
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2005

Design of a novel hybrid cryptographic processor

Li, Jianzhou

Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2005

http://hdl.handle.net/10133/266

Downloaded from University of Lethbridge Research Repository, OPUS

DESIGN OF A NOVEL HYBRID
CRYPTOGRAPHIC PROCESSOR

Jianzhou Li

ME., Hunan University, 2002

A Thesis

Submitted to the School of Graduate Studies

of the University of Lethbridge

in Partial Fulfilment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science

University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

©Jianzhou Li, 2005

A b s t r a c t

A new multiplier that supports fields GF(p) and GF(2n) for the public-key cryptog

raphy, and fields GF(2&) for the secret-key cryptography is proposed in this thesis.

Based on the core multiplier and other extracted common operations, a novel hybrid

crypto-processor is built which processes both public-key and secret-key cryptosys-

tems. The corresponding instruction set is also presented. Three cryptographic

algorithms: the Elliptic Curve Cryptography (ECC), AES and RC5 are focused to

run in the processor.

To compute scalar multiplication kP efficiently, a blend of efficient algorithms on

elliptic curves and coordinates selections and of hardware architecture that supports

arithmetic operations on finite fields is required. The Nonadjacent Form (NAF) of

k is used in Jacobian projective coordinates over GF(p); Montgomery scalar multi

plication is utilized in projective coordinates over GF(2n). The dual-field multiplier

is used to support multiplications over GF(p) and GF(2n) according to multiple-

precision Montgomery multiplication algorithms. The design ideas for AES and

RC5 are also described.

The proposed hybrid crypto-processor increases the flexibility of security schemes

and reduces the total cost of cryptosystems.

ii

A c k n o w l e d g m e n t s

I would like to express many thanks to my supervisor Dr. Hua Li, for his invaluable

advice and ideas on the research and also for his devotion of time to me in the

past two years. His support and expertise resolved many hurdles that I encountered

throughout the research. I would also like to thank my co-supervisor, Dr. Jim Liu,

for his kind encouragement and guidance.

I am also grateful to other committee members Dr. Jackie Rice and Dr. Rob

Sutherland for their advice.

Finally, I would like thank my parents for their support of me.

iii

T a b l e o f C o n t e n t s

S i g n a t u r e Page

A b s t r a c t i i

A c k n o w l e d g e m e n t s i i i

L i s t o f Tab les v i i

L i s t o f F i g u r e s v i i i

1 I n t r o d u c t i o n 1

1.1 Motivation 1

1.2 Literature Review 2

1.2.1 Hardware Speed-up of Secret-key Algorithms 3

1.2.2 Processor for Elliptic Curve Cryptography 3

1.2.3 Hardware Implementations for Both Public-key and Secret-

key Cryptosystems 4

1.3 Contributions 5

1.4 Thesis Outline 5

2 M a t h e m a t i c a l B a c k g r o u n d 6

2.1 Groups, Rings, and Fields 6

2.2 Finite Fields 8

iv

2.2.1 The Finite Field GF(p) 8

2.2.2 The Finite Field GF(2n) 8

2.3 Summary 11

3 C r y p t o g r a p h y 13

3.1 Terminology 13

3.2 Secret-key System 14

3.3 Public-key System 15

3.4 Elliptic Curve Cryptography (ECC) 17

3.5 Elliptic Curves over Finite Fields 18

3.5.1 Elliptic Curves over GF(p) 18

3.5.2 Elliptic Curves over GF{2n) 19

3.6 ECC Domain Parameters 20

3.7 Key Generation 21

3.8 Elliptic Curve Protocols 21

3.9 AES Algorithm 22

3.10 RC5 Algorithm 25

3.11 Comparison between Public-key and Secret-key Cryptosystems 27

3.12 Summary 27

4 T h e C r y p t o g r a p h i c Processor A r c h i t e c t u r e 29

4.1 Coordinate Representation of Elliptic Curves over GF(p) 31

4.2 Elliptic Scalar Multiplication over GF(p) 32

4.3 Elliptic Scalar Multiplication over GF(2n) 34

4.4 Montgomery Multiplication 37

4.4.1 Montgomery Multiplication over GF(p) 37

4.4.2 Montgomery Multiplication over GF(2n) 41

4.5 Architecture of the Hybrid Processor 44

4.5.1 Data Path 45

v

4.5.2 Multiplier Design 46

4.5.3 Barrel Shifter 52

4.5.4 Adder/Subtracter 53

4.5.5 Instruction Set 53

4.6 Performance Evaluation 55

4.7 Performance Comparison 56

4.8 Future Improvement 58

5 Conc lus ions a n d F u t u r e W o r k 61

5.1 Conclusions 61

5.2 Future Work 62

B i b l i o g r a p h y 63

A P a r t o f V e r l i o g H D L codes 70

A.l Verilog HDL codes for multiplier 70

A.2 Verilog HDL codes for the data path of the processor 84

vi

L i s t o f T a b l e s

2.1 Properties of modular arithmetic operations in GF(p) 9

4.1 Projective coordinate representations over GF(p) 31

4.2 Left-to-right NAF 34

4.3 The core components in different cryptographic algorithms 45

4.4 Instruction set 54

4.5 Codes for RC5 55

4.6 Codes for Montgomery multiplication over GF(p) 56

4.7 Usage of FPGA resources 56

4.8 The performance for different cryptosystems 57

4.9 The performance comparison for RC5 57

4.10 The performance comparison for AES 57

4.11 The scalar multiplication comparison for ECC over GF(2n) 58

4.12 The hardware comparison for ECC over GF(2n) 58

4.13 The performance comparison for ECC over GF(p) 58

4.14 Instruction set using pipeline technique 59

4.15 Codes for AES 60

vii

L i s t o f F i g u r e s

3.1 Model of secret-key cryptosystem 14

3.2 Model of public-key cryptosystem 16

3.3 ShiftRows operation for encryption in AES algorithm 23

3.4 AES algorithm flow for encryption/decryption 24

4.1 Hardware speeding-up of NAF 33

4.2 The data path of the architecture: 32-bit part 47

4.3 The data path of the architecture: eight-bit part 48

4.4 The block diagram of multiple-precision multifunction multiplier . . . 49

4.5 Partial product reduction, CPA and polynomial reduction 50

4.6 The dot diagram for partial product matrix of 32 — bit x 32 — bit

multiplication 51

4.7 Example of an 8-bit barrel shifter 52

4.8 Adder/subtracter 53

viii

C h a p t e r 1

I n t r o d u c t i o n

1 . 1 Motivation
The electronic world is increasingly influencing our lives. Every day hundreds of

thousands of people interact electronically through e-mail, e-commerce (business

conducted over the Internet), ATM machines, or cellular phones. This has led

to an increased reliance on the security of information transmitted electronically.

By far the most effective ways to ensure network and communication security are

related to cryptography. Cryptography is the study of mathematical techniques

related to aspects of information security such as confidentiality, data integrity,

entity authentication, and data origin authentication. Cryptography is not the

only means of providing information security, but rather a set of techniques [30].

Two types of cryptographic tools are commonly used: secret-key cryptography and

public-key cryptography. For secret-key cryptography, RC5 and AES are two widely

used important algorithms, while for public-key cryptography, the vast majority of

the products and standards use RSA algorithm based on the integer factorization.

Elliptic curve cryptography (ECC) is another approach to public-key cryptography

based on the mathematics of elliptic curves. The primary advantage of elliptic

curve cryptosystems over RSA is the absence of a sub-exponential-time algorithm

that could solve the discrete logarithm problem (DLP) in the elliptic curve groups

1

C h a p t e r 1 I n t r o d u c t i o n

[5]. Consequently, ECC can maintain the same level of security with a far smaller

key size, therefore reducing processing overhead.

It is necessary to implement cryptographic algorithms in hardware due to the fact

that software implementations are too slow to satisfy the real-time requirement. For

efficiency reasons, usually hybrid encryption systems are used in practice; a key is

exchanged using a public-key cipher, and the rest of the communication is encrypted

using a symmetric-key algorithm (which is typically much faster). So it is necessary

to design a chip that performs hybrid encryption systems for the user's convenience.

Many hardware implementations of cryptosystems have been proposed to speed up

the throughput while keeping the circuit area as small as possible. These designs

can utilize the hardware resources and customize the architecture to maximize the

efficiency of the implementations. However, most of the designs are dedicated to

specific cryptographic algorithms. For example, many chips that only can perform

AES algorithms have been discussed for secret-key cryptosystems, while others are

proposed to speed up the public-key cryptosystems. Very little of the literature deals

with hardware designs to implement both secret-key and public-key cryptosystems.

A crypto-processor in [18] can perform secret-key algorithms AES and triple-DES,

and public-key algorithms RSA and ECC. However, it uses dedicated coprocessor

blocks for each algorithm, which consumes lots of hardware area. Also, it can only

perform ECC over specific binary field GF(2l4G). In this thesis, a processor that

can flexibly deal with both secret-key algorithms for AES and RC5 and public-

key algorithms for ECC over fields GF(p) and GF(2n) with variable parameters is

proposed.

1 . 2 L i t e r a t u r e R e v i e w

Many hardware implementations on Field-Programmable Gate Array (FPGA) and

Application-Specific Integrated Circuit (ASIC) have been presented for elliptic curve

2

C h a p t e r 1 I n t r o d u c t i o n

cryptosystems and for AES and RC5, respectively. A review of the previous work

is given in this section.

1 . 2 . 1 H a r d w a r e S p e e d - u p o f S e c r e t - k e y A l g o r i t h m s

Due to the simple computation compared with public-key cryptography and dedi

cation to specific secret-key algorithm, chip designs used in the hardware speed-up

of secret-key cryptography are much simpler. Since the invention of AES, many

efficient hardware implementations on FPGA or ASIC are presented [50, 53, 29, 6,

24, 25]. References [26, 46] propose hardware architectures for the RC5 block cipher.

However there is little literature that deals with hardware implementations on

several secret-key algorithms in one chip. A bulk encryption crypto-processor dedi

cated to smart cards was designed which could perform DES and 3DES algorithms

[47].

1 . 2 . 2 P r o c e s s o r f o r E l l i p t i c C u r v e C r y p t o g r a p h y

Many hardware implementations on elliptic curve cryptography have been proposed

[2, 23, 10, 38, 36, 11, 39, 37, 4, 44, 12, 43, 9]. Binary field GF(2n) arithmetic is

more suitable for fast and compact hardware than a prime field GF(p), because

elements over GF(2n) are unsigned binary numbers and there is no need for carry

propagation. However, conventional implementations for ECC over GF(2n) have

little flexibility due to dedicated field parameters. Some designs [2, 23, 10] are based

on the fixed size Massey-Omura multiplier [37] using optimal normal bases. Some

[38, 36] are based on the specific polynomial bases. On the other hand, conventional

ECC hardware designs over GF(p) [38] support only the specific prime numbers.

So the restrictions of the conventional approaches reduce the flexibility of hardware

implementations and limit the application areas.

The Montgomery multiplication algorithm [32, 21] proposed by P.L Montgomery

3

C h a p t e r 1 I n t r o d u c t i o n

in 1985 was for modular multiplication over GF{p) to avoid expensive division com

putation. The algorithm was then extended to binary field GF(2n) [22]. This

provides the guidance to unify the fields GF(p) and GF(2n) into one computation

component. Several contributions based on dual-field multipliers have been made

to support field arithmetic on both GF(p) and GF(2n). One hardware architec

ture that uses carry-save adders to perform on dual-field operations is introduced in

[44]. Processors based on a fully parallel multiplier that supports dual-field opera

tions are presented in [43, 9], where n-bit operands need to be divided into m w-bit

(word size) words to perform multiple-precision operations. This further provides

the flexibility to accommodate elliptic curves with different key lengths.

1 . 2 . 3 H a r d w a r e I m p l e m e n t a t i o n s f o r B o t h P u b l i c - k e y a n d

S e c r e t - k e y C r y p t o s y s t e m s

To our knowledge, very few hardware implementations of both public-key and secret-

key cryptosystems exist. Reference [18] presents a crypto-processor that can perform

secret-key algorithms AES and triple-DES, and public-key algorithms RSA and

ECC. However, its design uses dedicated coprocessor blocks for each algorithm,

which consumes lots of hardware area. Also, it can only perform ECC over specific

binary field GF(2U6).

This section summarizes the previous hardware implementations of secret-key

and public-key cryptosystems. They primarily focus on the specific algorithm or

specific elliptic curve, thereby lacking certain flexibility. The processor based on a

parallel dual-field multiplier makes it possible to perform elliptic curve cryptography

on both GF(p) and GF(2n) with variable parameters. However, the author is aware

of very few hardware designs that implement algorithms for both secret-key and

public-key systems.

4

C h a p t e r 1 I n t r o d u c t i o n

1.3 Contributions
The thesis presents a novel hybrid crypto-processor that can process not only public-

key cryptography, such as ECC over GF(p) and GF(2n) with random key length,

but also secret-key algorithms, such as AES and RC5. The main contributions of

my thesis are as follows.

1. The multiplier designed in this thesis is a novel 32-bit by 32-bit multiplication-

accumulator that integrates multiplications over GF(p), GF(2n) used in public-

key cryptosystem and GF(2&) used in secret-key cryptosystem.

2. Unlike previous work, the hybrid crypto-processor in this thesis has more

flexibility that can perform not only public-key algorithms such ECC over

fields GF(p) and GF(2n), but also secret-key algorithms AES and RC5.

3. The prime number p over GF(p) and the irreducible polynomial over GF(2n)

can easily be changed to improve the security of the processor.

1.4 Thesis Outline

Chapter 2 introduces basic mathematical background which serves as the basis for

discussions in later chapters.

In chapter 3, an introduction to cryptography is presented which includes secret-

key and public-key cryptosystems.

Chapter 4 describes the architecture of the proposed processor and the imple

mentation details of ECC, AES and RC5. The core arithmetic component such as

multi-function multiplier and barrel shifter are presented. The related algorithms

used for the ECC design are discussed. Finally, the performance analysis and com

parison with previous work are made.

Conclusions and possible future work are given in Chapter 5.

5

C h a p t e r 2

M a t h e m a t i c a l B a c k g r o u n d

Cryptographic algorithms rely heavily on the base of mathematics. For example,

the Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC)

are built on properties of finite fields. In this chapter, we review some necessary

mathematical background in abstract algebra, in particular finite fields, which are

relevant to the work in this thesis.

2 . 1 Groups, Rings, and Fields

A group (Cr, *) is a set together with a binary operation * (called the multiplication)

on G such that

1. Closure: g\ * g2 G G for all gi, g2 G G;

2. Associative: gx * (g2 * gs) = (gi * g2) * # 3 for all gu g2, £ 3 € G;

3. Identity element: there is an element e G G such that g * e = e * g for all

9 & G;

4. Inverse element: for each element g G G, there exists an element g' such that

g * g' = g' * g = e.

The element e is called the identity of the group G. The element g' is called the

inverse of g, usually denoted by g~l.

6

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

A group G is said to be abelian or commutative if g\ * g2 = g2 * g\ for all g\,

g2 G G. When G is an abelian group, the operation * is denoted by + , which is

called the addition. The identity element e is denoted by 0, which is called the zero

element. The inverse of g € G is denoted by —g, which is called the negative of g.

A ring (i?, + , x) is an nonempty set R with two binary operations + and x ,

called addition and multiplication, such that

1. (R, +) is an abelian group.

2. Closure under multiplication: r\ x r2 G R for all r\, r 2 G R\

3. Associative under multiplication: r\ x (r 2 x r 3) = (r i x r 2) x r% for all r i , r 2 ,

r 3 G i2;

4. Multiplication is distributive over addition: r\ x (r 2 + r3) = r\ x r 2 + r\ x f3

and (r i + r 2) x r 3 = rx x r 3 + r 2 x r 3 for all n , r 2 , r 3 G i?.

A ring R is said to be a commutative ring if r\ x r 2 = r 2 x r i for all r j , r 2 G -R.

A field (F, + , x) is a set with two binary operations, called addition and mul

tiplication, such that

1. (F , + , x) is a commutative ring

2. Multiplicative identity: There exists an element 1 such that a x l = l X f l = o

for all a G F

3. No zero divisors: If o, b G F and a x b = 0, then a = 0 or b = 0;

4. Multiplicative inverse: For a G F and a ^ 0, there exists an element a - 1 G F

such that a x a - 1 = a - 1 x a = 1

A ring (R, + , x) is said to be an integral domain if it is a commutative ring with

multiplicative identity and it contains no zero-divisors. A field is a set on which one

can perform addition, subtraction, multiplication, and division. For this work, we

7

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

are only interested in fields with finite numbers of elements, which are called finite

fields. More details about abstract algebra can be found in [13].

2 . 2 F i n i t e F i e l d s

A finite field (F, +, x) [49, 14] consists of a finite set of elements. The number of

elements q in the field is called the order of F. It can be shown that there exists

a finite field of order q if and only if q is a prime power pn, where n is a positive

integer and p is a prime number. There is essentially only one finite field of order

q = pn, denoted by GF(q) = GF{pn). Here p is called the characteristics of GF(pn)

and n is called the extension degree. We are especially interested in two cases. For

n = 1, and q = p (p ^ 2), we have GF(p); for p = 2, and q — 2 n , we have GF(2n).

2 . 2 . 1 T h e F i n i t e F i e l d GF(p)

The finite field GF(p), where p is an odd prime, also called a prime finite field, is

defined as the set of integers { 0 , 1 , . . . ,p — 1}, together with the modular arithmetic

operations. Since GF(p) is a field, it should satisfy the conditions mentioned in

Section 2.1. Table 2.1 lists the properties of modular arithmetic operations in GF(p).

2 . 2 . 2 T h e F i n i t e F i e l d GF(2n)

The finite field GF(2n), also called a binary finite field, can be viewed as a vector

space of dimension n over GF{2). There exist n elements {cuo, a\,..., a n - i } such

that for each element a G GF(2n), a can be written uniquely as :

a=aoao+aiai+ ... + a n _ i o ; n _ i , where a, G {0, 1}

The set {a0, • • •»QV-i} is called a basis of GF(2n) over GF(2). Given such a

basis, an element a can also be represented as the bit string (a0, a\,..., a n _ i) .

Polynomial basis and normal basis are two kinds of commonly used bases (see

Johnson et al [15] for more details).

8

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

Commutative laws (w + x) (mod p) — (x + w) (mod p)
(w x x) (mod p) = (x x w) (mod p)

Associative laws [(w + x) + y] (mod p) = [w + (x + y)\ (mod p)
[(w x x) x y] (mod p) = [id x (re x y)) (mod p)

Distributive laws [to x (x 4- y)] (mod p) = [(w x x) + (w x y)] (mod p)
[(x + y) x w] (mod p) = [{x x w) + (y x w)] (mod p)

Identities (0 + w) (mod p) = w (mod p)
(1 x w) (mod p) = w (mod p)

Additive inverse (—w) For each w € GF(p),
there exists a 2; such that w + z = 0 (mod p)

Multiplicative inverse w~l For each non-zero w G GF(p),
there exists a value a such that a x w = 1 (mod p)

Table 2.1: Properties of modular arithmetic operations in GF(p)

P o l y n o m i a l Basis

The finite field GF(2n) can also be viewed as a set of polynomials over GF(2),

together with polynomial arithmetics. The polynomials are defined modulo an irre

ducible polynomial f(x) whose highest power is integer n — 1. A polynomial f(x)

over field GF{2) is called irreducible if and only if f(x) cannot be factored as a prod

uct of polynomials in GF(2), with each highest degree less than n. An irreducible

polynomial f(x) is also called a prime polynomial by analogy to primes in GF(p).

