊆ all itemsets (2.2)

In Figure 2.1, we illustrate all itemsets, even if they do not appear in the datasets.

To visualize the relationship between different types of itemsets we draw their lattice

in Figure 2.2. In bold are the items considered frequent when the minimum support

threshold is set to 33%. From these we can derive a set of closed itemsets {{D}, {V },
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Figure 2.1: Transactional format of the example music repository and all possible
combinations of its five items with their respective counts and supports.
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Figure 2.2: Tag patterns from the example represented as lattice, with item count
listed in bottom right corner. The frequent itemsets with minimum support of 33%
are in bold.

{HD}, {DV }, {DP}, {V C}, {HDV }, {HDP}, {DV C}} and from these a set of

maximal itemsets {{HDV }, {HDP}, {DV C}}.

2.3.4 Association Rules

An association rule is of the form A→ B, where A and B are non-empty frequent

itemsets, A ⊆ T and B ⊆ T and A
⋂
B = φ. We call A the antecedent and B its

consequent. Rule A → B holds for D with some support as described above, and

confidence, which is the percentage of transactions containing A that also contain B.

confidence(A→ B) =
support(A ∪B)

support(A)
(2.3)

In our example in Section 2.3.2, the rule D → P has confidence of 60% and the

rule P → D has confidence of 100%. It should be noted that this is not a logical
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conditional but a statistical relation rule.

Evaluating Association Rules

Support and confidence are the most popular methods of measuring significance

of an association rule. However, there are other measures, which can be useful in

measuring not only significance, but also usefulness or interestingness of a rule. Some

of the more popular ones are lift, conviction, coverage, leverage, all-confidence, and

collective strength [21]. In this thesis, we use support and confidence exclusively, and

leave exploring other evaluation measures to future work.

How interesting a given association rule is, obviously, cannot be measured by

simply applying some formulae. Which measure(s) to use and how to apply them

properly always depends on the task. The evaluation measures above are a good

point for where to start the exploration of data. However, the data itself usually

dictates what are the best tools suited for it. This is the case with our approach,

to be outlined in Chapter 3, where we use both support and confidence together to

set the exploration boundaries, and then propose a new set of evaluation measures,

detailed in Section 3.2.4, which are designed specifically for our task.

2.3.5 Association Analysis in MIR

Association analysis is very new to MIR probably because this research area

emerged very recently. There are many data mining and machine learning meth-

ods, which still have not seen music data. However, there is a growing need to find

associations between various objects in music data evident by several works outlined

below.

Kuo et al. [25] propose a way to recommend music based on the emotion that

it conveys. In their experiments, they use film music because, arguably, music is

an important component of the emotional content in films. They first choose a set

of representative emotions and use it as controlled vocabulary to annotate music

21



2.3. ASSOCIATION ANALYSIS

pieces. After extracting the relevant music features which represent melody, rhythm

and tempo, they discover the relationship between these features and emotion by

constructing a music affinity graph. Although no association rule mining is performed,

they look for associations in their data that contain information perceived only by

humans, namely emotion.

Xiao et al. [54] use a parameterized statistical model to look for associations be-

tween timbre and perceived tempo. First, they extract the timbre features directly

from sound and manually annotate each feature set with tempo. Afterwards, they use

the Gaussian Mixture Model (GMM) to model the relationship between the features

and tempo. Then, they demonstrate how to use the derived model to aid in automatic

tempo recognition. Although they do not use association rule mining, Xiao et al. [54]

find the associations between timbre features and tempo.

Liao et al. [31] use a dual-wing harmonium model to discover association patterns

between MTV video clips and the music that accompanies those clips. They do not

mine association rules in a conventional way as described in previous sections. In-

stead, they discover association patterns first, by extracting a combination of features

from audio and video, and then, by clustering the sample data in this feature space.

Then, they use the discovered patterns to match video to music automatically. This

method can be used to create custom sound tracks for personal video collections.

They demonstrate that the results of their approach are comparable to those of a

commercial software package, muvee autoProducer 11.

To our knowledge, there is only one work published prior to ours that uses asso-

ciation rule mining as part of analysing music via association analysis. Neubarth et

al. [37] present a method of association rule mining with constraints. They first come

up with a specific rule template in the form of A→ B, where both A and B contain

only one element, and region implies genre and genre implies region. Then they look

11www.muvee.com.
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for rules that match this template in a 1902 Basque folk music corpus and find some

interesting rule sets. Neubarth et al. use support, confidence and two evaluation

measures to determine the quality or interestingness of the rules mined.

2.4 Classification

Classification is the process of organizing ideas or objects into a hierarchy of classes.

More specifically, when we refer to classification, we mean its application in data

mining and machine learning, where we distinguish between different data objects and

then organize them according to pre-defined categories. Classification is a supervised

type of learning in contrast to unsupervised and semi-supervised machine learning

approaches. In all three, we form a computational model from a set of observations

or examples from the world, and then use this model to make predictions about the

world. The difference between them is whether the examples are labeled or not.

In a supervised learning task [41], the given observations, or training data, are

correctly identified and labeled prior to building the model. In this way, the learner

knows which data is an example of one situation or another and learns from this

information. For example, when a child is learning the names of colors, his or her

parents would present an object and then say the correct word for the color of that

object; this continues until the child consistently and correctly identifies the colors of

new, never seen before objects. We can say that the child is a learner and the parent

is a supervisor in this situation, and we can call it supervised learning.

Then, unsupervised learning [41] means that there is no supervisor, because the

examples are not labeled. One of the most common examples of unsupervised learning

is clustering, where the task is to divide a given set of objects into groups or categories

that are not defined ahead of time.

The third type of machine learning, semi-supervised learning [41], is a combination

of the first two. Here, the given data consists of a small portion that is labeled and
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a large portion that is unlabeled. We can then build our computational model, for

instance, first, by clustering the unlabeled data, and then use the labeled data to

name the clusters.

2.4.1 Classification in MIR

Classification is one of the older and more important tasks in MIR. It can be

subdivided into the following categories [29].

Audio classification is where the focus is on distinguishing between speech, music

and environmental sound. This usually precedes other classification tasks, as we would

separate the music from all other sounds before further analysing the music.

Genre classification, also known as music genre recognition, a category where

researchers are concerned with categorizing music audio into different genre, and

lately style groups. Tzanetakis and Cook [52] were among the first to work on this

problem, where the task is to label an unknown piece of music with a correct genre

name. They show that this is a difficult problem even for humans and report that

college students achieve no more than 70% accuracy. Although, currently, there is a

bias towards classifying western music, recently MIR researchers started working with

Asian and Middle Eastern music.

Artist identification task is to recognize the name of the singer or the band who

performed a given music piece. This is very important to other MIR tasks related to

organizing and retrieving data in large music collections and has numerous possible

applications such as copyright management and music recommendation [29].

Mood detection is another classification category related to music recommendation.

Here, the focus is on predicting the emotional state of a human listening to some music

piece [50, 22]. This task is rapidly gaining popularity, probably because music affects

people’s mood, which is one of the main uses of music.

Last, but not least, is the instrument recognition category in MIR classification.
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This very difficult task is far from being solved, and it is closely related to source

separation in signal processing [29].

2.4.2 Features in Music Classification

The usual approach to music classification starts with content-based feature ex-

traction, which is done via signal processing. First, each music piece is divided into

segments, which may overlap. Then, each segment is processed via an algorithm,

which produces a set of values describing some characteristic of the sound.

Content-based features can be divided into several categories, but the main three

are harmony, timbre and rhythm [29, 16]. Harmony describes the rate of vibrations

within the sound, also known as pitch. It is similar to the term wave frequency, as

defined in physics. Timbre describes a certain texture or tone quality of the sound; for

instance, two saxophones may sound different from each other even while producing

sound of the same pitch and loudness. The third category has to do with the temporal

nature of music, rhythm, which works together with pitch to form melody.

