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Abstract 

Agricultural vulnerability is generally referred to as the degree to which 

agricultural systems are likely to experience harm due to a stress. In this study, an 

existing analytical method to quantify vulnerability was adopted to assess the magnitude 

as well as the spatial pattern of agricultural vulnerability to varying drought conditions in 

Southern Alberta. Based on the farm reported data and remote sensing imagery, two 

empirical approaches were developed to implement vulnerability assessment in Southern 

Alberta at the quarter-section and 30 meter by 30 meter pixel levels. Cereal crop yield 

and the Standardized Precipitation Index (SPI) were specified as the agricultural 

wellbeing and stress pair in the study. Remote sensing data were used to generate cereal 

crop yield estimations, which were then implemented in vulnerability quantification. The 

utility of the remote sensing data source for vulnerability assessment were proved. The 

spatial pattern of agricultural vulnerability to different severity and duration of drought 

were mapped. 

 

 iv



Acknowledgement 

 
First of all, I want to thank my supervisor Dr. Wei Xu, for his continuous support 

in my Master program. Wei was always there to listen and give advice. Through these 

two years of study he taught me how to be confident to express my ideas. He also helped 

me tremendously on my speaking and writing English, especially at the thesis writing 

stage. Without his help this thesis would not be possible. I also want to thank Dr. Anne 

Smith, as my committee member, who provided me remote sensing data, software 

facilities and working space for remote sensing related work. Anne also shared her 

agrological knowledge with me and gave me valuable help on some problem I had related 

to image pre-processing. Thanks also to Dr. Tom Johnston, who is also my committee 

member. He was always there to insure that my study was in good progress and was 

willing to help me whenever. A special thank goes to my another committee member, Dr. 

Kurt Klein, who was the first person I contacted at the University of Lethbridge, and was 

responsible for introducing me to Wei. The financial support from Kurt for the first year 

of my study is much appreciated.  

 v



Table of Contents 

Dedication ......................................................................................................................... iii 

Abstract ............................................................................................................................. iv 

Acknowledgement ............................................................................................................. v 

Table of Contents ............................................................................................................. vi 

List of Figures ................................................................................................................... ix 

List of Tables ..................................................................................................................... xi 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1 Introduction ........................................................................................................... 1 

1.2 Research Objectives .............................................................................................. 3 

1.3 Organization of Thesis .......................................................................................... 5 

CHAPTER 2 LITERATURE REVIEW ......................................................................... 7 

2.1 Introduction ........................................................................................................... 7 

2.2 Vulnerability Assessment ..................................................................................... 7 
2.2.1 Defining vulnerability ............................................................................................................ 7 
2.2.2 Vulnerability assessment: theories and methods .................................................................... 9 

2.3 Remote Sensing and Crop Yield Estimation .................................................... 14 
2.3.1 Yield estimation strategies ................................................................................................... 14 
2.3.2 Remote sensing derived vegetation index ............................................................................ 16 

2.4 Drought Indices ................................................................................................... 17 

Source: (Hayes, 2005) ..................................................................................................... 19 

2.5 Chapter Summary .............................................................................................. 19 

CHAPTER 3 METHODOLOGY .................................................................................. 21 

3.1 Introduction ......................................................................................................... 21 

3.2 Empirical Approaches and Study Area ............................................................ 21 
3.2.1 Empirical objectives ............................................................................................................. 21 

 vi



3.2.2 Study area ............................................................................................................................. 22 
3.2.3 Characteristics of Alberta agricultural system ..................................................................... 23 

3.3 Quantitative Measure for Vulnerability Assessment ....................................... 24 

3.4 Methods for Vulnerability Assessment Based on the Farm Reported Data .. 28 
3.4.1 Data source ........................................................................................................................... 28 
3.4.2 Specifying the factors for vulnerability quantifying functions ............................................. 29 
3.4.3 Moving window approach for yield estimation ................................................................... 30 
3.4.4 SPI calculation ..................................................................................................................... 32 

3.5 A Remote Sensing Approach for Assessing Agricultural Vulnerability ........ 38 
3.5.1 Data source ........................................................................................................................... 38 
3.5.2 Specifying the factors for vulnerability quantifying functions ............................................. 39 
3.5.3 Image preprocessing ............................................................................................................. 39 
3.5.4 Data preparation for land use classification and yield estimation ........................................ 42 

CHAPTER 4 REMOTE SENSING IMAGERY ANALYSES RESULTS ................ 49 

4.1 Introduction ......................................................................................................... 49 

4.2 Image  Classification ........................................................................................... 49 
4.2.1 Identification of a suitable classification approach base on 1999 imagery .......................... 49 
4.2.2 Classification results of 1998, 1999 and 2001 ..................................................................... 57 

4.3 Yield Estimation .................................................................................................. 58 
4.3.1 Image pre-processing standard for yield estimation ............................................................. 59 
4.3.2 Multiple regression analysis for yield estimation ................................................................. 66 

4.4 Chapter Summary .............................................................................................. 76 

CHAPTER 5 VULNERABILITY ASSESSMENT ...................................................... 79 

5.1 Introduction ......................................................................................................... 79 

5.2 Agricultural Vulnerability to Drought at the Quarter-section Level ............ 79 
5.2.1 Estimated sensitivity ............................................................................................................ 79 
5.2.2 Vulnerability without exposure ............................................................................................ 81 
5.2.3 Vulnerability with exposure to meteorological drought ....................................................... 86 

5.3 Agricultural Vulnerability to Drought at the Pixel Level ............................... 94 
5.3.1 Agricultural vulnerability to drought without considering exposure ................................... 95 
5.3.2 Agricultural vulnerability to drought with exposure ............................................................ 99 

5.4 Expected Agricultural Vulnerability to Drought in the Future ................... 103 

5.5 Chapter Summary ............................................................................................ 109 

CHAPTER 6 SUMMARY AND CONCLUSIONS .................................................... 111 

 vii



6.1 Summary ............................................................................................................ 111 

6.2 Discussions of research findings ...................................................................... 112 

6.3 Contributions of this research ......................................................................... 115 

6.4 Future research ................................................................................................. 116 

References Cited............................................................................................................ 119 
 

 viii



List of Figures 

Figure 2-1 The Hazard of place model of vulnerability Source: Cutter (1996) ............................. 10 
Figure 2-2 Vulnerability framework: Components of vulnerability identified and linked to factors 

beyond the system of study and operating at various scales. Source: Turner et al. 
(2003a). .......................................................................................................................... 11 

Figure 3-1 Study areas for the two empirical approaches: a: southern Alberta; b: Landsat TM 
scene .............................................................................................................................. 23 

Figure 3-2 Centroids of quarter-sections where yield data is available ......................................... 32 
Figure 3-3 Spatial distribution of total monthly precipitation in August, 1998 ............................. 33 
Figure 3-4 Spatial distribution of total monthly precipitation in August, 1999 ............................. 33 
Figure 3-5 Spatial distribution of total monthly precipitation in August, 2001 ............................. 34 
Figure 3-6 Spatial distribution of the growing season SPI in 1998 ............................................... 35 
Figure 3-7 Spatial distribution of the growing season SPI in 1999 ............................................... 36 
Figure 3-8 Spatial distribution of the growing season SPI in 2001 ............................................... 37 
Figure 3-9 Image atmospheric correction: A1 is the uncorrected haze area; A2 is the uncorrected 

clear area; B1 is the corrected haze area; and B2 is the corrected clear area. ................. 40 
Figure 3-10 False color composite image with non-agricultural areas masked, August 3rd 1999 . 42 
Figure 3-11 Examples of defined training and validation ROIs (on the right side) ....................... 45 
Figure 4-1 Image subset of three steps of classification and post-classification. .......................... 54 
Figure 4-2 Image classification protocol ....................................................................................... 57 
Figure 4-3 Pre-processes for yield estimation, 1999 ...................................................................... 60 
Figure 4-4 Histogram and Q-Q plot of atmospherically corrected 1999 NDVI (NDVI_0523, 

NDVI_0803) and their transformation (T_NDVI_0523, T_NDVI_0803) .................... 62 
Figure 4-5 Histogram and Q-Q plot of atmospherically corrected 1998 NDVI (NDVI_0504, 

NDVI_0723) and their transformation (T_NDVI_0504, T_NDVI_0723) .................... 64 
Figure 4-6 Histogram and Q-Q plot of atmospherically corrected 2001 NDVI (NDVI_0707, 

NDVI_0816) and their transformation (T_NDVI_0707, T_NDVI_0816) .................... 65 
Figure 4-7 Histogram and Q-Q plot of 1998 regression model residuals ...................................... 72 
Figure 4-8 Histogram and Q-Q plot of 1999 regression model residuals ...................................... 72 
Figure 4-9 Histogram and Q-Q plot of 1998 regression model residuals ...................................... 73 
Figure 4-10 Spatial distribution of 1998 estimated cereal crop yield ............................................ 73 
Figure 4-11 Spatial distribution of 1999 estimated cereal crop yield ............................................ 74 
Figure 4-12 Spatial distribution of 2001 estimated cereal crop yield ............................................ 75 
Figure 4-13 Spatial distribution of average cereal crop yield (1998, 1999, and 2001) .................. 76 
Figure 5-1 Spatial distribution of SEN: estimated agricultural sensitivity to meteorological 

drought in growing season ............................................................................................. 80 
Figure 5-2 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological drought in 

1998 growing season, without considering exposure .................................................... 82 
Figure 5-3 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological drought in 

1999 growing season, without considering exposure .................................................... 83 
Figure 5-4 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological drought in 

2001 growing season, without considering exposure .................................................... 84 
Figure 5-5 Spatial distribution of VNEXP: average agricultural vulnerability to meteorological 

drought in growing seasons (1998, 1999 and 2001), without considering exposure ..... 85 
Figure 5-6 Spatial distribution of EXPL: long-term exposure to severe meteorological drought in 

growing season, from 1965 to 2004 .............................................................................. 87 
Figure 5-7 Spatial distribution of EXPS: short-term exposure to severe meteorological drought in 

growing season, from 1991 to 2004 .............................................................................. 88 

 ix



Figure 5-8 Spatial distribution of VEXPL: agricultural vulnerability to severe meteorological 
drought in growing season, from 1965 to 2004 ............................................................. 89 

Figure 5-9 Spatial distribution of VEXPS: agricultural vulnerability to severe meteorological 
drought in growing season, from 1991 to 2004 ............................................................. 90 

Figure 5-10 Spatial distribution of EXPL’: long-term exposure to moderate meteorological 
drought in growing season, from 1965 to 2004 ............................................................. 92 

Figure 5-11 Spatial distribution of VEXPL’: agricultural vulnerability to moderate meteorological 
drought in growing season, from 1965 to 2004 ............................................................. 93 

Figure 5-12 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability to 
meteorological drought in 1998 growing season, without considering exposure .......... 95 

Figure 5-13 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability to 
meteorological drought in 1999 growing season, without considering exposure .......... 96 

Figure 5-14 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability to 
meteorological drought in 2001 growing season, without considering exposure .......... 97 

Figure 5-15 Spatial distribution of VNEXP at image pixel level: average agricultural vulnerability to 
meteorological drought in growing season (1998, 1999 and 2001), without considering 
exposure ......................................................................................................................... 98 

Figure 5-16 Spatial distribution of VEXPL at image pixel level: agricultural vulnerability to severe 
meteorological drought in growing season, from 1965 to 2004 .................................... 99 

Figure 5-17 Spatial distribution of VEXPS at image pixel level: agricultural vulnerability to severe 
meteorological drought in growing season, from 1991 to 2004 .................................. 101 

Figure 5-18 Spatial distribution of VEXPL’ at image pixel level: agricultural vulnerability to 
moderate meteorological drought in growing season, from 1965 to 2004 .................. 103 

Figure 5-19 Spatial distribution of TEXP: trend of exposure to meteorological drought in growing 
season .......................................................................................................................... 104 

Figure 5-20 Spatial distribution of EEXP: expected exposure to meteorological drought in 
growing season ............................................................................................................ 105 

Figure 5-21 Spatial distribution of EVEXP: expected agricultural vulnerability to severe 
meteorological drought in growing season .................................................................. 107 

Figure 5-22 Spatial distribution of EVEXP at the image pixel level: expected agricultural 
vulnerability to severe meteorological drought in growing season ............................. 108 

 

 x



List of Tables 

Table 2-1 SPI value classification. ................................................................................................. 19 
Table 3-1 Descriptive statistics of the growing season SPI in 1998 .............................................. 35 
Table 3-2 Descriptive statistics of the growing season SPI in 1999 .............................................. 36 
Table 3-3 Descriptive statistics of the growing season SPI in 2001 .............................................. 37 
Table 3-4 Remote sensing images acquired ................................................................................... 38 
Table 3-5 Dataset combination of AAFRD dataset and AFSC dataset. ........................................ 43 
Table 3-6 The definition of six STIPZs ......................................................................................... 46 
Table 4-1 Jeffries-Matusita index values ....................................................................................... 50 
Table 4-2 Class grouping details and classification accuracy of scheme A................................... 51 
Table 4-3 Image classification accuracies using single date and two-date stacked imagery without 

the STIPZ grouping ....................................................................................................... 52 
Table 4-4 Inage classification accuracies using single date and two-date stacked imageries with 

the STIPZ grouping ....................................................................................................... 52 
Table 4-5 Post-classification accuracy resulted with various parameter specifications ................ 55 
Table 4-6 Class grouping details and classification accuracy comparison of two schemes .......... 56 
Table 4-7 Classification accuracies of three years ......................................................................... 58 
Table 4-8 Coverage of classified land used and cover classes, 1998, 1999, and 2001 .................. 58 
Table 4-9 Tested regression R-square values for crop yield estimation based on NDVI with 

varying pre-processing procedures ................................................................................ 61 
Table 4-10 Tested regression R-square values for crop yield estimation based on transformed 

NDVI with varying pre-processing procedures ............................................................. 63 
Table 4-11 Results of the initial regression model testing for 1998 .............................................. 67 
Table 4-12 Results of the adjusted regression model testing for 1998: ......................................... 68 
Table 4-13 Results of the final regression model for 1998 ............................................................ 69 
Table 4-14 Results of the initial regression model testing for 1999 .............................................. 69 
Table 4-15 Results of the final regression model for 1999 ............................................................ 70 
Table 4-16 Results of the initial regression model testing for 2001 .............................................. 71 
Table 4-17 Results of the regression model testing for 2001 ......................................................... 71 
Table 4-18 Descriptive statistics of 1998 estimated cereal crop yield ........................................... 74 
Table 4-19 Descriptive statistics of 1999 estimated cereal crop yield ........................................... 74 
Table 4-20 Descriptive statistics of 2001 estimated cereal crop yield ........................................... 75 
Table 4-21 Descriptive statistics of average cereal crop yield (1998, 1999, and 2001) ................ 76 
Table 5-1 Descriptive statistics for SEN classes: estimated agricultural sensitivity to 

meteorological drought in growing season .................................................................... 80 
Table 5-2 Descriptive statistics for VNEXPi classes: agricultural vulnerability to meteorological 

drought in 1998 growing season, without considering exposure ................................... 82 
Table 5-3 Descriptive statistics for VNEXPi classes: agricultural vulnerability to meteorological 

drought in 1999 growing season, without considering exposure ................................... 83 
Table 5-4 Descriptive statistics for VNEXPi classes: agricultural vulnerability to meteorological 

drought in 2001 growing season, without considering exposure ................................... 84 
Table 5-5 Descriptive statistics for VNEXP classes: average agricultural vulnerability to 

meteorological drought in growing seasons (1998, 1999, and 2001), without 
considering exposure ..................................................................................................... 85 

Table 5-6 Descriptive statistics for EXPL classes: long-term exposure to severe meteorological 
drought in growing season, from 1965 to 2004 ............................................................. 87 

Table 5-7 Descriptive statistics for EXPS classes: short-term exposure to severe meteorological 
drought in growing season, from 1991 to 2004 ............................................................. 88 

 xi



 xii

Table 5-8 Descriptive statistics for VEXPL classes: agricultural vulnerability to severe 
meteorological drought in growing season, from 1965 to 2004 .................................... 89 

Table 5-9 Descriptive statistics for VEXPS classes: agricultural vulnerability to severe 
meteorological drought in growing season, from 1991 to 2004 .................................... 91 

Table 5-10 Descriptive statistics for EXPL’ classes: long-term exposure to moderate 
meteorological drought in growing season, from 1965 to 2004 .................................... 92 

Table 5-11 Descriptive statistics for VEXPL’ classes: agricultural vulnerability to moderate 
meteorological drought in growing season, from 1965 to 2004 .................................... 94 

Table 5-12 Descriptive statistics for VNEXPi classes at image pixel level: agricultural vulnerability 
to meteorological drought in 1998 growing season, without considering exposure ...... 95 

Table 5-13 Descriptive statistics for VNEXPi classes at image pixel level: agricultural vulnerability 
to meteorological drought in 1999 growing season, without considering exposure ...... 96 

Table 5-14 Descriptive statistics for VNEXPi classes at image pixel level: agricultural vulnerability 
to meteorological drought in 2001 growing season, without considering exposure ...... 97 

Table 5-15 Descriptive statistics for VNEXP classes at image pixel level: average agricultural 
vulnerability to meteorological drought in growing season (1998, 1999 and 2001), 
without considering exposure ........................................................................................ 98 

Table 5-16 Descriptive statistics for VEXPL classes at image pixel level: agricultural vulnerability 
to severe meteorological drought in growing season, from 1965 to 2004 ................... 100 

Table 5-17 Descriptive statistics for VEXPS classes at image pixel level: agricultural vulnerability 
to severe meteorological drought in growing season, from 1991 to 2004 ................... 101 

Table 5-18 Descriptive statistics for VEXPL’ classes at image pixel level: vulnerability to moderate 
meteorological drought in growing season, from 1965 to 2004 .................................. 103 

Table 5-19 Descriptive statistics for TEXP classes: trend of exposure to meteorological drought in 
growing season ............................................................................................................ 105 

Table 5-20 Descriptive statistics for EEXP classes: expected exposure to meteorological drought 
in growing season ........................................................................................................ 106 

Table 5-21 Descriptive statistics for EVEXP classes: expected agricultural vulnerability to severe 
meteorological drought in growing season .................................................................. 107 

Table 5-22 Descriptive statistics for EVEXP classes at the image pixel level: expected agricultural 
vulnerability to severe meteorological drought in growing season ............................. 108 

 

 

 

 

 

 

 

 



 
CHAPTER 1 INTRODUCTION 

1.1 Introduction  

Over the last two decades, there has been an increasing concern worldwide over 

the long term sustainability of agricultural sectors (Reilly and Schimmelpfennig, 1999; 

Humphreys et al., 2006). At the global scale, a sustainable and sufficient food supply is 

demanded to meet the long term need of a growing world population (IFPRI, 2002). At 

the national scale, a stable and reliable agricultural system is an important basis to ensure 

the national competitiveness in the global economy. Therefore, local and regional 

agricultural systems need to be understood, closely monitored, and efficiently managed in 

order to achieve the national and international goal of sustainable agriculture.  

As the global industrial economy expands further, its impacts on the environment 

have increased tremendously, and the global environmental conditions have been 

aggravated noticeably. Consequently, the world is faced with increasing risks from a 

degrading environment including global warming and climate change. Traditionally, 

agricultural systems are very much dependent on environmental conditions such as soil, 

rainfall, and temperature. Although the modern commercial agricultural systems based on 

fossil fuel inputs are less dependent on the favorable environmental supports, climate 

condition remains an important shaper of agricultural production (De Sherbinin, 2000; 

Thomson et al., 2005a; Thomson et al., 2005b). With the increasingly variable climate 

conditions, the viability of farming practices is increasingly threatened.  Climate related 

natural hazards are still one of the biggest challenge faced by the agricultural industry 

(Moore, 1998; De Sherbinin, 2000; Johnston and Chiotti, 2000). One of the most 

damaging climate hazards for agricultural systems is drought (Baethgen, 1997).  
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As an important agricultural region in Canada, Southern Alberta is a semi-arid 

area. The agricultural industry of Southern Alberta has been historically and is currently 

impacted by droughts. Meteorological drought during the growing season occurred in 15 

of the last 74 years. Several of these droughts happened in two or three consecutive years. 