Each f(x) defines a polynomial basis representation of GF(2n). The GF(2n) can

be expressed in the following form after the irreducible polynomial is determined:

GF(2n) = K . . ! ^ - 1 + an_2xn-2 + • • • + axx + a0\ at G {0,1}},

or in the bit string form:

GF(2n) = { (a n _ ! a n _ 2 . . . axa0)\ (H G {0,1}}.

The arithmetic operations on the elements in GF(2n) are as follows.

• Additive identity is represented as (00. . . 00).

• Multiplicative identity is represented as (00 .. .01).

• Addition: Due to the coefficient over GF(2), the addition operation is bitwise

9

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

exclusive OR. Suppose a = (a n _ i a n _ 2 . . . a0) and b = (f e n _ 1 6 n _ 2 . . . b0) are

elements of GF(2n), then a + b = c = (c n _ j c n _ 2 • • • Cq), where Cj = Oj ©

i = 0 , . . . , n — 1.

• Multiplication: Suppose a = (a n _ i a n _ 2 . . . a0) and b = (6 n _ i 6 n _ 2 . . . bo) are

elements in GF(2n) and /(a;) = / n - i z n _ 1 + fN-2XN~2 + • • • + fax + / 0 is the

irreducible polynomial, then the product r = (r n _ i r n _ 2 . . . ro) = a x b (mod

• Inversion: Suppose a = (a n _ i a n _ 2 . . . ao) is a nonzero element in GF(2n), then

there exits a unique element c = (c n _ i c n _ 2 . . . c 0) to satisfy c x a = 1 mod

N o r m a l Basis

A normal basis of GF(2n) is a basis of the form {/?, f32,(32\ . . . , / J 2 " - 1 } , where /3 €

GF{2n). The GF(2n) can be expressed in the following form after a normal basis is

determined:

GF(2n) = {a0(3 + a i 0 l + ••• + a n _ 2 / 5 2 n " 2 + a n ^ 2 n ~ ' \ a{ G {0,1}},

or in the bit string form:

GF(2n) = { (a o 0 l . .) | a i G { 0 , l } } .

The arithmetic operations on the elements of GF(2n) are described in the following.

• Additive identity is represented as (00. . . 00).

• Multiplicative identity is represented as (11 . . . 11).

• Addition: Due to the coefficients over GF(2), the addition operation is bitwise

exclusive OR. Suppose a = (a 0 a i . . . a n _i) and b = (b0bi... 6 n _i) are elements

of GF(2n), then a + b = c = (c 0 C\... c„_i), Cj = © 6j, •? = 0 , . . . , n — 1.

• Multiplication: Suppose o = (aofli. . . a n - i) and b = (boh • • • bn-\) are elements

of GF(2n), then

10

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

c = a x b = (E ;

En—1 v -v n — 1 „
j=0 2 ^ j = 0 °i a,ibj/32'ft

We can write
n -1

fc=0

Substitution yields
n—1n—1

(2.1)
j=0 j = 0

• Squaring: Suppose a = (a 0 O i . . . a n - i) is an element of GF(2n), then

The squaring is also represented in the string binary form:

(a 0 a i G 2 • • • a n _ i) 2 = (a „ _ 1 a 0 a i . . . a n _ 2) .

• Inversion: Suppose a = (a o O i • • • a n - i) is a nonzero element of GF(2n), then

there exists a unique element c = (c 0 C i . . . c n _ i) to satisfy c x a = 1.

In normal basis representation, the squaring operation is only the simple left circular

shift. However, multiplication can be cumbersome in general. For some special

finite fields of GF(2n), there exist Optimal Normal Bases (ONB) to simplify the

multiplication. An ONB [34] is one with the minimum number of nonzero terms in

Equation 2.1.

2 . 3 S u m m a r y

In this chapter, the concept of finite fields is introduced. Two kinds of important

finite fields GF(p) and GF(2n) are discussed, which are the mathematical funda

mental related to both public-key and secret-key cryptographic algorithms. Further

more, the two bases representations of GF(2n), polynomial basis and normal basis,

are explained. Even though the squaring in normal basis can be performed very

efficiently, the arithmetic component for squaring is dedicated to a specific finite

11

C h a p t e r 2 M a t h e m a t i c a l B a c k g r o u n d

12

field, which leads to lack of flexibility. Polynomial basis is chosen in this processor

design, because finite fields with different parameters need to be accommodated.

C h a p t e r 3

C r y p t o g r a p h y

In this chapter, some basic terms used in cryptography are given. Two kinds of

cryptosystems: the secret-key and public-key cryptosystems are discussed. The

secret-key cryptographic algorithms: Advanced Encryption Standard (AES) and

RC5, are introduced. Finally, details of public-key cryptographic algorithms focus

ing on Elliptic Curve Cryptography (ECC) are presented.

3.1 Terminology

Cryptography is the technique of converting data into a secret code for transmission

over a public network. The original message, known as the plaintext, is converted

into a coded message, called ciphertext. The process of converting from plaintext to

ciphertext is called encryption, while the process of converting from ciphertext into

plaintext is decryption. The theme used for encryption is called the cryptographic

system or cipher. Encryption algorithms use a key, which is a binary secret number

typically ranging from 40 to 256 bits in length, to control how the ciphertext is

produced. At the receiving end, a key is also used to restore the plaintext. Crypto

graphic systems can be divided into two types according to the number of keys used.

If both sender and receiver share the same key, the system is known as secret-key,

symmetric-key, single-key, or conventional cryptography. Conversely, if the sender

and receiver use different keys, the system is known as public-key, asymmetric-key,

13

C h a p t e r 3 C r y p t o g r a p h y

or two-key cryptography. The secret-key cryptosystem can further be distinguished

as block cipher and stream cipher. The block cipher processes the plaintext one

block of elements at a time and produces the corresponding block of ciphertext

elements. The stream cipher processes the elements of plaintext continuously and

produces ciphertext one element at a time. The secret-key algorithms used in this

thesis are all block ciphers.

3.2 Secret-key System

O p p o n e n t attacks

Plaintext
X

Encryption Plaintext Encryption

Sender

K

Secret key

Ciphertext

Secure channel

Decryption
X

Plaintext Decryption Plaintext

R e c e i v e r

Figure 3.1: Model of secret-key cryptosystem

The model of secret-key cryptosystem shown in Fig. 3.1 gives the processes for

encryption and decryption. The encryption algorithm can be written in the following

form with plaintext X and secret key K as input and ciphertext Y as output.

Y = EK(X) (3.1)

From this formula we can see that the ciphertext Y is determined by both the

encryption algorithm E and the key K. Similarly, the decryption inverts the trans

formation using the same secret key K and the corresponding decryption algorithm.

X = DK(Y)

14

(3.2)

C h a p t e r 3 C r y p t o g r a p h y

The security of the secret-key encryption depends on a strong encryption algorithm

and the key size. The key is kept secret while the encryption algorithm is open.

So the design of algorithm requires that the opponents cannot be able to decrypt

ciphertext without knowing the secret key and to figure out the key even if they

know a number of pairs of plaintext and ciphertext.

DES, AES and RC5 are three commonly used secret-key algorithms.

The main challenge in secret-key cryptosystems lies in how to have the sender

and receiver share the secret key while keeping it secret without anyone else finding

out. If the secret keys are in separate physical locations, a trusted third-party such

as a courier, phone system, or some other transmission medium must be responsible

for distributing the keys. The generation, transmission and storage of keys are called

key management.

3.3 Public-key System

Whitfield Diffie and Martin Hellman introduced the concept of public-key cryp

tography in 1976 in order to solve the key management problem [8]. Public-key

cryptosystems have two primary themes, encryption and authentication (digital sig

natures) as illustrated in Fig. 3.2. In the two systems, each participant gets a

pair of keys, one referred to as the public key KU and the other referred to as the

private key KR. The public key is published, while the private key is kept secret.

The need for the sender and receiver to share secret information is eliminated; all

communications involve only public keys, and no private key is ever transmitted or

shared. In the encryption theme (Fig. 3.2a), the sender A uses receiver B's public

key information KU\, to send confidential messages which can only be decrypted

with B's private key, KR)>. This process can be expressed as follows for the sender

A:

Y = EKUb(X) (3.3)

15

C h a p t e r 3 C r y p t o g r a p h y

opponent attacks

Plaintext
X

Encryption Plaintext Encryption

Sender A
receiver's public key

Ciphertext

Key Pair Source-

(a) Encryption

Decryption
X

Plaintext Decryption Plaintext

receiver's private key

Receiver B

opponent attacks

Plaintext X Encryption Plaintext Encryption

Sender A
Sender's private key

Ciphertext

Key Pair Source

Decryption X Plaintext Decryption Plaintext

sender's public key

Receiver B

(b) Authentication

Figure 3.2: Model of public-key cryptosystem

And for the receiver B, the inverted transformation is in the following formula.

X = DKRb(Y) (3.4)

In the authentication theme (Fig. 3.2b), the sender A uses his or her private key

KRa to encrypt the message sent to B and B decrypts using A's public key KUa.

Because only sender A is in possession of the private key to encrypt the message X,

the encrypted message Y serves as the digital signature of A. This process can be

expressed as follows for the sender A:

Y = EKRa(X) (3.5)

For the receiver B, the inverted transformation is given in the following formula.

X = DKUa(Y) (3.6)

16

C h a p t e r 3 C r y p t o g r a p h y

In a public-key cryptosystem, the private key is always linked mathematically

to the public key. Therefore, it is always possible to attack a public-key system

by deriving the private key from the public key. Typically, the defense against this

is to make the problem of deriving the private key from the public key as difficult

as possible. For instance, some public-key cryptosystems are designed such that

deriving the private key from the public key requires the attacker to factor a large

number. In this case it is computationally infeasible to perform the derivation. This

is the idea behind the RSA public-key cryptosystem.

3.4 Elliptic Curve Cryptography (ECC)

The security of the public-key cryptography depends on the trap-door one-way func

tion. A one-way function maps a domain into a range such that every function has

a unique inverse with the property that it is easy to calculate in one direction and

infeasible to calculate in the other direction unless certain additional information is

known. This can be summarized as the following three formulas:

1. Y = /K(X) easy to calculate, if key K and X are known;

2. X = fxL(Y) easy to calculate, if key K and Y are known;

3. X = fxL(Y) infeasible, if Y is known but K is not known.

Here the private key K is the trap-door.

Since the introduction of the public-key cryptography concept, only two cryp

tosystems have been invented, RSA and ECC. The RSA was published in 1978

by Rivest, Shamir and Adleman [41]. It uses exponentiation modulo a product of

two large primes to encrypt and decrypt. Its security is based on the difficulty of

factoring large integers. The introduction of Elliptic Curve Cryptography (ECC)

independently by Neal Koblitz [19] and Victor Miller [31] in the mid' 80s has yielded

a new family of analogous public-key algorithms. Although mathematically more

17

C h a p t e r 3 C r y p t o g r a p h y

complex, elliptic curves appear to provide a more efficient way to leverage the dis

crete logarithm problem, particularly with respect to the key size.

Because a large number of elliptic curves are in use, it is necessary for an ECC

processor to be able to handle different elliptic curves and the underlying fields.

The security of ECC relies on the discrete logarithm problem for the group of

points on an elliptic curve defined over a finite field. The main advantage of ECC

over systems based on the multiplicative group is the absence of a sub-exponential-

time algorithm for solving the underlying hard mathematical problem in ECC, i.e.

the Elliptic Curve Discrete Logarithm Problem (ECDLP). Consequently, a signif

icantly smaller parameter can be used in ECC while maintaining the equivalent

levels of security. It results in a smaller key size, bandwidth, and electrical power,

and is especially attractive in applications where computational power and space

are constrained, such as smart cards and wireless devices.

Good overviews of elliptic curve cryptography can be further found in [28, 20]

3 . 5 E l l i p t i c C u r v e s o v e r F i n i t e F i e l d s

Elliptic curve cryptography is based on elliptic curves over finite fields. Two types

of finite fields have been introduced in Section 2.2, Chapter 2. The Weierstrass

equations for elliptic curves defined on these two fields GF(P) and GF(2N) are

described in the following subsections, respectively.

3 .5 .1 E l l i p t i c C u r v e s o v e r GF(p)

The elliptic curves over GF(P) (where P is an odd prime and P > 3) is defined by

the equation

y

2 = x3 + ax + B (3.7)

where the parameters a, B € GF(P) and 4a 3 + 276 2 / 0 (mod P). The set of solutions

(or points) P = (xp, yp) where xp, yp E GF(P), together with a special point O (called

18

C h a p t e r 3 C r y p t o g r a p h y

the point at infinity) constitute the set Ep(a, b). A finite abelian group (Ep(a, b), +)

is defined on the set Ep(a, b) with the O acting as its additive identity. According

to the rule of abelian group, the addition operation in Ep(a,b) for all points P, Q

G Ep(a, b) in affine coordinate is as follows.

1. P + 0 = 0 + P = P

2. If P = (xp, yp), then P + (xp, —yp) = O. The point — P = (xp, —yp) is called

the negative of P

3. If P = (xP, yP) and Q = (xQ, yQ) and P ^ ±Q, then R = P + Q = (xR, yR),

where

%R — (X2 — xp — XQ) (mod p) (3.8)

VR = (HXP ~ XR> ~ VP) (M O D P) (3-9)

W H E R E A = (MODP).

4. If P = (xP, yP), then R = P + P = 2P= (xR, yR), where

XR = (A2 — xp — XQ) (mod p) (3.10)

yR = (X(xp - xR) - yp) (mod p) (3.11)

where A = (£) (mod p). This operation is referred to as the doubling of a

point.

5. Scalar multiplication (or point multiplication) kP is defined as repeated addi

tion of P to itself k times.

3.5 .2 E l l i p t i c C u r v e s o v e r GF(2N)

Elliptic curves over GF(2N) are defined by the equation

y

2 + Xy = x3 + ax2 + b (3.12)

19

C h a p t e r 3 C r y p t o g r a p h y

where the parameters a,b G GF(2N). The set of solutions (or points) P — (xp,yp)

where xp,yp G GF(2N) together with a special point O called the point at infinity

constitute the set E2n(a,b). A finite abelian group (E2n(a,b), +) is defined on the

set E2n (a, b) with the a point at infinity O acting as its additive identity. According

to the rule of abelian group, the addition operation in E2n(a, b) for all points P , Q G

E2n (a, b) in affine coordinate is as follows.

1. P + 0 = 0 + P = P.

2. If P = (xp, yp), then P + (xp, xp + yp) = O. The point - P = (xp, xp + yp) is

called the negative of P.

3. If P = (xP, yP) and Q = (xQ, yQ) and P ^ ±Q, then R = P + Q = (xR, yR),

where

XR = A2 + A + xp + XQ + a (3.13)

VR = X{xp + xR) +xR + yP (3.14)

where A = (^ ± ^) .
\XQ+XpI

4. If P = (xP, yP), then P = P + P = 2 P = (xR, yR), where

xR = A2 + A + a (3.15)

yR = \(xP+xR) + xR + yp (3.16)

where A = (xp + ^). This operation is referred to as the doubling of a point.

5. Scalar multiplication (or point multiplication) kP is defined as repeated addi

tion of P to itself k times.

3 . 6 E C C D o m a i n P a r a m e t e r s

Some definitions are required before the introduction of ECC domain parameters.

The order of a point P on an elliptic curve is the smallest positive integer r such

20

C h a p t e r 3 C r y p t o g r a p h y

that rP = O. kP = IP if and only if k = I (mod r) and k, I €. Zn. The number

of points of E(GF(Q)), denoted by #E(GF(Q)), is known as the curve order of the

curve. Hasse's theorem states that #E(GF(Q)) = Q + 1 — T, where |t| < 2^/Q. ECC

domain parameters over GF(Q) are a septuple:

T = (Q, FR, a, B, G, n, h) (3.17)

where Q specifies a prime power (Q = P or Q = 2M, here m is denoted to distinguish the

power of m from the ECC domain parameter n); FR (field representation) indicates

the method used for representing field elements in GF(Q); two field elements a and

B E GF(Q) specify the equation of the elliptic curve E over GF(Q); G = (XG,VG) £

Eq(a,B) is the base point on E(GF(Q)); the prime number n is the order of G and

the integer h is the cofactor h = #E(GF(Q))/n. The ECC key length is defined to

be the bit-length of n, because n is the primary security parameter.

3 . 7 K e y G e n e r a t i o n

An entity A's public and private key pair is associated with a particular set of elliptic

curve domain parameters (Q, FR, a, B, G, n, h). To generate a key pair, entity A does

the following:

1. Select a random or pseudo-random integer d in the interval [1, n-1].

2. Compute Q = dG.

3. A's public key is a point Q in Eq(a, B) and A's private key is an integer d.

3 . 8 E l l i p t i c C u r v e P r o t o c o l s

Elliptic curve Diffie-Hellman (ECDH), the Elliptic Curve Digital Signature Algo

rithm (ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES)

21

C h a p t e r 3 C r y p t o g r a p h y

are three fundamental protocols based on elliptic curves. The ECDH is the elliptic

curve analog of Difne-Hellman key exchange; the ECDSA is the elliptic version of

the DSA proposed by Scott Vanstone [52] in 1992; and the ECAES is a variant of

the ElGamal public-key encryption theme proposed by Abdalla, Bellare and Rog-

away [1] in 1999. Only the simple ECDH is described here and relevant references

can be referred to for other protocols. Assume participants A and B share the same

domain parameters D = (q, FR,a,b,G,n,h). The key exchange between A and B

can be accomplished as follows:

1. A selects its private key CIA and generates a public key QA according to key

generation procedure.

2. B selects its private key dB and generates a public key QB according to key

generation procedure.

3. A computes PA = dAQB = {XA,VA) and B computes PB = dBQA = (XB,VB)-

4. Check that PA ^ 0 , P B ^ O.

5. The shared secret value is k = xA = XB-

3.9 AES Algorithm

The Advanced Encryption Standard (AES) [49, 35] is the new information protection

standard defined by the US National Institute for Security Technologies (NIST) to

replace the previous Data Encryption Standard (DES) to protect certain levels of

federal information and communications. In 1997, NIST called for a new AES

algorithm. The Rijndael algorithm was selected as the finalist and published in

2001.

AES performs four operations on a 128-bit block of data for a certain number

of repetitions. All the intermediate results of the 128-bit block as well as the input

22

C h a p t e r 3 C r y p t o g r a p h y

and the output block are called states. The most intuitive way to understand AES

operation is to picture each state as a 4 x 4 matrix of bytes which are filled in

the matrix column by column from the most significant byte (indexed as 0) to the

least significant byte (indexed as F). At each stage of the transformation between

plaintext and ciphertext, the block of data is transformed from its current state to

the next new state, depending on which operation is used. The four operations are

SubBytes, ShiftRows, MixColumns and AddRoundKey.