In addition to content-based features, as of recent, researchers use music tags for

classification [55]. For example, many tags such as dark, happy, energetic, mellow, etc.,

describe the aspects of music that are perceivable only by humans. Thus, these tags

carry meaningful description of music, which has proven to be helpful in classifying

other tags, such as genre or instrument. The situation also works in reverse, where

genre or instrument tags can be useful in classifying music by into mood or emotion

categories. In our work, we focus on genre classification.

2.4.3 Discretization

Many classification models are compatible with both continuous and discrete data.

However, association analysis requires discrete data, while most content-based features

are not. Thus, we need to convert continuous values produced by signal processing

into some finite number of labels. This process is called discretization and is usually
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done algorithmically [21].

The idea here is to divide the continuous range of a given attribute into intervals,

also referred to as bins. Each bin is then labeled, and the value of the attribute in each

music piece is then replaced with the appropriate label, corresponding to the range

that the actual value into which it falls. There are many ways of deriving these bins,

such as equal-width or equal-frequency binning, and histogram analysis. These fall

under the unsupervised discretization, because they do not use class information in

order to determine the bin ranges. There are also supervised discretization approaches,

such as entropy-based discretization, where the class labels information is used to

determine which ranges are best to use; this may help improve the classification

accuracy. Another example of supervised discretization is ChiMerge, which is based

on χ2, where the two adjacent bins are merged if they have a very similar distribution

of classes [21].

There are many other supervised and unsupervised approaches to discretization

in the literature. Currently, discretization is an open problem in data mining, where

improvements are made on a regular basis. In our work, we use unsupervised attribute

discretization implemented in the Weka software [20] and leave exploring other dis-

cretization methods to future work. The reason for using it is to avoid any possible

bias based on class labels. This allows us to examine our proposed classifier in its

purest form.

2.4.4 Multi-label Classification

Mixing musical styles to achieve unique artistic flavour has become quite popular

in recent years, because of this, music pieces tend to fall into several genre categories

simultaneously. For example, many Bob Dyllan12 and Johnny Cash13 songs belong

to two genres, rock and country. Different genre labels reflect this. For example, the

12www.bobdylan.com.
13www.johnnycash.com.
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jazz rap is a subgenre of hip-hop, which includes elements of jazz ; similarly, folk jazz

combines the elements of both folk and jazz.

Many approaches have been proposed to deal with this situation, following are two

examples. Wang et al. [53] combine content-based features, music tag information

and music style correlation to achieve a new multi-labeling classification model called

Hypergraph integrated Support Vector Machine. Lukashevich et al. [33] study multi-

labeling using the GMM classifier to examine assigning multiple labels to each music

piece; moreover, recognizing the temporal structure of music, they look at labeling

different segments of each music piece. Then, they propose an approach, which allows

problem space decomposition from multi-label into multiple single-label classification

problems in two dimensions.

The classifier that we propose in Chapter 4 is expected to behave as a single-

label one because we remove the intersections between every genre pair. However,

association analysis is suitable for multi-label situations and our classifier is capable

of assigning multiple genre labels to a single music piece. We believe that with some

minor modifications, our proposed classifier can handle the multi-label situation in

music genres.

2.4.5 Music Genre Classification

Many machine-learning models are successfully applied to music classification. In

this section, we describe some supervised learning approaches that appear in MIR.

Bayesian Model (BM) is a probabilistic model, which makes predictions based on

prior knowledge, usually referred to as evidence. The usual approach is to build a

directed acyclic graph, where each node is a variable corresponding to an attribute,

and each edge is a conditional dependency between variables. Any two nodes not con-

nected with an edge are conditionally independent of each other. Then, a probabilistic

function is applied at each node, to determine its value based on its parent nodes and
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their corresponding probabilities to affect the node in question. This model has been

shown to work well for classification, where features accompanied by class labels are

used as evidence to train the model, and then unlabeled data can be classified based

on this model. DeCoro et al. [13] use BM to aid in hierarchical classification of music

by aggregating the results of multiple independent classifiers and, thus, perform error

correction and improve overall classification accuracy.

Support Vector Machine (SVM) classifiers map an input vector of attributes into

a high dimensional space and then derive a hyperplane, which separates the examples

of different classes in this space. Moreover, the SVM chooses the hyperplane in such a

way that it maximizes the distance between classes. This distance is computed using a

function commonly referred to as kernel. A new data instance is then mapped into the

same space and assigned a label based on which side of this hyperplane it falls. Recent

examples of using SVM for music genre classification include an investigation of Meng

and Shawe-Taylor [35], where they explore different kernels used in a support vector

classifier. Li and Sleep [28] implement normalized information distance into kernel

distance for SVM and demonstrate classification accuracy comparable to others.

Decision Tree (DT) algorithms are an effective way to classify music into genres

among other classification tasks. This approach selects attributes best suited for

branching based on information gain. At each node of the tree a single attribute

is selected along which new branches are formed, one per value of the attribute.

After building the tree from training examples, a new, unlabeled, music piece can be

classified by simply following the branches of the tree. The decision of which branch to

follow is based on the value of the attribute corresponding to the current node. Thus,

a set of rules can be derived, indicating which attribute values lead to which class.

In addition to speed, one of the main advantages of using DT is the interpretability

and intuitive understanding of the resulting classification rules by humans. Recently,

Anglade et al. [4] used DT for music genre classification by utilizing frequent chord
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sequences to induce context free definite clause grammars of music genres. They use

a first order logic extension of a C4.5 DT algorithm, developed by Blockheel and De

Raedt [9].

Artificial Neural Network (ANN) is another popular approach often used in clas-

sification tasks. It is modeled after biological neural networks, such as the human

brain. ANN consists of multiple interconnected artificial neurons. Each one can com-

pute values from inputs and thus, approximate a function. Sets of these neurons

are often connected in multiple layers, and together they can represent a non-linear

function. Recent examples of using ANN include Dieleman et al. [14], who use a con-

volutional deep belief network to learn the parameters for initializing a convolutional

multilayer perceptron (MLP). Both of these are a variation of ANN. In their work,

Dieleman et al. [14] demonstrate that their pre-trained MLP outperforms same MLP

with randomly initialized weights when used for genre recognition, artist recognition

and key detection.

To our knowledge, we are among the first to propose using association analysis for

music genre classification. This approach is new to MIR, although other application

areas of data mining have successfully applied it. The general idea is to mine associ-

ation rules for each genre and then, to score a new music piece against all of them.

This music piece is assigned the genre with the highest score. Chapter 4 details our

approach to mine association rules from content-based features and then use them to

predict genres of unlabeled music pieces.

2.4.6 Evaluating Classification

A practical way of examining the results of classification is in the form of a confu-

sion matrix. Each row in this matrix corresponds to the actual class and each column

corresponds to the predicted class. When an instance from the testing set is assigned

a label, the appropriate cell in the confusion matrix is incremented by one. The diag-
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onal of the confusion matrix represents correctly classified instances, and everything

falling outside of the diagonal is incorrect. Several evaluation measures can be derived

from this confusion matrix; in our work we, use the following three.

Recall [21], also known as sensitivity, is computed by dividing the number of

correctly classified instances of a class by the sum of all of the cells in that class’ row.

It represents the percentage of correctly classified instances for that class.

We compute precision [21] by dividing the number of correctly classified instances

of a class by the sum of all of the cells in its corresponding column. It reflects the

percentage of correctly classified instances from all instances that are perceived as

belonging to that class by the classifier.