In the last 74 years, the most significant drought occurred in 2001 (AAFRD, 2002). The 

drought was so widespread that it even caused a serious shortage in the water supply 

throughout most of the irrigation areas of Southern Alberta (AAFRD, 2002). As a result 

of global warming, it has been predicted that the Canadian Prairies will possibly face an 

increase in drought frequency in the future (IPCC, 2001)  

Given the current and expected situation of drought occurrence, it is imperative to 

understand the interacting relationship between agricultural systems and drought-related 

water shortage in order to design drought-proofing measures for alleviating possible 

damage. Vulnerability assessment is now widely used as an effective way to facilitate the 

understanding of the interaction between hazards or disturbances and the exposed 

systems. Numerous studies have been done in many different scholarly fields including 

geography, agricultural science, water resource analysis, climate research, and social 

sciences (e.g., Baethgen, 1997; Eakin and Conley, 2002; Wilhelmi and Wilhite, 2002; 

Descroix et al., 2003). Some analysts have conceptualized the nature of vulnerability 

from various theoretical perspectives (e.g., Cutter, 1996; Villa and McLeod, 2002; Turner 

et al., 2003a) while others have attempted to develop some quantitative measures of 

vulnerability (e.g., Gogu and Dassargues, 2000; Cutter et al., 2003). Because of the 

complexity of the systems under analysis and the fact that vulnerability is not a directly 

observable phenomenon, it has been proved difficult to develop measures for quantifying 
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vulnerability (Downing et al., 2001; Luers et al., 2003). This research employs a 

quantitative approach to assess agricultural vulnerability to varying drought conditions in 

Southern Alberta. Different data sources were used in this research to assess agricultural 

vulnerability at two different spatial scales and resolutions. It is hoped that the findings 

from this research will help improve agricultural management in Alberta. 

In more recent years, with increasing availability, remote sensing imagery has 

become a new information source for researchers. By analyzing the spectral signals 

recorded on the remote sensing imagery, researchers can get useful information on many 

aspects of their targets of interest on the ground. Agriculture is one of the major users of 

the remotely sensed data (Moulin et al., 1998). It has been demonstrated that remotely 

sensed signals in various wavelengths can provide information about vegetation 

conditions (Smith et al., 1995). Remote sensing technology makes it possible to monitor 

crop growth conditions over a very large area. It facilitates the mapping and investigation 

of the spatial variability in vegetation characteristics. A number of studies indicate that it 

is possible to predict (or estimate) crop yields using remote sensing images at a relatively 

high resolution (e.g., Hochheim and Barber, 1998; Doraiswamy et al., 2003; Ferencz et 

al., 2004). Few studies, however, have employed the remote sensing estimated yield as an 

indicator of agricultural vulnerability assessment. This research will test the utility of 

remote sensing data in agriculture vulnerability assessment.  

1.2 Research Objectives 

Agricultural systems constitute a pivotal economic sector in rural Canada and 

worldwide. Sustainable rural systems are very much dependent upon the healthy 

development of agriculture. As a multi-faceted biophysical and socio-economic system, 
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the agricultural system is heavily affected by variations and changes in climate conditions. 

Extreme climatic events such as severe drought can often cause devastating damage to 

agriculture and consequently to rural communities. 

The overall goal of this research is to investigate the relationship between 

agricultural production and the occurrence of meteorological droughts over time, and 

consequently to examine how sensitive and vulnerable agricultural production is, given 

the variability in climate conditions in Southern Alberta.  

The empirical research objectives of this study are:  

1) To estimate the yields of cereal crops in selected years based on remotely 

sensed data in Southern Alberta. A remote sensing approach will be developed. The yield 

estimates based on the remote sensing approach will provide a primary data source to 

measure agricultural well-being and quantify agricultural vulnerability to drought; 

2) To assess the magnitude and spatial pattern of agricultural vulnerability to 

varying drought conditions in Southern Alberta using the farm reported crop yield data at 

a quarter-section level. The drought condition as the stressor to agricultural production 

systems will be characterized using the standard precipitation index (SPI). The SPI will 

be estimated based on precipitation data between 1965 and 2004. The estimated SPI data 

will be used in estimating the sensitivity of agricultural systems as well as the system’s 

exposure to drought; and 

3) To assess the magnitude and spatial pattern of agricultural vulnerability to 

varying drought conditions in Southern Alberta using the yield estimates derived from the 

remote sensing approach. The estimated SPI data will also be employed in this part of the 

empirical research. The findings will be compared with those using the farm reported 
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yield data to assess the utility of the remote sensing based approach in assessing 

agricultural vulnerability.   

1.3 Organization of Thesis  

This thesis is organized into six chapters. Following the introduction, the second 

chapter presents a literature review. The conceptual and analytical development of 

vulnerability assessment is reviewed with respect to its definitions, theoretical assessment 

frameworks and quantitative assessment methods. The yield estimation methods using 

remote sensing techniques are discussed and drought indices are introduced and 

commented. The discussion focuses on their relevance to the measurement of 

vulnerability indicators of this study.   

In the third chapter, an empirical research methodology is presented. The chapter 

begins with an introduction of two proposed empirical approaches and study areas. The 

detailed quantitative methods for vulnerability measurement are introduced. Data 

collection and preparation for each empirical approach are detailed.  

In the following two chapters, the empirical results of the study are presented. 

Chapter four presents the procedures tested and the results of the land use classification 

using the remote sensing data. Based on the classification results, the yield estimation 

regression models are built mainly based on the remote sensing data. The most effective 

models are presented and the yield estimation results are mapped. In the fifth chapter, the 

magnitude and spatial pattern of the quantitatively assessed agriculture vulnerability to 

drought are presented and described.  

In the concluding chapter, the study is summarized, and the findings of the study 

are discussed. The contribution of this thesis is outlined and related future research is 
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suggested. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review of the literature in three main fields that are 

relevant to this study. The literature on vulnerability assessment is reviewed with respect 

to its definitions, theoretical frameworks and quantitative assessment methods. Different 

yield estimation methods using the remote sensing techniques are summarized and 

discussed. The drought indices used for measuring and monitoring drought events are 

reviewed.  

2.2 Vulnerability Assessment 

2.2.1 Defining vulnerability  

Vulnerability is a concept used in various disciplines, including biology, 

psychology, sociology and environmental science (Adger, 2006). It is defined differently 

depending upon different research orientations and perspectives (Dow, 1992; Cutter, 1996; 

Boruff et al., 2005). Without considering any specific context, vulnerability may be 

generally defined as “the quality or state of being vulnerable” (Gove, 1981, p. 2566). 

Under a broad context of social and environmental sciences, the vulnerability often refers 

to as “a potential of loss” (Cutter, 1996; Cutter et al., 2003). This “potential of loss” is 

considered either as a characteristic that inherently exists in an individual (a group or a 

system), or a function combining the sensitive individual and the force (stress) that the 

individual is sensitive to. Two main types of vulnerability definitions are consequently 

derived from the above considerations. Some scholars define vulnerability as the inherent 

capacity of an individual of suffering from or reacting to disturbing factors. For example, 

Kates (1985) identified vulnerability as the “capacity to suffer harm and react adversely” 
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(cited from Cutter, 1996, p. 531), while Blaikie et al. (1994) stated “By vulnerability we 

mean the characteristics of a person or a group in terms of their capacity to anticipate, 

cope with, resist and recover from the impact of a natural hazard” (cited from Cutter, 

1996, p. 532). 

Others view vulnerability as the interaction between the stresses or disturbances, 

which arise outside and/or inside the system, and the system’s inherent capacity to 

respond. For example, Chen et al. (2001) defined the vulnerability to earthquakes as “the 

expected degree of losses within a defined area resulting from the occurrence of 

earthquakes (p. 349)”. Cutter et al. (2003), on the other hand, argued that vulnerability 

should be the likelihood that an individual or group would be exposed and adversely 

affected by a hazard. The focus of this definition is on the interaction of the hazards of 

place (risk and mitigation) with the social profile of communities. This type of definition 

can often be used to capture the variation in vulnerability among different individuals or 

systems (Chambers, 1989; Cutter, 1996; IPCC, 2001; Cutter et al., 2003).  

Recently, it is widely agreed and accepted that vulnerability is a function of three 

components: sensitivity, adaptive capacity and exposure (IPCC, 2001; Turner et al., 

2003a; Brooks et al., 2005; Alberini et al., 2006). In general, sensitivity refers to the 

degree to which a system responds to a fluctuation in force (stress). It includes both the 

potential of being harmed or benefited (Lowry et al., 1995; IPCC, 2001; Tao et al., 2002; 

Dixon, 2005). Adaptive capacity, also referred to as resilience (Turner et al., 2003a) or 

coping capacity (Gallopin, 2006), refers to the capacity of a system to moderate or offset 

the potential for damage or take advantage of the change in force. This capacity is often 

associated with management strategies, practices and/or processes (Burton, 1997; IPCC, 
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2001; Luers et al., 2003; Brooks et al., 2005; Gallopin, 2006; Smit and Wandel, 2006). 

Exposure is often defined as the possibility of a system being exposed to the concerned 

change in stress or force (IPCC, 2001; Luers et al., 2003; Turner et al., 2003a). Because 

the three components of vulnerability vary geographically, fluctuate over time, and differ 

across different systems (or different sectors of a system), vulnerability outcomes are 

spatially and temporarily distinct, and they also largely depend upon how the scope of the 

system is defined  

2.2.2 Vulnerability assessment: theories and methods 

2.2.2.1 Theoretical frameworks and qualitative vulnerability assessment  

Different from the traditional impact assessment, vulnerability assessment not 

only addresses the effects on the system under concern, but also seeks to understand why. 

Many theoretical frameworks have been proposed from different perspectives to 

conceptualize the relationship between the systems’ stressors or disturbances and 

responses (Currens and Busack, 1995; Cutter, 1996; Boughton et al., 1999; Murray, 2003; 

Turner et al., 2003a).  

Cutter (1996) developed a conceptual framework for vulnerability assessment 

(see Figure 2-1). This framework illustrated various elements that constituted the 

vulnerability of a specific place to environmental hazard and how their interactions bring 

out the vulnerability. She also stated that this vulnerability would change over time in 

relation to changes of risk exposed by the place. This framework emphasizes that the 

vulnerability of a specific place needs to be integrated with the vulnerability of 

biophysical and social extents of the place. But it does not provide the detailed context in 

which each major component of a system’s vulnerability may exist. The above 
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framework was later modified by presenting a few detailed structures in relation to the 

characteristic of the geographic context and social fabric of a place (see Cutter et al., 

2003).  

Risk 

Mitigation 

Geographic 
Context Biophysical 

Vulnerability 

Social Fabric 

Hazard 
Potential 

Social 
Vulnerability 

Place 
Vulnerability  

 

Figure 2-1 The Hazard of place model of vulnerability Source: Cutter (1996) 

Turner et al. (2003a) proposed a comprehensive framework for vulnerability 

assessment. The framework was considered by Adger (2006) as one of the important 

successes in vulnerability research in recent years. Focusing on the human-environment 

coupled system at a particular spatial scale, the framework portrays the interactions 

among each vulnerability component (exposure, sensitivity and resilience) within, 

beyond, and across the spatial scale (see Figure 2-2). It also illustrates the detailed 

structure of each component, which facilitates the development of possible indicators for 

quantifying vulnerability (Figure 2-2). In a review article of vulnerability assessment, 

Adger (2006) stated that due to the interdisciplinary and integrative nature of this 

framework, this framework should also be applicable for vulnerability assessment of 

different orientations.  
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Figure 2-2 Vulnerability framework: Components of vulnerability identified and linked to 
factors beyond the system of study and operating at various scales. Source: Turner et al. 
(2003a).   

The conceptual frameworks reviewed above provide an important theoretical 

basis for analyzing vulnerability issues of any concerned system or place. They also 

provide conceptual pillars upon which the complexity involves in the vulnerability of a 

system or a place may be understood. However, qualitative conceptual frameworks 

focusing on theory building may be hard to justify without sufficient empirical evidence. 

The development of quantitative indicators for measuring vulnerability will not only 

make it possible to understand practically how vulnerable a system might be, but also 

further a theoretical understanding of vulnerability.    

2.2.2.2 Quantifying vulnerability  

While the theoretical frameworks discussed above help to understand the 
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relationships between the systems and their stressors, quantitative measures are needed to 

understand empirically the degree and magnitude of the systems’ vulnerability in order to 

provide meaningful inputs to the policy making processes towards vulnerability 

management. Quantifying vulnerability can be quite difficult due to the complexity of the 

system under analysis and the fact vulnerability is not a directly observable phenomenon 

(Downing et al., 2001; Luers et al., 2003; Gemitzi et al., 2006). 

The traditional approach of quantifying vulnerability is primarily based on 

summing or averaging a set of weighted indicators that are indicative of vulnerability 

components. The function used for these assessments is similar as Equation 2-1 

∑
=

×=
n

1i
ii )RW(V       or      ∑

=

×=
n

i
ii RW

n
V

1
)(1

                        (2-1) 

Where, V is the vulnerability index of a system; Wi is the weighting factor for 

indicator i; Ri is the measured value or the classification of the selected indictor i, n is 

total number of indicators under concern.   

These indicators are always the directly observable or measurable conditions of 

the systems’ elements and/or the characteristics of the disturbances that the system is 

exposed to. This method has been used to assessing vulnerability of both ecosystems and 

societies to different disturbances such as natural hazards, environmental changes, and 

pollution (Lowry et al., 1995; Kellman et al., 1996; Doerfliger et al., 1999; Wilhelmi and 

Wilhite, 2002; Cutter et al., 2003; Wei et al., 2004; Adger, 2006). 

 For example, Wilhelmi and Wilhite (2002) used a set of indicators representing 

climate, soil, land use, and accessibility to irrigation. Together with a numerical 

weighting scheme, these indicators were employed to evaluate the spatial pattern of 
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agricultural vulnerability to drought in Nebraska. Brooks et al. (2005) conducted an 

empirical analysis for assessing the national level social vulnerability to climate change 

by aggregating a set of weighted indicators that characterize human systems.  

These conventional quantitative approaches are valuable for understanding the 

construction of a place’s vulnerability. The results of these assessments are often 

presented in the form of relative values or scaled degrees of vulnerability, which make 

the comparison between different places possible. The main drawbacks of this approach 

are: 1) it often leads to a lack of correspondence between the conceptual definition of 

vulnerability and the metrics (Luers et al., 2003); and 2) the value of weighting factors 

depends to a great extent upon arbitrary decisions, and this reduces the confidence of 

such weighting methods (Wei et al., 2004).  

Luers et al. (2003, p. 257) stated that “vulnerability measures can only accurately 

relate to the specific variables, rather than the generality of a place, because even the 

simplest system is so complex that it is difficult to fully account for all of the variables, 

processes and disturbances that characterize it.” Based on this thinking they developed a 

new metric for quantifying vulnerability, which transformed the general definition of 

vulnerability (i.e. a function of sensitivity, exposure and adaptive capacity) into 

mathematical functions. Three components of vulnerability are measured as: 1) 

“sensitivity is represented as the absolute value of the derivative of well-being with 

respect to the stressor” (Luers et al., 2003, p. 258); 2) exposure refers to “probability of 

the occurrence of stressor” (Luers et al., 2003, p. 258); 3) adaptive capacity is the 

“difference in the vulnerability under existing conditions and under the less vulnerable 

condition to which the system could potentially shift” (Luers et al., 2003, p. 259). The 
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most general function of this vulnerability quantifying method is presented in Equation 2-

2: 

stress  toExposure
 threshold torelative state Wellbeing

stress y toSensitivit=V ×                     (2-2) 

In the case study, they investigated the vulnerability of agriculture system in a 

sub-tropical irrigated area of Mexico (Luers et al., 2003). Well-being was captured by 

agricultural yields, while the stress of concern was night time temperature. Although it is 

suggested by Adger (2006) that this generalized function could also be used to examine 

the vulnerability of many other systems and/or places in response to many types of 

stresses, few has conducted empirical investigation that employs this approach to 

quantify spatial and temporal variations of agricultural vulnerability to varying drought 

conditions in temperate semi-arid areas.  

2.3 Remote Sensing and Crop Yield Estimation 

Remote sensing data have been widely applied to many research problems and 

practical applications, including meteorology, geology, canopy and soil investigations, 

ocean research, water management, and environmental monitoring (Ferencz et al., 2004). 

Compared to the traditional data collection methods, the capability of remote sensing 

techniques of providing timely information over a large spatial extent at a wide range of 

spatial, temporal, and spectral resolutions is appreciated by numerous users in different 

application fields (Smith et al., 1994; Moulin et al., 1998; Bastiaanssen et al., 2000).  

2.3.1 Yield estimation strategies  

Agriculture is one of the major users of remote sensing data (Moulin et al., 1998). 

Numerous research efforts have been devoted to seeking a quantitative relation between 

remotely sensed spectral information and crop yields, and consequently obtaining a 
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robust estimation and forecasting for agricultural productions (e.g., Idso et al., 1977; 

Hatfield, 1983; Zhang, 1984; Bouman, 1995; Sanchez-Arcilla et al., 1998; Serrano et al., 

2000; Shao et al., 2001; Labus et al., 2002; Lobell and Asner, 2003; Lobell et al., 2003; 

Luers et al., 2003; Lobell et al., 2005; Babar et al., 2006; Badarinath et al., 2006; Prasad 

et al., 2006).  

There are generally two main types of strategies used in the literature for 

estimating crop yields based on remote sensing data (Moulin et al., 1998; Ferencz et al., 

2004). The first one can be classified as the mechanistic yield estimation method, which 

incorporates remote sensing data into agro-meteorological or bio-physiological models. 

For example, Doraiswamy et al. (2003) implemented the real-time assessment of the 

magnitude and variation of crop condition parameters into the crop model called (Erosion 

Productivity Impact Calculator (EPIC). The EPIC model was used to estimate crop yields 

at regional and state levels. Abou-Ismail et al. (2004) developed a rice yield estimation 

model by combining a rice growth simulation model with remote sensing data (for more 

examples, see Bouman, 1995; Moulin et al., 1998; Babar et al., 2006; Badarinath et al., 

2006; Prasad et al., 2006). 

This method is considered capable in describing the complexity of plant-

physiology, and is suitable at a field scale (Moulin et al., 1998). Ferencz et al. (2004) 

summarized several main drawbacks of this method: 1) the number of input parameters 

required for the agro-meteorological or bio-physiological models is always considerably 

large, 2) it needs sufficient ground reference information which is expensive to collect, 

and 3) the models can be quite complex. 
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Another commonly used method is to empirically relate the remote sensing data 

to crop yields at a local or regional scale. These types of relations are always investigated 

based on the use of some indices generated from remotely sensed imagery. For example, 

Dadhwal and Sridhar (1997) investigated the relationship of a near-infrared (NIR)/red 

radiance ratio with wheat yield using a regression model. The relationship was then used 

for wheat yield estimation. In a study by Ferencz et al. (2004), a new vegetation index, 

called the General Yield Unified Reference Index (GYURI)), was proposed which uses a 

fitted double-Gaussian curve to NOAA AVHRR data during the vegetation growth 

period. The regression models were established for different crop types to estimate crop 

yields. Although the relationship found between the remote sensing data and crop yield 

from these empirical analyses may only have a local or regional value, such an approach 

is still preferred by many researchers as it is simple and can be achieved without any 

background physiological knowledge (for more examples, see Hochheim and Barber, 

1998; Basnyat et al., 2004; Bullock, 2004).  

2.3.2 Remote sensing derived vegetation index 

One of the primary variables used in modeling the relationship between remotely 

sensed information and crop yield is the vegetation index. Various vegetation indices 

have been generated from optical satellite sensors which can provide quantitative 

information about vegetation health and biomass (Muldavin et al., 2001; Bullock, 2004; 

Zarco-Tejada et al., 2005; Beeri and Peled, 2006). One of the most commonly used 

vegetation indices for yield estimation is the normalized difference vegetation index 

(NDVI). The NDVI is calculated using Equation 2-3: 

NDVI = (ℓ2- ℓ1) / (ℓ2+ ℓ1)                                                     (2-3) 
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Where: ℓ1 and ℓ2 are the reflectance values in the red and near infrared 

wavelengths, respectively.  

The NDVI is deduced from the physiological fact that “Chlorophyll a and b in the 

palisade layer of healthy green leaves absorbs most of the incident red radiant flux while 

the spongy mesophyll leaf layer reflects much of the near-infra-red radiant flux” (Jensen, 

2005, p. 7). The NDVI reflects the relationship between the amount of healthy green 

vegetation and the spectral reflectance of near-infrared and red wavelengths, and 

therefore can be used as a measure of ground green vegetation health and volume.  

In the literature, through the use of simple regression or multiple regression 

analysis, correlations between NDVI and crop yield can be derived and used in yield 

estimation models for different vegetation types (corn, wheat, sugar beets, cotton, canola 

and grass) in various regions (e.g., Ray et al., 1999; Plant et al., 2000; Seaquist et al., 

2003; Basnyat et al., 2004; Hoffmann and Blomberg, 2004). It is found the suitability of 

NDVI for yield estimation varies depending upon the acquisition time of the remote 

sensing images (Hochheim and Barber, 1998; Basnyat et al., 2004; Vicente-Serrano et al., 

2006). Several studies have discovered that the optimal image acquisition time for the 

best correlation between NDVI and crop yield is late July, particularly in western Canada 

(Hochheim and Barber, 1998; Basnyat et al., 2004). 

