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Abstract 

Leaf area index (LAI) provides forestry information that is important for regional scale 

ecological models and in studies of global change. This research examines the effects of 

mountainous terrain on the radiometric properties of multispectral CASI imagery in 

estimating ground-based optical measurements of LAI, obtained using the TRAC and LAI-

2000 systems. Field and image data were acquired summer 1998 in Kananaskis, Alberta, 

Canada. To account for the influence of terrain a new modified approach using the Li and 

Strahler Geometric Optical Mutual Shadowing (GOMS) model in 'multiple forward mode' 

(MFM) was developed. This new methodology was evaluated against four traditional 

radiometric corrections used in combination with spectral mixture analysis (SMA) and 

NDVI. The MFM approach provided the best overall predictions of LAI measured with 

ground-based optical instruments, followed by terrain normalized SMA, SMA without terrain 

normalization and NDVI. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

Remote sensing of forest leaf area in mountainous terrain is important to a wide range of 

forest management and research fields (NRC, 1995, 1998). Accurate estimates of leaf area 

index (LAI) are required in studies of ecophysiology, atmosphere-ecosystem interactions and 

global change. LAI is defined as one half the total leaf area per unit ground area (Chen et al, 

1996). LAI is one of the primary forest structural measures used in remote sensing and 

processed-based models to characterize forest canopies because of the importance of green 

leaves in many biological and physical processes in forest canopies (Sellers et al, 1986; 

Sellers, 1987; Running and Coughlan, 1988; Bonan, 1993). LAI was identified by Running 

et al, (1986) as the single most important variable that can be derived from remote sensing 

that is of most importance to ecologists. In this thesis, remote sensing image processing 

techniques are developed and applied to improve the estimation of LAI in mountainous 

terrain. This is important, since significant portions of the Earth's forests are located in 

mountainous regions, and also, the topic has particular relevance to forest management in 

western Canada. 

This research builds on earlier successes using spectral mixture analysis (SMA) in 

making accurate estimates of forest biophysical parameters in low relief environments (Hall 

et al, 1995, 1996; Peddle et al, 1995, 1999b). Spectral mixture analysis separates individual 

pixels into the main scene components that contribute to the radiance recorded by the sensor. 



2 

In highly structured conifer canopies, the main components that contribute to pixel level 

brightness include sunlit canopy, sunlit background and shadow. The fundamental concept 

of spectral mixture analysis is that the spectral properties of each of these components 

combine and contribute to the overall pixel radiance value based on their spatial abundance 

on the ground visible to the sensor. The spectral properties of each scene component are 

isolated and measured (termed a spectral endmember) to determine the spatial abundance of 

scene components at the sub-pixel scale. The abundance of each component is highly related 

to forest structure, which is the basis for the strong predictive capability of spectral mixture 

analysis. As forest structure changes so does the relative amount of each scene component 

visible to the sensor. This methodology has been shown to provide better predictions over 

traditional methods such as vegetation indices. For example, the Normalized Difference 

Vegetation Index ( NDVI) does not account explicitly for the influence of background 

vegetation and shadow on pixel level reflectance (Hall et al, 1995), thereby reducing the 

ability to make accurate estimations of forest biophysical parameters. 

In a high relief, forested environment, terrain variations further influence the abundance 

of these scene components visible to the sensor. Terrain affects the position of trees within 

the canopy relative to the sensor, thus changing the contribution of sunlit canopy, sunlit 

background, and shadow to the overall pixel radiance recorded by the sensor. Therefore, the 

thrust of this research is the development of new image processing techniques that are able to 

account for variations in the sub-pixel scale scene fractions induced by terrain. The concepts 

presented here include the use of traditional terrain normalization methods based on pixel 

level illumination values, as well as the use of forest reflectance models which provide the 

ability to account for both forest structure and terrain on pixel level reflectance. 
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The main hypothesis of this research is that a terrain normalization method that explicitly 

accounts for forest structure will provide better estimation of LAI in mountainous terrain 

compared to illumination based corrections. In testing this hypothesis, a new way of using 

geometric optical reflectance models in a multiple forward mode (MFM) is introduced for 

mountainous terrain applications. A controlled experiment was designed to test the ability of 

spectral mixture analysis and the multiple forward mode reflectance modeling for predicting 

ground based optical measurements of leaf area index. Unique aspects of this research 

include a co-registered multi-scale Compact Airborne Spectrographic Imager (CASI) image 

data set, detailed forest structural measurements collected for input to forest reflectance 

models and for validation purposes, and the use of a variety of ground-based optical 

instruments to estimate leaf area index in the field. 