Finally, accuracy [21] is obtained by dividing the number of all correctly classified

instances for all classes by the total number of predictions made, in other words, the

sum of all of the cells in the diagonal is divided by the sum of all of the cells in the

confusion matrix.
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Chapter 3

Verifying Tag Annotation via
Association Analysis

In this chapter, we present an approach to verify music tags and tag annotation

process via association analysis. For a more condensed version of this chapter, please

refer to Arjannikov et al. [5].

First, we outline the complete approach in Section 3.2, which consists of four

stages. It is usable as outlined in this chapter; however, we run into some major

obstacles and are unable to test our approach directly. We expose these obstacles in

Section 3.3 and suggest a series of simulations to overcome these issues in Section 3.5.

We outline the data that we use in our simulations in Section 3.4.

3.1 Introduction

Tags for a given music piece reveal the inherent musical nature that it attempts

to convey and express. As a coherent expression, these tags represent features that

distinguish this music piece from others. This expression intuitively shows a strong

association of these tags to the music piece or to a set of similar music pieces in terms

of their musical nature. We work toward this intuition and aim to capture associations

between tags and utilize them to verify the annotation process.

31



3.2. PROPOSED APPROACH

3.2 Proposed Approach

Music tags associated with a particular piece of music are the semantic indicators

of its content, which people perceive and understand. Hence, we propose to solicit

a group of experts on the subject of music to aid the verification process. In our

approach, we propose four stages, as shown in Figure 3.1. To make our approach

successful, we require that the experts initiate the process in Stage 1 and complete it

in Stage 4.

Suppose we are given a task to verify the tag annotation process for some auto-

matic tagger. Given a music repository and a group of music experts, we are ready to

start the verification. In the first stage, we create a dataset, which is representative

of the music repository, and a set of tags to be used during the annotation process.

In this stage, the experts annotate the representative music pieces and produce a

transactional style dataset. We mine association rules from this dataset in the second

stage. Then, in the third stage, we use the automatic tagger on the rest of the music

repository and produce a transactional style dataset of music annotations. In the

fourth stage, we use the association rules from second stage and verify the results of

automatic tagging. The experts would then examine the results and propose adjust-

ments to the automatic tagger. This process is depicted in Figure 3.1 and described

in further detail in the following sections.

3.2.1 Stage 1: Initialization

We start our verification process by asking the experts to select a representative

set of music pieces from the given repository. This has to be done in such a way as to

preserve the key aspects of the repository, for instance, genres. It may not be easy to

select a good sample set, which is why we need the experts to do this. Afterwards, we

ask them to select a set of tags T , as illustrated in Figure 3.1, to be used during the

annotation process. Then, we ask the experts to annotate the sample set with the tags
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Figure 3.1: The four stages of our proposed approach to verification of tag annotation
through association analysis.

from T and to produce a transactional style dataset D1. They must reach a reasonable

level of agreement before proceeding past this point. Thus, D1 represents the expert

knowledge about the selected music pieces and, in turn, the whole repository.

3.2.2 Stage 2: Association Rule Mining

In this stage, we simply mine the association rules from D1, which we will use

in the last stage. In our simulations, we use the Apriori algorithm [2, 3]. It find

the association rules in a transactional database that satisfy user-specified minimum

support and minimum confidence, which are adjustable by whomever is supervising

the verification process. Each parameter pair may produce different amount of rules,

which could also differ in how interesting they are. The association rules for R ob-

tained in this way represent relationships within the given data. Our intuition is that

similar data annotated using the same set of tags should contain the same relation-

ships. Any disagreement would be indicative of disagreement between the annotators
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who produced the metadata under analysis.

3.2.3 Stage 3: Tag Annotation

In this stage, one of two things can happen. If the given task is to verify tag

annotations in an existing repository, then we convert them into a transactional format

dataset D2 and proceed to Stage 4. Otherwise, if the task is to verify new annotations

or to verify the tag annotation process, then the new annotations must come from the

same set of tags as in Stage 1. This ensures that the resulting dataset D2 is compatible

with the rules set R generated in Stage 2 of the proposed verification process.

3.2.4 Stage 4: Verifying Tag Annotation

Whether we want to verify existing annotations or the new ones generated in

Stage 3, we need some indication of agreement between the tags to be verified and

the experts’ opinions represented by the association rules set R. To that end, we

design a scoring algorithm to compute each music piece’s agreement with the experts.

We then derive a set of evaluation measures, which help interpret the score.

Scoring Algorithm

Algorithm that scores the annotations in D2 against association rules set R

1. for each dj ∈ D2 {
2. S(dj) = 0;
3. for each rule pk = (A→ B) ∈ R
4. if A ∈ dj then
5. if B ∈ dj then {
6. record the rule in hit list
7. S(dj)++
8. }
9. for each rule pk = (A→ B) ∈ R
10. if A ∈ dj then
11. if B /∈ dj then
11. if A 6= any antecedent in the hit list then
14. S(dj)--
15. }
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As described in Section 2.3.1, each music piece mj in the repository is represented

as a vector of annotation tags dj in the transactional style dataset D2, and the anno-

tation score S(dj) represents the number of association rules in R, which are satisfied

by the annotations of mj. The higher the score, the better the annotation agreement

between the tags in dj and the association rules in R. Since these rules are derived

from the metadata created by experts, higher score means better annotation quality.

Then, the low score indicates problematic annotations or issues with the annotation

process.

The annotation score S(dj), initialized to be 0, is calculated as follows. For each

association rule A → B, if the song mi contains both the antecedent and the con-

sequent, then we increment the song’s score S(dj) by 1. However, if it contains the

antecedent but not the consequent, then we decrement S(dj) by 1 instead. There are

also situations where A → B and A → C coexist in R, representing the multi-label

nature of tag annotation. If a music piece misses the first rule but satisfies the second

one, we still increment its score by 1 instead of 0. To achieve this, we iterate through

R twice. At first, we build a list of rules (hit list), which are satisfied by the song mj,

and increment S(dj) accordingly. Then we look for the rules which are not satisfied by

the song’s annotations, such as A→ B, where A ∈ dj but B /∈ dj. If their antecedents

are not found in the hit list, then we decrement the song’s score S(dj) by 1 for each

problematic rule.

Evaluation Measures

If a music piece has a positive score, we say that it has a sound tag annotation

(STA). Otherwise, we say that it has a problematic tag annotation (PTA). Further-

more, we attempt to distinguish music pieces that have a certain degree of ambiguity

and subjectivity. A music piece has a gray tag annotation (GTA) if its annotation

score is between [l,h], where l and h are user-specified range values. For instance,
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they can be −1 and +1 respectively. In our simulations below we use [−2, 0] for this

range. A music expert, depending on her/his musical training and experience, may

set a different range.

Based on the above, we calculate four measures. The first is the Problematic Tag

Annotation Rate (PTAR); it is the ratio between the number of music pieces with

PTA and the total number of music pieces. The second is the Sound Tag Annotation

Rate (STAR), which is the ratio between number of STA music pieces and the total

number of music pieces. These two ratios represent the quality of the tag annotations.

As mentioned earlier, they indicate a level of agreement between the experts and the

annotations in question. High values of STAR show high agreement and high values

of PTAR indicate that there are problematic annotations in D2. In addition, we

calculate the Gray Tag Annotation Rate (GTAR), which is the ratio between the

number of GTA music pieces and the total number of music pieces in the dataset.

It represents the uncertainty in the annotation process. The fourth measure that we

calculate is the Zero Tag Annotation Rate (ZTAR), which represents the percentage

of music pieces that do not contain any of the association rules. It is easy to see that

these measures divide the whole music set D2 into partitions and add up to 1.

3.2.5 Adjustments

At this point, the experts play an important role as they examine the evaluation

measures and find problematic annotations or music pieces. They could also provide

solutions, such as manually annotating problematic music pieces or recommending

changes to the annotation process that produces problematic tags. We demonstrate

the effect of such adjustments in Section 3.5.4, where some simple data cleaning

produces an improvement in quality of annotations, which is reflected by our proposed

evaluation measures.
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3.3 Various Issues

We are facing some major challenges when examining the effectiveness of our

proposed approach to verify tag annotation.