2.4 Drought Indices 

“Drought” is a simple term that refers to a complex natural hazard. It is noted that 

defining the severity and duration of drought events can be difficult (Steinemann, 2003). 

A number of drought indices are available to measure quantitatively the drought severity 

and duration. Each of them stems from a different concern. As one of the most widely 
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known drought indices, the Palmer Drought Severity Index (PDSI) was developed in 

1965 and has been used for about 30 years as a primary means of measuring 

meteorological drought severity (Guttman, 1999). It is designed to describe wet and dry 

conditions from a water balance viewpoint, and is hence widely viewed as a measure of 

hydrological drought (Alley, 1985), or an index of soil moisture (Mika et al., 2005). The 

index was used for assessing moisture availability in a study by Jones et al. (1996), and 

for characterizing the stochastic behaviour of drought (Lohani and Loganathan, 1997). 

Many U.S. government agencies and states have been relied on the PDSI to trigger 

drought relief programs (Hayes, 2005). 

A newer drought index, the Standardized Precipitation Index (SPI), was 

developed to improve the capability for drought detection and monitoring (McKee et al., 

1993; 1995). Based on a comparative study (Guttman, 1998), it is concluded that the SPI 

should be used as a meteorological drought index for risk and decision making analysis 

rather than the PDSI. This is because the SPI is “simple, spatially invariant in its 

interpretation, and probabilistic (Guttman, 1998, P. 119)” and it “can be tailored to time 

periods of concern to a user” (Guttman, 1998, P. 119). In contrast, the PDSI is found to 

be “very complex, spatially variant, difficult to interpret, and has inherent a fixed time 

scale of about 9-12 months” (Guttman, 1999, P. 311). This point of view has been widely 

accepted by many analysts in recent studies in which the SPI is used as the means of 

measuring and representing the geographical variations of drought severity and duration 

(e.g., Hayes et al., 1999; Dupigny-Giroux, 2001; Wu and Wilhite, 2004; Sonmez et al., 

2005; Vicente-Serrano and Lopez-Moreno, 2005). The SPI can also be used for drought 

monitoring and prediction (Hayes, 2005).  
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The calculation of the SPI first requires fitting the long-term precipitation record 

for the interested location into an appropriate probability density function. This function 

is then transformed into a normal distribution, so that the mean of the distribution is zero 

(Edwards and McKee, 1997). SPI values above zero indicate wetter periods and values 

less than 0 indicate drier periods. The classification of SPI value is presented in Table 2-1.  

Table 2-1 SPI value classification  

SPI Values Drought condition
2.0+ Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
-.99 to .99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
-2 and less Extremely dry  

Source: (Hayes, 2005) 

2.5 Chapter Summary  

This chapter presented a literature review from the perspective of the proposed 

study. The conceptual frameworks and analytical methods of vulnerability assessment are 

presented and criticized. The yield estimation method based on remote sensing 

techniques is introduced and discussed. In addition, the indices developed for drought 

measurement are reviewed by highlighting the utility of a newly proposed drought index, 

the SPI.  

Based on the review and discussion, it is concluded that although a 

comprehensive quantitative vulnerability assessment is difficult, if not impossible, 

vulnerability of a system or a place can be quantified by simplifying a complex system as 

a pair or pairs of interacting well-being and stresses. The reviewed works suggest that the 

empirical regression relationship between NDVI and crop yield is valuable for yield 
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estimation modeling at a local scale. Although drought is a natural hazard involving 

complex behaviors and impacts, the SPI is recognized as a good measure of the severity 

and spatial variation of meteorological drought, and consequently can be used in risk 

analysis.  
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CHAPTER 3  METHODOLOGY 

3.1 Introduction 

In this chapter, the analytical methods and procedures are developed to 

empirically assess agricultural vulnerability to drought. The quantitative measures for 

assessing vulnerability are adopted and implemented in a case study to assess agricultural 

vulnerability to different drought conditions in Southern Alberta. The empirical 

approaches and procedures are designed to deal with various datasets, including 

precipitation data, remotely sensed images and the farm reported yield data, in order to 

measure individual components of the vulnerability functions. 

The chapter first presents the empirical approaches and study area. The detailed 

data preprocessing procedures are then presented. The vulnerability measure and its 

components used in this study are specified and explained. 

3.2 Empirical Approaches and Study Area 

3.2.1 Empirical objectives 

This study is aims to achieve an understanding of the Southern Alberta 

agricultural system’s vulnerability to various severities of drought conditions. Due to the 

complex nature of the agricultural systems, it is difficult, if not impossible, to derive a 

complete understanding of a particular system’s vulnerability in one study. The empirical 

part of this study attempts to achieve the following objectives: 

1) To estimate the yields of cereal crops in selected years based on remotely 

sensed data for Southern Alberta so that agricultural vulnerability to drought can be 

assessed at a high spatial resolution;  
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2) To assess the magnitude and spatial pattern of agricultural vulnerability to 

varying drought conditions in Southern Alberta using the farm reported crop yield data at 

a quarter-section level; and  

3) To assess the magnitude and spatial pattern of agricultural vulnerability to 

varying drought conditions in Southern Alberta using the yield estimates derived from the 

remote sensing approach.  

3.2.2 Study area 

This study is concerned with agricultural production in Southern Alberta. Two 

spatial extents within Southern Alberta are defined to achieve the proposed empirical 

objectives, largely as a result of data availability. Since the spatial coverage of the farm 

reported yield data is within the provincial boundary, the selected study area 

approximately covers the census divisions one to six (see Figure 3-1a). The study area 

includes townships 1 to 35 from range 2 in meridian 4 to range 4 in meridian 5. There are 

about 156,000 quarter-sections in the study area. Some non-agricultural area is included 

in the selected study area (see Figure 3-1): 1) the southwest corner of the study area is 

within the high elevation area that is mainly covered with forestry; and 2) a large area 

north of Medicine Hat is of military use. The vulnerability assessed at the non-agriculture 

areas is only hypercritical.  

The spatial extent of the Landsat TM scenes defines the boundary of the second 

study area within which agricultural vulnerability assessment is conducted using remotely 

sensed data. This area represents the majority of agricultural regions in Southern Alberta 

(see Figure 3-1b).  
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Figure 3-1 Study areas for the two empirical approaches: a: southern Alberta; b: Landsat 
TM scene 

 
3.2.3 Characteristics of Alberta agricultural system 

As Canada’s second largest agricultural producer and exporter, Alberta accounted 

for 21.3 percent of Canadian farm cash receipts from agriculture, and the farm cash 

receipts totaled $7.9 billion in 2005 (AAFRD, 2006). In total, Alberta’s agri-food exports 

were $5.0 billion in 2005. Crop production and livestock are the two dominant sectors in 

Alberta agriculture. Livestock and livestock products accounted for 56.4% of the farm 

cash receipts, while 29.4% was derived from crop production (AAFRD, 2006). 

According to the agricultural census of 2001, there were 53,652 farms in Alberta, with 

approximately 149 thousand people living in rural farm households. The healthy 

development of agricultural systems is of pivotal importance to Canada’s economy as 

well as the well-being of rural communities in Alberta. 

Total Alberta farmland area was 52.1 million acres, with an average farm size of 

970 acres. The dominant crops in the study area are cereal crops including wheat, barley, 
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oats and rye. During the past decade, Alberta produced 28% of the nation’s wheat crop, 

44% of the barley, and 23% of the oats (AAFRD, 2006).  

Because of the importance of cereal crops in Alberta agriculture and rural 

community, this empirical research focuses on cereal crop production as a measure of 

agricultural well-being in Alberta. In addition to the cereal crop yields as agricultural 

well-being measure in the vulnerability assessment function, the stress of the system 

under concern is the insufficiency of precipitation, or meteorological drought, which is 

measured by the Standard Precipitation Index (SPI) during the growing season between 

May to August. The coping capacity of the agricultural system is assessed by describing 

the effects of drought mitigation measures such as irrigation systems 

3.3 Quantitative Measure for Vulnerability Assessment 

The quantitative method for assessing vulnerability developed by Luers et al. 

(2003) is adopted to assess the agricultural vulnerability to different drought conditions in 

Southern Alberta. Vulnerability is defined as a function of three components: sensitivity, 

well-being state relative to its damage threshold, and exposure. Equations 3-1, 3-2 and 3-

3 list three individual quantitative vulnerability measures used in the study:  

0iNEXPi W / W   SEN V ×=                                                                 (3-1) 

  V  V  NEXPiNEXP =                                                                           (3-2) 

    EXP  V   V NEXPEXP ×=                                                                 (3-3) 

Where:  

VNEXPi is the vulnerability value without considering the occurrence frequency of the 

concerned level of a stressor for a specific year. It represents the system’s 
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vulnerability to a small change in the stress condition (Luers et al., 2003; Turner 

et al., 2003a; Turner et al., 2003b).  

SEN is the system’s sensitivity. It is defined as the change in the system’s well-being 

corresponding to a small change in stress. Different from that described by Luers 

et al. (2003), the value of sensitivity can be negative or positive instead of an 

absolute value. A negative sensitivity value indicates that the concerned stress is 

beneficial to the studied system, while a positive value indicates that the 

concerned stress is harmful to the system.  

Wi/W0 is defined as the relative proximity of the system well-being to its damage 

threshold;  

VNEXP is calculated as the average of the VNEXPi of several selected years that are 

representative of the general stress level to which a system is exposed.  

VEXP is the vulnerability value considering the occurrence frequency of the concerned 

level of stress. This vulnerability value can be used to capture the differences 

among the systems facing different occurrence frequencies of a concerned level of 

stressors.  

EXP is the value of exposure defined as the occurrence frequency of the concerned level 

of stressors.  

In this study, three components of the quantitative vulnerability function 

described above are calculated using the Equations 3-4, 3-5, and 3-6. 

( )( )
( ) ( )∑ ∑

∑ ∑∑×
== 22SPI/Y

SPI-SPIn

YSPI-YSPIn
SLOPESEN                       (3-4)  
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Where: SLOPEY/SPI is the slope value of the simulated trend line (regression line) of yield 

(dependent variable) to SPI (independent variable); n is the total number of the 

years used for sensitivity calculation; and Y is yield. 

0i0i Y/YW/W =                                                                  (3-5) 

Where: Yi is the yield of a specific year; Y0 is the average yield over the selected years, 

and is assumed to be the relative damage threshold. This value varies from 

location to location. Here, we are aware that average yield over years may not be 

the threshold under which the system is considered to be damaged (such as 

breakeven yield). We assume the difference between the average yield and the 

damage threshold is fairly stable for each location.  

Tx N/NEXP =                                                                (3-6) 

Where: Nx is the number of years that have a SPI value under the specified level, within 

the concerned period; NT is the total number of years of the concerned period. In 

this study, three exposure values are calculated respecting the occurrence 

frequency of two different levels of SPI value, and within two different concerned 

periods:  

1) EXPL is the occurrence frequency of severe drought from 1965 to 2004. It is 

calculated as the proportion of years having SPI under –1.5 in these 40 years. 

2) EXPS is the occurrence frequency of severe drought from 1991 to 2004. It is 

calculated as the proportion of years having SPI under –1.5 in these 14 years. 

3) EXPL’ is the occurrence frequency of moderate drought from 1965 to 2004. It is 

calculated as the proportion of years having SPI under –1 in these 40 years. 
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VEXP values calculated using Equation 3-3 based on EXPL EXPS and EXPL’ are 

denoted as VEXPL, VEXPS and VEXPL’, respectively. 

Several studies forecasted the possibility of increasing drought frequency on the 

Canadian prairies (IPCC, 2001; Weber and Hauer, 2003). In this study, we capture the 

possibility of increasing drought frequency by describing the exposure trend (TEXP), as 

presented in Equation 3-7.  

LSEXP EXP/EXPT =                                                       (3-7) 

Where, TEXP is the trend of exposure. It presents the increasing or decreasing propensity 

of severe drought over the recent time.  

The expected occurrence frequency of severe drought is calculated using Equation 

3-8. 

EXPS TEXPEEXP ×=                                                       (3-8) 

Where, EEXP is the expected exposure. It takes into account the recent exposure and 

possible change of exposure.  

Considering the expected change in exposure, the expected vulnerability is 

assessed using Equation 3-9.  

EEXPVEV NEXPEXP ×=                                                    (3-9) 

Where, EVEXP is the expected vulnerability considering the expected frequency of drought.  

The unit of the estimated vulnerability value is the same as that described by 

Luers et al. (2003), which is the unit of well-being factor divided by the unit of the stress 

measure indicator. Therefore, in our empirical study, the unit of vulnerability is the unit 

of yield, because SPI being a normalized index does not have unit. 
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For each empirical approach, the vulnerability is quantified using the methods 

introduced above. The data sources and their processing methods are described in the 

following sections. The vulnerability assessment results will be presented in Chapter 5.  

3.4 Methods for Vulnerability Assessment Based on the Farm Reported Data 

3.4.1 Data source 

A confidential dataset on crop production was provided by Alberta Financial 

Services Corporation (AFSC). The crop data are reported by individual farms on a 

quarter-section level. The dataset includes variables of seeded crop type, seeded acreage, 

farming practice, and crop yield. These variables are recorded for 14 years between 1991 

and 2004. The spatial coverage of the requested dataset is within the census divisions one 

to six. Three types of farming practices are reported: 1) “fallow” means to plant the crop 

in a field in which no crop was planted in the previous year; 2) “stubble” means to plant 

crop in the field where crop stubble is left from the previous harvest; 3) “irrigated” means 

the field has access to irrigation systems and is irrigated. The yield is measured based on 

grain weight. Dockage is applied to reduce the possible error caused by the presence of 

harvested straw or weed seeds. The yield is reported and recorded in kg/acre. This unit is 

used for the following analysis, because kilogram and acre are the units that farmers are 

most familiar with and are widely used in agricultural industry.  

Several confusing problems are found in this dataset, and the data are manipulated 

to solve some of the problems using the procedures described below.  

1) A large number of data records in the earlier years are reported at the whole 

section level rather than the quarter-section level. In order to conduct vulnerability 

assessment at a quarter-section level and to keep spatial resolution of data consistent over 
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time, these section level records are divided evenly into quarter-section records, assuming 

the whole section was planted with the same crop and their yield is the same. 

2) For some quarter-sections, one quarter-section was associated with more than 

one record which recording different crop types seeded or same crop type farmed with 

different farming practices. Since most of these quarter-sections have a total acreage 

much bigger than 160 acres (the total area of a quarter-section), it is recognized that there 

are possible errors associated with these duplicated quarter-sections. Therefore all the 

duplicated quarter-section records are eliminated in the following analysis.  

3) The identification of quarter-section locations is recorded in five individual 

columns indicating meridian, township, range, section and quarter-section, respectively. 

Since a unique identifier is required to link this dataset with the existing quarter-section 

boundary coverage in GIS, an eight digit ID is created using Equation 3-10 

Q10S10R10T10MLANDID 357 +×+×+×+×=                (3-10) 

Where: LANDID is the unique ID for each quarter-section. M, T, R and S indicate 

meridian, township, range and section respectively. Q is the numerical number 1, 

2, 3 and 4 assigned to the northwest, northeast, southwest and southeast quarter of 

a section respectively. The created eight digit IDs are in MTTRRSSQ Format.  

The AFSC dataset which is imported into ArcGIS software and linked to the 

quarter-section boundary coverage using the LANDID is used in following analysis in the 

study.  

3.4.2 Specifying the factors for vulnerability quantifying functions 

Based on Equation 3-4, the sensitivity component of the vulnerability measure is 

calculated using the farm reported cereal crop yield and the SPI value for the growing 
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season. It is estimated as the slope value of the regression trend line. Using the farmer 

reported cereal crop yield as the dependent variable and SPI as the independent variable, 

the slope is estimated using the least square approach.  In order to document the detailed 

spatial variation of vulnerability in the study area, sensitivity is calculated for each single 

quarter-section where the cereal crop yield and SPI value are available for 14 years (n in 

Equation 3-4). The reported yield for each representative year is used as the well-being 

state (Yi in Equation 3-5). In this study, we use 1998, 1999 and 2001 as three 

representative years, because these three years provide a relatively representative 

variation of precipitation conditions. The year of 2001 was known as an extremely dry 

year (AAFRD, 2002), while according to the precipitation records 1998 and 1999 can be 

considered as normal year and wet year, respectively. The average yield over 14 years is 

used as the relative damage threshold (Y0 in Equation 3-5). VNEXP is the average VNEXPi 

over 1998, 1999 and 2001 (see Equation 3-1).  

The data preparations for quantifying vulnerability are presented in detail in the 

following subsections.  

3.4.3 Moving window approach for yield estimation 

In the AFSC dataset, there are only 33 quarter-sections in which cereal crop yields 

are available for all 14 years. This is because farmers seldom grow the same crop in the 

same field for such a long period. Because 33 quarter-sections are not enough to 

represent the spatial pattern of sensitivity for the study area, a moving window approach 

is developed to estimate the cereal crop yields for those quarter-sections where cereal 

crop yields are missing for certain years. The estimated yields are hypothetical.  
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The idea of a moving window approach is to predict the cereal crop yield in a year 

in which the quarter-section where cereal crop is not actually planted by using the cereal 

crop yields from neighboring quarter-sections. This is based on the assumptions that the 

neighboring quarter-sections have the same suitability for growing cereal crops, and that 

they are capable of producing similar yield.  

By examining the spatial autocorrelation of cereal crop yields among quarter-

sections, the above assumption is shown, with the exception for those under different 

farming practices, to be valid. Therefore, for each year, quarter-sections are divided into 

three classes based on three different farming practices. The yield estimation using 

moving window approach is conducted separately for each of three quarter-sections 

classes, because significant difference is found among the yields produced by different 

practices. A window size of 3 by 3 quarter-sections is used for “fallow” and “stubble” 

classes. Because the number of irrigated quarter-sections is very small in the reported 

dataset, a larger window size of 5 by 5 quarter-sections is used for the “irrigated” class to 

achieve a sufficient number of quarter-sections in which the missing yield data will be 

estimated. As such, there will be sufficient irrigated quarter-sections with cereal crop 

yields for all 14 years. The yields to be estimated are the average for all quarter-sections 

within the moving window. After applying the moving window approach to yield 

estimation, there are in total 4,005 quarter-sections with the cereal crop yield data for all 

14 years. Among those quarter-sections, 2,200 are in “fallow” class, 1207 in “stubble” 

class and 598 are in “irrigated” class. Figure 3-2 presents the centroids of the 4,005 valid 

quarter-sections.  
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Figure 3-2 Centroids of quarter-sections where yield data is available 

 
3.4.4 SPI calculation 

In this study, a 40 year period from 1965 to 2004 is selected to calculate SPI 

based on precipitation records. Total monthly precipitation record is downloaded from 

the website of Environment Canada for each of the meteorological stations (479 stations 

in total) in the study area. Because none of the stations have meteorological records all 

through the 40 years, a total of 480 interpolated precipitation maps are generated using an 

inverse distance weighting (IDW) interpolator in ArcGIS software, so that for each 

month for these 40 years, spatially continuous data of precipitation is available. IDW 

method is chosen for all the data interpolation processes, because it provides a reasonable 

level of accuracy in data prediction while it is much less time consuming comparing to 

other interpolation methods such as Kriging. Three examples of the precipitation record 
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at meteorological stations and their interpolated continuous surface are presented in 

Figures 3-3, 3-4 and 3-5. The total monthly precipitation in August in 1999 is the highest 

among the three, while it is the lowest in 2001.  

 
Figure 3-3 Spatial distribution of total monthly precipitation in August, 1998 

 

 
Figure 3-4 Spatial distribution of total monthly precipitation in August, 1999 
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Figure 3-5 Spatial distribution of total monthly precipitation in August, 2001 

 
The 480 precipitation maps are overlaid with the quarter-section map to derive the 

monthly precipitation data for each quarter-section for the last 40 years.  The 

precipitation data is used to calculate the SPI value for each of the 4,005 quarter-sections, 

where the estimated cereal crops yield is available after moving window approach (see 

section 3.4.3).  