The SubBytes operation is a nonlinear substitution that performs on each byte

of the state using a substitution table (S-box) which contains a permutation of

all possible 256 8-bit values. The inverse of this operation, InvSubBytes, consists

of applying the inverse of the affine transformation followed by taking the same

multiplicative inverse in GF(2S).

0 4 8 C 0 4 8 C

1 5 9 D 5 9 D 1

2 6 A E A E 2 6

3 7 B F F 3 7 B

State before ShiftRows State after ShiftRows

Figure 3.3: ShiftRows operation for encryption in AES algorithm

The ShiftRows operation (Fig. 3.3) is the cyclic shifting of each row of the

state to the left over different numbers of bytes (offsets) on encryption, while the

InvShiftRows shifts to the right on decryption.

The MixColumns operation treats each column of the state as a four-term poly

nomial over GF(2S) and transforms each column to a new one by multiplying

it with a constant polynomial a(x) = {03}x 3 + {01}x2 + {01}a; + {02} modulo

23

C h a p t e r 3 C r y p t o g r a p h y

x4 + 1. The inverse MixColumns operation is a multiplication of each column with

b(x) = a~\x) = {0B}xs + {0D}x2 + {09}x + {OE} modulo x4 + 1. The trans

formation can also be written in the following matrix multiplication given a 32-bit

input word W = W3W2WIWQ where each WI has eight bits.

(3.18)

The AddRoundKey operation is a simple logical XOR of the current state with

a round key that is generated by the key expansion. The XOR operation is its own

inverse.
Encryption Decryption

02 03 01 01 ^ 3 W'3

01 02 03 01 W2 w'2

01 01 02 03 WI w[

03 01 01 02 WQ W'0

Plaintext

RoundKeyO —*-| AddRounKeyj Initial round

SubBytes

RoundKeyl. .Nr-1
-->̂ VddRca]ndKey|̂

> Nomal round
repeats Nr-1
times

SubBytes

) Final round

RoundKeyNi -̂ *»JAddRoundKeyp

T
Ciphertext

Ciphertext

RoundKeyNi r-——^———i
—H AddRounKey Initial round

InvSubBytes

RoundKeyNi
Envi

rr-I..l L_
'MixColumns

, Nornal round
repeats Nr-1
times

EnvMixColumns |—*-|A.ddRoundKey|̂

I InvSubBytes |

) Final round

RoundKeyO 0 i 1 1
—MAddRoundKeyLJ

i
1 Ni: Number of round

Plaintext »=i<U2.i4

Figure 3.4: AES algorithm flow for encryption/decryption

In the key expansion algorithm, The initial Nk-word key corresponds to the

cipher key and all subsequent A^fc-word keys are derived recursively from their re

spective predecessors [49, 35]. Nk is the number of 32-bit words comprising the

cipher key, which can be 4, 6 or 8. The same serial Nk-word keys are used in re

versed order for decryption and all these keys can be derived from the last round of

24

C h a p t e r 3 C r y p t o g r a p h y

iVrc-word key using the inverse operations.

3.10 RC5 Algorithm

RC5 [49, 42, 17] is a fast block cipher designed by Ronald Rivest in 1994. The easy

implementation and the security of heavily using data-dependent rotations and the

mixture of different operations make it widely adopted in the area requiring high

level strength for bulk encryption, such as wireless communications. A particular

RC5 is exactly designated as RC5-w/r/b, where the variable parameters w, r, b

denote the word size (in bits), the number of rounds and the length of secret key

(in bytes), respectively. The allowable values of w are 16, 32 and 64; the allowable

values of r and b range from 0 to 255. RC5-32/12/16 is commonly chosen.

There are three routines in RC5: key expansion, encryption, and decryption.

These routines use three primitive operations (and their inverses): words addition

modulo 2W (w is the word size parameter), bitwise XOR, and data-dependent left

rotation of x by y denoted by x « < y. Note that only the log2(w) low-order bits

of y affect this rotation. In the key-expansion routine, the user-provided secret key

is expanded to fill a key table whose size depends on the number of rounds. The key

table is then used in both encryption and decryption. The decryption follows the

same scheme as encryption except that it requires words subtraction and rotation

to the right. The description of the encryption algorithm is given in the following

[42].

25

C h a p t e r 3 C r y p t o g r a p h y

I n p u t : Plaintext {A, B], secret key array (S[0], . . . , S[2r], S[2r + 1])

O u t p u t : Ciphertext {A, B}

A = A + 5[0]

B = B + S[l]

for i = 1 to r do

A = ((A © B) « < B) + S[2i]

B = ((B® A) « < A) + S[2i + 1]

A l g o r i t h m 1: RC5 encryption algorithm

RC5 subkey generation is quite complex which generates a subkey array S of

t — 2r + 2 words from 6-byte secret key K. This includes three algorithm steps.

First, the secret key array K[0,..., b— 1] in byte is copied into an array L [0 , . . . , c— 1]

in length of c = \b/u] words where u = w/8 is the number of bytes/word. Second,

array S is initialized using an arithmetic progress modulo 2W determined by the

predefined magic constants Pw and Qw. At last, a mix in the secret key in three

passes over the arrays S and L is performed as follows [42].

i = j = X = Y = 0

Do 3* max{2r + 2, c} times:

X = S[i] = (S[i] + X + Y) « < 3

i = (i + 1) (mod t)

Y = L[j] = (L[j] +X + Y) « < (X + Y)

j = (j + 1) (mod c)

26

C h a p t e r 3 C r y p t o g r a p h y

3.11 Comparison between Public-key and Secret-

key Cryptosystems
In this section, the advantages and disadvantages between public-key and secret-

key cryptosystems are summarized. The advantages of public-key cryptosystem

over secret-key cryptosystem are as follows:

1. Public-key cryptography has increased security and convenience since private

keys never need to be transmitted or revealed to anyone. In a secret-key

cryptosystem, by contrast, the secret keys must be transmitted.

2. Public-key cryptosystems can provide digital signatures that cannot be repu

diated.

The disadvantages of public-key cryptosystem are listed as follows:

1. Many secret-key encryption algorithms are significantly faster than any cur

rently available public-key encryption algorithm.

2. Public-key cryptography may be vulnerable to impersonation, even if users'

private keys are not available.

In general, public-key cryptography is best suited for an open multi-user environ

ment. It is not meant to replace secret-key cryptography, but rather to supplement

it and to make it more secure. For efficiency reasons, a hybrid cryptosystem is

used in practice; a key is exchanged using a public-key cipher, and the rest of the

communication is encrypted using a secret-key algorithm.

3.12 Summary

In this chapter, an overview of public-key and secret-key cryptography is presented.

The public-key Elliptic Curve Cryptography (ECC) and secret-key algorithms of

27

C h a p t e r 3 C r y p t o g r a p h y

AES and RC5 are discussed. These three algorithms are implemented in the pro

posed crypto-processor in this thesis. In the final section, comparisons between

public-key and secret-key cryptography are given.

28

C h a p t e r 4

T h e C r y p t o g r a p h i c P r o c e s s o r

A r c h i t e c t u r e

In this chapter, the algorithms used in the ECC are introduced, and the architecture

of the processor with corresponding instruction set is described. The performance

evaluation and comparison are given finally.

The implementation of ECC is more complicated than secret-key cryptosystems

such as AES and RC5. So a majority of the work in this thesis focuses on the ECC

design. In ECC, the computation of scalar multiplication kP involves three different

levels:

• Selection of scalar multiplication algorithms. These algorithms include the

double-and-add method using binary representation of k, addition-subtraction

method using nonadjacent form of k, and Montgomery scalar multiplication.

Montgomery scalar multiplication is a fast algorithm only for GF(2n).

• Elliptic arithmetics in different coordinate representations. These coordinates

include affine coordinates, projective coordinates, Jacobian coordinates used

in both GF(p) and GF(2n) and Lopez-Dahab [28] projective coordinates used

only in GF(2n), etc. Different coordinate representations lead to different

formulae for point addition and point doubling.

29

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

• Field arithmetics. These include the basis selection, multiplier and squaring

design, etc. In this thesis, the dual-field multipliers based on Montgomery

multiplication are designed, which can perform multiplications both in GF(p)

and GF(2n) using polynomial bases. Furthermore, this multiplier design has

been extended to implement four independent multiplications over GF(2S)

used in the secret-key cryptosystems such as AES.

In this thesis, algorithm combinations between selection of fast scalar multipli

cation algorithms and selection of coordinate representations are made in order to

arrive at the best solution. Due to the different characteristics o(GF(p) and GF(2n),

the combinations are chosen separately. For GF(p), an addition-subtraction method

using the NonAdjacent Form (NAF) of k in Jacobian projectives is chosen. For

GF(2n), Montgomery scalar multiplication algorithm in projective coordinates is

selected. In the finite field arithmetic level, the multiplication over GF(p) and

GF{2n) are unified using Montgomery multiplication algorithm.

In the following first two sections, the elliptic arithmetic over GF(p) of point

addition and point doubling in modified Jacobian coordinates, and scalar multipli

cation using NAF are introduced. The Montgomery scalar multiplication algorithm

over GF(2n) in projective coordinates is described in the third section. Due to

simple formulae for point addition and point doubling, the two parts are described

in one section. In Section 4.4, the details of Montgomery multiplication algorithm

over both GF(p) and GF(2n) are introduced. In Section 4.5, the overall architecture

of the processor is proposed and the details of important common components are

described. Finally, the instruction set is given and the corresponding programs for

AES, RC5, and multiplication in GF(p) are listed respectively. In Section 4.6 and

Section 4.7, the performance evaluation and comparison are given.

30

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Coordinate Representation Addition Doubling
Projective 12 M+2 S 7M+5S
Jacobian 12 A4+4 S 4M+6S

Chudnovshky Jacobian 11 A4+3 S 5M+6S
Modified Jacobian 13 A4+6 S AM+4S

Table 4.1: Projective coordinate representations over GF(p)

4 . 1 C o o r d i n a t e R e p r e s e n t a t i o n o f E l l i p t i c C u r v e s

o v e r GF(p)

Since inversions are more expensive relative to multiplications, it is more efficient

to represent points in projective coordinates. The inversion operation is traded for

more multiplications and other less expensive finite field operations.

Several projective themes in GF(p) are described in [7]. Table 4.1 compares

the themes for addition and doubling with respect to the number of multiplications

M and squarings S in the underlying finite field. The inexpensive field addition

operation is omitted. In this thesis, the modified Jacobian projective coordinates

are chosen due to their fastest doubling operation. They are represented internally

as the quadruple (X, Y, Z, aZ4). The formulae of addition and doubling in the

modified Jacobian projectives are given as follows [7].

Let P = (Xi, Yu Zu aZf), Q = (X2, Y2, Z2, aZ4

2), and R = P + Q =

(X3, y 3 , Z3, aZl). The addition formulae of R = P + Q (P ^ ±Q) are the

following:

Ul = X1- Zl S2 = Y2- Z\, X3 = -H3 - 2UX • H2 + r 2 ,

U2 = X2 • Zl H = U2- Uu Y3 = -Sx • H3 + r(Ux • H2 - X3),

Si = Yx- Z3, r = S2~ S i , Z3 = Zx • Z2 • H, aZ4 = aZ4.

31

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

The doubling formulae of R = 2P are the following:

S = 4A"i • Y?, X3 = - 2 5 + M 2 ,

U = 8Y4, Y3 = M-(S-X3)- U,

M = 3Xf + (aZf), Z3 = 2Y1 • Zu aZ\ = 2U • (aZ\).

4 . 2 E l l i p t i c S c a l a r M u l t i p l i c a t i o n o v e r GF(p)

There are several methods known to compute kP. The basic method is the binary

double-and-add method [30, 49] which requires k doublings and k/2 addition on

average. The addition-subtraction method requires only k/3 additions on average

with the same number of doubling [48]. It is based on NonAdjacent Form (NAF or

sparse signed-digit representation) of the coefficient k where the redundant binary

representation using {-1, 0, 1} is allowed. It is known that every integer has a

unique NAF with the property that no two consecutive coefficients are nonzero.

Also, the NAF has the minimum number of nonzero coefficients among all signed-

digit representations, k/3 on average. Here gives an example of NAF:

NAF{29) = (1,0,0, - 1 , 0 , 1) , and 29 = 32 - 4 + 1. (4.1)

The NAF of an integer is at most one bit longer than its binary expansion. The

addition-subtraction method requires bit conversion left-to-right. An optimal NAF

algorithm converted from the most significant bit is listed in Algorithm 2 [16].
I n p u t : (e t , e t _ i , . . . , e i , e 0)

O u t p u t : (dt,dt-i, ...,d0)

B T « - 0 ; ET 4- 0 ; e_i <- 0 ; e_ 2 «- 0 ;

for i=t down to 0 do
BT-I «- [fa + E I - I + e;_ 2)/2j ;

di<- ei + bi-i - 2bi ;

end
A l g o r i t h m 2: Left-to-right NAF

32

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

This algorithm can also be expressed as in Table 4.2 (X stands for don't care)

[16]. Based on this table, a simple hardware speeding-up of NAF is proposed in [16].

di (di G {0 , 1, 1}) can be encoded with two one-bit variables {dH,di}- Let {0 —>

(X, 0)2; 1 —> (0,1)2; -1 —> (1 ,1) 2 }, and after simple logic reduction, bi-i, and

dL can be expressed as follows.

'
bi-i = bi • ri_i • r4-_2 + k • Ti-i + bi • r^2

< dH = bt

dL = bi- n-i • + bi-ri + bi-r~i + bi- fj~[• rJZJ

v

The logic diagram based on this equation is illustrated in Fig. 4 .1. Initially, the

shift-left registers {r,, t v i , r ;_ 2 } are loaded with {0 , r m _ i , r m _ 2 } and the latch is

reset to logic "0 " . At the end of each iteration, the output du and c? l are used to

decide the value of the encoded dj.

d H d L

Figure 4.1: Hardware speeding-up of NAF

Given the NAF of n = X ^ L o 0 ^ * , the elliptic scalar multiplication Q = nP is

performed as follows [28, 48].

33

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

T I - L TI-2 K-1 DI

0 0 0 X 0 0
0 0 1 0 0 0
0 0 1 1 1 1
0 1 0 X 0 1
1 0 1 X 1 1
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 X 1 0

Table 4.2: Left-to-right NAF

I n p u t : An integer k = (DU D T - I , . . . , D O) , and a point P G E(GF(q))

O u t p u t : Q = kP£ E(GF(q))

Set Q <- O ;

fo r I = T - l D O W N TO 0 do
Set Q <- 2Q ;

i f = 1 t h e n

Set Q <- Q + P ;

end

i f ej = — 1 t h e n

Set Q 4- Q - P ;

e n d

e n d
A l g o r i t h m 3: Addition-subtraction method using NAF

4 . 3 E l l i p t i c S c a l a r M u l t i p l i c a t i o n o v e r GF(2n)

A new scalar multiplication algorithm that was first proposed by Montgomery [33]

and then modified by Lopez and Dahab [27] proves to be the best algorithm for

elliptic scalar multiplication in GF(2n). It is based on the binary expansion of k

and the observation that the x-coordinate of the sum of two points whose difference

is known can be computed in terms of the x-coordinates of the involved points. It

34

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

can be expressed in Algorithm 4.

I n p u t : An integer k > 0, and a point P € E(GF(2n))

O u t p u t : Q = kP€ E(GF(2n))

Set k <r- (kt-i, kT-2, • • •, /ci, k0)2 ;

Set A <- P , P 2 «- 2P ;

fo r «=t-jS down to 0 do

i f hi = 1 t h e n
Set Pi <- Pi + P 2 , P 2 ^ 2P 2 ;

else

Set P 2 ^- Pi + P 2 , Pi 2Pi ;

end

end

Q = Pi;

A l g o r i t h m 4: The basic Montgomery scalar multiplication

As in GF(p), projective coordinates (X, Y, Z) are represented in order to avoid

expensive inversions by x = X / Z and y=Y/Z from affine coordinates (x, y). The

Montgomery scalar multiplication in projective coordinates is listed in Algorithm 5.

35

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I n p u t : An integer k > 0, and a point P e E(GF(2n))

O u t p u t : Q = kPe E(GF(2n))

i f k=0 or x=0 t h e n

output (0,0) and stop ;

e n d

Set k 4 - (kt-i, kT-2, • • •, h, k0) ;

Set Xx 4- x, Zi 4- 1, X2 4- x4 + b, Z2 4- x 2 ;

f o r i—t-2 down to 0 d o

i f ki = 1 t h e n

Z 3 f - (X ! • Z2 + X2 • Zx)\ X34-x-Z3 + (Xx- Z2) • (X2 • Zx) ;

Z4 4— Z2 ' X2, X4 4— X2 - f - b • Z2 ;

• ^ l -^3) Xx 4— X3, Z2 4— Z 4 , ;

e l s e

Z3 4- (xx -Z2 + X2- Zx)\ X34-x-Z3 + (Xx- Z2) • (X2 • Zx) ;

ZA 4- Z\ • AT2, X44-Xf + b-Zf ;

Zx 4— Z4, Xx 4— X4, Z2 4— Z 3 , X2 4— X3 ;

e n d

e n d

return (The affine coordinates converted from projective coordinates of Q) ;

A l g o r i t h m 5 : The Montgomery scalar multiplication algorithm using projective

coordinates

The y-coordinates of kP can be computed from the x-coordinates of points involved

in the last iteration in Algorithm 5, which is shown as follows.

if Zx = 0 then output (0,0)

ifZ2 = 0 then output (x, x + y)

Xx

Xk = Yx

(XX (%+x)(% + x)+x2 + y
yk = — + x) • - 1 2- + y

Zx x
Using projective coordinates, Montgomery scalar multiplication requires 6 \log2(k)\ +

36

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

9 multiplications, b[log2(k)\ + 3 squarings, 3[log2(k)\ + 7 additions and 1 multi

plicative inverse.

4 . 4 M o n t g o m e r y M u l t i p l i c a t i o n

Montgomery multiplication was first proposed by Montgomery in 1985 [32], as an ef

ficient method for doing modular multiplication in prime fields GF(p). This method

was extended to the binary finite field GF(2m) by K o q and Acar in [21]. Several

papers [12, 43, 9] have explored the similarity of hardware design between Mont

gomery multiplications in GF(p) and GF(2m) and proposed unified or dual-field

multipliers based on the Montgomery multiplication algorithm.

4 . 4 . 1 M o n t g o m e r y M u l t i p l i c a t i o n o v e r GF(p)

Given two integers A and B, and the prime number p, the Montgomery multiplica

tion algorithm in GF(p) computes

where R = 2 m and 0 < A, B < p < R and p is an m-bit number. Before using

Montgomery multiplication, the field element should be transformed into Mont

gomery domain by using the formula A = A • R (mod p) for A G GF(p). For any

two elements in the Montgomery domain A and B, the result using equation 4.2 is

still in the Montgomery domain.

C = A • B • R'1 (mod p) = (A-R)-(B-R)-R~l = C-R (mod p) (4.3)

The transformation operations between the two domains can be performed using

the MonMul function as follows.