It would be ideal to examine our approach using the process as depicted by Fig-

ure 3.1. Involving a group of experts with extensive music background and experience

could prove invaluable, as they would inevitably provide important feedback about

our approach. However, such a process involves a great amount of financial and labor

costs. Given our current situation and circumstances, it would be extremely hard, if

not impossible, for us to deploy such a process. Hence, instead of employing music

experts, we do the next best thing. We obtain already annotated datasets that differ

in their annotators’ levels of musical expertise.

However, it is often the case that different music repositories and datasets vary

in the sets of tags used to annotate their music pieces. Therefore, it is possible for

two datasets to be completely incompatible in such a way that one could not be

used to verify another. Furthermore, association analysis captures each dataset’s own

associations that do not necessarily translate to other datasets.

As mentioned in Chapter 2, there is a lack of large music datasets with good quality

ground-truth annotations, which could be used for benchmarking. They are either of

good quality but small, or large but of poor quality. The datasets that appear in this

work clearly depict this problematic situation in MIR. However, the MIR community

is making efforts to come up with good datasets, two datasets serve as evidence of

this: the Million Song Dataset [8, 34] and the Million Song Dataset Benchmarks [44].

We overcome the above issues by setting up a series of simulations to verify the

different parts of our proposed approach. The details are in Section 3.5. But first, in

the next section, we describe the datasets that we use in our simulations.
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Dataset Number of Number of Label Songs with

name songs labels cardinality at least 2 tags

DCAL500 502 174 26.04 502

DCAL10K 10886 1053 11.88 10886

DMagna 25863 188 3.46 18097

DMagna-CLN 25863 188 4.74 18097

DMagna-ADJ 25863 166 5.15 13991

DLastFM 449503 522366 15.94 365878

DLastFM-CLN 449503 1046 8.76 280922

DLastFM-ADJ 449503 287 7.13 315254

Table 3.1: Music datasets and their statistics. The label cardinality of a dataset is the
arithmetic mean of the number of labels per music piece in the dataset.

3.4 Datasets in Simulations

The task at hand requires music tag annotations and we find four MIR datasets of

various annotation quality. These datasets are listed with their statistics in Table 3.1.

Each contains music tags obtained via a manual annotation process. They also contain

a reasonable amount of music pieces with at least two tags; we need at least two to

form a complete rule in the form of A→ B.

The 500-song dataset from the Computer Audition Laboratory [51], DCAL500, is

a popular dataset among MIR researchers and it appears in many publications. It

comes from a set of 502 songs by different artists from a collection of western popular

music from a fifty-year span between 1950 and 2000. The author of the dataset paid

66 undergraduate students who manually annotated the music using a survey-style

web form consisting of 135 concepts. At least three people annotated each song and

each of the tags had at least 80% agreement rate amongst the annotators. There are

174 unique tags with an average of about 26 tags per song. In our work, we use the

“hard” annotations found in DCAL500, which give a binary value for all tags in every

song indicating whether a tag applies to a song or not.

The 10,000-song dataset from the Computer Audition Laboratory [49], DCAL10K,

is comprised of metadata collected from the Pandora website. It consists 10,870 songs
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annotated by expert musicologists who maintain a high level of agreement. This

dataset comes in four parts, one containing 475 acoustic tags, one with 153 genre tags

and one part contains both. The fourth part contains only the labels that correspond

to the DCAL500 dataset, 55 in total. This means that we can use both datasets in

experiments together; we further use this information and find the same subset of

tags in the remaining datasets.

The Magnatagatune dataset [27], DMagna, is a result of an online game, referred

to as “TagATune”, developed to collect tags for music and sound clips. It contains

information about 21,642 music clips using 188 different tags. Although participants

were mostly amateurs, the dataset maintains only the tags that are associated with

at least 50 clips and only the ones that were generated independently by at least two

players. It is important to note that, in the past, Magnatagatune has not been used

as widely as DCAL500 due to its size and skewed tag distribution. Before using DMagna

in our simulations, we first derive DMagna-CLN from it by performing some simple data

cleaning, such as removal of tracks with label cardinality less than 1. We also produce

DMagna-ADJ by small adjustments, further discussed in Section 3.5.4.

The Million Song Dataset (MSD) [8] is the largest MIR dataset publically available

to date. The purpose behind its creation is to encourage research of scalable solutions

and to provide a reference dataset for benchmarking. Unlike all other datasets, MSD

is a cluster of complimentary datasets contributed by the community. It contains a

wide range of metadata such as genre tags, content-based features, song similarity,

user taste profiles and even lyrics. For our simulations, we use the portion of MSD

provided by LastFM, excluding the known duplicates; for this reason, we denote it

as DLastFM. This portion contains a set of tags associated with the tracks in MSD.

Here, the music pieces are annotated by the users of the Last.fm web site resulting in

many tags that are not useful for our task, such as “my favorite song” or “awesome”.

Hence, before using this dataset in our experiments, we first derive DLastFM-CLN from
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it via some basic data selection and cleaning procedures, similar to DMagna. Then, we

produce DLastFM-ADJ through small adjustments to DLastFM-CLN further discussed in

section 3.5.4.

3.5 Simulations

Considering the issues with our proposed approach outlined in Section 3.3, we

design and implement a series of simulations to demonstrate the effectiveness of our

proposed approach.

Through these simulations, we aim to achieve three goals: (G1) demonstrate that

our approach is stable, in that it will not behave arbitrarily when given different

music datasets or, put in another way, given similar music datasets, it should behave

similarly; (G2) assess the four music datasets using our evaluation measures and

confirm that they maintain different relationships among their tags; and (G3) confirm

that, when the quality of annotations in a music dataset improves, our proposed

measures reflect this improvement.

We run our simulations with different minimum support and confidence value

pairs; for each minimum support value ranging from 5% to 95% we use a different

minimum confidence ranging from 5% to 95%. We explain each simulation in further

detail and list the results in the following sections.

3.5.1 Simulation 1 - Stability Test

This simulation demonstrates G1, that our approach is stable. Here, we randomly

split a dataset in half and see if the resulting halves, H1 and H2, produce similar

results in terms of our evaluation measures, which we outlined in Section 3.2.4. In

this simulation, for each half, we go through all of the sages depicted by Figure 3.1

except the “review” and “adjust” steps in Stage 4. First, we split each half into two

subsets at random: we call one (30%) the training set, it corresponds to D1, and the
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Figure 3.2: Comparison between H1 and H2, where H1 ⊂ DCAL10K, H2 ⊂ DCAL10K,
and H1 6= H2.

other (70%) corresponds to D2 and we call it the testing set. Then we compare the

results from the Scoring Algorithm between H1 and H2.

Figure 3.2 illustrates the different measure values that we obtain when we apply our

approach to DCAL10K. Here, the minimum support is set to 5% while the confidence

increases from 5% to 95%. We observe that STAR values between the two halves

are very similar at all confidence levels. The same applies to all other measures that

we discuss in Section 3.2.4. We find similar results in the other three datasets across

various minimum support thresholds, and thus, conclude our work toward G1. Our

approach is stable.

3.5.2 Simulation 2 - Datasets Evaluation

Here, similar to Simulation 1, we randomly divide each music dataset into two

sets, training (30%) and testing(70%). They respectively correspond to D1 and D2

in Figure 3.1. We derive the association rules from the training set and score each

music piece in the testing set against these rules.

Since DCAL500 is too small to produce good sample size, we perform our simulation
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10 times and obtain an arithmetic mean for each of our evaluation measures, similar to

the 10-fold cross validation. Each time we choose the training set at random, and the

remainder of the dataset becomes the testing set. The other three datasets are large

enough and do not require this kind of repeated random sub-sampling validation.