The computation of SPI is conducted using a software program developed at the 

University of Nebraska and downloaded from the website of the National Drought 

Mitigation Center (NDMC, 2005). The SPI value for May, June, July and August at a 4 

month scale is used as the measure of the stressor on the agricultural system in the study 

area. The SPI spatial distribution for 1998, 1999 and 2001 at the quarter-section central 

points are presented as examples in Figures 3-6, 3-7 and 3-8. The descriptive statistics for 

the SPI classes in each year are presented in Tables 3-1, 3-2 and 3-3. 
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Figure 3-6 Spatial distribution of the growing season SPI in 1998 
 

Table 3-1 Descriptive statistics of the growing season SPI in 1998 

S PI classes SP I value

P ercentage of 
to tal valid  quarter-

sections M ean
S tandard  
deviation

E x trem ely to  m oderately dry <-1  0 .00%
N ear norm al -1- 0 8 .34% -0.28 0.23
N orm al 0  - 1  55 .98% 0.6 0 .27
M oderately w et 1  - 1 .5  15 .26% 1.2 0 .15
Severely w et 1 .5  - 2 18 .53% 1.72 0.11
E x trem ely w et >2 1 .90% 2.05 0.04  
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Figure 3-7 Spatial distribution of the growing season SPI in 1999 

 

Table 3-2 Descriptive statistics of the growing season SPI in 1999 

SPI classes SPI value

Percentage of 
total valid quarter-

sections M ean
Standard 
deviation

Extrem ely to m oderately dry <-1 0.00%
N ear norm al -1- 0 10.39% -0.22 0.12
N orm al 0 - 1 42.72% 0.55 0.22
M oderately w et 1 - 1.5 21.90% 1.27 0.15
Severely w et 1.5 - 2 13.66% 1.74 0.15
Extrem ely w et >2 11.34% 2.27 0.21  

For both 1998 and 1999, there was not a quarter-section associated with an SPI 

value lower than –1. The majority of the quarter-sections were classified as having a near 

normal precipitation condition during the growing season. There were more quarter-

sections having moderately wet to extremely wet condition in 1999 than in 1998. In 1999, 

11.34% of the quarter-sections had an extremely wet condition. 
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Figure 3-8 Spatial distribution of the growing season SPI in 2001 

 

Table 3-3 Descriptive statistics of the growing season SPI in 2001 

SPI classes SPI value

Percentage of 
total valid quarter-

sections M ean
Standard 
deviation

Extrem ely dry <-2 55.71% -2.33 0.22
Severely dry -2 - -1.5 30.71% -1.77 0.15
M oderately dry -1.5 -1 12.16% -1.32 0.13
N ear norm al -1 - 0 1.42% -0.63 0.32
N ear norm al to extrem ely w et >0 0.00%  

 
The distribution of SPI values in 2001 is very different from those in 1998 and 

1999. More than half of the quarter-sections exhibited extremely dry condition during the 

growing season in 2001; and about 31% of the quarter-sections were associated with 

severely dry conditions. There was no quarter-section associated with an SPI value larger 

than 0. 
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3.5 A Remote Sensing Approach for Assessing Agricultural Vulnerability 

3.5.1 Data source  

To assess agricultural vulnerability to drought at a detailed level, remotely sensed 

imagery is employed in the empirical analysis. As in the empirical approach based on the 

farm reported data. The years of 1998, 1999 and 2001 are selected as the years that 

provide a representative variation in precipitation conditions. Since multi-date satellite 

imagery can often generate superior land use and cover classification accuracy, and 

consequently generate better yield estimation, two Landsat TM/ETM+ images for each 

selected year are acquired. The determination of image date is mainly restricted by data 

availability: 1) the temporal resolution (the time between two overpass dates for a 

particular location) of Landsat satellite sensor is 16 days; and 2) large cloud coverage 

prevents some images from being usable. Images for the dates listed in Table 3-4 are 

selected for analysis in this study. The study area is defined as the overlapping area 

covered by all six acquired Landsat TM/ETM+ scenes over path 41 and row 25 (see 

Figure 3-1b). Each of the obtained imageries contains seven spectral bands of 

information. Six bands (band 1: 0.45-0.52 µm; band 2: 0.52-0.60 µm; band 3: 0.63-0.69 

µm; band 4: 0.76-0.90 µm; band 5: 1.55-1.75µm; and band 7: 2.08-2.35µm) have a 

spatial resolution of 30 meters for each spectral pixel, and one thermal band (band 6: 

10.4-12.5 µm) has a spatial resolution of 60 meters, which is excluded in the image 

analysis.   

Table 3-4 Remote sensing images acquired 

May 4th July 23rd May 23rd August 3rd July 7th August 16th

Landsat 5 TM Landsat 5 TM Landsat 5 TM Landsat 7 ETM+ Landsat 7 ETM+ Landsat 5 TM

1998 1999 2001
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3.5.2 Specifying the factors for vulnerability quantifying functions 

In this approach, cereal crop yields estimated from the remotely sensed imagery 

are used as the measure of Yi and Y0 in Equation 3-5. The estimated yield for each 

representative year is used as the well-being state (Yi in Equation 3-5). The average 

estimated yield for the three selected years is used as the relative damage threshold (Y0 in 

Equation 3-5). Although the estimated yield can also be used for the sensitivity 

calculation, it requires data of a sufficient number of years to generate a steady trend line 

(regression line) for the slope calculation. We selected only three years for crop yield 

estimation, which is insufficient to generate the steady trend line suitable for sensitivity 

estimation. Therefore, the sensitivity value is adopted from the approach based on the 

farm reported data, which is already detailed above. The SPI calculation is the same as 

that presented in Section 3.4.4. VNEXP is the average VNEXPi over 1998, 1999 and 2001 (see 

Equations 3-1 and 3-2).  

The data preparations for quantifying vulnerability are presented in detail in the 

following subsections.  

3.5.3 Image preprocessing  

3.5.3.1 Image orthorectification and atmospheric correction 

The raw images are first orthorectified using orbital information and national road 

network vector data with a positional error of less than 0.5 pixel of1. All images are 

atmospherically corrected using the ATCOR2 algorithm implemented in PCI software by 

three general steps: 1) digital number of the image is first converted to at-sensor radiance 

using the gain and offset calibration information provided with the data, 2) by comparing 

                                                                 
1 Image orthorectification was done by David Rolfson at the image laboratory of Agricultural Research 
Station in Lethbridge. 
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the statistics of the haze versus clear regions of the scene for each sector and each 

channel, haze are removed, and 3) a ground reflectance image is calculated for each 

spectral band. The result of ATCOR2 is a ground reflectance image in each spectral band 

with a relative error of approximately 10 %. The output of ATCOR2 is an 8-bit image 

rather than a 32-bit floating point image, because the file size of 8-bit image is much 

more manageable. The pixel brightness values of the output images range from 0 to 255, 

with the following correlation: a value of 255 represents 65.535% reflectance, while the 

incremental value is 0.257% reflectance. As an example, the result of the atmospheric 

correction of image from August 3rd 1999 is presented in false color composite in 

comparison with the non-corrected image (Figure 3-9): A1 and A2 are subsets of the non-

corrected image; B1 and B2 are subsets of the atmospherically corrected image. 

Comparing B1 with A1, the effects of thin haze are removed by the atmospheric  

 

A1 B1 

  

  
A2 B2 

Figure 3-9 Image atmospheric correction: A1 is the uncorrected haze area; A2 is the 
uncorrected clear area; B1 is the corrected haze area; and B2 is the corrected clear area.  
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correction. Visually, no significant difference is presented at clear area (B2 and A2) 

between atmospherically corrected and non-corrected images.   

3.5.3.2 Layer stacking and non-agricultural land masking  

To ensure the best possible land use classification results in the study, both the 

single data imagery and two overpass date stacked imagery of each year are used for land 

use classification. The classification result from the single date image is compared with 

that from the two-date stacked image, and the comparison will be presented in Chapter 4.  

It is indicated that the image atmospheric correction may not be necessary for 

land use classification (Champagne et al., 2005). To avoid the possible error in haze 

removal procedure of ATCOR2 algorithm, cloud and haze covered areas and shadows are 

visually detected and manually masked out based on the orthorectified image without 

atmospheric correction. Settlements and water bodies are masked with available vector 

data. A buffer of 150 pixels is created around the area with an elevation of 1300m or 

above to mask out the forestry land cover in the high elevation area. The masked image 

of August 3rd, 1999 is shown in Figure 3-10 as an example. Black area is either area 

outside the image coverage or masked non-agriculture area.  
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Figure 3-10 False color composite image with non-agricultural areas masked, August 3rd 
1999 

 
3.5.4 Data preparation for land use classification and yield estimation  

3.5.4.1 Defining land use classification training and validation data 

The farm reported crop dataset from AFSC is used with a supplemental dataset 

from Alberta Agriculture, Food and Rural Development (AAFRD) to define the training 

and validation data for land use classification. Different crop type classifications are used 

to overcome the semantic differences among these two datasets and to make the optimum 

use of these two training datasets. Table 3-5 presents possible land use classes and their 

corresponding descriptions from the corrected image; B1 and B2 are subsets of the 

atmospherically corrected image. Comparing B1 with A1, the effects of thin haze are 

removed by the atmospheric correction. Visually, no significant difference is presented at 

clear area (B2 and A2) between atmospherically corrected and non-corrected images.   
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Table 3-5 Dataset combination of AAFRD dataset and AFSC dataset  

Crop name 
in AAFRD data 

Crop Name 
 in AFSC data 

Classes for image 
classification 

SUGAR BEETS Sugar beets Sugar beets 
BARLEY 

Barley     Barley 
MALT BARLEY 
BARLEY SILAGE 
BARLEY SILAGE 
UNDERSEED 
CORN SILAGE Corn (Fresh) 

Corn FRESH CORN (SWEET) Corn (G) 
GRAIN CORN   
OATS Oats       Oats OATS SILAGE   
RYE Rye-S      Rye 
TRITICALE Trit-S     Triticale 
DURUM WHEAT Wht-Durum  Durum wheat 
HARD SPRING WHEAT Wheat-HRS  Hard spring wheat 
SOFT WHEAT Wheat-SWS  Soft wheat 
CPS WHEAT Wht-Other  Other wheat 
ALFALFA 2 CUT 

Alfalfa    Alfalfa 

ALFALFA 3 CUT 
ALFALFA HAY 
ALFALFA SEED 
ALFALFA SILAGE 
TIMOTHY HAY 
CANOLA Canola     Canola 

MUSTARD Mustard-Br Mustard Mustard-Ye 
DRY BEANS Beans-Dry  

Beans 
 Bean-GrNor 
 Bean-Pinto 
 Beans-Pink 
 Beans-Red 
LENTILS Lentils    Lentils 
DRY PEAS Peas-Field Peas FRESH PEAS 
POTATO Potatoes   Potatoes SEED POTATOES 
BROME HAY   

Grass GRASS HAY   
GRASS SEED   
  Trit-W     Winter triticale * 
WINTER WHEAT Wheat-HRW  Winter wheat * 
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FLAX Flax       Flax* 
SAFFLOWER Safflower  Safflower* 
SUNFLOWER Sunflower  Sunflower* 
  Cabbage    Cabbage* 
ONIONS Onions     Onions* 
GREEN FEED   Green Feed* 
SUMMER FALLOW   Summer Fallow* 
CARAWAY   Caraway* 
CARROTS   Carrots* 
DILL   Dill* 
HYOLA   Hyola* 
NATIVE PASTURE   Native pasture* 
TAME PASTURE   Tame pasture* 
LINOLA   Linola* 
MARKET GARDENS   Market Gardens* 
MINT   Mint* 
NURSEY   Nursery* 
TURF SOD   Turf_Sod* 
SMALL FRUIT  Small Fruit* 
  Rye-F      Fall rye * 
  MixedGr    Mixed grain*  
MISC.   Miss-classified* 

 
Note: 1) the crop types followed by a * in classes column is not considered in land use 
classification; 2) since the land covered with native range has obvious difference from 
other land uses, the training and validation data of native range class is visually detected 
and randomly defined in the study area.  
 

Both the AFSC and AAFRD datasets recorded the crop type and acreage at the 

quarter-section level. For each year of the imagery, these two datasets are combined and 

linked with the quarter-section boundaries using the unique location IDs. The combined 

dataset is then overlaid on the remote sensing image for the corresponding year. The 

homogeneous crop areas on the remote sensing image within quarter-section boundaries 

are then identified and the acreage is verified using the data provided in AFSC and 

AAFRD datasets. These homogeneous crop areas are divided into classes of different 

crop types. In the quarter-sections, about two thirds of the homogeneous crop area in each 

class are randomly selected and defined as the training Region of Interests (ROIs), and 
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the remaining one third is defined as the validation ROIs. Examples of defined training 

and validation ROIs are presented in Figure 3-11. On the right side, the ROIs are 

presented in blue, white, green, red, and purple and so on, and each color represents one 

crop class, while true color image subsets are presented on the left hand as a reference.  

  

  

  
Figure 3-11 Examples of defined training and validation ROIs (on the right side) 

 
The spectral characteristics of each crop type might differ across soil zones and 

vary spatially because of different water supply capacities. To insure high classification 

accuracy, the soil type and irrigation possibility zones (STIPZs) are identified by using 
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various soil zone and irrigation district boundaries. Six STIPZs are listed in Table 3-6. 

STIPZs are used to refine further the training ROIs for each crop class. The utility of 

STIPZs grouped classification training is discussed in Chapter 4. 

Table 3-6 The definition of six STIPZs 

STIPZs Soil zones Inside or outside of irrigation districts
BLI Black Inside
DBI Dark brown Inside
BRI Brown Inside
BLD Black Outside
DBD Dark brown Outside
BRD Brown Outside  

In this study, the classification accuracy will be reported in overall accuracy, 

producer accuracy (short as Prod. Acc.) and user accuracy (short as User Acc.). The 

definition of these accuracies is as follows: 

1) Overall accuracy is calculated by summing the number of pixels classified 

correctly and dividing by the total number of pixels. 

2) Producer accuracy is a measure indicating the probability that a pixel belong to 

Class A in the given ground truth reference is classified as Class A by the classifier. 

3) User accuracy is a measure indicating the probability that a pixel classified as 

Class A by the classifier is belongs to Class A in the given ground truth reference.   

Since the yield estimation will be conducted based on the classified images, it is 

more important to ensure that what is classified as Class A is Class A in reality 

(according to ground truth validation data). Therefore, for the selection of the suitable 

classification approach, user accuracy is more of a concern than producer accuracy.   
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3.5.4.1 Yield estimation method 

In this study, the yield estimation models are defined as the multiple regression 

models of the crop yield on a set of the related independent variables. The dependent 

variable is the farm reported cereal crop yield. The primary independent variable of the 

yield estimation model is the NDVI value that is calculated based on the remotely sensed 

images with Equation 2-3, where ℓ1 and ℓ2 are the pixel brightness values of the Landsat 

TM/ETM bands 3 (red) and 4 (NIR), respectively.  

After achieving the acceptable accuracies of land use classification (see Section 

4.2 for details), only image areas that are classified as cereal crops are retained, and all 

other non-cereal crop areas are excluded from the following analysis. Vector datasets of 

quarter-section boundaries and road systems in the image area are employed to mask out 

quarter-section boundaries and roads. The summer fallow areas are masked out by setting 

an NDVI threshold under which areas are found to be fallow. The utility of this pre-

masking procedure for avoiding the confusion (noise) is illustrated in Chapter 4 

The NDVI values calculated based on atmospherically corrected and non-

corrected images from 1999 are tested for yield estimation and compared in terms of their 

suitability for yield estimation (see Section 4.3.1). The approach generating better NDVI 

estimation is then applied to other imageries of 1998 and 2001.  

In addition to the dependent variable of NDVI in the regression model, two 

numerical variables and four binary variables are considered to improve the explanatory 

power of the yield estimation regression models. Location coordinates, soil type and 

irrigation are included in testing individual models for the respective years. The 

selections of these independent variables are based on the investigation of the regression 
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residuals and residual maps. The model that generates the best yield estimation results is 

employed for each year. The result of the regression model selection and crop yield 

estimates are presented and discussed in detail in Chapter 4. 
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CHAPTER 4 REMOTE SENSING IMAGERY ANALYSES RESULTS 

4.1 Introduction 

To assess agricultural vulnerability to climate variability, the crop yields of 

various types need to be estimated. This chapter presents and compares the crop 

classification results of different remote sensing classification approaches using 1999 

imagery as the base. The tested approach that achieves the best classification result is 

then selected to classify crops using the imagery from 1998, 1999 and 2001. Based on the 

classified imagery, linear regression models are developed for each year and used to 

estimate yields of cereal crops from the classified remotely sensed imagery.  

4.2 Image  Classification 

As introduced in Chapter 3, two Landsat TM digital images are obtained for 1998, 

1999, and 2001. For each year, the training and validation ROIs are identified based on 

the seeded crop recorded in the AFSC and AAFRD combined dataset (see Section 3.5.4.1 

for detail). Using the supervised maximum likelihood classifier, a series of processes are 

first applied to the 1999 imagery to determine a suitable approach for crop classification 

in the study area. The suitable classification approach is then employed to classify 1998 

and 2001 images.  

4.2.1 Identification of a suitable classification approach base on 1999 imagery 

The ROI separability calculation is first conducted based on the training ROIs for 

1999, where each crop type (see table 3-5) is defined as one training class. This 

calculation provides the information about the spectral similarity or difference of each 

pair of training ROIs. The calculated Jeffries-Matusita index is reported in Table 4-1 (see 

Richards, 1999 for Jeffries-Matusita index calculation). The Jeffries-Matusita index value 
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ranges from 0 to 2, where values over 1.9 (highlighted using light yellow color) indicate 

that the ROI pairs have a good separability. For ROI pairs with a lower separability value, 

it is suggested to consider combining them with other ROI pairs. 

Table 4-1 Jeffries-Matusita index values  

Alfalfa Barley Beans Canola Corn Flax Grass Lentils Mustard Oats Pasture Peas
Pota-
toes Rye

Sugar-
beets Triticale

Wheat-
HRS

Wht-
Durum

Wht-
Other

Wht-
Soft

Alfalfa 1.53 1.88 1.98 1.78 1.88 0.80 1.98 1.95 1.58 1.00 1.92 1.85 1.93 1.91 1.73 1.82 1.83 1.84 1.79
Barley 1.53 1.53 1.88 1.36 1.49 1.73 1.97 1.72 0.94 1.62 1.62 1.73 1.63 1.67 1.27 0.95 1.14 0.92 1.06
Beans 1.88 1.53 1.95 1.23 1.69 1.95 1.94 1.88 1.55 1.85 1.77 1.40 1.59 1.72 1.79 1.51 1.29 1.67 1.55
Canola 1.98 1.88 1.95 1.95 1.90 1.98 1.98 1.32 1.94 1.97 1.49 1.97 1.99 1.87 1.96 1.93 1.93 1.93 1.96
Corn 1.78 1.36 1.23 1.95 1.54 1.92 1.94 1.92 1.42 1.81 1.84 1.31 1.71 1.57 1.45 1.58 1.59 1.51 1.55
Flax 1.88 1.49 1.69 1.90 1.54 1.95 1.99 1.88 1.45 1.87 1.77 1.88 1.77 1.61 1.54 1.36 1.46 1.46 1.54
Grass 0.80 1.73 1.95 1.98 1.92 1.95 1.98 1.98 1.76 0.83 1.97 1.93 1.98 1.93 1.79 1.92 1.93 1.91 1.87
Lentils 1.98 1.97 1.94 1.98 1.94 1.99 1.98 1.88 1.98 1.99 1.95 1.95 2.00 1.99 1.98 1.99 1.99 1.99 1.99
Mustard 1.95 1.72 1.88 1.32 1.92 1.88 1.98 1.88 1.86 1.94 1.48 1.95 1.97 1.91 1.95 1.80 1.77 1.86 1.92
Oats 1.58 0.94 1.55 1.94 1.42 1.45 1.76 1.98 1.86 1.58 1.79 1.82 1.74 1.79 1.50 1.18 1.17 1.30 1.27
Pasture 1.00 1.62 1.85 1.97 1.81 1.87 0.83 1.99 1.94 1.58 1.94 1.88 1.95 1.91 1.79 1.85 1.85 1.86 1.82
Peas 1.92 1.62 1.77 1.49 1.84 1.77 1.97 1.95 1.48 1.79 1.94 1.92 1.92 1.87 1.90 1.67 1.66 1.79 1.88
Potatoes 1.85 1.73 1.40 1.97 1.31 1.88 1.93 1.95 1.95 1.82 1.88 1.92 1.87 1.60 1.80 1.89 1.87 1.89 1.83
Rye 1.93 1.63 1.59 1.99 1.71 1.77 1.98 2.00 1.97 1.74 1.95 1.92 1.87 1.91 1.81 1.64 1.64 1.63 1.48
Sugar-
beets 1.91 1.67 1.72 1.87 1.57 1.61 1.93 1.99 1.91 1.79 1.91 1.87 1.60 1.91 1.75 1.87 1.88 1.85 1.80
Triticale 1.73 1.27 1.79 1.96 1.45 1.54 1.79 1.98 1.95 1.50 1.79 1.90 1.80 1.81 1.75 1.53 1.62 1.30 1.23
Wheat-
HRS 1.82 0.95 1.51 1.93 1.58 1.36 1.92 1.99 1.80 1.18 1.85 1.67 1.89 1.64 1.87 1.53 0.46 0.53 1.04
Wht-
Durum 1.83 1.14 1.29 1.93 1.59 1.46 1.93 1.99 1.77 1.17 1.85 1.66 1.87 1.64 1.88 1.62 0.46 1.02 1.07
Wht-
Other 1.84 0.92 1.67 1.93 1.51 1.46 1.91 1.99 1.86 1.30 1.86 1.79 1.89 1.63 1.85 1.30 0.53 1.02 0.93
Wht-Soft 1.79 1.06 1.55 1.96 1.55 1.54 1.87 1.99 1.92 1.27 1.82 1.88 1.83 1.48 1.80 1.23 1.04 1.07 0.93  

By investigating the separability values presented in Table 4-1, a high spectral 

similarity (low separability value) exist among many class pairs. Therefore, the spectrally 

similar classes are combined to avoid excessive classification errors. The above twenty 

land use cover types are combined to form five crop cover types as the initial 

classification scheme (see Table 4-2). A few tests are conducted using this scheme, and 

the classification results are compared in terms of their classification accuracy. Further 

modifications to the image classification scheme are presented later in this section. 
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Table 4-2 Class grouping details and classification accuracy of scheme A 
Classes (see Table 3-5)

Overall Accuracy (%)
Prod. Acc. (%) User Acc. (%)

Grass
Alfalfa
Pasture
Rye
Oats
Barley
Hard spring wheat
Durum wheat
Soft wheat
Other wheat
Triticale
Beans
Lentils
Peas
Potatoes
Sugarbeets
Corn
Canola
Mustard
Native Range Native range 97.6 99.8

Canola+Mustard 93.5 75.0

Broadleaf crops 78.0 86.3

Alfalfa 82.7

Cereal crops 84.7 89.4

92.7

Classification scheme A
86.0

 

As presented in Chapter 3, since spectral characteristics of each crop may vary 

across different soil type and irrigation possibility zones (STIPZs). The training data are 

further divided into six groups by STIPZs. Two single date images and one two-date 

stacked imagery are classified based on the training data with and without the STIPZ 

grouping. As such, a total of six supervised maximum likelihood classifications are 

performed to identify the optimum image classification method. For all classification 

results based on the STIPZ grouped training data, the pixels that belong to the same crop 

class but are associated with different STIPZs are combined using a post-classification 

method, “combine”. The results of classification accuracy are presented in Tables 4-3 and 

4-4.  
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Table 4-3 Image classification accuracies using single date and two-date stacked imagery 
without the STIPZ grouping  

Overall accuracy (%)
Prod. 