1.2 Research Objectives 

The main objective of this thesis is to: 

• Devise and test an improved method for estimating leaf area index in 

mountainous terrain from airborne remote sensing imagery. 

Secondary objectives are: 

• Evaluate the utility of different methods of obtaining spectral endmembers for use 

with the spectral mixture analysis algorithm and the forest reflectance model. 
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• Compare terrain normalization methods for their relative suitability to improve 

scene fraction extraction using spectral mixture analysis. 

• Test the ability of spectral mixture analysis to predict leaf area index in 

mountainous environments with and without traditional illumination based terrain 

normalization algorithms. 

• Develop a new approach to using geometric optical reflectance models in 

mountainous terrain that can account for variation in both forest structure and 

terrain. Develop an understanding of the relationship between terrain and scene 

component fractions at the sub-pixel scale. 

• Compare results obtained using spectral mixture analysis and the forest 

reflectance model to more traditional vegetation index approach. 

• Investigate the possibility of using vegetation indices in combination with the 

other methods to test the information content each provides to the prediction of 

LAI. 

1.3 Organization of the Thesis 

This thesis is organized into five chapters. In this chapter, the thesis has been introduced 

and the research objectives stated. 

In Chapter Two, a review of the pertinent background literature and a broad overview of 

the research context are presented. The context of this research as well as the role of remote 
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sensing are established. Factors affecting forest reflectance and methods used to extract 

biophysical information in mountainous terrain are also described, including a review of 

spectral mixture analysis, canopy reflectance modeling, and terrain normalization. 

In Chapter Three, research methodologies are presented. The study area, field data 

collection and image data set are first described to provide a setting for the analysis. 

Techniques for LAI prediction using spectral mixture analysis and forest reflectance models 

in mountainous terrain are then outlined. Three types of endmember sets are described for 

these analyses: reference, image and integrated. Two analyses are described in this chapter. 

The first analysis is designed to test spectral mixture analysis for predicting ground based 

optical measurements of forest leaf area. Four radiometric corrections were applied to 

airborne imagery prior to separate spectral mixture analyses. These were the Cosine, C-

correction, Statistical-Empirical and Minneart Corrections. The second analysis tested the 

ability of forest reflectance models to account for terrain in the prediction of forest leaf area. 

The development of a new multiple forward-mode approach to reflectance modeling in 

mountainous terrain is described for this purpose. 

In Chapter Four, the results of the analysis are presented. First, a validation of scene 

fractions from SMA is performed. Following this, the results of S M A trials with and without 

terrain normalization and those from the forest reflectance model are compared in terms of 

their ability to predict LAI using scene fraction values. SMA and M F M results are also 

compared to baseline results using a vegetation index (NDVI). The utility of each method is 

discussed in the context of acquiring estimates of LAI over mountainous terrain. 

In Chapter Five, a summary of the thesis is presented and conclusions are drawn. The 

contributions this study has made to research and areas for future research are also discussed. 
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LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a review of the literature dealing with remote sensing of forest 

biophysical parameters is presented. The review begins with a brief discussion of the much 

broader research context of global climate change, the carbon cycle, the importance of 

mountain forests and the role of remote sensing. Next, the forest biophysical parameters of 

interest are identified and described. Following this is a description of the factors affecting 

remotely sensed forest data, including spectral reflectance patterns of vegetation, and factors 

both internal and external to the canopy. Finally, a review of the major remote sensing image 

analysis approaches used to estimate these parameters is presented. This includes vegetation 

indices, multispectral classification, texture analysis, spectral mixture analysis, reflectance 

models, and terrain correction methods. In this review, emphasis is placed on spectral 

mixture analysis, geometric optical reflectance models and terrain normalization methods, as 

these topics are more pertinent to this research. 
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2.2 Global Climate Change, Forests and Remote Sensing 