When we compare the results in terms of our evaluation measures between all four

music datasets, we observe that they maintain different relationships among their

tags. We report the STAR values for all four datasets in Figure 3.3. The figure shows

that DCAL500 clearly achieves the highest STAR values, when compared to the other

three datasets. The same applies to other measures. For instance, we have observed

lower PTAR values from DCAL500 and higher ones from DLastFM-CLN, as expected.

This confirms that the different datasets used in our simulations are of different

annotation quality. This is probably because they were created using different an-

notation processes and contain different tags. Hence, the datasets retain different

relationships among their tags.
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3.5.3 Simulation 3 - One Verifies Another

In this simulation, we use one dataset to verify another. Since CAL10K provides

55 tags that appear in all four datasets, we reduce all datasets to just those tags.

Then we use one dataset as the training set D1 and another as the testing set D2; we

perform all steps outlined in Figure 3.1 except the adjustment cycle.

Our previous simulations clearly show that dataset DCAL500 has a better tag an-

notation quality than the other three datasets, in terms of our evaluation measures.

Therefore, we use DCAL500 as the representative dataset, D1 in Figure 3.1, to evaluate

the other datasets, each considered as D2 in the same figure. As can be seen in Fig-

ure 3.4, except for a few lower confidence ranges, DCAL10K outperforms the other two

datasets in terms of STAR. The same applies to the other measures. This confirms

that DCAL10K maintains higher quality annotations than the other two.

3.5.4 Simulation 4 - Adjustment Demonstration

To fully demonstrate our proposed approach, we adjust the two datasets that

seem to be the worst in terms of our evaluation measures in Simulation 2, namely the

DLastFM-CLN and the DMagna-CLN. This small adjustment consists of amalgamating
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ment step.

some semantically equivalent annotations into one tag, thus reducing the diversity of

tags in the datasets. For example, we convert the tags {male vocals}, {instrument

singer male}, {male singer} and {male voices} into one tag {male vocals}.

Note that after the adjustment step, DLastFM-ADJ has a larger number of tracks

in than before, although the label cardinality is slightly lower. This is because after

amalgamating some tags, one tag took place of several. This means that the tracks

whose tags did not previously match any in our set are now included. Although, after

the adjustment, the label cardinality becomes slightly lower, the overall quality of

the dataset becomes higher, as evident in this simulation. After the adjustment, we

run the Scoring Algorithm and observe some improvements in terms of our evaluation

measures.

In Figure 3.5, we present the STAR values for both datasets before and after the

adjustment steps. Both datasets show an improvement in terms of STAR after the

adjustment step. The same can be said about the other measures. This demonstrates

that we achieve our goal G3, as we confirm that when the quality of annotations

improves, our evaluation measures proposed in Section 3.2.4 reflect this improvement.
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3.6 Discussions

In this chapter, we presented an approach to the verification of music tag anno-

tation through association analysis. We believe that there exist inherent associations

among music tags that can be further utilized to verify and monitor a tag annotation

process. The above simulations demonstrated the effectiveness of our approach. We

find that association analysis can be used for both: to verify the quality of tags in

a music repository and to help analyze the annotation process through which music

tags enter the repository.

An interesting observation can be made about the behaviour of ZTAR measure

in response to label cardinality in a music dataset. When there are too few tags

associated with each music piece, the ZTAR is high, and the opposite happens when

there are many tags associated with each music piece. A high ZTAR is undesirable,

because our approach relies on finding the level of agreement between the experts

opinions represented as a set of association rules and the music piece that is being

scored. If the music piece does not match any of the rules’ antecedents, then we

cannot gauge its level of agreement.
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Chapter 4

Classifying Music Into Genres Via
Association Analysis

In this chapter, we present an approach to classify music into genres via association

analysis. For a more condensed version of this chapter and additional results, please

refer to Arjannikov and Zhang [6].

This chapter is organized as following. First, a brief introduction to the use of

association rules for the purpose of music genre classification. Then, in Section 4.2,

we outline our experiment setup. We start with the goals for the experiments and the

data that we use, followed by the details about the proposed classifier. We present

the results of our experiments in Section 4.3. We then conclude this chapter with a

brief discussion about the experiments.

4.1 Introduction

As suggested in Section 2.4, any discrete set of tags that are not correlated can be

used as categories, or classes, into which we could split a collection of music pieces.

This has been proven to work for, but is not limited to, mood and emotion related

tags, instrument tags, and the ones we work with here – the music genre tags [16, 29].

In the previous chapter, we demonstrate that association analysis reveals patterns

in music tags; this motivates our investigation of patterns in content-based music fea-

tures. Because most of these features are not discrete, first, we use a discretization

technique to form discrete sets of labels from each feature. Then we derive a transac-
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tional style dataset from these labels, which is suitable for association analysis, and

mine it for frequent patterns using the Apriori algorithm [2, 3]. Finally, we use these

frequent patterns to identify to which genre a given music piece belongs.

4.2 Experiment Setup

4.2.1 Goals

Our aim is to test if association rules mined from content-based music features

can be used for genre classification purposes. With this in mind, we designate three

goals: (G1) our classifier achieves a classification accuracy that is better than choosing

genres at random; (G2) we expect that our classifier will perform beter when given

fewer classes to choose from; (G3) our classifier achieves higher accuracy with better

quality data.

4.2.2 Data

The classification task at hand requires content-based features paired with genre

tags and we find two datasets that fit this description, as listed in Table 4.1.

Dataset Number of Number of Number of Type of

name songs genres features Features

DLMD 3000 10 26 MFCC

DMSDB 1700 17 10 Methods of Moments

Table 4.1: Music genre datasets and their statistics.

The Latin Music Database [46, 47], denoted as DLMD, is popular in the music

genre classification task despite of its small size. There are many classification re-

sults available in the literature, which are based on a set of features that has already

been extracted and circulated as part of DLMD. Thus, we can test the feasibility

of our approach without introducing variance based on difference in feature extrac-
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tion techniques. This dataset usually results in high classification accuracy for many

methods [47].

Million Song Dataset Benchmarking [45], denoted as DMSDB, is much larger than

DLMD and boasts a large set of content-based features, which is an extension of the

ones originally provided with MSD. This dataset is distributed for the purpose of

comparing different approaches. There are several sets of features in DMSDB, we use

one of them in combination with genre labels, which were originally obtained from

Allmusic [45]. Additionally, we restrict the number of tracks to 1000 per genre, in

order to balance the number of training and testing examples between genres.

We split each dataset into two partitions at random, while maintaining the genres

balanced. Thus, each genre is represented by equal number of tracks in both par-

titions. One of the partitions becomes the training set and the other becomes the

testing set. It is important to note that we do not perform any kind of repeated ran-

dom sub-sampling validation in our experiments, because we consider the size of the

datasets to be an acceptable sample size, which is representative of the chosen genres.

If there are too many music pieces belonging to one genre as compared to others, we

remove the extra tracks at random. If a genre is represented by fewer pieces than

300 for DLMD and 1000 for DMSDB, then we remove that genre from our experiments.

This reduces the original DMSDB dataset to 17 genres from 25. DLMD remains at 10

genres because it was originally balanced at 300 music pieces per genre. We include

some statistical information about these datasets in Table 4.1.