Acc. (%)
User 

Acc. (%)
Prod. 

Acc. (%)
User 

Acc. (%)
Prod. 

Acc. (%)
User 

Acc. (%)
Alfalfa 82.0 90.2 79.5 76.1 83.7 87.3
Cereal crops 14.8 61.8 80.9 77.1 82.3 84.1
Broadleaf crops 58.2 57.1 48.2 72.5 70.4 79.2
Canola+Mustard 82.0 21.1 90.4 67.8 93.8 65.5
Native Range 97.9 97.9 95.7 98.2 97.6 99.7

May 23th image August 3rd image
Two-date stacked 

image
58.8 77.4 83.9

 
 

Table 4-4 Inage classification accuracies using single date and two-date stacked 
imageries with the STIPZ grouping  

Overall accuracy (%)
Prod. 

Acc. (%)
User Acc. 

(%)
Prod. 

Acc. (%)
User Acc. 

(%)
Prod. 

Acc. (%)
User Acc. 

(%)
Alfalfa 80.9 90.6 65.9 81.1 83.2 89.6
Cereal crops 21.5 60.7 81.2 81.9 81.5 86.4
Broadleaf crops 38.6 38.0 71.7 65.4 77.4 75.9
Canola+Mustard 55.3 15.6 91.5 74.5 92.3 68.1
Native Range 97.1 98.3 94.0 98.8 96.9 99.7

May 23th Image August 3rd image
Two-date stacked 

image
54.3 79.1 84.7

 
 
As indicated in Tables 4-3 and 4-4, the overall classification accuracy ranges from 

54.3 to 84.7%. As expected, the classifications based on a two-date stacked imagery 

produce a higher overall accuracy. For the classifications with and without the STIPZ 

grouping of training data, there is a slight difference in image classification accuracies. 

The overall classification accuracy for the single data imagery taken in the late growing 

season and two-date stacked imagery is higher with the STIPZ grouping of training data 

than that without the STIPZ grouping (Tables 4-3 and 4-4). The accuracy for the single 

imagery taken in the early growing season without the STIPZ grouping of training data is 

higher than that with the STIPZ grouping. 
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Because the image classification based on the two-date stacked imagery with the 

STIPZ grouping of training data achieves the highest overall accuracy as well as the user 

accuracies, this approach is used for the digital image classification throughout this study.  

To improve the user accuracy further, several post-classification methods are 

tested using the classified image of the two-date stacked imagery based on the STIPZ 

grouping of training data. The test results are demonstrated using a subset of the 

classified image as an example (see Figure 4-1).  

As shown in classified image in Figure 4-1 (a), there are numerous isolated pixels 

in each of the classified land cover classes. These isolated pixels are often considered as 

classification noise. While the complete removal of classification noise is impossible, a 

number of post-classification operations can be carried out to improve the appearance of 

the output thematic image. Removing  high-frequency spatial variation or noise from the 

classified image can often be achieved by analyzing the neighboring pixel and removing 

the scatter single pixels (‘sieve’ process), and then merging the small patches of pixels 

together to make more continuous and coherent units (‘clump’ process). In the image 

sieving process, the sieve threshold is a parameter that specifies the minimum size of the 

adjacent pixel groups to be maintained in the output. For example, assuming 50 is set as 

the sieve threshold, if a group of adjacent pixels less than 50 are classified as Class A and 

they are isolated from any other pixels in class A, these pixels will be assigned as 

unclassified in sieve output. In this study, different sieve thresholds are tested, and the 

classification accuracy results are reported in Table 4-5.  
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Figure 4-1 Image subset of three steps of classification and post-classification 

a - STIPZ combined classes; b - sieved with a threshold of 200, based on a; c - clumped 
by two pixels, based on b. 

 
Figure 4-1(b) and Figure 4-1(c) illustrate how the sieving and clumping processes 

change the classified image. Some areas of confusion are eliminated from the 

classification result (e.g., A1 and A2), as well as some small classified pixel patches that 

may not be correctly classified (e.g. B1 and B2).  
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Table 4-5 Post-classification accuracy resulted with various parameter specifications 

Sieve 
threshold 
(Pixels)
Clump 
operator 
size 
(Pixels)
Overall 
accuracy 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Prod. 
Acc. 
(%)

User 
Acc. 
(%)

Alfalfa 83.2 89.6 82.9 91.9 82.7 92.3 82.4 92.8 82.1 93.1 82.7 92.7
Cereal 
crops 81.5 86.4 80.9 88.6 80.9 88.9 80.8 89.1 80.5 89.4 84.7 89.4

Broadleaf 
crops 77.4 75.9 76.1 82.2 75.7 82.9 75.0 84.3 72.8 86.8 78.0 86.3

Canola+ 
Mustard 92.3 68.1 92.2 73.1 92.2 74.1 91.7 75.2 90.8 77.0 93.5 75.0

Native 
Range 96.9 99.7 96.9 99.8 96.9 99.8 96.9 99.8 96.9 99.8 97.6 99.8

83.1 86.084.7 84.2 84.1 83.8

50 10025 200 200

2

 
  
As indicated in Table 4-5, when the sieve threshold size increases, the number of 

unclassified pixels escalates. This is resulted from an increasing number of both mis-

classified pixels and correctly classified pixels that are sieved out from a designated class. 

As a result, the overall accuracy declines while the sieve threshold goes up. Also, the 

producer accuracy decreases while user accuracy increases, when the sieve threshold 

rises. The decline of overall accuracy indicates, among the pixels sieved out of classes, 

there are more correctly classified pixels than mis-classified pixels. The clump process 

can be employed to solve this problem. A clump operator size of 2 pixels is used. This 

procedure assigns any single or two isolated pixels into the class that most of the 

surrounding pixels belong to. This procedure improves the overall accuracy by almost 

3% while the user accuracy for most of the classes remains proximally the same. 

Compared to the classification result without noise removal procedures, the overall 
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accuracy of the image after the above post-classification procedures is increased by 1%. 

More importantly, the user accuracy of cereal crop classes is increased by more than 3%.  

To further improve the classification accuracy, especially the user accuracy of 

cereal crops, alternative land use and land cover classification are adopted. The 

classification scheme used above is refined. The broadleaf crops in the above 

classification scheme are divided into three crop types, i.e. broadleaf crop (refined); row 

crop; corn in the alternative classification scheme (see Table 4-6).  

Table 4-6 Class grouping details and classification accuracy comparison of two schemes 

Overall Accuracy 
(%)

Overall Accuracy 
(%)

Prod. 
Acc. (%)

User Acc. 
(%)

Prod. 
Acc. (%)

User Acc. 
(%)

Grass
Alfalfa
Pasture
Rye
Oats
Barley
Hard spring wheat
Durum wheat
Soft wheat
Other wheat
Triticale
Beans
Lentils
Peas
Potatoes
Sugarbeets
Corn Corn 80.5 92.7
Canola
Mustard
Native Range Native range 97.6 99.8 Native range 97.6 99.8

91.4 85.4Canola+Mustard 93.5 75.0 Canola+Mustard

64.2 75.9

Row crop 71.9 93.6
Broadleaf crops 78.0 86.3

Broadleaf crops 
(refined)

82.1 92.7

Alfalfa 82.7

Cereal crops 84.7 89.4 Cereal crops

92.7 Alfalfa

Classes            (see 
Table 3-5)

82.4 93.9

Classification scheme A Classification scheme B

86.0 83.7

 

Comparing the classification results based on two different classification schemes 

(Table 4-6), most land classes based on Classification Scheme B are associated with 

higher user accuracy although the overall accuracy using this scheme is lower. Only the 

broadleaf crop class under the Classification Scheme B has lower user accuracy than that 

under the classification scheme A. More importantly, the user accuracy of cereal crops is 
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3.3% higher. The result based on the Classification Scheme B is a desirable improvement 

because this study focuses on the yield estimation of cereal crops. As a result, the 

classification scheme B is chosen to classify the imagery of 1998 and 2001. 

In sum, the above classification and post-classification procedures are tested to 

derive an optimum classification framework for this study. These procedures are    

summarized systematically into a prototypical image classification framework. Figure 4-2 

presents the prototypical framework that is implemented in classifying all of the 

imageries in this study.   

 

Figure 4-2 Image classification protocol 

 
4.2.2 Classification results of 1998, 1999 and 2001 

The image classification accuracies for 1998, 1999, and 2001 are presented in 

Table 4-7. The classification of the 1998 imagery produces an undesirably low overall 

accuracy. By examining the accuracies for each land use class, the low overall accuracy 

is primarily caused by a very poor classification of corn class. Since corn is not a 

dominant crop in the study area, it is eliminated from training dataset. The overall 

STPIZ grouped Training 

Combine STPIZ by classes

Scheme B 

1   2
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classification accuracy (without considering corn) is 86.4% (see Table 4-7). The overall 

classification accuracy is 83.7% and 81.0% for the 1999 and 2001 imageries, respectively. 

Corn crop class is not excluded for 1999 and 2001, because it can be classified with 

acceptable accuracy. User accuracy of all three years is close to 90% or higher.  

Table 4-7 Classification accuracies of three years 

Years
O verall 
Accuracy (% )

Prod. 
Acc. 
(% )

User 
Acc. 
(% )

Prod. 
Acc. 
(% )

User 
Acc. 
(% )

Prod. 
Acc. 
(% )

User 
Acc. 
(% )

Prod. 
Acc. 
(% )

User 
Acc. 
(% )

A lfa lfa 80.7 86.7 80.7 87.0 82.4 93.9 62.7 88.8
Cereal crop 68.3 95.8 81.7 94.7 82.1 92.7 87.5 89.8
Broadleaf crop 
(refined) 51.9 83.2 53.8 80.4 64.2 75.9 64.9 97.2

Row crop 68.2 87.0 73.9 88.2 71.9 93.6 78.5 90.9
Corn 57.1 23.2 80.5 92.7 88.1 73.1
C anola+ 
M ustard 86.4 93.4 86.4 93.4 91.4 85.4 81.5 90.8

Native Range 98.5 99.8 98.5 99.8 97.6 99.8 97.1 99.4

76.4 86.4 83.7 81.0

1998
1998          

(Corn excluded) 1999 2001

 

Table 4-8 presents the coverage of the classified land use and cover classes. The 

cereal crops represent the dominant crops in all three years, and their yields will be 

estimated for assessing agricultural vulnerability to drought. 

Table 4-8 Coverage of classified land used and cover classes, 1998, 1999, and 2001  
Classe
Total acreage

Percentage Acreage Percentage Acreage Percentage Acreage
Alfalfa 16.9% 1040829 19.7% 1241549 8.9% 592224
Cereal crop 33.3% 2054899 32.8% 2071163 38.2% 2533672
Canola+Mustard 6.4% 394766 6.3% 395184 3.6% 238149
Corn 0.5% 32683 0.8% 53427
Broadleaf crop (refined) 2.4% 147959 1.8% 112065 2.1% 137217
Row Crops 1.0% 59763 0.6% 36878 0.7% 43553
Native Range 17.5% 1079545 17.5% 1107088 18.4% 1219598
Unclassified 22.6% 1395064 20.9% 1320062 27.4% 1820796

6172824 6316672 6638637
1998 1999 2001

 
 
4.3 Yield Estimation 

In this section, a standard image pre-processing procedure for yield estimation is 

first developed based on the 1999 imagery. This standard procedure is then applied to 
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processing the 1998 and 2001 imagery. Multiple regression analysis is used to establish 

the yield estimation models. Different regression variable sets are tested to determine the 

best estimation result.  

4.3.1 Image pre-processing standard for yield estimation 

As indicated in Chapter 3, the original imagery is masked and only the areas 

classified as cereal crops are retained. The methods for atmospheric correction and NDVI 

calculation are presented in Chapter 3, and are applied to the imagery used in this study. 

The image NDVI is first calculated at the pixel level, and it is then used to generate the 

average NDVI of a quarter-section by using the “Zonal statistics” function available in 

ArcGIS software. A set of boundary files are employed to mask out irrelevant image 

areas to avoid the possible confusion (noise) in yield estimation:  

1) Roads and quarter-section boundaries are masked using a 30 meters (one pixel 

size) buffer of the quarter-section boundaries;  

2) Summer fallow areas are masked by a NDVI threshold under which the image 

area was detected to be fallow. This threshold is visually detected based on investigating 

the NDVI calculated from the atmospherically corrected image. The image taken from 

the later date of the growing season (August 3rd for 1999) is used. The reasons for using 

the atmospherically corrected later growing season image for threshold detections are: a) 

the corrected imagery after removing the atmospheric effects represents the spectral 

property of the vegetations more accurately, and b) imagery from later in the growing 

season provides more variability in the NDVI values, and therefore is preferred for 

visually detecting the difference between vegetation and summer fallow. The detected the 

threshold for fallow masking is NDVI value 0.4 for 1999. The detailed pre-processing 
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procedure is illustrated in a flowchart in Figure 4-3. The processing results indicated in 

the shaded boxes are tested in the following steps in terms of their efficiency for yield 

estimation. 

 

August 3rd  
Non-corrected 

1. Quarter-section 
⁪  boundary ⁪  ⁪  
⁪  polygon > line 

2. Buffer boundary 
⁪  line by 30 ⁪  ⁪  
⁪  meters 

3. Create mask ⁪  
⁪ with the buffer 

Set null value < 0.4 

May 23rd 

Non-corrected 
May 23rd

Corrected 
August 3rd  

ATCOR2 Atmospheric Correction with PCI

Corrected 

NDVI August 3rd  
Corrected 

Masking road 
and field edge 

Masking fallow

Road and field edge masked 
NDVI August 3rd Corrected 

Masking road, field edge and fallow
Road, field edge and fallow masked 

NDVI August 3rd Corrected 

Road, field edge 
and fallow masked 

NDVI May 23rd 
Non-corrected 

Road, field edge 
and fallow masked 
NDVI August 3rd 

Non-corrected

Road, field edge 
and fallow masked 

NDVI May 23rd 
Corrected

NDVI May 23rd 

Non-corrected 
NDVI August 3rd  

Non-corrected 
NDVI May 23rd

Corrected 

 

Figure 4-3 Pre-processes for yield estimation, 1999 
 
The utility of these pre-processes in improving yield estimation performance is 

discussed by comparing the yield estimation results using NDVI with and without pre-

processing. In addition, the NDVI calculated based on both atmospherically corrected 

and non-corrected imagery is tested and compared to see if the atmospheric correction 

method would generate better yield estimates of cereal crops. Also, the NDVI from the 

image of the later date in the growing season alone and NDVIs of both images are used 

for yield estimation. The results are compared in terms of their utility for yield estimation.  
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Both simple and multiple linear regression models are used to test the usefulness 

of the above pre-processing and atmospheric correction procedures in crop yield 

estimation. Using the farm reported yields as the two available training datasets e 

dependent variable and the quarter-section average of NDVI values from the differently 

pre-processed imagery as the independent variable, a total of four yield estimation 

models was conducted. The estimation results are simply compared in their R-square 

coefficients of regression models (see Table 4-9). As presented in Table 4-9, masking out 

confusion areas (with pre-processing) improves the estimation effectiveness for both 

atmospherically corrected NDVI (ATCOR2) and non-corrected NDVI (Orig). However, 

it is found that the regression based on the non-corrected NDVI has R-square values 

higher than that of the corrected NDVI (see Table 4-.9), which is not expected.   

Table 4-9 Tested regression R-square values for crop yield estimation based on NDVI 
with varying pre-processing procedures 

M a y  
2 3 rd

A u g . 
0 3 rd  O r ig A T C O R 2 O r ig A T C O R 2

√ 0 .2 2 5 0 .2 1 4 0 .2 9 1 0 .2 7 3
√ √ 0 .2 6 0 0 .2 6 0 0 .3 1 3 0 .2 9 3

R 2V a r ia b le s

W ith o u t  p re -p ro c e s s in g  W ith  p re p ro c e s s in g  N D V I

 
 

By plotting the histogram and Q-Q plot of the atmospherically corrected NDVI, it 

is discovered that these NDVI values are not perfectly normally distributed (see Figure 4-

4). Therefore a log-transform of NDVI data (see Equations 4-1and 4-2) is then applied to 

improve the NDVI values’ normality. Comparing the histograms and Q-Q plots of the 

log-transformed NDVI data to the non-transformed NDVI data presented in Figure 4-4, 

the transformed data approximate more to a normal distribution curve. 

)100523_NDVIln(0523_NDVI_T ×=                                     (4-1) 
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]10NDVI_0803)-1ln[(0803_NDVI_T ×=                                    (4-2) 
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Figure 4-4 Histogram and Q-Q plot of atmospherically corrected 1999 NDVI 
(NDVI_0523, NDVI_0803) and their transformation (T_NDVI_0523, T_NDVI_0803) 
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Table 4-10 Tested regression R-square values for crop yield estimation based on 
transformed NDVI with varying pre-processing procedures  

M a y  
2 3 rd

A u g . 
0 3 rd  O r ig A T C O R 2 O rig A T C O R 2
√ 0 .2 6 0 0 .2 9 4 0 .3 1 0 0 .3 1 9

√ √ 0 .2 8 3 0 .3 1 9 0 .3 2 2 0 .3 3 0

R 2V a r ia b le s

W ith o u t p re -p ro c e s s in g  W ith  p re p ro c e s s in g  T ra n s fo rm e d  N D V I

 
 
Based on the transformed NDVI data, simple regression analysis is conducted 

again to test any change in R-square value in the regression models. As expected, the R-

square values increased consistently in all of the regression models (see Tables 4-9 and 4-

10). Moreover, the atmospherically corrected NDVI shows an advantage over non-

corrected NDVI in crop yield estimation. The regression tests also show that the masking 

procedures of removing possible confusion areas contribute to a better estimation of crop 

yields. The atmospherically corrected NDVI data for 1998 and 2001 are examined (see 

Figure 4-5 and Figure 4-6). Similar to the 1999 NDVI data, the 1998 and 2001 NDVI 

data are not normally distributed. The log-transformation procedures are applied to the 

data.  The individual transformation equations are listed below (see Equations 4-3, 4-4, 4-

5, 4-6). 