C = MonMul(A, B) = A - B • R (mod p) (4.2)

A = MonMul(A, R2) = A • R2 • R~l = A • R (mod p)

C = MonMul(C, 1) = C • R • R~l = C (mod p)

(4.4)

(4.5)

37

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

The key idea of the Montgomery multiplication algorithm is to add an appropriate

multiple of p to make the lowest m bits of A • B equal to 0. The addition operation

does not influence the equation 4.2 due to its modulo p arithmetic. In the following,

we assume that the operation numbers have already been transformed to Mont

gomery domain and the overlines are omitted. For Montgomery reduction algorithm,

an additional value N' is needed which satisfies the property R • R~l — N • N' = 1.

The integer R~l and N' can be computed by the extended Euclidean algorithm.

The Montgomery multiplication algorithm is given below:

I n p u t : A, B, p (0 < A,B < p)
O u t p u t : C = AB2-mmod p
1. T = A-B ;
2. M = T-N' mod 2m ;
3. C = (T + M-p)/2m ;
4. if C > p then C = C - p ;

For multiple-precision multiplication, the operands of m-bit length should be

divided into s blocks of words (m = s x w) in the form as A = (as-i, • •., a i , oo),

where w is the word size. This can also be expressed as follows:

If one operand is in multiple-precision, while other operands are still in full-

precision, the Montgomery multiplication algorithm is shown as Algorithm 6. In

this algorithm, the division of 2W is trivial because the least significant word of the

dividend is zero. This can be proved by the following argument:

A = a •s-l 2 « (« - i) + . . . + a i 2 ^ + a o (4.6)

c 0 + dj&o + UP mod 2'

- c 0 + ciibo + (c 0 + ciibo)(-p l)p mod 2'

Co + aj&o - (c o + a>ibo) mod 2'

= 0

38

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I N P U T : A = (as-i,... ,a,i,ao), B, p, q = —p 1 mod 2W = —pQ

 1 mod 2W

O U T P U T : C = AB2~m mod p
C = 0 ;
FOR (i=0 to s-1) DO

U = (c 0 + aj6o)? mod 2^ ;
C = (C + aiB + tiP)/2w ;

END
IF (C > p) THEN

C=C-p ;
END

ALGORITHM 6: Word level full precision Montgomery multiplication

If all the operands are in multiple-precision form, the Montgomery multiplication

is listed in Algorithm 7 based on the Coarsely Integrated Operand Scanning (CIOS)

Method [22].

39

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I n p u t : A = (a a _ i , . . . , a i , o o) , B = . . . , & i , M , P = (Ps-i, • • • . P i . P o) ,

g = — P q - 1 mod 2 W

O u t p u t : i = A B 2 _ m mod p

f o r i = 0 i o s-1 d o

C = 0 ;

f o r j = 0 to s-1 d o

(C, 5) = t[j] + o[j] x b[i\ + C ;

= S ;

e n d

(C,S) = t[s] + C; t[s]=S;;

m = t[0] x q mod 2™ ;

f o r j=0 to s-1 d o

(C, S) = t[j] + m x + C ;

i f j ^ 0 t h e n

t[j - 1] = 5 ;

e n d

e n d

(C7, S) = t[8] + C ;

t[s - 1] = S; t[s] = C ;

i f t > p t h e n

t = t-p;

e n d

e n d

A l g o r i t h m 7 : Word level word level Montgomery multiplication over GF(p)

4 0

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I N P U T : A = (o a _ i , . . . , O i , a 0) , p = (ps-u • • • ,Pi,Po), Q = "Po" 1 m o d 2™

O U T P U T : t = AB2~m mod p

FOR i=0 5 - i DO

(7 = 0 ;

(C, 5) = t[i\ + a[i] x o[i] + C; = 5 ;

FOR j—i+1 to s-1 DO

(C, 5) = i[j] + 2 x a[j] x a[{\ + C; t[j] = S ;

END

(C, 5) = t[s] + C ;

m = t[0] x g mod 2W ;

FOR ;'=0 to s-1 DO
(C,S) = t [j] + m x p [j] + C ;
IF j ^ 0 THEN

t[j - 1] = S ;

END

END

(C, 5) = + C ;

t[s - 1] = 5; t[s] = C ;

IF t > p THEN

t = t-p-

END

END
ALGORITHM 8: Montgomery squaring over GF(p)

4 . 4 . 2 M O N T G O M E R Y M U L T I P L I C A T I O N O V E R GF(2N)

The Montgomery multiplication in GF(2n) using the polynomial basis is very similar

to the one in GF(p) [22]. The Montgomery multiplication of A(x) and B(x) with

product C(x) is given as

C(x) = A(x) • B(x) • R(x)~l (mod p(x)) (4.7)

41

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

where R(x) — xm instead of R = 2 m as compared with equation 4.2. Furthermore,

the representation of the elements of GF(p) and GF(2n) are the same. An example

in [44] is given as follows.

The elements of GF(7) for p = 7 and the elements of GF(23) for p(x) = xz +

x + 1 are represented as GF(7) = {000,001,010,011,100,101,110} and GF(2Z) =

{000,001,010,011,100,101,110, 111}, respectively.

Similarly, the domain transformations are required: before Montgomery multiplica

tion, the operands should be transformed into Montgomery domain and the com

puting result should be transformed back. The transformations are accomplished as

follows:

A = MolMul(A, R2) = A(x) • R2(x) • R~l(x) = A(x) • B(x) (mod p(x))

B = MolMul(B, R2) = B(x) • R2(x) • R~l(x) = A(x) • B(x) (mod p(x))

C = MolMul(C, 1) = C(x) • R(x) • R~l(x) = C(x) (mod p(x))

However, the operations in GF(2m) are much simpler without considering carry

propagations.

The multiple-precision Montgomery multiplication algorithm for multiplication

and squaring can be written based on the Coarsely Integrated Operand Scanning

(CIOS) Method [22] as follows:

42

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I N P U T : A(x) = (a,_i , • • • , aX) a 0) , B(x) = (6,_ x , • • • , bx, 6 0),

P(x) = (Ps-u • • • ,PuPo), q{x) = p(x)~l mod a;w = p 0 (^) _ 1 mod x

O U T P U T : t(x) = A(x)B(x) mod p(x)

FOR i=0 to s-1 DO

C = 0 ;

FOR j=0 to s-1 DO

(C , S) = + a[j] x b\i] + C ; t[j] = 5 ;

END

(C , S) = t[s] + C ;

m = t[0] x n'[0] mod x w ;

FOR j = 0 io 5 - i DO
(C , 5) = tb1 + M X N [) 1 + C ;

IF j ± 0 THEN

t[j -1} = S;

END

END

(C , S) = t[s] + C ;

t[s - 1] = 5 ; = C ;

END

ALGORITHM 9 : Montgomery multiplication over GF(2n)

43

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

I N P U T : A(x) = a a _ i , . . . , au a 0) , p(x) = . . . , P i , p 0) , 9 = p{x) 1 mod

^ = PQ{X)~1 mod a;1"

O U T P U T : = A(x)B(x) mod

FOR i=0 to s-1 DO
C = 0 ;

(C, 5) = + o[i] x o[i] + C ;

t[i\ = S ;

FOR j=i+l to s-1 DO
(C,S) = t[j] + 2xa[j]xa[i\+C ;

t[j] = S ;
END

(C, S) = t[s] + C ;

m -1[0] x p'[0] mod a;1" ;

FOR j=0 to s-1 DO

(C,S) = t[j] + mxn[j]+C ;

IF ; V 0 THEN

t[j - 1] = s •

END

END

(C, S) = t[s] + C ;

t[s - 1] = S; t[s] = C ;

END

ALGORITHM 1 0 : Montgomery squaring over GF(2n)

4 . 5 A r c h i t e c t u r e o f t h e H y b r i d P r o c e s s o r

The common arithmetic components in the three algorithms: ECC, AES, and RC5

are extracted as shown in Table 4.3. As the most important arithmetic component,

a novel multiplier of 32 by 32 bits is proposed to perform multiplication over GF(p)

and GF(2n) in the ECC, and four independent multiplications over GF(28) in the

44

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

components AES RC5 ECC over GF(p) ECC over GF(2n)
multiplication V V V
barrel shifter V V V

adder/subtracter V V
XOR V V

Table 4.3: The core components in different cryptographic algorithms

MixColumns operation of AES. An adder/subtracter is used for the modular ad

dition/subtraction in RC5 and over GF(p) in ECC. In addition, a barrel shifter is

embedded for data-dependent rotation in RC5. This barrel shifter can also be used

for bit-shifts of parameter k in scalar multiplication kP over GF(p) and GF(2n).

In the following, the data path of the processor is described and followed by the

details of core arithmetic components and the instruction set.

4 . 5 . 1 D a t a P a t h

The main data path is 32-bit wide as shown in Fig. 4.2. The long operands of the

ECC algorithm need to be broken up into multiple smaller words, and the arithmetic

operations such as addition, subtraction, and multiplication, are implemented as

multiple-precision operations [21]. The 32-bit data path is chosen considering that

the word length in RC5 is 32-bit, and AES can also be processed in 32-bit processors.

The two dual-port memories, which both have the capacity of 256 x 32 bits, are used

not only for passing parameters between the cryptographic processor and the host,

but also for operands. The parameters for ECC or the expanded subkey array

for secret-key cryptography are loaded into the dual-port RAMs from I /O ports.

The operands of many instructions come from the dual-port RAMs. The formula

of multiplication-accumulator operation is shown as (CA, SUM) = srcQ x src l +

src2 + CA, where CA is the carry vector, SUM is the sum vector, and srcO, srcl,

45

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

srcl are the three source operands which are accessed directly from the two dual-

port RAMs with the ports doutal, doutbl or douta2. The data in the dual-port

RAMs can also be routed to register A through ports doutal or doutb2. The results

of barrel shifter, XOR and addition/subtraction operations are stored to register A,

whereas the results of multiplications for ECC are written back to the dual-port

RAMs.

In order to accommodate the eight-bit operations used in secret-key crypto

graphic algorithms, an eight-bit data path is also provided as shown in Fig. 4.3.

The register A comprises of four eight-bit registers, i.e. AO, Al , A2, and A3. The

sufficient Block RAMs provided by Xilinx FPGA devices are utilized to store the

constants of the S-box and inverse S-box lookup tables operation used in AES algo

rithm. The ROM of 512 x 8 bits is implemented by Block RAMs. The register file is

composed of 32 eight-bit registers, of which four registers hold the indirect address

for the dual-port RAMs and seven registers are used for the polynomial reduction

for multiplication over GF(2S). The result of the multiplication over GF(28) is

transmitted into A passing through multipliers as a 32-bit operation (Fig. 4.2) or

the four independent bytes are XORed and the result is then stored into one of A3,

A2, Al , AO as an eight-bit operation (Fig. 4.3). For the MixColumns operation

in AES, each element in the right column of the matrix in Equation 3.18 needs

eight-bit XOR operations between the results of four eight-bit multiplications. For

example, w3 = ({02} • w3) © ({03} • w2) © ({01} • wi) © ({01} • w0). This special

operation for MixColumns is supported directly in the design.

4 . 5 . 2 M u l t i p l i e r D e s i g n

Based on the multiple-precision multipliers for ECC over GF(p) and GF(2n) [43, 9],

a novel multiplier is proposed which is extended to perform not only the multipli

cations over GF(p) and GF(2n), but also four parallel eight-bit multiplications

over GF(28) that are used in the secret-key cryptosystems such as AES. The block

46

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Figure 4.2: The data path of the architecture: 32-bit part

diagram of the multiplier is illustrated in Fig. 4.4. It can perform operation

(CA, SUM) = srcO x src l + src2 + CA for ECC over GF(p) and GF(2n), and

operation MuLGF8 — srcO x src l with 32-bit operands. The presented multi

plier uses parallel tree multiplier which is based on the integer multiplier design.

Multiplications presented in this thesis consist of three main stages [51]:

• Partial product generation. It uses 32 x 32 AND gates to generate the partial

product bits.

• Partial product reduction. It uses a Carry-Save Adder (CSA) tree to reduce

the partial products in a redundant carry/sum representation.

• Final carry-propagate addition. It uses Carry-Propagate Adders (CPA) to add

the sum and carry vectors and produces the final product.

Carry-Save Adders are implemented by Half Adders (HA) and Full Adders (FA).

The formulae of the HA and FA used in the tree multiplier are shown in Equation

47

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Mol_GF8 [23:16]
Mul_GFpi:24] Mul_GF8[15:8] Mul_GF8[7:0]

Figure 4.3: The data path of the architecture: eight-bit part

4.8 and 4.9. We can see that the sums are only XOR operation.

Sk — &k © h
(4.8)

and

(4.9)
sk = a>k © bk © Cfe

= dk • bk + a,k • Ck + b]c • Ck

The multiplication over GF{2n) involves only two stages that are partial product

generation and partial product reduction, since no carry-propagations are consid

ered. The partial product reduction performs only XOR operations between the

same digit position. From the equations for the HA and FA, it can be seen that the

sum is exactly the XOR operation required by multiplication over GF{2n). So it

is possible to combine the multiplication over GF(2n) with the one over GF(p) in

such a way that the sum bits are added first and the carry bits c^+i are added as

late as possible in the partial product reduction. The multiplication over GF(2n) is

just a special case of the one over GF(p) without considering the carry-propagation.

Finally, the product for GF(2n) is summed up with the reduced carry-bits in the

final stages and the product for GF(p) is obtained by the carry-lookahead adder.

48

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

srcO

src2

partial product

matrix

CSA reduction tree, CPA,

and polynomial reduction

CA SUM Mul GF8

Figure 4.4: The block diagram of multiple-precision multifunction multiplier

The procedure is illustrated in Fig. 4.5.

In the secret-key cryptography, the multiplications over GF(28) are required by

the MixColumns operation in AES. The proposed multiplier is further extended to

perform four independent multiplications over GF{28). The 32-bit inputs srcO and

srcl are referred to as the concatenation of four eight-bit elements over GF(28), re

spectively. The four multiplications are s rc0[31 . . . 24] x s r c l [3 1 . . . 24], src0[23 . . . 16] x

s rc l [23 . . .16], src0[15. . .8] x srcl[15 . . . 8], and src0[7. . .0] x s r c l [7 . . .0]. The dot

diagram of partial product generation for the four eight-bit multiplications is illus

trated as hollow dots in Fig. 4.6. The multiplication over GF(28) can be viewed as

a special case of multiplication over GF(2n). The four multiplications of eight-bit

by eight-bit over GF(28) are performed first. This result is used in the next XOR

operations in the same digit positions in the computation of GF(2n). The results of

the four 15-bit products over GF(28) are ready after the third stage, and the product

over GF(2n) is ready after the fifth stage. The four 15-bit results obtained from the

partial product reduction need modulo the irreducible polynomial f (x) to reduce to

elements over GF{28) as shown in Fig. 4.5. For the AES algorithm, this irreducible

polynomial is f (x) = XS + x4 + x3 + x + 1. The reduction method is illustrated as

follows. Suppose the product is a(x) = a u x 1 4 + a ^ x 1 3 . . . + a 8 x 8 + ciyx7 + . . . + aoX°,

49

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

"reduction.stage usingHA/F.

reduction sta, ;e using HA/F^ j | reduction stage using HA/F^

| reduction stage using HA/F^ I j reduction stage using HAjF̂
carry j | sum j J sum

| sum | 1
j reduction stage using HA/F^ I j reduction stage using HA/Fiji

reduction stage using HA/FA

last reduction stage using HA/FA

carry-lookahead adder

/ 64

- partial product reduction

polynomial reduction

15 j - IS

product for GF(2An

3L

polynomial polynomial polynomial polynomial
reduction reduction reduction reduction

MuLOFS

\ r

Figure 4.5: Partial product reduction, CPA and polynomial reduction

and let

= x 8 mod f(x) -= x4 + x3
 + X + 1

= x9 mod f[x) -= (x4 + x3 + x + l)x = x5 + x4 + x2 + x
h(x) = x10 mod f(x) = (x4

 + X3 + x + l)x2 = x6 + x5 + x3 + x2

b4(x) = x 1 1 mod f(x) = (x4 + x3 + x + l)x3 = x7 + xe + x4 + x3

b5(x) = x12 mod f(x) = (x4 + x3 + x + l)x4 = x7 + x5 + x3
+ X + 1

b6(x) = x13 mod fix) = (x4 + x3 + x + l)x5 = x5 + x4 + x3 + x
b7(x) = x14 mod f(x) = (x4 + x3

 + x + l)xe = x7 + x4 + x3 + x

Then a(x) is reduced by a(x)' = a(x) mod f(x) = Yli=iA7+i ' bi(x) + J2i=oaixZ-
Parameters b\ to b7 are kept in registers since they are constants once the irreducible

polynomial is fixed. It is flexible in that the parameters of 61 to b7 can be changed

according to different applications.

50

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Figure 4.6: The dot diagram for partial product matrix of 32 — bit x 32 — bit mul
tiplication

The CSA utilizes tree topologies of adders so that the carry-out from one adder

is not connected to the carry-in of the next one. The Reduced Area (RA) multiplier

is used in the design instead of Wallace tree [43]. It can obtain the maximum

reduction in the number of partial product bits in each reduction stage and minimize

the total hardware area. Its reduction scheme differs from Wallace and Dadda's

methods in that the maximum number of FAs is utilized as early as possible, and

HAs are used only in two cases: (1) to reduce the number of bits in a column to

the number of bits specified by Dadda sequence; (2) to reduce the rightmost column

containing exactly two bits [51]. The RA multiplier is more flexible to be used in

the partial product reductions for multiplications over GF(p), GF(2n), and GF(28).

This design requires only nine reduction stages, the same as the 32-bit Wallace tree

and Dadda tree multipliers that perform only multiplication over GF(p). It means

that the the implementation of multiplications over GF(2n) and GF(28) with integer

multiplication over GF(p) does not produce additional delay.

51

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

dalajn[7]

dala_jn[6]

datajn[5]

d*E_out[7]

dat̂ out[6]

dat̂ _out[5]

Figure 4.7: Example of an 8-bit barrel shifter

4 . 5 . 3 B A R R E L S H I F T E R

The proposed multiplexer-based barrel shifter performs only circular shift operation.

It is a combinational logic circuit design with 32-bit data inputs, 32-bit data outputs,

and a five-bit control input to specify the amount of circular shift (0 to 31 bits),

and a one-bit control signal to indicate the direction of circular shift (left or right).

The circuit consists of five stages of 2:1 multiplexers, with one multiplexer per bit of

the input data. The selection signals of all multiplexers in each stage are connected

together. When shft[0]=l, the first stage of multiplexers performs a shift by one

bit; when shft[0]=0, it does not perform any shift. Similarly, the second, third,

fourth, and fifth stage perform a shift by 2, 4, 8, and 16 bits respectively. Due

to the cascade, all shift amounts (0 to 31) can be performed. For right shift, the

signal shft[4:0] is complemented, which means the shifter performs left shift with

a complementary amount of bits used for right shift. An example of an eight-bit

barrel shifter is shown in Fig. 4.7.