4.2.3 Classifier

We set up our proposed classifier during the training stage in several steps. First,

we acquire content-based features from music; in this thesis, we use the features that

have already been extracted and published for the purpose of comparing different

classifiers on even ground. Then, we discretize any continuous features into some
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pre-determined number of bins, as explained in Section 2.4.3. In our experiments, we

try different values of this parameter to determine the number of bins that results in a

reasonable classification accuracy. If the classifier performs better than random genre

labeling, then we consider it a reasonable accuracy and attain G1. After that, we

split the training dataset into subsets, one for each genre label, and convert them into

transactional format. Then, we invoke the Apriori algorithm [2, 3] and mine frequent

patterns from these genre sets at some minimum support value. We try different

values for this parameter in order to find the support values that produce reasonable

classification accuracy during our experiments. From these frequent patterns we create

classification rules of the form A→ B, where A is the frequent pattern and B is the

genre associated with that pattern. Then, we compute the confidence value for each

rule by dividing the number of songs that matches the rule A → B by the number

of songs that match the frequent pattern component of the rule, A. We use it later

in our scoring algorithm. Finally, we find any patterns that co-exist in two or more

genres and remove them, thus ensuring that there is no intersection among the sets

of patterns between any pair of genres. The resulting rules become representative of

their respective genres. This concludes our training stage and we use the acquired

rules for classification.

4.2.4 Scoring

To obtain a classification score for each genre, we use the following four compo-

nents. Pattern Percentage (PP) is the percent of patterns that a given music piece

matches for a given genre out of all patterns matched from that genre. Support Sum

(SS) is the support sum of the matched patterns divided by the support sum of all

patterns for the given genre. Confidence Sum (CS) is the current genre’s confidence

sum of the matched patterns divided by the sum of all patterns’ confidence. Finally,

Length Sum (LS), which is the sum of cardinalities of the matched patterns divided
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by the sum of cardinalities of all patterns for the given genre.

We score each music piece against each genre’s set of rules in two ways. (i) The first

score, denoted as VSUM, we obtain by first summing the four components for each genre

and then taking a vote across all genres. Thus, each genre receives an independent

score and the one with the highest score becomes the predicted class. (ii) The second

score is denoted as VVOTE. Here, we deal with each component individually. First, we

create a voting vector, whose cardinality is equal to the number of genres, and compute

the corresponding component’s value for each genre. Then, the genre with the highest

value is voted as a candidate for that component. Thus, the four components result in

up to four votes per genre. The genre with the highest number of votes is declared as

the winner and becomes the predicted class of the given music piece. The imaginary

example in Table 4.2 illustrates the difference between VVOTE, which picked Forro,

and VSUM, which picked Salsa as the predicted class. The example also shows how

VVOTE deals with ties. Of course, if there is a tie between two or more genres, then all

of them are put forth as the predicted class. This situation is captured by the MLR

evaluation measure.

GENRE PP SS CS LS VSUM VVOTE

Forro 0.8 0.03 0.003 0.0001 0.8331 3

Salsa 0.9 0.01 0.001 0.0001 0.9111 2

Tango 0.7 0.03 0.002 0.0001 0.7321 2

Table 4.2: Example scores for three genres. Bolded are the highest/winners.

4.2.5 Evaluation Measures

To evaluate our classifier, for each dataset we create two confusion matrices, one

for scoring method. From these matrices, we derive recall, precision, and accuracy, as

described in Section 2.4.6. We also compute an additional evaluation measure, which

we describe below.

Because our proposed classifier can assign multiple genre labels to a single music
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piece, we also measure the rate at which this happens. We compute the Multi-Labeling

Rate (MLR) by dividing the sum of all cells in a confusion matrix row by the number

of all test instances of the corresponding genre. MLR falls into the range between

1 and the total number of classes in the classification task. On the one hand, the

closer it is to 1, the fewer multi-label assignments were made, which indicates that

the classifier is performing more like a single-label one. This is desirable in our case,

because we remove any patterns that belong to more than one genre. On the other

hand, the larger the number, the more diluted is the resulting classification. If MLR is

equal to the total number of classes, then the results of classification are least useful.

Furthermore, if MLR is below 1, then there are music pieces, whose genres could not

be predicted.

4.3 Experiment Results

In Table 4.3 and Table 4.4 we present the classification results of our proposed

classifier, where we compare the two scoring methods, VSUM and VVOTE. We observe

that there is no significant difference between all of our evaluation measures, which

is evident from the confusion matrices. This is true for both datasets in all confusion

matrices in our experiments; ergo, we present the results of only the combination vote

between the four components thereafter.

In the following three sections, we demonstrate through our experiment results

how we achieve the three goals formulated in Section 4.2.1.

4.3.1 G1 Feasibility Test

During our experiments, we observe that for some values of minimum support

and for some numbers of bins, our classifier performs much better than choosing

genre assignment at random, which would be 1/10 for DLMD and 1/17 for DMSDB.

However, with other values of these parameters, our classifier predicts majority of
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Axe Bachata Bolero Forro Gaucha Merengue Pagode Salsa Sertaneja Tango Genres

24 6 0 2 39 34 5 13 26 1 Axe

5 98 3 5 5 3 0 18 13 0 Bachata

4 3 54 8 13 1 2 46 18 1 Bolero

10 7 3 24 16 19 6 39 25 1 Forro

22 8 3 8 64 8 7 18 12 0 Gaucha

9 17 0 3 13 86 5 5 11 0 Merengue

17 1 10 3 3 17 26 37 36 0 Pagode

5 9 6 12 16 6 7 75 12 2 Salsa

17 2 7 4 24 2 7 52 35 0 Sertaneja

0 0 25 1 10 0 1 3 3 107 Tango

Table 4.3: The VSUM confusion matrix for DLMD discretized into 2 bins with minimum
support of 30%. Average MLR = 1.00; average precision = 42.7%; average recall =
39.6%; accuracy = 39.6%.

songs to be of one class. There are also cases where it votes for all genres equally,

producing MLR that is equal to the number of genres. Because our classifier achieves

accuracy that is much better than random with some parameter settings, we conclude

our work towards G1. Moreover, we observe that our proposed parameters affect the

classification accuracy, and thus, they are effective. Since it is not interesting to see

poor classification results, we do not include those, where MLR is too high. We also

omit the results where our classifier predicts all music pieces to belong to only one or

two genres and not any others. The latter can be observed in Table 4.9, where the

Blues genre did not receive many predictions.

To demonstrate that our parameters affect the classifier performance we use the

Table 4.4 as a starting point. Then, we change the minimum support from 30% to

80%, shown in Table 4.5 and observe a change in all of our evaluation measures.

Next, we alter the number of bins from 2 in our starting point to 20 in Table 4.6

and then to 30 in Table 4.7, while keeping the minimum support at 30%. Again, we

observe a change in our evaluation measures. Although MLR remains similar, the

other measures differ. Moreover, we notice that at 30 bins, one of the genres, Salsa,

is removed. Although we mine some patterns for it, all of these patterns are found in
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Axe Bachata Bolero Forro Gaucha Merengue Pagode Salsa Sertaneja Tango Genres

23 6 0 2 39 35 6 13 26 1 Axe

5 99 3 5 4 3 0 18 13 1 Bachata

4 3 54 8 13 1 2 47 18 1 Bolero

10 7 3 24 16 19 6 40 25 1 Forro

22 9 3 8 64 8 7 18 12 0 Gaucha

9 17 0 3 13 87 5 5 11 0 Merengue

17 1 10 3 3 18 27 37 37 0 Pagode

5 9 6 12 16 7 6 78 12 2 Salsa

17 2 7 4 24 2 7 52 35 0 Sertaneja

0 0 24 1 10 0 1 3 3 108 Tango

Table 4.4: The VVOTE confusion matrix forDLMD discretized into 2 bins with minimum
support of 30%. Average MLR = 1.01; average precision = 42.7%; average recall =
39.7%; accuracy = 39.6%.

other genres and are subsequently removed.