)100504_NDVIln(0504_NDVI_T ×=                                           (4-3) 

]10NDVI_0723)-1ln[(0723_NDVI_T ×=                                 (4-4) 

]10NDVI_0707)-1ln[(0707_NDVI_T ×=                                     (4-5) 

)100816_NDVIln(0816_NDVI_T ×=                                     (4-6) 
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Figure 4-5 Histogram and Q-Q plot of atmospherically corrected 1998 NDVI 
(NDVI_0504, NDVI_0723) and their transformation (T_NDVI_0504, T_NDVI_0723) 
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Figure 4-6 Histogram and Q-Q plot of atmospherically corrected 2001 NDVI 
(NDVI_0707, NDVI_0816) and their transformation (T_NDVI_0707, T_NDVI_0816) 
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Based on the above analysis and discussions, the standard pre-processing 

procedure for crop yield estimation modeling is established for this study. The procedure 

includes the following steps: 1) applying atmospheric correction using the ATCOR2 

procedure to the digital images, 2) transforming the NDVI data derived from the above 

corrected images, and 3) masking out road, field edge and fallow areas. For 1998, the 

NDVI threshold for fallow masking was set at 0.4 based on the NDVI data of July 23rd. 

For 2001, it is set to 0.3 based on NDVI of July 7th. 

4.3.2 Multiple regression analysis for yield estimation 

As introduced in Chapter 3, the yield estimation in this study is based on a 

multiple regression analysis. The dependent variable is the farm reported yield of each 

quarter-section, and the primary independent variable is the transformed NDVI data. To 

improve the explanatory power of the regression model, several additional independent 

variables are included in the regression model based on the analysis of regression 

residuals. Two numerical variables and four binary variables are considered in the 

regression model specification for individual datasets, and tests are conducted to identify 

the suitable regression models for each year.  

4.3.2.1 Linear regression analysis of cereal yield estimation for 1998 

An initial regression model is established for estimating the yields of cereal crops. 

The model is then assessed and refined to generate an effective model. As presented in 

table 4-11, the initial model includes the log-transformed NDVI data. The transformed 

NDVI from both dates are employed. The geographic coordinates of the centroid of each 

quarter-section are also included to account for spatial correlation of the crop yields. 

Recognizing that the variation in soil types may contribute to the variation in crop growth, 
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two binary variables are also included in the initial model. One binary variable is 

included in the model to account for the variation in irrigation. The results of the initial 

regression analysis are presented in Table 4-11.  

Table 4-11 Results of the initial regression model testing for 1998 

Regression coefficients Standardized Beta 
coefficients T-statistics Significance 

(Constant)  2.716 0.007  
T_NDVI_0504 -0.012 -0.525 0.599  
T_NDVI_0723 -0.424 -20.155 0.000  
Longitude 0.079 1.757 0.079  
Latitude -0.055 -2.112 0.035  
Irrigation district 0.337 14.075 0.000  
Black soil 0.061 1.853 0.064  
Brown soil 0.061 1.920 0.055  
Model F-statistics 131.531   
Model significance 0.000   
R2 0.341   
Adjusted R2 0.339   

  
The model is statistically significant at a 99% confidence level.  It explains 34.1% 

of variation in the yield of cereal crops. While all independent variables are associated 

with the expected sign, several independent variables are not statistically significant. In 

particular, the log-transformed NDVI variable from the May 4th imagery is not significant 

in the model. This may be explained that the image is taken before the summer growing 

season, and hence do not show sufficient information on the variation of crop growth. 

The independent variables longitude and soil types do not show high significance values 

in the model either. By examining the regional soil distribution, it is found that the three 

soil zones in the study area are distributed essentially parallel from west to east. The 

longitude variable may be sufficient to account for spatial variation in soil types.  

Based on the above analysis, the initial regression model was adjusted by 

excluding the log-transformed NDVI of the May 4th and soil zone binary variables. The 

results of the adjusted regression analysis are shown in Table 4-12. The model is 
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statistically significant at the 99% confidence level. The model explains 33.7% of the 

variation in cereal crop yield. In the regression, the independent variable latitude is not 

significant. Since year 1998 was a relatively wet year, the yields of cereal crops may have 

not varied significantly from south to north in the study area. 

Table 4-12 Results of the adjusted regression model testing for 1998: 
Regression 
Coefficients 

Standardized Beta 
Coefficients t-statistics Significance 

(Constant)   5.908  0.000  
T_NDVI_0723 -0.425  -20.863  0.000  
Irrigation district 0.344  14.564  0.000  
Longitude 0.092  3.742  0.000  
Latitude -0.034  -1.364  0.173  
Model F-statistics 226.088  
Model significance. 0.000   
R2 0.337   
Adjusted R2 0.335   

  
The adjusted model is then further refined by excluding the independent variable 

latitude. The final regression for estimating the 1998 cereal crop yields includes three 

impendent variables, i.e., the log-transformed NDVI from the July 23rd imagery, the 

binary variable of irrigation district, and longitude. The results of the final model are 

given in Table 4-13. The model is statistically significant at the 99% confidence level. All 

of the coefficients are statistically significant, and are with expected signs. The derived 

model explains 33.6% of the variation in cereal crops (R2=0.336). While the R2 value is 

not very high, considering the large sample size (N=1785), it is acceptable.  This model is 

used as the final model for estimating the 1998 cereal crop yield (see Equation 4-7). The 

crop yield estimates and associated yield map are presented later for comparison of 1998, 

1999, and 2001 estimations.  

dis_Irri359.311
Longitude55.953T_NDVI_072424.582-12312.182=Y

×+
×+×

         (4-7)  
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Table 4-13 Results of the final regression model for 1998 

Regression Coefficients Standardized Beta 
Coefficients t-statistics Significance 

(Constant)   6.105 0.000 
T_NDVI_0723 -0.427 -20.964 0.000 
Irrigation district 0.111 5.379 0.000 
Longitude 0.327 16.190 0.000 
Model F-statistics 300.684  
Model significance 0.000  
R2 0.336  
Adjusted R2 0.335  

  
4.3.2.2 Linear regression analysis of cereal yield estimation for 1999 

The analytical procedure discussed in estimating the 1998 crop yield is repeated 

here for establishing the 1999 crop yield. Six independent variables are included in the 

initial regression analysis. The model is statistically significant at the 99% confidence 

level. It explains 46.9% of the 1999 crop yield variation. The results of the initial model 

are shown in Table 4-14.  

Table 4-14 Results of the initial regression model testing for 1999 
Regression Coefficients Standardized Beta 

Coefficients t-statistics Significance 

(Constant)  3.716 0.000 
T_NDVI_0523 0.109 5.577 0.000 
T_NDVI_0803 -0.532 -22.471 0.000 
Longitude 0.042 1.003 0.316 
Latitude -0.217 -7.804 0.000 
Irrigation district 0.377 16.089 0.000 
Black 0.052 1.637 0.102 
Brown 0.040 1.327 0.185 
Model F-statistics 202.210 

 

Model significance 0.000 
R2 0.469 
Adjusted R2 0.467 

 
As indicated in Table 4-14, variable longitude, and two binary soil zones variables 

are not statistically significant in the model.  

By excluding the longitude variable and binary soil zones variables from the 

initial regression model, the final regression model for estimating the 1999 crop yield is 
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derived. The results of the model are presented in Table 4-15. The log-transformed NDVI 

for both dates, the latitude coordinate, and the binary variable for irrigation district are 

used as independent variables. The model is statistically significant, and it accounts for 

46.6% of the crop variation with an R2 value slightly higher than that of the 1998 model. 

All four independent variables are statistically significant with the expected signs. The 

regression model used to estimate the 1999 crop yield is given as Equation 4-8.   

dis_Irri465.429
Latitude24.4292-3T_NDVI_080350.340-
3T_NDVI_052269.84612541.280=Y

×+
××

×+

                             (4-8) 

Table 4-15 Results of the final regression model for 1999 

Regression Coefficients Standardized Beta 
Coefficients t-statistics Significance 

(Constant)   10.583 0.000 
T_NDVI_0523 0.112 5.776 0.000 
T_NDVI_0803 -0.538 -23.624 0.000 
Latitude -0.231 -9.498 0.000 
Irrigation district 0.401 19.732 0.000 
Model F-statistics 349.336 

 

Model significance 0.000 
R2 0.466 
Adjusted R2 0.464 

 
4.3.2.3 Linear regression analysis of cereal yield estimation for 2001 

The initial regression analysis for the 2001 crop yield estimation also includes six 

independent variables. The results of the initial regression are shown in Table 4-16.  The 

model is statistically significant at the 99% confidence level. It explains 69% of the crop 

yield variation in the study area. While all of coefficients are associated with the expected 

sign, three independent variables are not statistically significant in the regression model, 

including the log-transformed NDVI from the August 16th imagery, longitude and binary 
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variable of brown soil zone. The insignificant constant coefficient indicates that this 

model is not stable, and consequently it is not suitable for crop yield estimation.  

Table 4-16 Results of the initial regression model testing for 2001 

Regression Coefficients Standardized Beta 
Coefficients t-statistics Significance. 

(Constant)  0.707 0.480 
T_NDVI_0707 -0.844 -38.942 0.000 
T_NDVI_0816 0.037 1.886 0.059 
Longitude -0.029 -0.900 0.368 
Latitude -0.095 -4.598 0.000 
Irrigation district 0.153 8.170 0.000 
black -0.118 -4.605 0.000 
brown 0.013 0.567 0.571 
Model F-statistics 440.640 

 

Model significance 0.000 
R2 0.690 
Adjusted R2 0.689 

 

Table 4-17 Results of the regression model testing for 2001 

Regression Coefficients Standardized Beta 
Coefficients t-statistics Significance. 

(Constant)   5.654 0.000 
T_NDVI_0707 -0.856 -40.736 0.000 
Latitude -0.085 -4.262 0.000 
Irrigation district 0.142 7.993 0.000 
black -0.092 -4.266 0.000 
Model F statistics 768.303 

 

Model significance 0.000 
R2 0.689 
Adjusted R2 0.688 

 
The initial model is adjusted to include four variables, and the results of 

regression analysis are presented in Table 4-17. The model is statistically significant at 

the 99% confidence level. It explains 68.9% of the variation of dependent variable. All 

three independent variables are significant with expected signs. This model is used to 

estimate yield of the 2001 cereal crops (see Equation 4.9). 

black91.877-
dis_Irri439.159Latitude75.136-

7T_NDVI_070568.151-4990.551=Y

×
×+×

×
                               (4.9) 
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4.3.2.4 Cereal crop yield estimation model for three years 

In order to ensure the quality of crop yield estimates, residuals of the regression 

models developed above are scrutinized further using histograms and Q-Q plots (see 

Figures 4-7, 4-8 and 4-9). As indicated in Figures 4-7, 4-8 and 4-9, the regression 

residuals of the 1998, 1999, and 2001 yield estimation models are normally distributed, 

although there are a few outliers in the residual data. The residual distribution results not 

only validate that the data meet the normality assumptions in the regression exercise, but 

also indicate the models have accounted for spatial dependency of crop yields in the 

study area.   
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Figure 4-7 Histogram and Q-Q plot of 1998 regression model residuals 
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Figure 4-8 Histogram and Q-Q plot of 1999 regression model residuals 
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Figure 4-9 Histogram and Q-Q plot of 1998 regression model residuals 

  
The estimates of cereal crop yields for 1998, 1999, and 2001 based on the 

regression models are presented as maps in Figures 4-10, 4-11 and 4-12. The descriptive 

statistics for the estimated yield are summarized in Tables 4-18, 4-19 and 4-20 

 
Figure 4-10 Spatial distribution of 1998 estimated cereal crop yield 
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Table 4-18 Descriptive statistics of 1998 estimated cereal crop yield  

Yield range (kg /acre) Percentage of area Mean (kg /acre)
< 800 2.26% 762

800 - 1200 46.45% 1026
1200 - 1600 40.02% 1363
1600 - 2000 10.48% 1743

> 2000 0.80% 2084  
 

 
Figure 4-11 Spatial distribution of 1999 estimated cereal crop yield 
 

Table 4-19 Descriptive statistics of 1999 estimated cereal crop yield  
Yield range (kg/acre) Percentage of area M ean (kg /acre)

< 800 1.10% 747
800 - 1200 38.27% 1047

1200 - 1600 37.45% 1374
1600 - 2000 16.15% 1771

> 2000 7.04% 2245  
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Figure 4-12 Spatial distribution of 2001 estimated cereal crop yield 
 
Table 4-20 Descriptive statistics of 2001 estimated cereal crop yield  

Yield range (kg/acre) Percentage of area Mean (kg /acre)
< 800 57.57% 491

800 - 1200 23.57% 977
1200 - 1600 10.31% 1371
1600 - 2000 4.85% 1777

> 2000 3.70% 2375  
 
As presented in the Figures 4-10, 4-11, 1-12, and Tables 4-18, 4-19, 4-20, the 

overall estimated yields of 1998 and 1999 are similar. The majority of the mapped area 

has a cereal crop yield of 800 to 1600 kg/acre. There were more areas associated with a 

higher yield (above 1600 kg/acre) in 1999 than those in 1998. The estimated yield in 

2001 was obviously lower than that in 1998 and 1999. Over 50% of the mapped area in 

2001 had a yield less than 800 kg/acre. As indicated in Figures 4-10, 4-11, and 4-12, most 

of the areas in the Southern irrigation districts maintained a high yield of above 1600 

kg/acre in all three years.  

The average yield for the three years are calculated and mapped in Figure 4-13. 

Table 4-21 presents the descriptive statistics of estimated average yields over three years. 
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About 59.3% of the cereal crop field had an average yield between 800 to 1200 kg/acre. 

There were 10.89% of the cereal crop fields that produce an average yield of more than 

1600 kg/acre. Only 7.87% of the cereal crop fields had an average yield of less than 800 

kg/acre. As expected, the irrigated regions were normally associated with higher average 

yields in the study area in the selected years. 

 
Figure 4-13 Spatial distribution of average cereal crop yield (1998, 1999, and 2001) 

 
Table 4-21 Descriptive statistics of average cereal crop yield (1998, 1999, and 2001) 

Yield range (kg/acre) Percentage of area Mean (kg/acre)
< 800 7.87% 739

800 - 1200 59.30% 990
1200 - 1600 21.94% 1364
1600 - 2000 8.69% 1763

> 2000 2.20% 2143  
 
 

4.4 Chapter Summary  

Based on analyzing the imagery from 1999, an image classification framework is 

developed for this study. Using the combined imagery from two dates in a grow season 

for crop classification provides better results than a single date imagery. The training 
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datasets with the STIPZ grouping perform the image classification better than that 

without the STIPZ grouping. Post-classification methods including sieving and clumping 

are helpful in terms of removing isolated pixels and increasing classification accuracy. 

Crops that are spectrally similar are grouped as one class in this study, and different types 

of cereal crops are not separable using our classification approach. The developed 

classification framework is applied to the 1998 and 2001 imageries. The overall 

classification accuracies are 86.4% (1998), 83.7% (1999), and 81.0% (2001). Because the 

cereal crop yields are used as a measure of agricultural wellbeing in the following 

agricultural vulnerability assessment, a relatively high classification user accuracy of 

cereal crop class is needed.  The user accuracies for the cereal crop class are 94.7% 

(1998), 92.7% (1999), and 89.8% (2001).  

The NDVI value of the image areas classified as cereal crops is employed as a 

primary independent variable for yield estimation in the regression analysis. Roads, field 

edges and fallow areas are masked off. The log-transformed NDVI from the 

atmospherically corrected image shows an advantage in yield estimation.  

Multiple regression analyses are used for yield estimation. Variables such as field 

location, irrigation capacity and soil type are considered in the regression models in 

addition to the NDVI value. Non-significant variables are excluded step by step. Final 

yield estimation models for three years are all statistically significant at a 99% confidence 

level. All independent variables in the models are also significant. The R2 values of the 

final yield estimation models are 0.336 (1998), 0.466 (1999), and 0.689 (2001). The 

regression residuals for all three models are normally distributed. These models are 

directly employed to generate yield maps of cereal crops at the image pixel level. These 
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yield estimates will be employed directly as a measure of agricultural wellbeing for 

assessing agricultural vulnerability in the region.  
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CHAPTER 5 VULNERABILITY ASSESSMENT 

5.1 Introduction 

In this chapter, the empirical results on agricultural vulnerability to different 

levels of drought conditions are presented. The assessment is based upon the methods 

described in Chapter 3. The farm reported yields of cereal crops at a quarter-section level 

and the estimated yield of cereal crops from the remotely sensed imagery at a 30 meter by 

30 meter pixel level are employed as the main data sources to measure agricultural well-

being in the study area. The expected agricultural vulnerability to a possible future 

drought condition and its spatial distribution are also described based on the expected 

increasing drought frequency.  

This chapter is divided into three main sections. In the first section, components 

of the vulnerability function and agricultural vulnerability to different levels of droughts 

are assessed based on the farm reported yields of cereal crops at a quarter-section level. 

In the second section, agricultural vulnerability is assessed based on the yield estimates 

from the remotely sensed imagery and the sensitivity estimates using the quarter-section 

yield data.  The spatial patterns of agricultural vulnerability are presented in maps. In the 

third section, the expected agricultural vulnerability to an increasing drought propensity 

in the study area is assessed. 

5.2 Agricultural Vulnerability to Drought at the Quarter-section Level 

5.2.1 Estimated sensitivity  

Agricultural sensitivity is estimated for the point data at the centroid locations of 

the valid quarter-sections using the method described in Chapter 3. The point data is 

interpolated to generate a continuous surface representation of agricultural sensitivity. 
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The spatial distribution of sensitivity is presented in Figure 5-1. The descriptive statistics 

for each sensitivity class are presented in Table 5-1.  

 
Figure 5-1 Spatial distribution of SEN: estimated agricultural sensitivity to 
meteorological drought in growing season 

 
Table 5-1 Descriptive statistics for SEN classes: estimated agricultural sensitivity to 
meteorological drought in growing season 

SEN  classes SEN  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 30.06% -0.15 42.68
Slight 50 - 100 22.29% 75.70 14.87
Moderate 100 - 150 22.45% 122.75 13.82
High 150 - 200 16.64% 172.76 14.81
Extremely high > 200 8.57% 219.01 11.98  

 
Over 30% of the study area has a sensitivity value less than 50. Most of the areas 

with a low sensitivity are located within or close to irrigation districts (see Figure 5-1). 

Nevertheless, there are some areas within irrigation districts that are estimated more 

sensitive than it is expected. This is because not all agricultural land within irrigation 
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districts is actually irrigated every year. For example, the total area of the irrigation 

district east of Calgary (Western Irrigation District) is about half million acres, within 

which about 95,000 acres are contracted on the water role and only less than 55,000 acres 

actually requested for irrigation service in 2004 (WID, 2004). The southwest corner of 

the study area also has a low value. This is mostly non-agricultural areas with mountains 

and hills. Slight and moderate sensitive areas are at central longitude areas and the 

southeast of the study area. These two classes cover about 44% of the study area. Most of 

the central-east and northeast areas are classified as having a high to extremely high 

sensitivity. About 9% of the study area is associated with an extremely high sensitivity 

value. 

 A small portion of the study area is associated with a negative sensitivity value. 

In these areas, agricultural production is more sensitive to the extremely wet condition 

rather than to the extreme dry condition might be. Due to the orientation and scope of this 

study, agricultural vulnerability to the extremely wet condition will not be discussed.  

5.2.2 Vulnerability without exposure 

Using Equation 3-1, agricultural vulnerability without exposure (VNEXPi) is 

calculated for three selected years (1998, 1999 and 2001). Because the yield data from 

AFSC is confidential, spatial distribution of Wi and W0 is not presented. The interpolated 

surface representations of VNEXPi for the three years are mapped in Figures 5-2, 5-3, and 

5-4.  

A three-year average VNEXP value is calculated based on the interpolated VNEXPi 

values in the selected years (see Equation 3-2), and its spatial distribution is presented in 

Figure 5-5. VNEXP is classified based on the classification ranges used for classifying the 
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sensitivity data. The descriptive statistics of VNEXPi and VNEXP classes are presented 

accordingly in Tables 5-2, 5-3, 5-4 and 5-5.  

 
Figure 5-2 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological 
drought in 1998 growing season, without considering exposure  

 
Table 5-2 Descriptive statistics for VNEXPi classes: agricultural vulnerability to 
meteorological drought in 1998 growing season, without considering exposure 

V NEXPi  Classes V NEXPi  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 29.30% -4.07 48.08
Slight 50 - 100 28.01% 76.31 13.99
Moderate 100 - 150 20.44% 122.14 14.32
High 150 - 200 9.26% 171.87 14.40
Extremely high > 200 12.98% 1191.15 2382.85  
 
As indicated in Figure 5-2 and Table 5-2, the areas with a low to moderate 

vulnerability value covered a major part of the study area. In particular, the irrigation 

areas tended to be associated with low to moderate vulnerability values. About 13% of 

the study area was classified as having an extremely high vulnerability. The area was 
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mostly located in the northeast part of the study area. In 1998, without considering the 

exposure factor, the eastern part of the study area tended to be more vulnerable than the 

western part.    