2.2.1 Global Climate Change 

Until recently, there has been debate over the causes of the warming trends in global 

temperature. Scientists were uncertain whether the warming trends in temperature reflected 

natural variations in the earth's climate, or whether in fact the trend could be attributed to 

anthropogenic activities. However, the recent conference on the Intergovernmental Panel on 

Climate Change (an international body of scientists charged with studying global warming) 

reported a conclusion, based on the findings of over 2,500 peer-reviewed articles that "the 

balance of evidence suggests that there is a discernible human influence on global climate" 

(UCS, 1999). 

Global change can be defined as changes in the global environment (including 

alterations in climate, land productivity, atmospheric chemistry, ecological systems, and 

oceans or other water resources) that may alter the capacity of the Earth to sustain life 

(CDIAC, 1999). Global Circulation Models (GCMs) predict a warmer overall climate 

worldwide with increased atmospheric greenhouse gases: notably COs, CH4, N2O, CFCs, 

C C U and other compounds (Gates, 1990a. 1990b). 

At the start of the industrial revolution the concentrations of CO2 in the atmosphere 

were thought to be about 290 PPM (Kimmins, 1997). Scientists are predicting that these 

levels could increase to 600 PPM doubling the concentration of CO2 in the atmosphere by the 

year 2050 (UCS, 1999). The increases in COi emissions in Canada since the industrial 

revolution are shown in Figure 2 -1 . The amount of warming that will occur and the likely 

outcomes of such increases in CO2 concentrations are still in dispute. These questions about 
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the future state of the environment at both regional and global scales can be answered only 

through theoretical model simulations and predictions due to the complexity and scales of 

these systems. 

One area of focus in global change studies is forest productivity as forests contribute 

significantly to sequestering CO2 from the atmosphere. Processed-based ecological models, 

such as FOREST-BGC (Running and Gower, 1991), BIOME-BGC (Running and Hunt, 

1994) and BEPS (Chen et al, 1998) have been developed to explore forest productivity. 

These models allow simulations of forest processes under different climate conditions, 

atmospheric properties and stand structures, as well as providing estimates of variables which 

are hard to measure directly, such as gas exchange within the canopy (Running and Hunt, 

1994). As we shall see later in this chapter, forest information such as leaf area index is 

important for parameterizing these models, and is a variable which can be obtained from 

remote sensing imagery. 
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Total C02 emissions for Canada 1775 to 1998 
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Figure 2-1 Trend in atmospheric C 0 2 concentration. Top graph: Since 1751 over 265 billion 
tons of carbon have been released to the atmosphere from the consumption o f fossil fuels. 
Bottom graph: Per capita CO2 emissions from Canada peaked in 1979 at 4.7 metric tons of 
carbon per person and the 1996 estimate of 3.8 metric tons of carbon per person is among the 
highest of the major fossil-fuel C0 2 -emit t ing nations. (CDIAC, 1999) 
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2.2.2 Forests and The Global Carbon Cycle 

The forest ecosystem plays a significant role in the levels of CCH in the atmosphere, 

accounting for 90% of the terrestrial carbon storage (Gates, 1990a). Carbon is one of the 

main constituents of tree growth. Trees sequester CO2 from the atmosphere through the 

processes of photosynthesis. Photosynthesis is the process by which plants are able to absorb 

specific wavelengths of light (photosynthetically active radiation, PAR) and convert them 

into chemical bond energy of glucose using carbon dioxide and water (Kimmins, 1997). 