52

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

a31 %

Figure 4.8: Adder/subtracter

4 .5 .4 A d d e r / S u b t r a c t e r

The adder/subtracter illustrated in 4.8 is a 32-bit carry look-ahead adder with data

inputs A and B, one output S, and a carry bit C. To perform subtraction, the

adder is utilized to add the two's complement of the input B, i.e. A-B=A+(-B) .

The exclusive OR gates together with the signal sub are used to perform the two's

complement when sub= l . For multiple-precision addition, the signal sub is set to

"0"; it passes through the multiplexor in the first iteration and the carry bit C passes

in the rest of iterations. Similarly, for multiple-precision subtraction, the signal sub

is set to " 1 " ; it passes through the multiplexor in the first iteration and C in the

rest of iterations.

4 .5 .5 I n s t r u c t i o n Se t

Table 4.4 contains the complete instruction set. Instructions fall into three cate

gories: arithmetic instructions, memory instructions, and control instructions.

The implementation of RC5 is quite simple, just following the Algorithm 1 in

Chapter 3. Table 4.5 lists the source codes for RC5. The implementation of AES is

not so straightforward. The S-box operations are implemented by 16 look-up table.

The MixColumns operation is performed by 16 multiplication according to Equation

53

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

instruction explanation clock
cycles

MuLGFP srcO, srcl, src2, dst multiplication over GF(p)
dst = srcO x s rc l + src2 + C

5

MuLGF2N srcO, srcl, src2, dst multiplication over GF(2n)
dst = srcO x s rc l © src2 © C

5

Mul_GF8 srcO, srcl, A four multiplications over GF(2&) 4
MixColumns srcO, srcl, dst multiplications over GF(28) and the

result is XORed between the four bytes
4

SQUR.GFP srcO, srcl, dst squaring over GF(p)
dst = srcO x srcO + src l + C

5

SQUR-GF2N srcO, srcl, dst squaring over GF(2n)
dst = srcO x srcO © srcl © C

5

SHFT barrel shift 4
XOR exclusive OR 4

ADD srcO, srcl, dst addition 5
SUB srcO, srcl, dst subtraction 5

LDA load into A (32-bit) 4 LDA
or load into AO, Al , A2, A3 (eight-bit) 3

STR store constant or A0,A1,A2,A3

CO
 STR

or store A or CA to dual-port RAM 4
LKUP lookup table 4

BRNZ bit, addr branch to addr if test bit is set 3/4
BRLE #const , addr branch to addr if index < #const 3/4

CLR clear the carry bit of adder/subtracter
or clear the carry register of multiplier 3

NOP CO

Table 4.4: Instruction set

3.18. The ShiftRows operation spans throughout the entire 128-bit. The 16 bytes

are first put into 16 eight-bit general registers, and read back in the order as shown

in Fig. 3.3. The codes for one round of AES are shown in Table 4.15. Table 4.6

gives the source codes for Montgomery multiplication over GF(p) which is based on

the Algorithm 7 in Section 4.4.1.

54

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

L£ 0 =A+S[0]
RE0=B+S[1]

STR # 0 , RegJndexl
ADD *AR0, *AR2+, *BR0
ADD *AR1, *AR2+, *BR1

for i = l to r do
temp = LEi-i © REt_i

temp = temp « < RE^i
LEi = temp + S[2 x i]
temp = LEi © REi-i
temp = temp « < LEi
REt = temp + S[2 x i + 1]

J l :
XOR *BR0, *BR1, A
SHFT A, *BR1, A
ADD A, *AR2, *BR0
XOR A, *BR0, A
SHFT A, *BR0, A
ADD A, *AR2+, *BR1
BRLE # 1 1 , J l

Table 4.5: Codes for RC5

4 . 6 P e r f o r m a n c e E v a l u a t i o n

The cryptographic processor was prototyped in a Xilinx Virtex-II xc2v3000-5bf957

FPGA using Verilog Hardware Description Language (Verilog HDL). It works at

the maximum frequency of 60.15MHz.

Table 4.7 lists the resources used by different operation components. The re

sources contain 4-input look-up tables (LUTs), slices and Block RAMs. From the

table, it can be seen that the multiplier occupies most of the hardware resources.

The implementation of ECC relies heavily on the multiplication, so consuming more

resources on the design of parallel multiplier is worthwhile. Block RAMs are utilized

to implement the look-up tables for S-box operation in AES, and the two dual-port

RAMs.

The performance of secret-key and public-key cryptosystems is illustrated in

Table 4.8. When evaluating the time used for scalar multiplication kP in ECC over

GF(2n), let k « 2 n ; for kP over GF(p), let k « /, where / is the order of the field

GF(p).

55

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

For(i=0 to s-1) STR # 0 , Reg-indexl
C=0; J l : CLR C
For(j=0 to s-1) J2:

(C,S)=t[j]+a[j] x b[i]+C; MuLGFP *AR0+, *AR1, *AR2+
t[J]=S; BRLE s-1, J2

(C,S)=t[s]+C; t[s]=S; MuLGFP *AR0+, *AR1+, *AR2+
m=t[0] x q mod W; MuLGFP *AR0, *AR2, *AR1
For(j=0 to s-1)

(C,S)=t[j]+m x p[j]+C; MuLGFP *AR0+, *AR1, *AR2+
if(j # 0) STR # 1 , RegJndex2

tp- l]=S; J3: MuLGFP *AR0+, *AR1, *AR2+
(C,S)=t[s]+C; BRLE # 8 - 1 , J3
t[s-l]=S; STR C, *AR2
t[s]=C; BRLE # s - l , J l

If(t > p) STR # 0 , Reg-indexl
t= t -p ; CLR Add_C

J4: SUBC *AR0+, *AR1+, *AR2+
BRLE # s - l , J4

Table 4.6: Codes for Montgomery multiplication over GF(p)

Components Slices BRAM
Multiplier 2005

Barrel shifter 95 _

Adder / subtracter 91
NAF 2

Full design 2479 67

Table 4.7: Usage of FPGA resources

4 . 7 P e r f o r m a n c e C o m p a r i s o n

The comparison with other work for RC5 is shown in Table 4.9. The throughput of

RC5-32/12/16 in this design achieves 10.7 Mbit/s on encryption/decryption. The

work in [40] implements RC5-32/12/16 for prototype of small sensor devices using

an eight-bit processor with its throughput of only 4.8 Kbit/s . The throughput of a

software implementation of RC5-32/12/8 in [45] on a Pentium 266MMX can reach

11.4 Mbit/s. This means that the performance of the proposed hybrid processor

competes with that of the Pentium 266MMX which uses an advanced superscalar

56

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Algorithms RC5 AES ECC over O F (2 1 4 6) ECC over GF(p)
192-bit

Throughput (Mbit/s) 10.7 2.0 - -
scalar multiplication (ms) - - 12 28.4

Table 4.8: The performance for different cryptosystems

Performance parameters Perrig et al. [40] Sesstions [45] This work
Throughput (Mbit/s) 4.8 Kbit /s 11.4 Mbit /s 10.7 Mbit /s

Table 4.9: The performance comparison for RC5

architecture.

Performance parameters Atasu et al. [3] This work
Throughput (Mbit/s) Encryption 0.5 2.0 Throughput (Mbit/s)

Decryption 0.29 2.0

Table 4.10: The performance comparison for AES

Atasu et al. [3] implements AES on ARM-based platforms, which are 32-bit

embedded Reduced Instruction Set Computer (RISC) microprocessors. They also

use the look-up table method for S-box operations. The throughputs are much lower

than those in this design for both encryption and decryption.

Weimerskirch et al. [54] implements the elliptic curve over GF(2163) on a Palm

OS device with a 32-bit processor. The time for point multiplication using Mont

gomery scalar multiplication is 2.73s. The work in [27] proposed the new Mont

gomery scalar multiplication algorithms and reported results obtained from a soft

ware implementation using a Sun UltraSPARC 300 MHz. From the Table 4.11, it

can be seen that the scalar multiplication in this thesis is better than [54, 27]. Kim

and Lee [18] also propose a secret-key and public-key crypto-processor. It can per

form AES, SEED and ECC. The design implements each cryptographic algorithm

separately using each dedicated cryptographic block, which uses 4725 slices for AES

and ECC. However, the common arithmetic components are extracted and shared

in this design, and only 2479 slices are required in total, which is only the 1/2 of

that used in [18]. In addition, the work in [18] can only perform on the fixed elliptic

57

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

Implementations Scalar
multiplication

Field Platform Frequency
(MHz)'

This work 12 (ms) GF(2146) Xilinx
xc2v3000-5bf957

60.15

Weimerskirch
et al. [54]

2.73 (s) GF(2163) Palm OS 16

Lopez et al. [27] 13.5 (ms) GF(216'6) UltraSPARC 300 (software)
Kim et al. [18] 7.28 (ms) GF{2146) FPGA 50

Table 4.11: The scalar multiplication comparison for ECC over GF(2n)

Logic size
(slices)

Implementations AES ECC Total Logic size
(slices) This work 2479

Logic size
(slices)

Kim et al.[18 1689 3036 4725

Table 4.12: The hardware comparison for ECC over GF(2n)

curve GF(2146), whereas the design in this thesis is much flexible, which performs

ECC not only over GF(2n), but also over GF(p). The prime number of p of GF(p)

and the irreducible polynomial of GF(2n) can be changed easily to meet different

requirements. It increases the security and reduces the users' cost to easily adopt

more secure elliptic curves without changing the hardware.

Implementations Scalar
multiplication

Field Platform Frequency
(MHz) '

This work 28.4 (ms) GF(p) 192-bit FPGA 60.15
Xu et al. [55] 30 ms GF(2im - 2 6 4 - 1) ASIC 50

Table 4.13: The performance comparison for ECC over GF(p)

The performance comparison with other work of ECC over GF(p) is shown in

Table 4.13. Note that the prime field in [55] is fixed for GF{2in - 2 6 4 - 1) and for

specific elliptic curve with a = p — 3, which lacks flexibility.

4.8 Future Improvement

In the future, efforts will be made to speed up the proposed processor by the pipeline

technique. The number of clock cycles of each instruction will be reduced (Table

58

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

4.14), and the maximum frequency could reach around 90~120 MHz. It is estimated

that the time for the scalar multiplication over GF(2146) would be 3.4~4.6 ms.

instruction explanation clock
cycles

MuLGFP srcO, srcl, $rc2, dst multiplication over GF(p)
dst = srcO x srcl + src2 + C

3

Mul_GF2N srcO, s rc l , src2, dst multiplication over GF(2n)
dst — srcO x srcl © src2 © C

3

Mul_GF8 srcO, s rc l , A four multiplications over GF{28) 2
MixColumns srcO, s rc l , dst multiplications over GF(28) and the

result is XORed between the four bytes
2

SQUR-GFP srcO, s rc l , dst squaring over GF(p)
dst = srcO x srcO + srcl + C

3

SQUR-GF2N srcO, s rc l , dst squaring over GF(2n)
dst = srcO x srcO © srcl © C

3

SHFT barrel shift 2
XOR exclusive OR 2

ADD srcO, s rc l , dst addition 3
SUB srcO, s rc l , dst subtraction 3

LDA load into A (32-bit) 2 LDA
or load into AO, Al , A2, A3 (eight-bit) 1

STR store constant or A0,A1,A2,A3 1 STR
or store A or CA to dual-port RAM 2

LKUP lookup table 2
BRNZ bit, addr branch to addr if test bit is set 1/2

BRLE #const , addr branch to addr if index < #const 1/2
CLR clear the carry bit of adder/subtracter

or clear the carry register of multiplier 1
NOP 1

Table 4.14: Instruction set using pipeline technique

59

C h a p t e r 4 T h e C r y p t o g r a p h i c P r o c e s s o r A r c h i t e c t u r e

/ / S-box / / ShiftRows / / MixColumns
LDA *AR0+ LDA RegO, A3 MixColumns *AR0, *AR2+, A3
LKUP A3 LDA Reg5, A2 MixColumns *AR0, *AR2+, A2
LKUP A2 LDA ReglO, Al MixColumns *AR0, *AR2+, Al
LKUP Al LDA Regl5, AO MixColumns *AR0, *AR2+, AO
LKUP AO STR A, *AR0+ STR A, *AR0+
STR A3, RegO LDA Reg4, A3 MixColumns *AR0, *AR2+, A3
STR A2, Regl LDA Reg9, A2 MixColumns *AR0, *AR2+, A2
STR Al , Reg2 LDA Regl4, Al MixColumns *AR0, *AR2+, Al
STR AO, Reg3 LDA Reg3, AO MixColumns *AR0, *AR2+, AO
LDA *AR0+ STR A, *AR0+ STR A, *AR0+
LKUP A3 LDA Reg8, A3 MixColumns *AR0, *AR2+, A3
LKUP A2 LDA Regl3, A2 MixColumns *AR0, *AR2+, A2
LKUP Al LDA Reg2, Al MixColumns *AR0, *AR2+, A l
LKUP AO LDA Reg7, AO MixColumns *AR0, *AR2+, AO
STR A3, Reg4 STR A, *AR0+ STR A, *AR0+
STR A2, Reg5 LDA Regl2, A3 MixColumns *AR0, *AR2+, A3
STR Al , Reg6 LDA Regl, A2 MixColumns *AR0, *AR2+, A2
STR AO, Reg7 LDA Reg6, Al MixColumns *AR0, *AR2+, Al
LDA *AR0+ LDA Regl l , AO MixColumns *AR0, *AR2+, AO
LKUP A3 STR A, *AR0+ STR A, *AR0+
LKUP A2 / /AddRoundKey
LKUP Al XOR *AR0,*AR1+, A
LKUP AO STR A, *AR0+
STR A3, Reg8 XOR *AR0,*AR1+, A
STR A2, Reg9 STR A, *AR0+
STR Al , ReglO XOR *AR0,*AR1+, A
STR AO, Regl l STR A, *AR0+
LDA *AR0+
LKUP A3
LKUP A2
LKUP Al
LKUP AO
STR A2, Regl2
STR Al , Regl3
STR AO, Regl4
STR A3, Regl5

Table 4.15: Codes for AES

60

C h a p t e r 5

C o n c l u s i o n s a n d F u t u r e W o r k

5 . 1 C o n c l u s i o n s

The architecture of a novel cryptographic processor that supports both public-key

cryptosystem and secret-key cryptographic algorithms is proposed in this thesis. It

provides flexibility for applications where public-key cryptography is first required

for secure key exchange, and then secret-key cryptosystem is used for secure data

transportation. It is suitable for resource limited devices such as smart cards and

cellular phones where secure communication can be provided.

In the design, the common components used by ECC, AES and RC5 are ex

tracted. A novel multifunction multiplier is proposed which can perform multipli

cations over GF(p) and GF(2n) in ECC and multiplications over GF(28) used in

MixColumns operation in AES. The Reduced Area tree is utilized in the design of

the multiplier, which provides flexibility to deal with the three cases. The number of

reduction stages is the same as the one of only multiplications over GF(p) without

affecting the critical path of the multiplier.

The implementation of ECC is the most complex part in the design, which in

volves selections of algorithms for the scalar multiplication kP, the coordinates for

point in ECC, and the basis for finite fields over GF{p) and GF(2n). The Nonad-

jacent Form (NAF) is chosen for the scalar multiplication over GF(p) in modified

61

C h a p t e r 5 C o n c l u s i o n s a n d F u t u r e W o r k

Jacobian projective coordinates; the Montgomery scalar multiplication is selected

for the scalar multiplication over GF(2n) in projective coordinates. The polynomial

basis is used for both finite fields, which flexibly converts the long operands into

multiple-precision operations. This makes it possible that different elliptic curves

can be implemented without changing the hardware. It increases the security of the

processor considering that new elliptic curves should be adopted when the old one

is no longer secure.

The performance comparison indicates that the proposed hybrid crypto-processor

can achieve better performance than previous work.

5.2 Future Work

The proposed design can support other cryptographic algorithms. For example, the

RSA algorithm uses modular exponentiations which can be implemented through

repeated multiplications and squarings. In addition, many other cryptosystems

can be implemented after analyzing the algorithms, extracting common parts, and

adding new components to the processor.

The speed of the proposed processor can be much faster if the pipeline technique

is applied and the instruction set is further optimized.

62

B i b l i o g r a p h y

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAED: An encryption

scheme on the Diffe-Hellman problem. Meeting by IEEE PI363: Standard for

Public-Key Cryptography, 1998.

[2] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An implementation of elliptic

curve cryptosystems over F 2 i 5 5 . IEEE Journal On Selected Areas In Commu

nications, 11(5):804-813, June 1993.

[3] Kubilary Atasu, Luca Breveglieri, and Marco Macchetti. Efficient AES imple

mentations for ARM based platforms. In Proceedings of the 2004 ACM sym

posium on Applied computing, pages 841-845, Nicosia, Cyprus, March 2004.

[4] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, and J. Shokrollahi.

Tradeoff analysis of FPGA based elliptic curve cryptography. In IEEE Interna

tional Symposium on Circuits and Systems (ISCAS 2002), pages V-797-V-800,

May 2002.

[5] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography.

Cambridge University Press, 1999.

[6] Pawel Chodowiec and Kris Gaj. Very compact FPGA implementation of the

AES algorithm. In Cryptographic Hardware and Embedded Systems-CHES

2003, LNCS 2779, pages 319-333. Springer-Verlag, 2003.

63

[7] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve

exponentiation using mixed coordinate. In Advances in Cryptology - ASI-

ACRYPT'98: International Conference on the Theory and Application of Cryp

tology and Information Security, LNCS 1514, pages 51-65. Springer-Verlag,

1998.

[8] Whitfield Diffie and Martin Hellman. New direction in cryptography. IEEE

Transactions on Information theory, 22:644-654, 1976.

[9] Hans Eberle, Nils Gura, Sheueling Chang Shantz, Vipul Gupta, and Leonard

Rarick. A public-key cryptographic processor for RSA and ECC. In 15th

IEEE International Conference on Application-Specific Systems, Architectures

and Processors (ASAP'04), pages 202-219, September 2004.

[10] Lijun Gao, Sarvesh Shrivastava, and Gerald E. Sobelman. Elliptic curve scalar

multiplier design using FPGAs. In Cryptographic Hardware and Embedded Sys

tems: First International Workshop, CHES'99, LNCS 1717, pages 257-268.

Springer-Verlag, August 1999.

[11] James Goodman and Anantha P. Chandrakasan. An energy efficient reconfig-

urable public-key cryptography processor architecture. IEEE Journal of Solid-

state Circuits, 36(11):1808-1820, November 2001.

[12] Johann Grofischadl. A bit-serial unified multiplier architecture for finite field

GF(p) and GF(2m). In Cryptographic Hardware and Embedded Systems CHES

2001, LNCS 2162, pages 202-219. Springer-Verlag, May 2001.

[13] I. N. Herstein. Abstract Algebra. Macmillan Publishing Company, 1990.

[14] IEEE 1363-2000: Standard specifications for public-key cryptography, January

2000. available: http://grouper.ieee.org/groups/1363/P1363.

64

http://grouper.ieee.org/groups/1363/P1363

[15] Don Johnson and Alfred Menezes. The elliptic curve digital signature algorithm

(ECDSA). Technical Report CORR99-34, Deptment of C&O, University of

Waterloo, Canada, February 2000.