4.3.2 G2 Reduced Number of Classes

As demonstrated in the literature, classification accuracy usually increases when

the number of classes is reduced [30]. For G2, we classify DLMD and DMSDB with

reduced number of genres and confirm that our classifier performs better for both

datasets in terms of our evaluation measures on the reduced set of genres, while

everything else remains unchanged. This is clearly seen when we compare Table 4.4

and Table 4.8, where we reduce the number of genres in DLMD from 10 to 5. This

also holds for DMSDB, when we compare Table 4.9 and Table 4.10, where we reduce

the number of genres from 15 to 5. Thus, we conclude our work towards G2. Our

classifier achieves higher accuracy on a smaller number of classes.

4.3.3 G3 Dataset Quality

To achieve G3, we compare the classification results between the two different

datasets, DLMD and DMSDB. This helps us confirm that our classifier achieves higher

accuracy, when given better quality datasets. As documented in literature, classifiers

usually achieve higher classification accuracy with DLMD than most other datasets,
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Axe Bachata Bolero Forro Gaucha Merengue Pagode Salsa Sertaneja Tango Genres

82 48 5 70 44 74 40 50 48 6 Axe

5 90 16 22 7 12 17 56 19 3 Bachata

5 25 61 39 15 4 35 97 31 33 Bolero

22 65 30 96 53 26 60 82 54 2 Forro

54 66 8 70 67 56 28 73 50 4 Gaucha

29 34 2 32 19 104 20 35 16 2 Merengue

36 37 35 80 47 26 78 86 59 9 Pagode

15 30 39 67 26 8 57 81 39 15 Salsa

44 38 29 63 43 24 51 65 76 11 Sertaneja

0 81 12 0 2 1 0 75 0 96 Tango

Table 4.5: The confusion matrix for the DLMD discretized into 2 bins with minimum
support of 80%. Average MLR = 2.60; average precision = 24.5%; average recall =
23.1%; accuracy = 21.3%.

among which is DMSDB. To demonstrate this, we use the results from DLMD, where

we maintained constant minimum support at 30% while changing the number of bins

from 2 to 20 and then 30. The results of these are presented in Table 4.4, Table 4.6,

and Table 4.7. Then, we classify DMSDB at minimum support of 30%, while changing

the number of bins from 2 to 20 and then 30; these results are in Table 4.11, Table 4.12,

and Table 4.13. Not only the accuracy is worse for all cases, and LMR is higher in

Table 4.11, we also notice that, in Table 4.13, four genres, Blues, Electronic, Jazz, and

PopRock, are removed from DMSDB, because none of their patterns is unique among

all genres. Moreover, we observe that in all of our experiments, our classifier never

achieves better accuracy with MSDB than with LMD, listed in table 4.1. Thus, we

confirm that our proposed classifier performs better with DLMD than DMSDB, and

conclude our work for G3.

4.4 Discussions

First point of note is that, during our experiments, we removed the intersections

between pattern sets of every genre pair. These intersections may indicate similarities

between genres, which could help reveal the multi-genre nature of music. Our ex-

54



4.4. DISCUSSIONS

Axe Bachata Bolero Forro Gaucha Merengue Pagode Salsa Sertaneja Tango Genres

36 6 11 25 15 10 21 18 11 8 Axe

3 101 10 4 8 4 5 19 1 2 Bachata

2 19 48 4 7 0 17 22 12 28 Bolero

14 13 6 37 9 12 14 31 15 9 Forro

18 15 10 17 39 3 15 19 15 12 Gaucha

12 21 1 38 11 28 7 32 6 1 Merengue

11 24 9 16 5 1 42 36 14 3 Pagode

7 14 13 25 22 4 20 39 11 5 Salsa

16 7 17 26 11 2 14 24 31 7 Sertaneja

0 19 13 0 5 0 5 18 1 95 Tango

Table 4.6: The confusion matrix for the DLMD discretized into 20 bins with minimum
support of 30%. Average MLR = 1.06; average precision = 32.4%; average recall =
31.3%; accuracy = 31.2%.

Axe Bachata Bolero Forro Gaucha Merengue Pagode Sertaneja Tango Genres

39 2 13 24 23 8 13 22 7 Axe

9 85 8 13 12 5 15 4 0 Bachata

42 2 24 18 7 0 10 41 9 Bolero

40 3 9 45 14 6 16 25 2 Forro

42 1 6 36 22 3 4 36 6 Gaucha

17 9 6 41 7 46 9 15 2 Merengue

39 2 5 29 8 6 32 32 2 Pagode

49 2 10 20 15 0 5 52 4 Sertaneja

18 0 16 16 7 0 4 17 72 Tango

Table 4.7: The confusion matrix for the DLMD discretized into 30 bins with minimum
support of 30%. Average MLR = 1.03; average precision = 37.6%; average recall =
30.2%; accuracy = 30.1%.

periments were designed to test the classifier, however, with some modifications, our

approach could be used to explore the multi-label situation in genre classification.

Through our experiments, we observe that, when the number of discretization bins

is high, the accuracy is very low. Furthermore, the MLR is also high. This suggests

that lower number of bins is more advantageous for classification. We also notice that

with high number of bins, for example, 150 bins at 30% minimum support in DLMD,

there are many frequent patterns, for instance, Tango has 30378 and Forro has 53254.

However, after removing the intersections between them, Tango is left with only 168
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Bachata Bolero Merengue Pagode Tango Genres

109 8 6 25 2 Bachata

16 70 1 52 12 Bolero

18 1 104 20 6 Merengue

9 14 28 97 4 Pagode

2 29 0 3 118 Tango

Table 4.8: The confusion matrix for the reduced DLMD discretized into 2 bins with
minimum support of 30%. Average MLR = 1.01; average precision = 67.1%; average
recall = 66.1%; accuracy = 66.0%.

Blu Com Cou Eas Ele Fol Int Jaz Lat Pop Rap Reg Rel RnB Voc Genres

2 22 7 96 18 52 81 39 36 47 9 42 20 9 15 Blues

0 125 2 30 16 8 26 29 62 64 3 61 44 23 14 ComedySpoken

1 34 20 94 1 37 69 20 54 34 8 27 51 19 29 Country

0 20 0 188 7 49 54 32 17 34 2 49 23 5 22 EasyListening

2 17 1 31 93 9 35 52 44 30 50 113 3 11 5 Electronic

3 30 4 98 16 54 101 62 18 20 4 38 16 10 35 Folk

1 29 4 83 22 34 61 41 46 44 19 68 19 16 14 International

0 13 2 111 23 31 56 89 16 18 3 66 45 13 16 Jazz

1 43 13 22 13 20 38 26 74 66 26 66 40 40 15 Latin

2 28 23 35 16 12 37 20 48 144 22 55 21 21 11 PopRock

2 22 4 0 54 3 3 13 69 22 104 146 9 41 3 Rap

2 37 1 13 39 11 22 24 38 11 37 187 28 44 1 Reggae

0 35 15 29 7 14 49 16 66 79 26 54 54 34 18 Religious

2 36 4 27 23 21 38 19 60 35 23 84 54 59 14 RnB

0 30 1 160 14 25 65 64 5 19 4 28 22 11 59 Vocal

Table 4.9: The confusion matrix for the DMSDB discretized into 5 bins with minimum
support of 10%. Average MLR = 1.00; average precision = 17.9%; average recall =
17.5%; accuracy = 17.5%.