 
Figure 5-3 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological 
drought in 1999 growing season, without considering exposure  

 

Table 5-3 Descriptive statistics for VNEXPi classes: agricultural vulnerability to 
meteorological drought in 1999 growing season, without considering exposure 
 

 

V NEXPi  Classes V NEXPi  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 36.66% -8.48 109.53
Slight 50 - 100 35.33% 76.85 13.56
Moderate 100 - 150 24.14% 118.10 12.11
High 150 - 200 2.99% 169.72 13.92
Extremely high > 200 0.89% 1033.65 1549.37  
 
It can be seen clearly from Figure 5-3 and in Table 5-3 that the spatial pattern of 

vulnerability to drought in 1999 was quite similar to that in 1998. Overall, agricultural 

production in the study area was less vulnerable. About 96% of the study area was 
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associated with a low, slight or moderate vulnerability. Only 3% of the area was 

associated with a high vulnerability, and less than 1% of the area had an extremely high 

vulnerability. The pockets of highly vulnerable areas were scattered in the south and 

southeast of the study area. 

 
Figure 5-4 Spatial distribution of VNEXPi: agricultural vulnerability to meteorological 
drought in 2001 growing season, without considering exposure 

 

Table 5-4 Descriptive statistics for VNEXPi classes: agricultural vulnerability to 
meteorological drought in 2001 growing season, without considering exposure 

V N EXPi  classes V N EXPi  value
Percentage 
coverage M ean

Standard 
deviation

Low < 50 20.27% -7.41 39.82
Slight 50 - 100 9.62% 75.55 14.28
M oderate 100 - 150 10.24% 123.55 14.27
H igh 150 - 200 9.08% 172.97 13.91
Extrem ely high > 200 50.79% 806.77 716.57  

 
Agricultural vulnerability without considering exposure in 2001 is presented in 

Figure 5-4 and Table 5-4. There was a drastic contrast in the spatial pattern of agricultural 
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vulnerability between 2001 and 1998 or 1999. For 2001, over 50% of the study area was 

classified as having an extremely high vulnerability. With an exception for the regions 

surrounding the City of Calgary and most of the irrigation districts, a large part of the 

study area was considered to be highly vulnerable. Even some irrigated area in the north 

was considered as extremely vulnerable (Figure 5-5). About 30% of the study area 

showed a low to slight vulnerability values (Table 5-5). 

 
Figure 5-5 Spatial distribution of VNEXP: average agricultural vulnerability to 
meteorological drought in growing seasons (1998, 1999 and 2001), without considering 
exposure  
 
Table 5-5 Descriptive statistics for VNEXP classes: average agricultural vulnerability to 
meteorological drought in growing seasons (1998, 1999, and 2001), without considering 
exposure 

V NEXP  classes V NEXP  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 23.91% -12.42 67.46
Slight 50 - 100 16.01% 75.65 14.05
Moderate 100 - 150 16.26% 122.08 14.26
High 150 - 200 6.23% 171.15 14.05
Extremely high > 200 37.60% 538.54 524.71  
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Figure 5-5 presents the three-year average vulnerability in the study area based on 

the vulnerability values in 1998, 1999, and 2001. Overall, across these three years, about 

24% of the study area showed a low vulnerability without considering exposure (see 

Table 5-5). The area was located approximately where a low sensitivity was estimated. 

Most of the irrigation districts were associated with low vulnerability values.  Slight and 

moderate vulnerability values were found in the areas between the west and the irrigation 

districts. These two vulnerability classes covered 32.3% of the study area. Most of the 

eastern part of the study area was classified as extremely highly vulnerable to drought. 

This area accounted for 37.6% of study area.  

5.2.3 Vulnerability with exposure to meteorological drought 

As described in Chapter 3, the exposure to the stressor in this study is measured 

by the proportion of SPI value under or over a harmful level in a concerned period. 

Assuming that a severely dry condition is harmful to cereal crop production, the exposure 

is calculated as the proportion of the growing season SPI value less than  –1.5 in the 

period from 1965 to 2004 (EXPL). This measure describes the long term frequency of the 

exposure to a severely dry condition. In order to understand the effect of a short term 

exposure, the proportion of the SPI value less than –1.5 in the period from 1991 to 2004 

(EXPS) is also calculated. Both exposure measures are derived at the quarter-section level. 

To generate a surface representation of the exposure measures for the entire study are, an 

IDW interpolator is applied. The interpolated spatial distributions of EXPL and EXPS 

measures are presented in Figures 5-6 and 5-7, and their descriptive statistics are 

presented in Table 5-6 and 5-7, respectively.   

 86



 
Figure 5-6 Spatial distribution of EXPL: long-term exposure to severe meteorological 
drought in growing season, from 1965 to 2004 
 
Table 5-6 Descriptive statistics for EXPL classes: long-term exposure to severe 
meteorological drought in growing season, from 1965 to 2004 

O ccurrence o f 
S P I under -1 .5

P ercen tage 
coverage M ean

S tandard  
dev iation

≈ 1/40 5 .56% 0.0312 0 .0039
≈ 2/40 29 .87% 0.0515 0 .0059
≈ 3/40 46 .99% 0.0742 0 .0054
≈ 4/40 16 .30% 0.0976 0 .0054
≈ 5/40 1 .28% 0.1173 0 .0036  

 
As summarized in Table 5-6, for all the locations in the study area from 1965 to 

2004, there was at least one year of severe meteorological drought during the growing 

season. The severe meteorological drought happened twice for 30% of the study area and 

three times for 47% of the study area. About 17.5% of the area experienced at least four 

severe meteorological droughts during the growing season between 1965 and 2004. 
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Figure 5-7 Spatial distribution of EXPS: short-term exposure to severe meteorological 
drought in growing season, from 1991 to 2004 
 
Table 5-7 Descriptive statistics for EXPS classes: short-term exposure to severe 
meteorological drought in growing season, from 1991 to 2004 

Occurrence of SPI 
under -1.5

Percentage 
coverage Mean

Standard 
deviation

≈ 0/14 9.36% 0.0104 0.0109
≈ 1/14 34.71% 0.0731 0.0145
≈ 2/14 37.40% 0.1401 0.0146
≈ 3/14 18.52% 0.2082 0.0102  

 
Figure 5-7 and Table 5-7 present the distribution and frequency data of severe 

meteorological drought over a short and more recent period. Less than 10% of the study 

area did not experience any severe meteorological drought in the growing season between 

1991 and 2004. About 72% of the study area had one or two severely dry growing 

seasons. There was 18.5% of the area that even experienced severely dry growing season 

three times over 14 years. The area with the highest frequency of the severely 

meteorological drought was located mostly in the central-south part of the study area, 

around Lethbridge. 
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Based on the exposure data presented above, the vulnerability of cereal crop 

production to the severe meteorological drought with exposure (VEXP) is estimated. VEXPL 

and VEXPS values are estimated using EXPL and EXPS measures, respectively, that are 

defined as the exposure factor in Equation 3-3. The three-year average vulnerability map 

presented in Figure 5-4 is used in estimating VEXPL and VEXPS values. The spatial 

distributions of VEXPL and VEXPS values are mapped (see Figures 5-8 and 5-9). The 

descriptive statistics of VEXPL and VEXPS values classes are presented in Tables 5-8 and 5-9.  

 
Figure 5-8 Spatial distribution of VEXPL: agricultural vulnerability to severe 
meteorological drought in growing season, from 1965 to 2004  
 
Table 5-8 Descriptive statistics for VEXPL classes: agricultural vulnerability to severe 
meteorological drought in growing season, from 1965 to 2004 

V EXPL  classes V EXPL  value
Percentage 
coverage M ean

Standard 
deviation

Low < 5 32.26% 0.26 4.83
Slight 5 - 10 22.34% 7.33 1.35
M oderate 10 - 15 11.23% 12.34 1.48
High 15 - 20 11.52% 17.31 1.36
Extremely high > 20 22.65% 42.81 39.02  

 89



The overall pattern of agricultural vulnerability to the severe drought over a long 

term was uneven in the study area. From the west to the east, agricultural vulnerability 

increased gradually. Most of the eastern part of the study area was associated with a very 

high VEXPL value, representing agricultural sectors which were extremely vulnerable 

(Figure 5-8). In total, about 22.65% of the study area was associated with an extremely 

high vulnerability index value (Table 5-8). 

 In the central part of the study area, particularly towards the south-central area, 

there were pocket areas where crop production tended to be highly to extremely highly 

vulnerable to severe drought (Figure 5-9). About 34% of the study area had a slight to 

moderate vulnerability index value.  The low vulnerability areas were essentially 

associated with a low sensitivity value (see Figure 5-9). Overall, about a third of the 

study area had a low vulnerability value.  

 
Figure 5-9 Spatial distribution of VEXPS: agricultural vulnerability to severe 
meteorological drought in growing season, from 1991 to 2004  
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Table 5-9 Descriptive statistics for VEXPS classes: agricultural vulnerability to severe 
meteorological drought in growing season, from 1991 to 2004 

V EXPS  classes V EXPS  value
Percentage 
coverage Mean

Standard 
deviation

Low < 5 27.84% -1.97 9.01
Slight 5 - 10 12.75% 7.70 1.45
Moderate 10 - 15 13.66% 12.38 1.42
High 15 - 20 10.58% 17.24 1.42
Extremely high > 20 35.17% 44.95 34.01  

 

Agricultural vulnerability to drought over a short run from 1991 to 2004 is 

presented in Figure 5-9 and Table 5-9. Most of the low sensitivity areas (Figure 5-1 and 

Table 5-1) were associated with a low agricultural vulnerability to the severe 

meteorological drought from 1991 to 2004. They were mostly located in the northwest of 

the study area. The areas covered by a slight and moderate vulnerability value accounted 

for 26.4% of the study area. These areas were distributed along a corridor to the east of 

Calgary running from the northeast to the southwest. More than 35% of the study area 

was considered as extremely highly vulnerable to the severe drought. The extremely 

highly vulnerable region was not just confined to the east, but was also clustered in the 

southern part of the study around Lethbridge.  

Considering that a moderate drought might be harmful enough to cause damage in 

cereal crop production, agricultural vulnerability to the moderate meteorological drought 

in the study area over a long run is also assessed. The exposure to a moderate 

meteorological drought condition is calculated as the proportion of the year with the SPI 

value less than –1 during 1965 to 2004 (EXPL’). The spatial distribution of EXPL’ is 

presented in Figure 5-10, and the descriptive statistics of EXPL’ are presented in Table 5-

10. 
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Figure 5-10 Spatial distribution of EXPL’: long-term exposure to moderate 
meteorological drought in growing season, from 1965 to 2004 
 
Table 5-10 Descriptive statistics for EXPL’ classes: long-term exposure to moderate 
meteorological drought in growing season, from 1965 to 2004 

O ccurrence of SP I 
under -1

Percentage 
coverage M ean

Standard  
deviation

≈ 4/40 2.28% 0.1048 0.0059
≈ 5/40 9.81% 0.1279 0.0060
≈ 6/40 28.21% 0.1510 0.0058
≈ 7/40 32.40% 0.1750 0.0061
≈ 8/40 20.42% 0.1983 0.0055
≈ 9/40 4.82% 0.2224 0.0059

≈ 10/40 2.07% 0.2506 0.0074  
 

As presented in Table 5-10, at least four growing seasons were considered to be 

moderately dry in the study area during period 1965 to 2004. Over 80% of the study area 

experienced six to eight moderately dry growing seasons. The highest exposure to the 

moderate meteorological drought was 10 out of 40 years.  

VEXPL’ is then estimated using EXPL’ as the exposure factor in Equation 3-3. 

Again, the three-year average vulnerability value of 1998, 1999, and 2001 is used to 
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estimate VEXP (see Figure 5-5). The spatial distribution of VEXPL’ to the moderate drought 

is mapped (see Figure 5-11), and its descriptive statistics are presented in Table 5-11. As 

expected, a very large part of the study area (78.91%) was considered to be extremely 

vulnerable to a moderate drought condition. Only 13.58% of the study area was 

associated with a low vulnerability, most of which was associated with the irrigation 

districts. As indicated by the vulnerability map, even some areas that had low sensitivity 

values were associated with high to extremely high vulnerability to a moderate drought 

condition in the study area.  

 
Figure 5-11 Spatial distribution of VEXPL’: agricultural vulnerability to moderate 
meteorological drought in growing season, from 1965 to 2004 
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Table 5-11 Descriptive statistics for VEXPL’ classes: agricultural vulnerability to moderate 
meteorological drought in growing season, from 1965 to 2004 

V E X P L '  c la s se s
V E X P L '  

v a lu e
P e rce n tag e  

co v e ra g e M ean
S tan d a rd  
d ev ia tio n

L o w <  5  1 3 .5 8 % -2 2 .1 2 3 5 .1 0
S lig h t 5  -  1 0  2 .7 8 % 7 .6 0 1 .4 3
M o d era te 1 0  -  1 5 2 .3 6 % 1 2 .4 4 1 .4 7
H ig h 1 5  -  2 0  2 .3 7 % 1 7 .6 1 1 .4 5
E x trem e ly  h ig h >  2 0 7 8 .9 1 % 1 4 8 .5 9 1 9 7 .2 1  

 
5.3 Agricultural Vulnerability to Drought at the Pixel Level 

In this section, the areas classified as cereal crop fields in 1998, 1999 and 2001 

(see section 4.2) are defined as the study area. The basic spatial unit of the assessment is 

the agricultural field defined by 30 meter by 30 meter pixel. The vulnerability of cereal 

crop production to different drought severities is assessed based on the yield estimates 

derived in Chapter 4. The sensitivity and exposure factors of the vulnerability function 

estimated above are used here. The cereal crop yield estimated from the remotely sensed 

data is used to measure agricultural well-being, denoted as Wi in Equation 3-1. The yield 

data are already presented in Figures 4-10, 4-11, 4-12 and Tables 4-18, 4-19, and 4-20 in 

the previous chapter. The three-year average of the estimated yields is treated as W0 in 

Equation 3-1, and its spatial distribution is already presented in Figure 4-13 and Table 4-

21.  VNEXPi is estimated for 1998, 1999, and 2001 using Equation 3-1. Figures 5-12, 5-13, 

and 5-14 present the spatial distributions of VNEXPi for each year, respectively. A three-

year VNEXP average is calculated based on Equation 3-2, and its spatial distribution is 

mapped in Figure 5-15. VNEXPi and VNEXP are classified using the same classification 

ranges as those used for classifying the sensitivity data. The descriptive statistics of 

VNEXPi and VNEXP classes are presented in Tables 5-12, 5-13, 5-14 and 5-15. 
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5.3.1 Agricultural vulnerability to drought without considering exposure   

 
Figure 5-12 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability 
to meteorological drought in 1998 growing season, without considering exposure  
 
Table 5-12 Descriptive statistics for VNEXPi classes at image pixel level: agricultural 
vulnerability to meteorological drought in 1998 growing season, without considering 
exposure 

V NEXPi  classes V NEXPi  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 41.07% 1.54 46.34
Slight 50 - 100 40.94% 73.44 13.61
Moderate 100 - 150 14.80% 119.34 13.66
High 150 - 200 2.74% 166.28 12.63
Extremely high > 200 0.45% 236.70 39.61  

 
As presented in Table 5-12, the total area of the low to slight vulnerability classes 

in 1998 covered 82% of the study area including the irrigation districts and the main 

agricultural regions from Calgary to Lethbridge (see Figure 5-12). About 14.8% of the 

study area was associated with a moderate vulnerability. Only 3.19% of the study area 

had high to extremely high vulnerability. According to the vulnerability map given in 
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Figure 5-12, these vulnerable regions were scattered in places where irrigations were not 

available.     

 
Figure 5-13 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability 
to meteorological drought in 1999 growing season, without considering exposure 
 
Table 5-13 Descriptive statistics for VNEXPi classes at image pixel level: agricultural 
vulnerability to meteorological drought in 1999 growing season, without considering 
exposure 

V NEXPi  classes V NEXPi  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 44.89% 6.32 39.46
Slight 50 - 100 41.36% 73.77 13.35
Moderate 100 - 150 11.40% 118.52 13.41
High 150 - 200 2.17% 168.59 12.82
Extremely high > 200 0.17% 220.13 22.86  

The distribution of vulnerability ranges and the spatial pattern of agricultural 

vulnerability in 1999 were quite similar to those of 1998. A majority part of the study 

area had low to moderate vulnerability. Only 2.34% of the study area was estimated with 

a high to extremely high vulnerability (see Figure 5-13 and Table 5-13). 
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Figure 5-14 Spatial distribution of VNEXPi at image pixel level: agricultural vulnerability 
to meteorological drought in 2001 growing season, without considering exposure 
 
Table 5-14 Descriptive statistics for VNEXPi classes at image pixel level: agricultural 
vulnerability to meteorological drought in 2001 growing season, without considering 
exposure  

V NEXPi  classes V NEXPi  value
Percentage 
coverage Mean

Standard 
deviation

Low < 50 30.89% -15.59 662.41
Slight 50 - 100 18.19% 75.85 14.28
Moderate 100 - 150 17.34% 123.86 14.42
High 150 - 200 12.31% 173.16 14.33
Extremely high > 200 21.26% 341.73 864.44  
 
The distribution of vulnerability ranges and its spatial pattern in 2001 were 

significantly different from those in 1998 and 1998. Almost half of the study area was 

associated with a low vulnerability, most of which was located in the north part of the 

study area or in the irrigation districts (see Figure 5-14 and Table 5-14). More than half 

of the study area was associated with a moderate to high or extremely high vulnerability 

value in 2001. About a third of the study area had high to extremely high vulnerability to 
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the drought. Most of these areas were in central to Southern part of the region where no 

irrigation systems were available (Figure 5-14).    

 
Figure 5-15 Spatial distribution of VNEXP at image pixel level: average agricultural 
vulnerability to meteorological drought in growing season (1998, 1999 and 2001), 
without considering exposure 
 
Table 5-15 Descriptive statistics for VNEXP classes at image pixel level: average 
agricultural vulnerability to meteorological drought in growing season (1998, 1999 and 
2001), without considering exposure  

V NEXP  classes V NEXP  value
Percentage
coverage Mean

Standard
deviation

Low < 50 34.72% -5.34 223.04
Slight 50 -  100 28.42% 76.27 14.50
Moderate 100 -  150 23.28% 122.88 13.97
High 150 - 200 9.04% 170.34 13.88
Extremely high > 200 4.54% 276.95 632.45  
 
Assuming that 1998, 1999, and 2001 can be considered as representative crop 

growth years, Figure 5-15 presents the spatial pattern of agricultural vulnerability using 

the three-year average of VNEXP. On average over the selected three years, almost 35% of 

the study area was associated with a low vulnerability without considering exposure. The 

area with a low vulnerability was where a low sensitivity was estimated. The areas with a 
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slight to moderate vulnerability value accounted for 51.7% of the study area. They were 

mainly located in the central part of the study area. A total of 13.58% of study area was 

estimated with a high to extremely high vulnerability (see Figure 5-15 and Table 5-15).  