[16] Marc Joye and Sung-Ming Yen. Optimal left-to-right binary signed-digit re-

coding. IEEE Transactions on Computers, 49:740-748, 2000.

[17] B. S. Kalinski and Y. L. Yin. On the security of the RC5 encryption algorithm.

CryptoBytes, 1(2):13-14, 1995.

[18] Ho Won Kim and Sunggu Lee. Design and implementation of a private and

public key crypto processor and its application to a security system. IEEE

Transaction on Consumer Electronics, 50(1):214—224, February 2004.

[19] Neal Koblitz. Elliptic curve cryptosystems. Mathematic of Computation, 48:

203-209, 1987.

[20] Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic curve

cryptography. Designs, Codes and Cryptography, 19:173-193, 2000.

[21] Cetin Kaya K o q , Tolga Acar, and Burton S. Kaliski. Analyzing and computing

Montgomery multiplication algorithms. IEEE Micro, 16(3):26-33, June 1996.

[22] Cetin Kaya Kocj, Tolga Acar, and Burton S. Kaliski. Montgomery multiplication

in GF(2k). Designs, Codes and Cryptography, 14(l):57-69, April 1998.

[23] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong. FPGA implementation

of a microcoded elliptic curve cryptographic processor. In 2000 IEEE Sympo

sium on Field-Programmable Custom Computing Machines, pages 68-76, April

2000.

[24] Hua Li and Zac Friggstad. An efficient architecture for the AES mix columns

operation. In IEEE International Symposium on Circuits and Systems (IS-

CAS05), pages 4637-4840, May 2005.

65

[25] Hua Li and Jianzhou Li. A high performance sub-pipelined architecture for

AES. In 2005 IEEE International Conference on Computer Design (ICCD05),

pages 491-496, October 2005.

[26] Hua Li, Jianzhou Li, and Jing Yang. An efficient and reconfigurable architecture

for RC5. In 18th Annual Canadian Conference on Electrical and Computer

Engineering (CCECE05), pages 1652-1655, May 2005.

[27] Julio Lopez and Ricardo Dahab. Fast multiplication on elliptic curves over

GF(2m) without precomputation. In Cryptographic Hardware and Embedded

Systems: First International Workshop, CHES'99, LNCS 1717, pages 316-327.

Springer-Verlag, August 1999.

[28] Julio Lopez and Ricardo Dahab. An overview of elliptic curve cryptography.

Technical report, Institute of Computing, State University of Campinas, Brazil,

May 2000.

[29] Stefan Mangard, Manfred Aigner, and Sandra Dominikus. A highly regular

and scalable AES hardware architecture. IEEE Transactions on Computers,

52:483-491, 2003.

[30] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[31] Victor Miller. Uses of elliptic curves in cryptography. In Advances in Cryptol-

ogy:Proceedings of CRYPTO'85, LNCS 218, pages 417-426, New York, 1985.

Springer-Verlag.

[32] Peter L. Montgomery. Modular multiplication without trial division. Mathe

matics of Computation, 44(170):519-521, April 1985.

[33] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of fac

torization. Mathematics of Computation, 48:243-264, 1987.

66

[34] R C Mullin, I M Onyszchuk, S A Vanstone, and R M Wilson. Optimal normal

bases in GF{pn). Discret Applied Mathematics, 22(2):149-161, February 1989.

[35] NIST. Federal information processing standard 197: The

Advanced Encryption Standard (AES), 2001. available:

http://csrc.nist.gov/publications/fips/fipsl97/fipsl97.pdf.

[36] Souichi Okada, Naoya Torii, Kouichi Itoh, and Masahiko Takenaka. Implemen

tation of elliptic curve cryptographic coprocessor over GF(2m) on an FPGA.

In Cryptographic Hardware and Embedded Systems-CHES 2000, LNCS 1965,

pages 25-40. Springer-Verlag, August 2000.

[37] J. Omura and J. Massey. Computational method and apparatus for finite field

arithmetic. US Patent Number 4,587,627, May 1986.

[38] Gerardo Orlando and Christof Paar. A high-performance reconfigurable el

liptic curve processor for GF(2m). In Cryptographic Hardware and Embedded

Systems-CHES 2000, LNCS 1965, pages 41-56. Springer-Verlag, August 2000.

[39] Gerardo Orlando and Christof Paar. A scalable GF{p) elliptic curve processor

architecture for programmable hardware. In Cryptographic Hardware and Em

bedded Systems CHES 2001, LNCS 2162, pages 348-363. Springer-Verlag, May

2001.

[40] Adrian Perrig, Robert Szewczyk, Victor Wen, David E. Culler, and J. D. Tygar.

SPINS: Security protocols for sensor networks. In Proceedings of the 7th annual

international conference on mobile computing and networking, pages 189-199,

Rome, Italy, 2001. ACM Press.

[41] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa

tures and public-key cryptosystems. Communications of the ACM, 21:120-126,

1978.

67

http://csrc.nist.gov/publications/fips/fipsl97/fipsl97.pdf

[42] R. L. Rivest. The RC5 encryption algorithm. In Proceedings of the 1994 Leuven

Workshop on Fast Software Encryption, pages 86-96. Springer-Verlag, 1995.

[43] Akashi Satoh and Kohji Takano. A scalable dual-field elliptic curve crypto

graphic processor. IEEE Transactions on Computers, 52(4):449-460, April

2003.

[44] Erkay Savas, Alexandre F. Tenca, and Cetin Kaya K o q . A scalable and uni

fied multiplier architecture for finite fields GF(p) and GF(2m). In Crypto

graphic Hardware and Embedded Systems-CHES 2000, LNCS 1965, pages 277-

292. Springer-Verlag, August 2000.

[45] Julian Brently Sessions. Fast software implementations of block ciphers. Mas

ter's thesis, Oregon State University, Department of Electrical & Computer

Engineering, November 1998.

[46] N. Sklavos, C. Machas, and O. Koufopavlou. Area optimized architecture and

VLSI implementation of RC5 encryption algorithm. In Proceedings of 2003 10th

IEEE International Conference on Electronics, Circuits and Systems (ICECS

2003), pages 172-175 Vol.1, December 2003.

[47] N. Sklavos, G. Selimis, and O. Koufoupavlou. Bulk encryption crypto-processor

for smart cards: design and implementation. In Proceedings of the 2004 Hth

IEEE International Conference on Electronics, Circuits and systems (ICECS

2004), pages 579-582, 2004.

[48] Jerome A. Solinas. An improved algorithm for arithmetic on a family of elliptic

curves. In Advances in Cryptology - CRYPTO'97: 17th Annual International

Cryptology Conference, LNCS 1294, pages 357-371. Springer-Verlag, 1997.

[49] William Stallings. Cryptography and Network Security. Prentice Hall, third

edition, 2003.

68

[50] Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-

Didier Legat. Efficient implementation of Rijndael encryption in reconfigurable

hardware:improvements and design tradeoffs. In Cryptographic Hardware and

Embedded Systems-CHES 2003, LNCS 2779, pages 334-350. Springer-Verlag,

2003.

[51] James E. Stine. Digital Computer Arithmetic Datapath Design Using Verilog

HDL. Kluwer Academic Publishers, 2004.

[52] Scott Vanstone. Responses to NIST's proposal. Communications of the ACM,

35(7):50-52, 1992.

[53] Ingrid Verbauwhede, Patrick Schaumont, and Henry Kuo. Design and perfor

mance testing of a 2.29 Gb/s Rijndael processor. IEEE Journal of Solid-State

Circuits, 38 (3): 569-572, March 2003.

[54] Andre Weimerskirch, Christof Paar, and Sheueling Chang Shantz. Elliptic

curve cryptography on a palm OS device. In Proceedings of the 6th Australasian

Conference on Information Security and Privacy, LNCS 2119, pages 502-513,

Sydney, Australia, July 2001. Springer-Verlag.

[55] Sheng-Bo Xu and Lejla Batina. Efficient implementation of elliptic curve cryp

tosystems on an ARM7 with hardware accelerator. In Proceedings of the 4-th In

ternational Conference on Information Security, pages 266-279, October 2001.

69

A p p e n d i x A

P a r t o f V e r l i o g H D L c o d e s

A.l Verilog HDL codes for multiplier

module RA(S,MUL8,A,B,C,D,sig_sel,A8,A9,A10,All,A12,A13,A14);

input [31:0] B,D;

input [32:0] A,C;

input sig-sel; input [7:0] A8,A9,A10,A11,A12,A13,A14;

output [7:0] MUL8;

output [64:0] S;

wire [32:0] P31.P30, P29, P28, P27, P26, P25, P24,

P23,P22,P21,P20,P19,P18,P17,P16,P15,P14,P13,P12,P11,P10,P9,

P8,P7,P6,P5,P4,P3,P2,P1,P0;

wire [58:0] Sum;

wire [64:0] mul_P_64,mul_2n_64;

/ / Partial Product Generation

PP PP1(P31,P30, P29, P28, P27, P26, P25, P24,

P23,P22,P21,P20,P19,P18,P17,P16,P15,P14,P13,P12,P11,

P10,P9,P8,P7,P6,P5,P4,P3,P2,P1,P0,A, B);

/ /Par t ia l Product Reduction

/ /s tage2

70

//first 8*8

IIIIIIIII11IIIII ha (Sum, Cout,A, B);

ha HA1(NN2_0_1,NN2_1_2,P0[1],P1[0]);

2],P1[1

3],PI [2

1],P1[3

5], P I [4

2],P4[1

3],P1[5

3],P4[2;

7],P1[6

4],P4[3

],P2[o;

],P2[1

] ,P2[2;

],P2[3;

],P5[o;

],P2[4

],P5[1

],P2[5;

],P5[2

fa FA1(NN2_0-2,NN2_1_3,P0[2

fa FA2(NN2_0_3,NN2_1_4,P0[3

fa FA3(NN2_0_4,NN2_1_5,P0[4

fa FA4(NN2_0_5,NN2_1_6,P0[5;

fa FA5(NN2_2_5,NN2_3_6,P3[2

fa FA6(NN2_0_6,NN2_1_7,P0[6

fa FA7(NN2_2_6,NN2_3_7,P3[3

fa FA8(NN2_0_7,NN2_1_8,P0[7

fa FA9(NN2_2_7,NN2_3_8,P3[4

ha HA2(NN2_4_7,NN2_5_8,P6[1],P7[0]);

fa FA10(NN2_0_8,NN2_1_9,P1[7],P2[6],P3[5]);

fa FA11(NN2^_8,NN2_3_9,P4[4],P5[3],P6[2]);

fa FA12(NN2_0_9,NN2_1_10,P2[7],P3[6],P4[5]);

fa FA13(NN2_2_9,NN2_3_10,P5[4],P6[3],P7[2]);

fa FA14(NN2_0_10,NN2_1_11,P3[7],P4[6],P5[5]);

fa FA15(NN2_0_11,NN2_1_12,P4[7],P5[6],P6[5]);

fa FA16(NN2_0_12,NN2_1_13,P5[7],P6[6],P7[5]);

/ /second 8*8

faFA17(NN2_0_18,NN2_l_19,P8[10],P9[9],P10[8]);

fa FA18(NN2_0_19,NN2_1_20,P8[11],P9[10],P10[9]);

fa FA19(NN2_0_20,NN2_1_21,P8[12],P9[11],P10[10])

fa FA20(NN2_0_21,NN2_1_22,P8[13],P9[12],P10[11])

fa FA21(NN2_2_21,NN2_3_22,P11[10],P12[9],P13[8])

fa FA22(NN2_0_22,NN2_1_23,P8[14],P9[13],P10[12])

fa FA23(NN2^_22,NN2_3_23,P11[11],P12[10],P13[9]);

71

fa FA24(NN2_0_23,NN2_1_24,P8[15],P9[14],P10[13]);

fa FA25(NN2^_23,NN2_3_24,P11[12],P12[11],P13[10]);

ha HA4(NN2_4_23,NN2_5_24,P14[9],P15[8]);

fa FA26(NN2_0_24,NN2_1_25,P9[15],P10[14],P11[13]);

fa FA27(NN2^_24,NN2_3_25,P12[12],P13[11],P14[10]);

fa FA28(NN2_0_25,NN2_1_26,P10[15],P11[14],P12[13]);

fa FA29(NN2_2_25,NN2J_26,P13[12],P14[11],P15[10]);

fa FA30(NN2_0_26,NN2_1_27,P11[15],P12[14],P13[13]);

fa FA31(NN2_0_27,NN2_1_28,P12[15],P13[14],P14[13]);

fa FA32(NN2_0_28,NN2_1_29,P13[15],P14[14],P15[13]);

/ / th i rd 8*8

ha HA5(NN2_0_33,NN2_1_34,P16[17],P17[16]);

fa FA33(NN2_0_34,NN2_1_35,P16[18],P17[17],P18[16]);

fa FA34(NN2_0_35,NN2_1_36,P16[19],P17[18],P18[17]);

faFA35(NN2_0_36,NN2_l_37,P16[20],P17[19],P18[18]);

fa FA36(NN2_0_37,NN2_1_38,P16[21],P17[20],P18[19]);

fa FA37(NN2^_37,NN2_3_38,P19[18],P20[17],P21[16]);

fa FA38(NN2_0_38,NN2_1_39,P16[22],P17[21],P18[20]);

fa FA39(NN2^_38,NN2_3_39,P19[19],P20[18],P21[17]);

fa FA40(NN2_0_39,NN2_1_40,P16[23],P17[22],P18[21]);

fa FA41(NN2^_39,NN2_3_40,P19[20],P20[19],P21[18]);

ha HA94(NN2_4_39,NN2_5_40,P22[17],P23[16]);

fa FA42(NN2_0_40,NN2_1_41,P17[23],P18[22],P19[21]);

fa FA43(NN2_2_40,NN2-3_41,P20[20],P21[19],P22[18]);

fa FA44(NN2_0_41,NN2_1_42,P18[23],P19[22],P20[21]);

fa FA45(NN2^_41,NN2_3_42,P21[20],P22[19],P23[18]);

fa FA46(NN2_0_42,NN2_1_43,P19[23],P20[22],P21[21]);

fa FA47(NN2_0_43,NN2_1_44,P20[23],P21[22],P22[21]);

72

fa FA48(NN2_0_44,NN2_1_45,P21[23],P22[22],P23[21]);

ha HA93(NN2_0_45,NN2_1_46,P22[23],P23[22]);

/ / fourth 8*8

ha HA6(NN2_0_49,NN2_1_50,P24[25],P25[24]);

fa FA49(NN2_0_50,NN2_1.51,P24[26],P25[25],P26[24]

fa FA50(NN2_0_51,NN2_1.52,P24[27],P25[26],P26[25]

fa FA51(NN2_0_52,NN2_1_53,P24[28],P25[27],P26[26]

fa FA52(NN2_0_53,NN2_1_54,P24[29],P25[28],P26[27]

fa FA53(NN2^_53,NN2_3_54,P27[26],P28[25],P29[24]

fa FA54(NN2_0_54,NN2_1_55,P24[30],P25[29],P26[28]

fa FA55(NN2_2_54,NN2_3_55,P27[27],P28[26],P29[25]

fa FA56(NN2_0_55,NN2_1_56,P24[31],P25[30],P26[29]

fa FA57(NN2_2_55,NN2_3_56,P27[28],P28[27],P29[26]

ha HA7(NN2_4_55,NN2_5_56,P30[25],P31[24]);

fa FA58(NN2_0_56,NN2_1_57,P25[31],P26[30],P27[29]

faFA59(NN2^_56,NN2.3_57,P28[28],P29[27],P30[26]

fa FA60(NN2_0_57,NN2_1_58,P26[31],P27[30],P28[29]

fa FA61(NN2_2_57,NN2_3_58,P29[28],P30[27],P31[26]

fa FA62(NN2_0_58,NN2_1_59,P27[31],P28[30],P29[29]

fa FA63(NN2_0_59,NN2_1_60,P28[31],P29[30],P30[29]

fa FA64(NN2_0_60,NN2_1_61,P29[31],P30[30],P31[29]

/
fa FA65(N2_0_8,N2_1_9,P0[8],P8[0],C[8]); / /col 9

faFA66(N2_0_9,N2_l_10,P0[9],Pl[8],P8[l]);

fa FA67(N2_2_9,N2_3_10,P9[0],C[9], D[9]); / /col 10

fa FA68(N2_0_10,N2_1.11,P0[10],P1[9],P2[8]);

fa FA69(N2_2_10,N2_3_11,P8[2],P9[1],P10[0]); / /col 11

73

faFA70(N2_0_ll,N2_l_12,P0[ll],Pl[10],P2[9]);

fa FA71(N2_2_11,N2_3_12,P3[8],P8[3],P9[2]);

fa FA72(N2_4_11,N2_5_12,P10[1],P11[0],C[11]); / /col 12

fa FA73(N2_0_12,N2_1_13,P0[12],P1[11],P2[10]);

fa FA74(N2_2_12,N2_3_13,P3[9],P4[8],P8[4]);

fa FA75(N2_4_12,N2_5_13,P9[3],P10[2],P11[1]);

fa FA76(N2_6_12,N2_7_13,P12[0],C[12],D[12]); / /co l 13

fa FA77(N2_0_13,N2_1_14,P0[13],P1[12],P2[11]);

fa FA78(N2_2_13,N2_3_14,P3[10],P4[9],P5[8]);

fa FA79(N2_4_13,N2_5_14,P8[5],P9[4],P10[3]);

fa FA80(N2_6_13,N2_7_14,P11[2],P12[1],P13[0]); / /col 14

fa FA81(N2JO_14,N2_1.15,PO[14],P1[13],P2[12]);

fa FA82(N2_2_14,N2_3_15,P3[11],P4[10],P5[9]);

fa FA83(N2_4_14,N2_5_15,P6[8],P8[6],P9[5]);

fa FA84(N2j6_14,N2_7_15,P10[4],P11[3],P12[2]);

fa FA85(N2_8_14,N2_9_15,P13[1],P14[0],C[14]); / /col 15

fa FA86(N2_0_15,N2_1_16,P0[15],P1[14],P2[13]);

fa FA87(N2_2_15,N2_3_16,P3[12],P4[11],P5[10]);

fa FA88(N2_4_15,N2_5_16,P6[9],P7[8],P8[7]);

fa FA89(N2_6_15,N2_7_16,P9[6],P10[5],P11[4]);

fa FA90(N2_8_15,N2_9_16,P12[3],P13[2],P14[1]);

fa FA91(N2_10_15,N2_11_16,P15[0],C[15],D[15]);

fa FA92(N2_0_16,N2_1_17,P0[16],P1[15],P2[14]);

fa FA93(N2_2_16,N2_3_17,P3[13],P4[12],P5[11]);

fa FA94(N2_4_16,N2_5_17,P6[10],P7[9],P9[7]);

fa FA95(N2 j6_16,N2.7_17,P10[6] ,P11[5] ,P12[4]) ;

fa FA96(N2_8_16,N2_9_17,P13[3],P14[2],P15[1]);

fa FA97(N2_10_16,N2_11_17,P16[0],C[16],D[16]);