Com Eas Ele Pop Rap Genres

267 79 83 54 37 ComedySpoken

77 282 74 49 18 EasyListening

81 97 182 26 139 Electronic

82 113 61 205 56 PopRock

97 16 201 49 255 Rap

Table 4.10: The confusion matrix for the reduced DMSDB discretized into 5 bins with
minimum support of 10%. Average MLR = 1.07; average precision = 45.3%; average
recall = 44.7%; accuracy = 44.4%.
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Blu Com Cou Eas Ele Fol Int Jaz Lat Pop Rap Reg Rel RnB Voc Genres

459 459 459 459 459 459 459 459 459 459 459 459 459 459 459 Blues

455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 ComedySpoken

482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 Country

483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 EasyListening

455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 Electronic

485 485 485 485 485 485 485 485 485 485 485 485 485 485 485 Folk

462 462 462 462 462 462 462 462 462 462 462 462 462 462 462 International

480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 Jazz

455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 Latin

369 369 369 369 369 369 369 369 369 369 369 369 369 369 369 PopRock

477 477 477 477 477 477 477 477 477 477 477 477 477 477 477 Rap

479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 Reggae

430 430 430 430 430 430 430 430 430 430 430 430 430 430 430 Religious

463 463 463 463 463 463 463 463 463 463 463 463 463 463 463 RnB

482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 Vocal

Table 4.11: The confusion matrix for the DMSDB discretized into 2 bins with minimum
support of 30%. Average MLR = 13.83; average precision = 6.7%; average recall =
6.7%; accuracy = 6.7%.

and Forro with 50. This suggests that a large portion of the patterns mined does

not reflect the difference between genres, but rather, they may be reflecting music in

general, if anything at all.

We also observe that, as minimum support rises, the accuracy lowers. This clearly

visible when we compare tables 4.4 and 4.5. Although we only present the results

on DLMD, this is true for both datasets in our experiments. We conjecture that at

high minimum support, not only there are fewer frequent patterns, but also that

association analysis captures many patterns that are true for all music. However, at

low minimum support values, there are more patterns among which there are those

that are more representative of the individual genres.

In our experiments, we notice that it may take a long time to initially analyse

the data and build the classifier. However, the resulting classification model is very

fast, because it is linear, where the classification complexity is equal to the number

of classification rules multiplied by the number of music pieces to be classified.
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Blu Com Cou Eas Ele Fol Int Jaz Lat Pop Rap Reg Rel RnB Voc Genres

30 9 22 21 70 93 58 43 15 38 6 15 82 28 28 Blues

5 11 22 10 40 48 43 64 18 16 9 16 190 59 11 ComedySpoken

26 4 50 26 50 88 34 30 18 24 7 13 93 55 23 Country

19 5 21 71 37 77 47 74 9 21 8 15 51 33 64 EasyListening

14 21 11 7 105 39 25 31 18 31 26 10 121 61 21 Electronic

33 4 25 28 62 94 62 63 22 13 11 8 42 49 29 Folk

29 6 18 23 81 63 47 36 19 35 13 15 100 45 23 International

34 8 16 27 46 74 33 84 11 15 11 12 55 65 42 Jazz

10 5 27 8 88 48 34 19 34 33 20 26 149 54 12 Latin

21 5 25 8 52 43 31 18 19 116 10 9 169 38 15 PopRock

5 21 6 1 91 32 17 11 22 13 65 22 182 71 3 Rap

10 15 7 6 92 48 29 21 13 7 42 31 146 63 11 Reggae

14 7 26 8 64 48 39 19 30 54 29 15 148 46 16 Religious

13 12 22 11 63 54 23 21 29 18 37 19 149 59 16 RnB

22 3 21 40 23 114 19 92 9 15 6 8 32 48 86 Vocal

Table 4.12: The confusion matrix for the DMSDB discretized into 20 bins with min-
imum support of 30%. Average MLR = 1.10; average precision = 14.1%; average
recall = 12.5%; accuracy = 12.5%.

Blu Cou Eas Fol Int Lat Rap Reg Rel RnB Voc Genres

33 71 106 128 125 59 4 172 172 172 111 ComedySpoken

12 65 37 134 133 88 12 186 186 186 66 Country

12 26 88 122 147 44 4 163 163 163 95 EasyListening

18 28 60 84 146 93 9 131 131 131 90 Folk

3 24 32 74 134 89 37 138 138 138 73 International

6 30 24 85 171 108 51 148 148 148 54 Latin

0 14 21 34 108 67 162 142 142 142 48 Rap

6 19 34 63 93 54 93 159 159 159 88 Reggae

12 37 28 84 151 97 41 148 148 148 49 Religious

11 28 46 75 123 85 71 169 169 169 74 RnB

22 27 96 100 83 49 6 150 150 150 146 Vocal

Table 4.13: The confusion matrix for the DMSDB discretized into 30 bins with min-
imum support of 30%. Average MLR = 1.44; average precision = 15.1%; average
recall = 12.3%; accuracy = 12.0%.
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From our experience and other works in the literature, we find that many clas-

sifiers, such as the J48 decision tree, perform poorly on unbalanced data [7, 11].

However, DLMD was already balanced and, in order to avoid this issue, we balanced

DMSDB as well. Hence, we can compare our results from the two, and leave to future

work the study of how unbalanced datasets affect our proposed classifier.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we introduced two novel approaches to MIR, one to verify music

tag annotation and the other to assign genre tags to music automatically. At the

core of both is a data mining technique, association analysis, which reveals frequent

patterns in data. These patterns represent the similarity between all music pieces in

a database and, moreover, the similarity of all music pieces in a given genre.

Through simulations and experiments, we demonstrate the effectiveness of both

approaches and confirm that association analysis can be applied to music data. Fur-

thermore, we confirm that both content-based and social tags are appropriate for

association analysis. However, there is room for improvement in both.

5.2 Future Work

In our work, we use the support and confidence measures exclusively. However,

there are others, as mentioned in Section 2.3.4, which we leave to our future work. In

addition, determining the interestingness of a derived rule remains an open problem

in association analysis, and it is still unexplored in MIR. We conjecture that some

rules are more important than the others, based on the task at hand. Thus, in music,

some evaluation measures may be more relevant to the verification of tag annotation

and some to the classification tasks.
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5.2.1 Verifying Tag Annotation

We can extend our work along several directions. It would be very interesting to

explore whether we can use content-based information, such as MFCC or ZCR [15],

in our analysis and the verification process. We conjecture that this additional infor-

mation will help improve our approach. Furthermore, we also plan to examine the

individual rules that were generated for each music piece. Although we did not pursue

these details in our current work, we believe that they could enable us to understand

the music pieces in a repository better.

In addition, we could calculate the tag annotation rate for a specific category, such

as style, mood and instrument. Furthermore, we could consider the representative

music pieces of a single tag. For example, we could examine the tag annotation rules

of the music genre pop. These rules may provide more insight into the nature of the

genre and help us understand why a music piece is associated with it as opposed to

others.

5.2.2 Classifying Music into Genres

We believe there are many ways to improve our proposed method, which we leave

to future work. These include the improvement of feature extraction, feature selection

and discretization. All of these are open problems in MIR and we believe that as they

improve, our method will also improve. Also, based on the literature [12, 40], we

expect that using social tags in conjunction with content-based features will improve

the classification accuracy.

We can also take some immediate steps to improve our classifier by tuning the

two parameters, minimum support for frequent pattern mining and the number of

discretization bins. Our experiments demonstrate that these two parameters are di-

rectly related to the performance of our classifier, and they vary depending on the

data. Hence, tuning those parameters to each specific dataset will improve the clas-
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sification accuracy.

Another way we could try to improve our classifier is by using various ensemble

learning methods. For example, Silla et al. [23] show an improvement in classification

accuracy by combining classification results from the features extracted from different

music segments of the same track, such as first 30 seconds, middle 30 seconds, and the

last 30 seconds. Furthermore, our classifier is compatible with existing ensembles, such

as, bootstrap aggregating [10], also known as bagging and boosting [43]. In bagging,

first, each base classifier is trained using different uniform samples of the training

dataset, and then predictions are combined by voting. In boosting the ensemble is

built incrementally and each new classifier focuses on errors from the previous one,

then the final classifier is used to make predictions. We expect that using our classifier

as base classifier in an ensemble will show better accuracy than using our classifier

alone.
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