5.3.2 Agricultural vulnerability to drought with exposure 

The EXP values presented in section 5.2.3 are employed here as the exposure 

factor for estimating agricultural vulnerability at the image pixel level. The vulnerability 

of cereal crop production to the severe meteorological drought is estimated using EXPL 

and EXPS as the exposure factor in Equation 3-3, respectively. The three-year average 

VNEXP is used in calculating the VEXPL and VEXPS values at the pixel level. The spatial 

distributions of VEXPL and VEXPS values are presented in Figures 5-16 and 5-17. Their 

descriptive statistics of VEXPL and VEXPS classes are presented in Tables 5-16 and 5-17 

 
Figure 5-16 Spatial distribution of VEXPL at image pixel level: agricultural vulnerability to 
severe meteorological drought in growing season, from 1965 to 2004  
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Table 5-16 Descriptive statistics for VEXPL classes at image pixel level: agricultural 
vulnerability to severe meteorological drought in growing season, from 1965 to 2004  

V EXPL  classes V EXPL  value
Percentage 
coverage Mean

Standard 
deviation

Low < 5 50.92% 0.94 14.84
Slight 5 - 10 35.42% 7.09 1.35
Moderate 10 - 15 10.39% 12.04 1.37
High 15 - 20 2.47% 16.97 1.38
Extremely high > 20 0.81% 33.92 105.81  

 
Considering the long-term exposure, the vulnerability of cereal crop production to 

the severe meteorological drought ranged mainly from a low to slight. A total of 86.35% 

of the study area was with this range (Table 5-16), and the low to slight vulnerable area 

was associated with the irrigation districts and also in the central area between Calgary 

and Lethbridge (Figure 5-16), where a low sensitivity value was estimated (see Figure 5-

1 and Table 5-1). Only 3.28% of the study area was estimated as highly or extremely 

highly vulnerable to the severe meteorological drought. The area was mainly located 

towards the north edge of the study area and in the area to the east of Lethbridge outside 

of the irrigation districts (Figure 5-16 and Table 5-16). About 10.4% of the study area 

had a moderate vulnerability index value. 
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Figure 5-17 Spatial distribution of VEXPS at image pixel level: agricultural vulnerability to 
severe meteorological drought in growing season, from 1991 to 2004  

 
Table 5-17 Descriptive statistics for VEXPS classes at image pixel level: agricultural 
vulnerability to severe meteorological drought in growing season, from 1991 to 2004  

V EXPS  classes V EXPS  value
Percentage 
coverage Mean

Standard 
deviation

Low < 5 33.56% -1.91 10.37
Slight 5 - 10 21.12% 7.54 1.40
Moderate 10 - 15 16.02% 12.45 1.46
High 15 - 20 11.80% 17.37 1.45
Extremely high > 20 17.50% 29.55 33.92  

 

Figure 5-17 presents the spatial distribution of agricultural vulnerability in the 

growing season to the severe meteorological drought over a short period of time between 

1994 and 2004. Because of the higher drought occurrence frequency over the recent 

decade, the study area displayed a higher vulnerability index value than that over a long 

period (see Figures 5-16 and 5-17). Less than 45% of the study area was associated with 

a low to slight vulnerability to the severe meteorological drought (Table 5-17).  About 
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16% of the study area showed a moderate vulnerability, and it was distributed throughout 

the study area. Almost 30% of the study area was estimated as having a high to extremely 

high vulnerability to the drought. The highly and extremely highly vulnerable area could 

be seen throughout the study area, but it was particularly clustered in the area close to 

Lethbridge and in places where no irrigation systems were available.  

To understand further the vulnerability of agricultural production to various 

drought conditions, vulnerability to the moderate meteorological drought condition is 

also assessed. The VEXPL’ value is estimated using EXPL
’ as the exposure factor in 

Equation 3-3. The spatial distribution of VEXPL’ is presented in Figure 5-18, and its 

descriptive statistics are presented in Table 5-18. Similar to what was already identified 

with the farm reported yield data, a larger area was estimated as very vulnerable due to 

the higher occurrence of the moderate meteorological drought condition in the study are. 

A total of 46.92% of the study area was considered highly or extremely highly vulnerable 

to the moderate drought condition, particularly in the places outside of the irrigation 

districts. Only about a quarter of the study was not vulnerable, most of which was within 

the boundary of the irrigation districts (see Figure 5-18 and Table 5-18).   
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Figure 5-18 Spatial distribution of VEXPL’ at image pixel level: agricultural vulnerability 
to moderate meteorological drought in growing season, from 1965 to 2004 

 
Table 5-18 Descriptive statistics for VEXPL’ classes at image pixel level: vulnerability to 
moderate meteorological drought in growing season, from 1965 to 2004 

V EXPL ’  classes V EXPL ’  value
Percentage 
coverage M ean

Standard 
deviation

Low < 5 26.76% -2.95 49.21
Slight 5 - 10 11.53% 7.45 1.53
M oderate 10 -15 14.79% 12.54 1.42
High 15 - 20 16.67% 17.54 1.42
Extremely high > 20 30.25% 28.50 48.33  

 
5.4 Expected Agricultural Vulnerability to Drought in the Future 

Based on the analytical approach introduced in Chapter 3, the exposure trend, 

denoted as TEXP in Equation 3-7, is calculated as the ratio of the short-term exposure 

(EXPS) to the long-term exposure (EXPL). The TEXP value presents the increasing or 

decreasing propensity of the drought over the recent period (1991 to 2004), and therefore 

can be employed to assess the prospective vulnerability of agricultural production given a 

changing, especially warming, trend of global climate. Figure 5-19 presents the spatial 
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distribution of exposure trend. The descriptive statistics of exposure trend is presented in 

Table 5-19.  

About three quarters of the study area had a TEXP value larger than 1, indicating 

that a majority of the study area experienced an increasing occurrence frequency of the 

severe drought condition in the recent decade. More than a third of the study area 

experienced severe meteorological drought during 1991 to 2004, twice as frequent as that 

between 1965 and 2004.  

 
Figure 5-19 Spatial distribution of TEXP: trend of exposure to meteorological drought in 
growing season 
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Table 5-19 Descriptive statistics for TEXP classes: trend of exposure to meteorological 
drought in growing season 

T EXP  value
Percentage 
coverage Mean

Standard 
deviation

0 -1 23.40% 0.60 0.34
1 - 1.5 17.24% 1.27 0.15
1.5 - 2 25.00% 1.79 0.13
2 - 2.5 12.86% 2.18 0.12
> 2.5 21.50% 2.82 0.08  

 
The expected exposure (EEXP) with an increasing exposure to drought is 

estimated using Equation 3-8. The spatial distribution of EEXP is given in Figure 5-20. 

While the expected exposure may not reflect the real situation of drought occurrence in 

the future, it sheds some light on the implications of a warming climate and consequently 

an increasing drought occurrence for agricultural production in the study area. As 

presented in Table 5-20, the extremely high exposure is expected to occur in 7.6% of the 

study area, particularly in the area around Lethbridge.  

 
Figure 5-20 Spatial distribution of EEXP: expected exposure to meteorological drought 
in growing season  
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Table 5-20 Descriptive statistics for EEXP classes: expected exposure to meteorological 
drought in growing season  

E E X P  classes
P ercentage 
coverage M ean

S tandard  
deviation

V ery low 10.76% 0.01 0 .01
Low 28.69% 0.08 0 .03
S light 25.87% 0.23 0 .04
M oderate 16.95% 0.37 0 .05
H igh 10.14% 0.48 0 .04
E xtrem ely high 7.60% 0.61 0 .01  

 
Based on both the farm reported yield data and remotely sensed data, agricultural 

vulnerability with exposure to the severe meteorological drought was estimated using the 

expected exposure (EEXP) as the exposure factor in Equation 3-9. Figures 5-21 and 5-22 

present the spatial distribution of the expected vulnerability with exposure (EVEXP) at the 

quarter-section level and at a 30 meter by 30 meter pixel level. Although the expected 

exposure might have exaggerated the possible occurrence frequency of the severe 

drought, the data range of expected exposure is still 0 to 1. The same classification ranges 

used for classifying VEXP are used to classify EVEXP. The descriptive statistics of EVEXP 

classes are presented in Tables 5-21 and 5-22.  
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Figure 5-21 Spatial distribution of EVEXP: expected agricultural vulnerability to severe 
meteorological drought in growing season 

 
Table 5-21 Descriptive statistics for EVEXP classes: expected agricultural vulnerability to 
severe meteorological drought in growing season 

E V E X P  classes E V E X P  value
P ercentage 
coverage M ean

S tandard  
deviation

Low < 5 25.06% -6.63 19.07
S light 5  - 10 8.73% 7.56 1 .42
M oderate 10  - 15  8 .09% 12.39 1 .43
H igh 15 - 20 7.41% 17.50 1 .38
E xtrem ely high >  20 50.71% 71.40 73.20  
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Figure 5-22 Spatial distribution of EVEXP at the image pixel level: expected agricultural 
vulnerability to severe meteorological drought in growing season 

 
Table 5-22 Descriptive statistics for EVEXP classes at the image pixel level: expected 
agricultural vulnerability to severe meteorological drought in growing season 

E V E X P  C lasses E V E X P  value
P ercentage 
coverage M ean

S tandard  
deviation

Low < 5 28.44% -8.79 21.47
S light 5  - 10 11.76% 7.55 1 .44
M oderate 10  - 15  9 .91% 12.23 1 .37
H igh 15 - 20 5.55% 17.41 1 .45
E xtrem ely high >  20 44.34% 52.13 48.24  

  
As indicated in Figures 5-21 and 5-22, agricultural production in Southern Alberta 

is expected to be highly vulnerable given the increasing propensity of the severe drought 

event. Both the farm reported yield data and the estimated yield data based on the 

remotely sensed information provide a consistent picture of the possible agricultural 

vulnerability to the increasing severe drought conditions in the future. The study area 

using the quarter-section as the basic unit covers a larger area of Southern Alberta. Close 

to 60% of the study area is expected to have a high to extremely high vulnerability. 
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Almost the entire eastern part of the region and the area in the south without irrigation 

systems are expected to be highly vulnerable if the recent drought trend repeats in the 

near future.  

The study area defined by the remotely sensed image covers a relatively smaller 

area. However, the spatial extent and pattern of the expected agricultural vulnerability 

within this area remains similar. About half of the study area is expected to be associated 

with a high to extremely vulnerability. The south part of the study area in the vicinity of 

Lethbridge is expected to be very vulnerable to increasing drought events in the near 

future if the drought trend in the recent past repeats. Both Figures 5-21 and 5-22 show 

that the irrigation systems will make a difference. Because of the enhanced adaptive 

capacity in the irrigation districts, not only is the current agricultural vulnerability in the 

districts relatively low, but also agricultural production is expected to be less vulnerable 

to the drought condition even if the propensity of the drought increases in the near future.  

5.5 Chapter Summary 

This chapter presents the empirical results of the agricultural vulnerability 

assessment. The method utilized in this study proves to be effective in capturing the 

spatial variability of vulnerability. The spatial distribution of the vulnerability function 

components that are estimated using the remotely sensed data are approximately the same 

as those estimated based on the farm reported data. Overall, the regions investigated in 

this study were susceptible to varying degrees of agricultural vulnerability to different 

drought conditions. The pocket regions in the eastern and southern parts were particularly 

vulnerable based on the historic data. With an increasing propensity of the drought 

occurrence in the recent past, more regions, especially in the east and south, are expected 
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to become highly vulnerable. The empirical results presented in this chapter also indicate 

that remote sensing data as well as the associated analytical approaches can be useful and 

powerful in assessing the spatial variability of agricultural vulnerability. Since the 

remotely sensed data are readily available at a relatively lower cost nowadays, such 

approaches can be frequently employed to assess the changing relationship between 

agricultural sectors and varying climate conditions in a timely manner.  
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

6.1 Summary  

Agricultural vulnerability is generally referred to as the degree to which 

agricultural systems are likely to experience harm due to a stress. In this study, an 

existing analytical method to quantify vulnerability is adopted to assess the magnitude as 

well as the spatial pattern of agricultural vulnerability to varying drought conditions in 

Southern Alberta. Two approaches are developed to implement vulnerability assessment 

at two different scales. The first is designed to employ a farm reported dataset, and the 

second is based on remote sensing techniques. Considering the characteristics of the 

study area, especially the importance of cereal crop production in Alberta’s agricultural 

system and the adverse effects of possible drought, the cereal crop yield is selected as the 

measure of agricultural system’s well-being in this study, while the standard precipitation 

index (SPI) is used to measure the stress that the system is exposed to.  

The approach based on the farm reported data is employed to analyze generated 

agricultural vulnerability to various drought conditions at a quarter-section level. The 

empirical results indicate that the agricultural system is vulnerable to both moderate and 

severe meteorological drought conditions in the study area, and the vulnerability patterns 

vary spatially and differ depending upon the drought level.   

The study develops yield estimation models based on the remotely sensed 

imageries. Based on estimated crop yields, the agricultural vulnerability to various 

drought conditions is assessed at a 30 meter by 30 meter pixel level. The overall spatial 

patterns of vulnerabilities using the remotely sensed data are similar to those generated 

using from the farm reported dada. Most areas within irrigation districts are identified as 
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having lower vulnerability than the areas outside irrigation districts. The expected 

vulnerability highlighted that the area in the vicinity of Lethbridge is possibly the most 

vulnerable area in the study area in the future, as a result of expected exposing to a higher 

drought occurrence frequency.   

Overall, the quantitative vulnerability assessment method adopted and modified 

based on the existing method is demonstrated to be effective in assessing the magnitude 

and spatial pattern of agricultural vulnerability to varying drought conditions in Southern 

Alberta. 

6.2 Discussions of research findings 

As an empirical study, this study supports the vulnerability assessment theories 

that have emerged recently in the literature. The research indicates that understanding of 

the vulnerability of a system as a function of sensitivity, exposure and its adaptive 

capacity provides an effective conceptual framework. Such understanding can be 

employed as heuristic guidance for implementing vulnerability assessment. This study 

also identifies that each theoretical component of the vulnerability framework varies 

geographically and over time. Therefore, further theoretical development on vulnerability 

assessments should incorporate explicitly the spatial and temporal dimensions. The 

results of this study also show that the vulnerability of a system at a specific place can be 

very complex, and hence implementing the theoretical vulnerability framework in 

examining regional systems remains very much a challenge.  

Methodologically, this research demonstrates that various analytical approaches 

can and need to be integrated into vulnerability assessments. Findings from this research 

indicate that remote sensing techniques may provide a useful tool in assisting 
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vulnerability component estimation. It is found that the regression yield estimations 

coupled with a remote sensing technique are effective tools that can help the utilization of 

widely available remote sensing data for vulnerability assessment. The traditional 

vegetation indices such as NDVI derived from the remote sensing imagery and other 

auxiliary spatial attributes present valuable information for estimating crop yields at the 

regional level. The estimated cereal crop yield reaches the desirable accuracy, and the 

revealed vulnerability patterns enhance a detailed understanding of agricultural 

vulnerability to drought in the study area. Furthermore, the approach based on the remote 

sensing data provides a reasonable picture of the overall magnitude and spatial pattern of 

agricultural vulnerability to drought, and illustrates effectively the utility of remote 

sensing data in vulnerability assessment.  

The study employs a relatively new drought measure of SPI. The results of the 

case study indicate the index can be employed effectively to portray the spatial and 

temporal variations in drought conditions. Also, the developed method for assessing the 

expected drought exposure and vulnerability can be used as an effective and powerful 

tool to reveal a possible spatial pattern of agricultural vulnerability to drought in the 

future.  

Empirically, this study generates some valuable insights into the extent and spatial 

variation of agricultural vulnerability to drought condition in Southern Alberta.   First, the 

findings from this research indicate that there is a sharp contrast in agricultural 

vulnerability to drought between irrigated districts and non-irrigated areas. While non-

irrigated areas are vulnerable to varying drought conditions, irrigated agricultural areas 

are largely insensitive to droughts. Such findings confirm the importance of irrigation 
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practices in the regions. The installation of irrigation systems in the region has certainly 

elevated the adaptive capacity of agriculture systems to cope with drought related 

disturbances in the study area.  

While the severe drought may cause devastating harm to agricultural sectors, only 

a relatively small portion of the region is very vulnerable to such possible hazards. For 

most of the study area, vulnerability to severe drought is low to moderate. However, a 

larger area is quite vulnerable to the moderate level drought. Although the moderate 

drought may not cause as devastating effects to agricultural production as those by severe 

drought, it still results in an obvious reduction in crop yields in the region.  

The estimated trend of the drought occurrence frequency based on the historical 

data suggests that most of the study area might face an increasing possibility of exposure 

to drought conditions. The assessment of the expected vulnerability suggests agricultural 

crop production in the south of the study area, especially in the vicinity of Lethbridge will 

be possibly associated with the highest vulnerability due to the expected increasing 

drought occurrence frequency in this area. 

There are also some limitations of the research approaches employed, and some 

errors and uncertainty are possibly introduced in the processes of data handling and 

manipulation. First, in processing the farm reported data, it is found that there are 

possible reporting and data recording errors in the farm reported data. Some deletion and 

averaging are done to make use of the data. The effects of such data processing 

procedures on the final outputs are largely unknown, although it is quite confident that 

the derived overall vulnerability pattern reflects the reality in the study area. Errors and 

uncertainties could also be introduced in handling and processing the remote sensing 
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imagery. For example, image orthorectification and atmospherically correction introduce 

minor errors into the data. The visual detection of cloud haze and shadow area, the 

establishment of NDVI threshold for fallow masking, and the manually verification of the 

classification training and validation ROIs could introduce some possible errors. Also, 

the interpolation procedures employed in predicting the data at un-sampled locations such 

as the moving window approach and the inverse distance weighting interpolation may be 

error-prone. While the above possible aspects of data processing errors are difficult to 

quantify and are consequently not directly reported, some uncertainties in the data 

analysis are quantified and reported explicitly, such as the land use classification 

accuracies and errors related to the yield estimation models.   

6.3 Contributions of this research  

There is a growing body of literature devoted to vulnerability studies. Global 

climate change and its possible environmental and economic effects at the regional and 

global scales push vulnerability assessment to the forefront in various disciplines. While 

the theoretical understanding and research methodologies on vulnerability assessment are 

being advanced steadily, the sufficient empirical evidence on the vulnerability of human 

and environmental systems is not available. Few have studied agricultural vulnerability in 

the semi-arid prairie region of Southern Alberta, part of the “bread basket” of the world.  

This study employs the quantitative assessment method developed by Luers et al. 

(2003) for a semi-arid region, and demonstrates the suitability of this method for 

vulnerability assessment in this region. Several modifications to the adopted approach are 

made in this study, and the methodological adjustments may contribute to a further 

discussion on how to measure quantitatively the vulnerability and its components.   

 115



This study suggests that the actual value instead of absolute value for sensitivity 

calculation should be used. As such, it reflects more precisely the widely agreed 

definition of sensitivity, which is defined by IPCC (2001) as the degree to which a system 

will respond to a fluctuation in stress (force), including both the potential of being 

harmed or benefited. The study also illustrates a possible approach to assess the spatial 

variation of vulnerability by estimating all vulnerability components at the detailed 

quarter-section and image pixel levels. The method for assessing the expected 

vulnerability based on investigating the trend of the drought occurrence frequency 

expands the methodological possibility in agricultural vulnerability assessments. 

In addition to methodological contributions to the vulnerability assessment 

literature, the empirical findings of this research may be of important interest to local and 

regional governments. The spatial distribution of the estimated agricultural vulnerability 

to various drought conditions can be used as reference information for formulating spatial 

coping policies to reduce future vulnerability of agricultural sectors in the study area. It 

can also provide a reference base for insurance institutions to refine their insurance 

policies. Also, the results of the study can also inform farmers and other stakeholders in 

this study area about their potential risk in terms of possible crop production decline in 

facing an increasing warming and variable climate at the regional and global scales.   

6.4 Future research 

Several areas of the future research can be identified as a result of this study. 

Firstly, agricultural systems are composed of multiple components and the 

interrelationships among them. The sustainability of agricultural systems involves not 

only economic viability, but also social vitality and environment integrity. The wellbeing 
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of agricultural systems is thus multidimensional, and the social, economic, and 

environmental aspects of well-being all need to be considered simultaneously (Xu and 

Mage, 2001). As a result, a more comprehensive vulnerability assessment seems 

desirable. A possible multidimensional measure of vulnerability can possibly be achieved 

by summing several weighted vulnerability values for different representative well-being 

and stress pairs. The possible mathematical function of a comprehensive method for 

quantifying vulnerability may take the following forms as Equations 6-1 and 6-2: 

x0iiixix EXP)W/W(SENV ××=                                                                (6-1) 
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ixix )Vw(V                                                                                  (6-1) 

Where, 

 Vix is the vulnerability of any possible representative well-being to any possible 

concerned stress of a system in a place.  

SENix is the system’s sensitivity defined as the change in the representative well-being i 

corresponding to a small change in concerned stress x. 

Wi /Wi0 is the relative proximity of the well-being i to its damage threshold. 

EXPx is the value of exposure defined as the occurrence frequency of the concerned level 

of stress x. 

V indicates the vulnerability value of a comprehensive assessment, where several 

representative well-being factors and stresses are considered.  

wix is the weighting coefficients of each coupled well-being and stress pairs, which 

quantify the importance of the specific pair.  
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Secondly, the remote sensing data can also be employed in the calculation of 

sensitivity when vulnerability assessment is based on crop production.  The drought 

related crop stress level may be quantitatively measured based on the spectral information 

on the remotely sensed imagery through laboratory tests and quantitative modeling. This 

will generate sensitivity estimates spatially at a more detailed level, and will further 

enhance the value of remote sensing data in agricultural vulnerability assessment.  

Finally, this study employs the SPI values that are calculated for each of the 

growing seasons over the last 40 years. SPI can be calculated monthly, seasonally, or 

annually. Because of the temporal flexibility in SPI calculation, the sensitivity as a 

component of vulnerability measure can also be estimated at different temporal scales of 

years. Identifying the most critical time window of a year in terms of the impact of 

drought occurrence will help portray a more precise picture of how vulnerable the 

agricultural system is. Such an undertaking still remains a challenging topic for future 

research on agricultural vulnerability to drought.    
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