74

fa F A 9 8 (N 2 j 0 . 1 7 , N 2 _ 1 . 1 8 , P 0 [1 7] , P 1 [1 6] , P 2 [1 5]) ;

fa F A 9 9 (N 2 _ 2 _ 1 7 , N 2 _ 3 _ 1 8 , P 3 [1 4] , P 4 [1 3] , P 5 [1 2]) ;

fa F A 1 0 0 (N 2 _ 4 _ 1 7 , N 2 _ 5 _ 1 8 , P 6 [1 1] , P 7 [1 0] , P 1 0 [7] ;

fa FA101(N2 j6 .17 ,N2_7_18 ,P11[6] ,P12[5] ,P13[4] ;

fa F A 1 0 2 (N 2 J 8 _ 1 7 , N 2 J 9 . 1 8 , P 1 4 [3] , P 1 5 [2] , P 1 6 [1] ;

fa F A 1 0 3 (N 2 _ 1 0 _ 1 7 , N 2 _ 1 1 _ 1 8 , P 1 7 [0] , C [1 7] , D [1 7]

fa F A 1 0 4 (N 2 _ 0 _ 1 8 , N 2 _ 1 _ 1 9 , P 0 [1 8] , P 1 [1 7] , P 2 [1 6] ;

fa F A 1 0 5 (N 2 _ 2 _ 1 8 , N 2 J _ 1 9 , P 3 [1 5] , P 4 [1 4] , P 5 [1 3] ;

fa F A 1 0 6 (N 2 _ 4 _ 1 8 , N 2 _ 5 _ 1 9 , P 6 [1 2] , P 7 [1 1] , P 1 1 [7] ;

fa FA107(N2 j6_18 ,N2_7 .19 ,P12[6] ,P13[5] ,P14[4] ;

fa F A 1 0 8 (N 2 J 8 - 1 8 , N 2 J 9 _ 1 9 , P 1 5 [3] , P 1 6 [2] , P 1 7 [1] ;

fa F A 1 0 9 (N 2 _ 1 0 _ 1 8 , N 2 _ 1 1 _ 1 9 , P 1 8 [0] , C [1 8] , D [1 8]

fa F A 1 1 0 (N 2 _ 0 _ 1 9 , N 2 _ 1 _ 2 0 , P 0 [1 9] , P 1 [1 8] , P 2 [1 7] ;

fa F A 1 1 1 (N 2 ^ _ 1 9 , N 2 _ 3 _ 2 0 , P 3 [1 6] , P 4 [1 5] , P 5 [1 4] ;

fa F A 1 1 2 (N 2 _ 4 _ 1 9 , N 2 _ 5 _ 2 0 , P 6 [1 3] , P 7 [1 2] , P 1 2 [7] ;

fa F A 1 1 3 (N 2 _ 6 _ 1 9 , N 2 _ 7 _ 2 0 , P 1 3 [6] , P 1 4 [5] , P 1 5 [4] ;

fa F A 1 1 4 (N 2 _ 8 _ 1 9 , N 2 . 9 _ 2 0 , P 1 6 [3] , P 1 7 [2] , P 1 8 [1] ;

fa F A 1 1 5 (N 2 _ 1 0 . 1 9 , N 2 _ 1 1 _ 2 0 , P 1 9 [0] , C [1 9] , D [1 9]

fa F A 1 1 6 (N 2 _ 0 _ 2 0 , N 2 _ 1 _ 2 1 , P 0 [2 0] , P 1 [1 9] , P 2 [1 8] ;

fa F A 1 1 7 (N 2 ^ _ 2 0 , N 2 _ 3 - 2 1 , P 3 [1 7] , P 4 [1 6] , P 5 [1 5] ;

fa F A 1 1 8 (N 2 _ 4 _ 2 0 , N 2 _ 5 _ 2 1 , P 6 [1 4] , P 7 [1 3] , P 1 3 [7] ;

fa F A 1 1 9 (N 2 _ 6 _ 2 0 , N 2 _ 7 _ 2 1 , P 1 4 [6] , P 1 5 [5] , P 1 6 [4] ;

fa FA120(N2 J 8_20 ,N2_9J21 ,P17 [3] ,P18 [2] ,P19 [1] ;

fa F A 1 2 1 (N 2 _ 1 0 _ 2 0 , N 2 _ 1 1 _ 2 1 , P 2 0 [0] , C [2 0] , D [2 0]

fa F A 1 2 2 (N 2 _ 0 _ 2 1 , N 2 _ 1 _ 2 2 , P 0 [2 1] , P 1 [2 0] , P 2 [1 9] ;

fa F A 1 2 3 (N 2 _ 2 _ 2 1 , N 2 _ 3 _ 2 2 , P 3 [1 8] , P 4 [1 7] , P 5 [1 6] ;

fa F A 1 2 4 (N 2 _ 4 _ 2 1 , N 2 . 5 _ 2 2 , P 6 [1 5] , P 7 [1 4] , P 1 4 [7])

fa F A 1 2 5 (N 2 _ 6 _ 2 1 , N 2 _ 7 _ 2 2 , P 1 5 [6] , P 1 6 [5] , P 1 7 [4])

7 5

fa FA126(N2^_21,N2_9_22,P18[3],P19[2],P20[1]);

fa FA127(N2_10_21,N2_11_22,P21[0],C[21],D[21]);

fa FA128(N2_0_22,N2_1_23,P0[22],P1[21],P2[20]);

fa FA129(N2^_22,N2_3_23,P3[19],P4[18],P5[17]);

fa FA130(N2_4_22,N2_5_23,P6[16],P7[15],P15[7]);

faFA131(N2_6_22,N2_7_23,P16[6],P17[5],P18[4]);

fa FA132(N2 J8^2,N2_9_23,P19[3],P20[2],P21[1]);

fa FA133(N2_10_22,N2_11_23,P22[0],C[22],D[22]);

fa FA134(N2_0_23,N2_1_24,P0[23],P1 [22],P2[21]);

fa FA135(N2^_23,N2_3_24,P3[20],P4[19],P5[18]);

fa FA136(N2_4_23,N2_5_24,P6[17],P7[16],P16[7]);

fa FA137(N2_6_23,N2_7_24,P17[6],P18[5],P19[4]);

fa FA138(N2J8_23,N2_9_24,P20[3],P21[2],P22[1]);

fa FA139(N2_10_23,N2_11.24,P23[0],C[23],D[23]);

fa FA140(N2JD_24,N2_1_25,P0[24],P1[23],P2[22]);

fa FA141(N2^_24,N2.3_25,P3[21],P4[20],P5[19]);

fa FA142(N2_4_24,N2_5_25,P6[18],P7[17],P8[16]);

fa FA143(N2_6_24,N2_7_25,P16[8],P17[7],P18[6]);

fa FA144(N2^8_24,N2_9_25,P19[5],P20[4],P21[3]);

fa FA145(N2_10_24,N2_11_25,P22[2],P23[1],P24[0]);

fa FA146(N2_0_25,N2_1_26,P0[25],P1 [24],P2[23]);

fa FA147(N2_2_25,N2J_26,P3[22],P4[21],P5[20]);

fa FA148(N2_4_25,N2_5_26,P6[19],P7[18],P8[17]);

fa FA149(N2_6_25,N2_7_26,P9[16],P16[9],P17[8]);

fa FA150(N2^_25,N2_9_26,P18[7],P19[6],P20[5]);

fa FA151(N2_10_25,N2_11_26,P21[4],P22[3],P23[2]);

fa FA152(N2_12_25,N2.13_26,P24[1],P25[0],C[25]);

fa FA153(N2_0_26,N2_1_27,P0[26],P1[25],P2[24]);

76

fa FA154(N2_2_26,N2_3_27,P3[23],P4[22],P5[21]);

fa FA155(N2_4_26,N2_5_27,P6[20],P7[19],P8[18]);

fa FA156(N2J6_26,N2_7_27,P9[17],P10[16],P16[10]);

faFA157(N2 J8-26,N2_9_27,P17[9],P18[8],P19[7]);

fa FA158(N2_10_26,N2_11_27,P20[6],P21[5],P22[4]);

fa FA159(N2_12_26,N2_13_27,P23[3],P24[2],P25[1]);

fa FA160(N2_14_26,N2_15_27,P26[0],C[26],D[26]);

fa FA161(N2_0_27,N2_1_28,P0[27],P1[26],P2[25]);

fa FA162(N2^_27,N2_3_28,P3[24],P4[23],P5[22]);

fa FA163(N2_4_27,N2_5_28,P6[21],P7[20],P8[19]);

fa FA164(N2_6_27,N2_7_28,P9[18],P10[17],P11[16]);

fa FA165(N2^_27,N2_9_28,P16[11],P17[10],P18[9]);

fa FA166(N2_10_27,N2_11_28,P19[8],P20[7],P21[6]);

fa FA167(N2_12_27,N2_13_28,P22[5],P23[4],P24[3]);

fa FA168(N2_14_27,N2_15_28,P25[2],P26[1],P27[0]);

faFA169(N2J0_28,N2_l_29,PO[28],Pl[27],P2[26]);

fa FA170(N2_2_28,N2_3_29,P3[25],P4[24],P5[23]);

fa FA171(N2_4_28,N2_5_29,P6[22],P7[21],P8[20]);

fa FA172(N2_6_28,N2_7_29,P9[19],P10[18],P11[17]);

fa FA173(N2^_28,N2_9_29,P12[16],P16[12],P17[11]);

fa FA174(N2_10_28,N2_11_29,P18[10],P19[9],P20[8]);

fa FA175(N2_12_28,N2_13_29,P21[7],P22[6],P23[5]);

fa FA176(N2_14_28,N2_15_29,P24[4],P25[3],P26[2]);

fa FA177(N2_16_28,N2_17_29,P27[1],P28[0],C[28]);

fa FA178(N2_0_29,N2_1_30,P0[29],P1[28],P2[27]);

fa FA179(N2_2_29,N2_3-30,P3[26],P4[25],P5[24]);

fa FA180(N2.4_29,N2_5_30,P6[23],P7[22],P8[21]);

fa FA181(N2.6_29,N2_7_30,P9[20],P10[19],P11[18]);

77

fa F A 1 8 2 (N 2 J 8 _ 2 9 , N 2 _ 9 J 0 , P 1 2 [1 7] , P 1 3 [1 6] , P 1 6 [1 3]) ;

fa F A 1 8 3 (N 2 _ 1 0 _ 2 9 , N 2 _ 1 1 _ 3 0 , P 1 7 [1 2] , P 1 8 [1 1] , P 1 9 [1 0]) ;

fa F A 1 8 4 (N 2 _ 1 2 _ 2 9 , N 2 _ 1 3 _ 3 0 , P 2 0 [9] , P 2 1 [8] , P 2 2 [7]) ;

fa F A 1 8 5 (N 2 _ 1 4 _ 2 9 , N 2 _ 1 5 _ 3 0 , P 2 3 [6] , P 2 4 [5] , P 2 5 [4]) ;

fa F A 1 8 6 (N 2 _ 1 6 _ 2 9 , N 2 _ 1 7 _ 3 0 , P 2 6 [3] , P 2 7 [2] , P 2 8 [1]) ;

fa F A 1 8 7 (N 2 _ 1 8 _ 2 9 , N 2 _ 1 9 _ 3 0 , P 2 9 [0] , C [2 9] , D [2 9]) ;

fa F A 1 8 8 (N 2 j 0 _ 3 0 , N 2 _ 1 _ 3 1 , P 0 [3 0] , P 1 [2 9] , P 2 [2 8]) ;

fa F A 1 8 9 (N 2 _ 2 _ 3 0 , N 2 _ 3 _ 3 1 , P 3 [2 7] , P 4 [2 6] , P 5 [2 5]) ;

fa F A 1 9 0 (N 2 _ 4 _ 3 0 , N 2 _ 5 _ 3 1 , P 6 [2 4] , P 7 [2 3] , P 8 [2 2]) ;

fa F A 1 9 1 (N 2 _ 6 _ 3 0 , N 2 _ 7 _ 3 1 , P 9 [2 1] , P 1 0 [2 0] , P 1 1 [1 9]) ;

fa F A 1 9 2 (N 2 _ 8 _ 3 0 , N 2 _ 9 _ 3 1 , P 1 2 [1 8] , P 1 3 [1 7] , P 1 4 [1 6]) ;

fa F A 1 9 3 (N 2 _ 1 0 _ 3 0 , N 2 _ 1 1 _ 3 1 , P 1 6 [1 4] , P 1 7 [1 3] , P 1 8 [1 2]) ;

fa F A 1 9 4 (N 2 _ 1 2 _ 3 0 , N 2 _ 1 3 _ 3 1 , P 1 9 [1 1] , P 2 0 [1 0] , P 2 1 [9]) ;

fa F A 1 9 5 (N 2 _ 1 4 _ 3 0 , N 2 _ 1 5 _ 3 1 , P 2 2 [8] , P 2 3 [7] , P 2 4 [6]) ;

fa F A 1 9 6 (N 2 _ 1 6 _ 3 0 , N 2 _ 1 7 _ 3 1 , P 2 5 [5] , P 2 6 [4] , P 2 7 [3]) ;

fa F A 1 9 7 (N 2 _ 1 8 _ 3 0 , N 2 _ 1 9 _ 3 1 , P 2 8 [2] , P 2 9 [1] , P 3 0 [0]) ;

fa F A 1 9 8 (N 2 ^ 0 _ 3 0 , N 2 _ 2 1 _ 3 1 , P 1 5 [1 5] , C [3 0] , D [3 0]) ;

fa F A 1 9 9 (N 2 _ 0 _ 3 1 , N 2 _ 1 _ 3 2 , P 0 [3 1] , P 1 [3 0] , P 2 [2 9]) ;

fa F A 2 0 0 (N 2 _ 2 _ 3 1 , N 2 _ 3 _ 3 2 , P 3 [2 8] , P 4 [2 7] , P 5 [2 6]) ;

fa F A 2 0 1 (N 2 _ 4 _ 3 1 , N 2 _ 5 _ 3 2 , P 6 [2 5] , P 7 [2 4] , P 8 [2 3]) ;

fa F A 2 0 2 (N 2 _ 6 _ 3 1 , N 2 _ 7 _ 3 2 , P 9 [2 2] , P 1 0 [2 1] , P 1 1 [2 0]) ;

fa F A 2 0 3 (N 2 J 8 _ 3 1 , N 2 _ 9 _ 3 2 , P 1 2 [1 9] , P 1 3 [1 8] , P 1 4 [1 7]) ;

fa F A 2 0 4 (N 2 _ 1 0 _ 3 1 , N 2 _ 1 1 _ 3 2 , P 1 5 [1 6] , P 1 6 [1 5] , P 1 7 [1 4]) ;

fa F A 2 0 5 (N 2 _ 1 2 _ 3 1 , N 2 _ 1 3 _ 3 2 , P 1 8 [1 3] , P 1 9 [1 2] , P 2 0 [1 1]) ;

fa F A 2 0 6 (N 2 _ 1 4 _ 3 1 , N 2 _ 1 5 _ 3 2 , P 2 1 [1 0] , P 2 2 [9] , P 2 3 [8]) ;

fa F A 2 0 7 (N 2 _ 1 6 _ 3 1 , N 2 _ 1 7 _ 3 2 , P 2 4 [7] , P 2 5 [6] , P 2 6 [5]) ;

fa F A 2 0 8 (N 2 _ 1 8 _ 3 1 , N 2 _ 1 9 _ 3 2 , P 2 7 [4] , P 2 8 [3] , P 2 9 [2]) ;

fa F A 2 0 9 (N 2 ^ 0 _ 3 1 , N 2 _ 2 1 _ 3 2 , P 3 0 [1] , P 3 1 [0] , C [3 1]) ;

7 8

fa FA210(N2_0_32,N2_1_33,P1[31],P2[30],P3[29]);

fa FA211 (N2_2_32,N2_3_33,P4[28],P5[27],P6[26]);

fa FA212(N2_4_32,N2_5_33,P7[25],P8[24],P9[23]);

fa FA213(N2_6_32,N2_7_33,P10[22],P11[21],P12[20]);

fa FA214(N2^_32,N2_9_33,P13[19],P14[18],P15[17]);

fa FA215(N2_10_32,N2_11_33,P17[15],P18[14],P19[13]);

fa FA216(N2_12_32,N2_13_33,P20[12],P21[11],P22[10]);

fa FA217(N2_14_32,N2_15_33,P23[9],P24[8],P25[7]);

fa FA218(N2_16_32,N2_17_33,P26[6],P27[5],P28[4]);

fa FA219(N2_18_32,N2_19_33,P29[3],P30[2],P31[1]);

fa FA220(N2_20_32,N2_21_33,P16[16],P0[32],C[32]);

fa FA221(N2_0_33,N2_1_34,P2[31],P3[30],P4[29]);

faFA222(N2^_33,N2_3_34,P5[28],P6[27],P7[26]);

fa FA223(N2_4_33,N2_5_34,P8[25],P9[24],P10[23]);

fa FA224(N2_6_33,N2_7_34,P11[22],P12[21],P13[20]);

fa FA225(N2^_33,N2_9_34,P14[19],P15[18],P18[15]);

fa FA226(N2_10_33,N2_11_34,P19[14],P20[13],P21[12]);

fa FA227(N2_12_33,N2_13_34,P22[11],P23[10],P24[9]);

fa FA228(N2_14_33,N2_15_34,P25[8],P26[7],P27[6]);

fa FA229(N2_16_33,N2_17.34,P28[5],P29[4],P30[3]); / /col 34

fa FA230(N2_0_34,N2_1_35,P3[31],P4[30],P5[29]);

fa FA231 (N2^_34,N2_3_35,P6[28],P7[27],P8[26]);

fa FA232(N2_4_34,N2_5_35,P9[25],P10[24],P11[23]);

fa FA233(N2_6_34,N2_7_35,P12[22],P13[21],P14[20]);

fa FA234(N2J8_34,N2_9_35,P15[19],P19[15],P20[14]);

fa FA235(N2_10_34,N2_11_35,P21[13],P22[12],P23[11]);

fa FA236(N2_12_34,N2_13_35,P24[10],P25[9],P26[8]);

fa FA237(N2_14_34,N2_15_35,P27[7],P28[6],P29[5]);

79

faFA238(N2_16_34,N2_17_35,P30[4],P31[3],P2[32]);

fa FA239(N2_0-35,N2_1_36,P4[31],P5[30],P6[29]);

fa FA240(N2^_35,N2_3_36,P7[28],P8[27],P9[26]);

fa FA241(N2_4_35,N2_5_36,P10[25],P11[24],P12[23]);

fa FA242(N2_6_35,N2_7_36,P13[22],P14[21],P15[20]);

fa FA243(N2_8_35,N2_9_36,P20[15],P21[14],P22[13]);

fa FA244(N2_10_35,N2_11_36,P23[12],P24[11],P25[10]);

fa FA245(N2_12_35,N2_13_36,P26[9],P27[8],P28[7]);

fa FA246(N2_14_35,N2_15_36,P29[6],P30[5],P31[4]);

fa FA247(N2_0_36,N2_1_37,P5[31],P6[30],P7[29]);

fa FA248(N2_2_36,N2_3_37,P8[28],P9[27],P10[26]);

fa FA249(N2_4_36,N2_5_37,P11[25],P12[24],P13[23]);

fa FA250(N2_6_36,N2_7_37,P14[22],P15[21],P21[15]);

fa FA251(N2^_36,N2_9_37,P22[14],P23[13],P24[12]);

fa FA252(N2_10_36,N2_11_37,P25[11],P26[10],P27[9]);

fa FA253(N2_12_36,N2_13_37,P28[8],P29[7],P30[6]);

fa FA254(N2_0_37,N2_1_38,P6[31],P7[30],P8[29]);

fa FA255(N2_2_37,N2_3_38,P9[28],P10[27],P11[26]);

fa FA256(N2_4_37,N2_5_38,P12[25],P13[24],P14[23]);

fa FA257(N2_6_37,N2_7_38,P15[22],P22[15],P23[14]);

fa FA258(N2J8_37,N2_9_38,P24[13],P25[12],P26[11]);

fa FA259(N2_10_37,N2_11_38,P27[10],P28[9],P29[8]);

fa FA260(N2_12_37,N2_13_38,P30[7],P31[6],P5[32]);

fa FA261(N2_0_38,N2_1_39,P7[31],P8[30],P9[29]);

fa FA262(N2_2_38,N2_3_39,P10[28],P11[27],P12[26]);

fa FA263(N2_4_38,N2_5_39,P13[25],P14[24],P15[23]);

fa FA264(N2_6_38,N2_7_39,P23[15],P24[14],P25[13]);

fa FA265(N2J8_38,N2.9_39,P26[12],P27[11],P28[10]);

80

fa FA266(N2_10_38,N2_11_39,P29[9],P30[8],P31[7])

fa FA267(N2_0_39,N2_1_40,P8[31],P9[30],P10[29]);

fa FA268(N2_2_39,N2_3_40,P11[28;

fa FA269(N2_4_39,N2_5_40,P14[25;

fa FA270(N2_6_39,N2_7_40,P25[14

fa FA271(N2^_39,N2_9_40,P28[11

fa FA272(N2_0_40,N2_1_41,P9[31]V

fa FA273(N2^_40,N2.3_41,P12[28

fa FA274(N2_4_40,N2_5_41,P15[25;

fa FA275(N2_6_40,N2_7_41,P25[15;

fa FA276(N2J8_40,N2_9_41,P28[12

fa FA277(N2_0_41,N2_1_42,P10[31

fa FA278(N2_2_41,N2_3_42,P13[28;

fa FA279(N2_4_41,N2_5_42,P16[25;

fa FA280(N2_6_41,N2_7_42,P25[16;

fa FA281(N2^_41,N2_9_42,P28[13;

fa FA282(N2_0_42,N2_1_43,P11[31

fa FA283(N2_2_42,N2_3_43,P14[28;

fa FA284(N2_4_42,N2.5_43,P17[25;

fa FA285(N2_6_42,N2_7_43,P25[17

fa FA286(N2^_42,N2_9_43,P28[14

fa FA287(N2_0_43,N2_1_44,P12[31

fa FA288(N2_2_43,N2_3_44,P15[28

fa FA289(N2_4_43,N2_5_44,P18[25

fa FA290(N2_6_43,N2_7_44,P25[18

fa FA291(N2^_43,N2_9_44,P28[15

fa FA292(N2_0_44,N2_1_45,P13[31

fa FA293(N2_2_44,N2_3_45,P16[28

],P12[27] ,P13[26])

],P15[24] ,P24[15])

],P26[13] ,P27[12])

],P29[10] ,P30[9]);

P10[30],P11[29]);

],P13[27] ,P14[26])

],P16[24] ,P24[16])

],P26[14] ,P27[13])

],P29[11] ,P30[10])

],P11[30] ,P12[29])

],P14[27] ,P15[26])

],P17[24] ,P24[17])

],P26[15] ,P27[14])

],P29[12] ,P30[11])

],P12[30] ,P13[29])

],P15[27] ,P16[26])

],P18[24] ,P24[18])

'],P26[16] ,P27[15])

],P29[13] ,P30[12])

],P13[30] ,P14[29])

],P16[27] ,P17[26])

],P19[24] ,P24[19])

],P26[17] ,P27[16])

],P29[14] ,P30[13])

],P14[30] ,P15[29])

],P17[27] ,P18[26])

81

fa FA294(N2_4_44,N2_5_45,P19[25],P20[24]

fa FA295(N2_6_44,N2_7_45,P25[19],P26[18]

fa FA296(N2^_44,N2_9_45,P28[16],P29[15]

fa FA297(N2_0_45,N2_1_46,P14[31],P15[30]

fa FA298(N2_2_45,N2_3_46,P17[28],P18[27]

fa FA299(N2_4_45,N2_5_46,P20[25],P21[24]

fa FA300(N2_6_45,N2_7_46,P25[20],P26[19]

fa FA301(N2J8_45,N2J9_46,P28[17],P29[16]

fa FA302(N2_0_46,N2_1_47,P15[31],P16[30]

fa FA303(N2_2_46,N2J_47,P18[28],P19[27]

fa FA304(N2_4_46,N2_5_47,P21[25],P22[24]

fa FA305(N2_6_46,N2_7_47,P25[21],P26[20]

fa FA306(N2^_46,N2_9_47,P28[18],P29[17]

fa FA307(N2_10_46,N2_11_47,P31[15],P23

fa FA308(N2_0_47,N2_1_48,P16[31],P17[30]

fa FA309(N2_2_47,N2_3_48,P19[28],P20[27]

fa FA310(N2_4_47,N2_5_48,P22[25],P23[24]

fa FA311(N2_6_47,N2_7_48,P25[22],P26[21]

fa FA312(N2_8_47,N2_9_48,P28[19],P29[18]

fa FA313(N2_0_48,N2_1_49,P17[31],P18[30]

fa FA314(N2_2_48,N2J_49,P20[28],P21[27]

fa FA315(N2_4_48,N2_5_49,P23[25],P25[23]

fa FA316(N2_6_48,N2_7_49,P27[21],P28[20]

fa FA317(N2_8_48,N2_9_49,P30[18],P31[17]

fa FA318(N2_0_49,N2_1_50,P18[31],P19[30]

fa FA319(N2^_49,N2_3_50,P21[28],P22[27]

fa FA320(N2_4_49,N2_5_50,P26[23],P27[22]

fa FA321(N2_6_49,N2_7_50,P29[20],P30[19]

P24[20]);

P27[17]);

P30[14]);

P16[29]);

P19[26]);

P24[21]);

P27[18]);

P30[15]);

P17[29]);

P20[26]);

P24[22]);

P27[19]);

P30[16]);

[23],P14[32]);//col 47

P18[29]);

P21[26])

P24[23])

P27[20])

P30[17])

P19[29])

P22[26])

P26[22])

P29[19])

P24[24])

P20[29])

P23[26])

P28[21])

P31[18])

82

fa FA322(N2_0.

fa FA323(N2^.

fa FA324(N2_4.

fa FA325(N2_0.

fa FA326(N2^.

fa FA327(N2_4.

fa FA328(N2_0.

fa FA329(N2^.

fa FA330(N2_0.

fa FA331(N2_0.

.50,N2_1

50,N2_3

.50,N2_5

.51,N2_1

.51,N2_3

.51,N2_5

.52,N2_1

.52,N2_3

.53,N2_1

.54,N2_1

.51,P19[31

.51,P22[28

_51,P28[22

_52,P20[31

_52,P23[28

_52,P30[21

_53,P21[31

_53,P29[23

.54,P22[31

.55,P23[31

],P20[30],P21[29]

],P23[27],P27[23]

],P29[21],P30[20]

],P21[30],P22[29]

],P28[23],P29[22]

],P31[20],P19[32]

],P22[30],P23[29]

],P30[22],P31[21]

],P23[30],P30[23]

],P31[23],P22[32]

my_multiplexier ml(S,mulJP_64,mul_2n_64,sig-sel);

/ m u l 8 bit IIIIIIIIIIIIllll
wire [14:0] mul^_l,mul_8_2,mul^_3,mul J8_4;

wire [7:0] P8_1,P8_2,P8_3,P8.4;

assign mul_8_l={ NN3_0_14,NN3_0_13,NN3_0_12,NN3_0_11,NN3_0_10,

NN3_0_9,NN3_0_8,NN3_0_7,NN3_0_6,NN3_0_5,NN3_0_4,

NN3.0-3,NN3_0_2,NN3_0_1,NN3_0_0 },

mul_8_2={P15[15],NN3_0-29,NN3_0_28,NN3_0_27,NN3_0_26,NN3_0_25,

NN3_0-24,NN3_0_23,NN3_0_22,NN3_0_21,NN3_0_20,

NN3_0_19,NN3_0_18,NN3_0_17,NN3_0_16},

muL8_3=NN3_0_46,NN3_0-45,NN3_0_44,

NN3_0_43,NN3_0_42,NN3_0_41,NN3_0_40,NN3_0_39,NN3_0_38,NN3_0_37,

NN3_0_36,NN3_0_35,NN3_0_34,NN3_0_33,NN3_0_32,

mul_8_4=NN3_0_62,NN3_0.61,NN3_0_60,

NN3_0_59,NN3_0_58,NN3_0_57,NN3_0_56,NN3-0_55,NN3.0-54,NN3-0_53,

NN3_0-52,NN3_0_51,NN3_0.50,NN3_0_49,P24[24]};

///PPR(A,P,A8,A9,A10,A11,A12,A13,A14);

83

PPR ppr_l(P8_l,mul_8_l,A8,A9,A10,All,Al2,A13,A14);

PPR ppr_2(P8_2,mul_8_2,A8,A9,A10,All,Al2,Al3,A14);

PPR ppr_3(P8_3,mul_8_3,A8,A9,A10,All,A12,A13,A14);

PPR ppr_4(P8-4,mul_8_4,A8,A9,Al0,All,A12,A13,A14);

assign MUL8=P8_1 A P8-2 A P8_3 A P8-4;

endmodule

A.2 Verilog HDL codes for the data path of the

processor

module myalu(addral,addrbl,addra2,addrb2,in_RAM,Zflag,

indexl_flag,index2_flag,cmp_flagl,cmpJlag2,dataJnl,dataJn2,dataJn3,

datain4,instr,tmp,mul_squ_sel,px_sel, carry_clr,sel_l,load-Sum,

load_Carry,lr,sub,first, sel_regout,sel_A,sel_RAM,

load_Cbit,load_B, load_A0,load_Al,load_A2,load_A3,

load ̂ addrRO, load^addrRl, load_addrR2 ,load_addrR3,

incJndexl,inc_Index2,dec_Indexl,dec_Index2,

inc_R0,inc_Rl,inc_R2,inc_R3,reg_en,enc,read_en,clk,rst);

output [31:0] in _RAM;

output Zflag;

output indexl _flag,index2_flag,cmp_flagl ,cmp_flag2;

output [7:0] addral,addrbl,addra2,addrb2;

input [31:0] data_inl ,dataJn2,dataJn3,dataJn4;

input mul_squ_sel,carry_clr,sel_l,clk,rst;

input load-Sum,load_Carry,px_sel; / /pxj3el=l , GF(P), pxse\=0,GF(2n)

input lr,sub,first; / /control the barrel-shifter,lr=l, left, lr=0, right s u b = l , subtrac

tion

input [1:0] selJRAM;

84

input [2:0] sel_A;

input load_Cbit,load_B,load_A0,load_Al,load_A2,load_A3;

input [7:0] instr;

input [7:0] tmp;

input [3:0] sel_regout;

input load .addr R0,load_addrRl ,load_addrR2,load_addrR3,inc_R0,inc_Rl;

input inc_R2, inc_R3, decJndexl ,decJndex2,reg_en,enc,read_en;

input incJndexl,inc_Index2;

reg indexl_flag,index2_flag,cmp_flagl,cmp_flag2;

wire [31:0] sum;

wire [32:0] carry, ml_out,Carr_out;//,data_C;

wire [31:0] m2_out,B_out,rst_S,mm2jout;

wire [7:0] A0_out,Al_out,A2_out,A3_out;

wire [31:0] rst_xor,rst_shft,rst_addsub;

wire [7:0] m3_out,m4_out,m5_out,m6_out;

wire [7:0] mult8;

wire [7:0] A8_out,A9_out,A10_out,All_out,Al2_out,Al3_out,Al4_out;

wire [7:0] regout,indexl,index2,rom_table;

multi32 mym2(m2_out,data_in2,dataJn3,sel_l);

multi32 mymm2(mm2_out,dataJn3,dataJn2,sel_l);

multi33 myml(ml_out,l 'bO,dataJnl,dataJnl,l 'b0,mul_squ_sel);

RA mull (carry,sum, mult8, ml_out, m2_out,Carr_out,mm2_out,px_sel,

A8_out,A9_out,A10_out,All_out,Al2_out,Al3_out,A14_out);

Register_32 Reg_S(rst_S, sum,load_Sum,clk,rst);

data_ce!133xlr Reg_Carry(Carr_out,carry,load_Carry,carry_clr,clk,rst);

multi7J8 mym3(m3_out, mult8,datainl[31:24], rst_shft[31:24],

rst_xor[31:24], regout,dataJn4[31:24],rom_table,sel_A),

85

mym4(m4jout, mult8,dataJnl[23:16], rst_shft[23:16],

rst_xor [23:16], regout,dataJn4[23:16],rom_table,sel_A),

mym5(m5_out, mult8,dataJnl[15:8], rst_shft[15:8],

rst_xor[15:8], regout,dataJn4[15:8], rom_table,sel_A),

mym6(m6j0ut, mult8,dataJnl[7:0], rst_shft[7:0],

rst_xor[7:0], regout,data_in4[7:0], rom_table,sel_A);

Register_32 Reg_B(B_out, m2_out,load_B,clk,rst);

Register_8 Reg_A0(A0_out,m3_out,load_A0,clk,rst);

Register_8 Reg_Al(Al_out,m4_out,load_Al,clk,rst);

Register_8 Reg_A2(A2_out,m5_out,load_A2,clk,rst);

Register_8 Reg_A3(A3_out,m6j3ut,load_A3,clk,rst);

wire [7:0] reginput;

wire [31:0] En_sig;

wire [7:0] Reg_0_out,Reg_l_out,Reg_2_out,Reg_3_out,Reg_4_out,Reg_5_out,Reg_6_out,

Reg_7_out,Reg^8_out,Reg_9_out,Reg_10jout,Reg_ll_out,Reg_12_out,Reg_13_out,

Reg_14_out,Reg_15_out;

wire [7:0] R0_out,Rl_out,R2_out,R3_out;

wire [3:0] sel_regout;

multi5^8 mxl(reginput ,A0_out,Al_out,A2_out,A3_out, tmp,instr[7:5]);

demulti8 dmx(En_sig,instr[4:0],regjen);

multi 16 ̂ 8 mx3 (regout, Reg_0 _out, Reg_l _out ,Reg_2_out, Reg_3 _out,

Reg_4_out, Reg_5 .out ,Reg_6_out ,Reg_7_out, Reg_8 _out,

Reg_9 _out, Reg.l 0_out ,Reg_l 1 _out ,Reg_l 2_out,

Reg_l 3 _out, Reg_l 4_out, Reg_l 5 _out, sel -regout);

/ / 16 8-bit register used for shiftrows

Register_8 Reg_0(Reg_0_out, reginput,En_sig[0],elk,rst);

Register_8 Reg_l(Reg_l_out, reginput,En_sig[l],clk,rst);

Register_8 Reg_2(Reg_2_out, reginput,En_sig[2],clk,rst);

86

Register_8 Reg_3(Reg_3_out, reginput,En_sig[3],clk,rst);

Register_8 Reg_4(Reg_4_out, reginput,En jsig[4],clk,rst);

Register_8 Reg_5(Reg_5_out, reginput,En_sig[5],clk,rst);

Register_8 Reg_6(Reg_6_out, reginput,En_sig[6],clk,rst);

Register_8 Reg_7(Reg_7_out, reginput,En_sig[7],clk,rst);

Register_8 Reg_8(Reg_8_out, reginput,En_sig[8],clk,rst);

Register_8 Reg_9(Reg_9_out, reginput,En_sig[9],clk,rst);

Register^ Reg_10(Reg_10_out, reginput,En_sig[10],clk,rst);

Register_8 Reg_l l (Reg_l l_out , reginput,En_sig[ll],clk,rst);

Register_8 Reg_12(Reg_12_out, reginput,En_sig[12],clk,rst);

Register_8 Reg_13(Reg_13_out, reginput,En_sig[13],clk,rst);

Register_8 Reg_14(Reg_14_out, reginput,En_sig[14],clk,rst);

Register_8 Reg_15(Reg_15_out, reginput,En_sig[15],clk,rst);

/ / used for dual-port RAM

RegisterJnc_8 R0(R0_out, reginput, En_sig[16],inc_R0,clk,rst);

RegisterJnc-8 Rl(Rl_out, reginput, En_sig[17],inc_Rl,clk,rst);

RegisterJnc-8 R2(R2_out, reginput, En_sig[18],inc_R2,clk,rst);

RegisterJnc_8 R3(R3_out, reginput, En_sig[19],inc_R3,clk,rst);

/ / used for reduction Register_8 Reg_A8(A8_out, reginput,En_sig[20],clk,rst);

Register_8 Reg_A9(A9_out, reginput,En_sig[21],clk,rst);

Register_8 Reg_A10(A10_out, reginput,En_sig[22],clk,rst);

Register_8 Reg_All(All_out, reginput,En_sig[23],clk,rst);

Register_8 Reg_A12(A12_out, reginput,En_sig[24],elk,rst);

Register_8 Reg_A13(A13_out, reginput,En_sig[25],clk,rst);

Register_8 Reg_A14(A14_out, reginput,En_sig[26],clk,rst);

/ / used for counter

Register_8s Reg_counterl(indexl, reginput,En_sig[27],incJndexl,dec_Indexl,clk,rst);

Register_8s Reg_counter2(index2, reginput,En_sig[28],incJndex2,dec_Index2,clk,rst);

87

always @(indexl or index2 or instr[7:0]) begin

indexlJlag = — i n d e x l ; / /

index2_flag = —index2;

cmpJlagl =indexlj =instr[7:0]? 1 'b l : 1 'b0; / /comparator

cmp_flag2=index2i=instr[7:0]?l'bl:l'b0;

end

/ / address register

Register_8 addrR0(addral,R0jout,load.addrR0,clk,rst);

Register_8 addrRl(addrbl,Rl_out,load_addrRl,clk,rst);

Register_8 addrR2(addra2,R2_out,load_addrR2,clk,rst);

Register^ addrR3(addrb2,R3_out,load_addrR3,clk,rst);

mod_addsub masl(rst_addsub, Zflag,{A3_out,A2_out,Al_out,A0_out,B_out,

sub, first, load_Cbit,clk,rst);

mybarrelshifter bshft 1 (rst_shft,{A3_out,A2_out,A1 _out,AO_out},B_out[4:0] ,lr);

operJCOR myxor(rst_xor, (A3_out,A2_out,Al_out,A0_out},B_out);

multi32_3 m7(in-RAM,rst_S, A3_out,A2_out,Al_out,A0_out,rst_addsub,sel_RAM);

rominfr roml(rom_table, enc,reginput, read_en,clk); endmodule

88