Respiration refers to the energy of photosynthesis used up during plant growth, maintenance 

and CO2 release (Kimmins, 1997). Photosynthesis and respiration work together in 

controlling the amount of COi that can be absorbed from the atmosphere and stored as 

biomass (Jarvis, 1989, Jarvis and Dewar, 1993). The rates of photosynthesis and respiration 

are influenced by many site factors, including CO2 concentration in the atmosphere, surface 

temperature, nutrient, and water availability and plant physiology. There is still debate over 

what effects an increased COsor doubled CO2 concentration will have on the growth rates of 

trees, the variability of forests in boundary zones (e.g. southern limit of the boreal forest), 

and natural landscape integrity (Graham et al, 1990). Comprehensive spatial data are needed, 

to build global scale models of forest productivity. Many of the earth's forests are in 

mountainous terrain. From both a modeling and remote sensing perspective, high relief 

environments add another layer of complexity to the understanding of forests. Terrain 

variations affect light and water regimes, soil types, forest structure and ultimately forest 

productivity. These variations must be accounted for explicitly in both ecological models 

and image processing techniques used to extract quantitative forest information. 
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2.2.3 The Role of Remote Sensing 

Remote sensing has developed beyond being a tool used by ecologists to obtain 

general information about spatially explicit problems into a normative method and a basis on 

which much ecological investigation begins (Franklin, 1999 1 ; Running and Gower, 1991; Pitt 

et al, 1997). Several processed-based ecological models such as FOREST-BGC (Running 

and Gower, 1994) and, BIOME-BGC (Running and Hunt 1994) have been developed from 

their conception to use input variables derived from remote sensing data. Remote sensing 

serves two critical roles in ecological studies. First, remote sensing provides the only source 

of digital, spatially comprehensive, consistent information needed to generate initial 

conditions as inputs to ecological models which require estimations of forest cover and LAI 

(Peddle, 1997; Franklin, 1999 1 ) . Remote sensing also enables problems to be studied at 

different scales as it is the only means of acquiring quantitative, spatially continuous, timely 

information over a broad range of spatial scales. Remote sensing provides the ability to 

analyze problems at the local, regional and global scale. This range of information enables 

researchers to explore issues involved with scaling our ecological knowledge from large to 

small scales. Second, remote sensing can be used to validate model output and to help refine 

model parameters (Roughgraden et al, 1991). There are different variables, which are of 

interest to ecologists, as well as many factors that influence the ability and quality of data 

that can be extracted from remotely sensed data. These topics will be covered in the next 

section. 
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2.3 Estimation of Biophysical Parameter 

2.3.1 Remote Sensing and Forestry Information 

To take advantage of the timely, synoptic information that remote sensing can 

provide, variations in site characteristics must be linked to observable forest features. 

Fundamentally, remote sensing does not measure any forest characteristic directly; rather, 

data collected by the sensor (e.g. reflected solar energy) are used to infer biophysical 

information about the ecosystem by using algorithms that estimate physical units (APAR, 

evaporation, LAI, soil moisture) from sensor units (radiance) (Ustin et al., 1991). Many of 

the processes of interest to the ecologists are not directly observable using remote sensing, 

such as gas exchanges between the canopy and the atmosphere, or processes of nutrient 

cycling. For example, a tree's requirement for light (PAR radiation) is closely linked to its 

use of COo, and associated rates of water vapor loss, and photosynthesis, are directly related 

to chlorophyll density which can be derived from remote sensing (Seller, 1987). Therefore, 

relationships between observable forest characteristics and these processes of interest have 

been developed. What is observable by remote sensing are differences in the spectral 

reflectance patterns of canopy and understory vegetation influenced by factors such as the 

health or spatial arrangement of the stand. Characteristics of the plant canopies 

(composition, height, and density) are collectively strong indicators of the state of the 

ecosystem as a whole, and represent the physical interface between optical remote sensing 

and forest ecology (Treitz and Howarth, 1996). Radar and other remote sensing methods are 

also related to characteristics of forest structure. However, these do not have the same links 

to the physical processes of the forest canopy such as photosynthesis as optical remote 
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sensing techniques. The properties outlining the spectral response of individual leaves and 

vegetation canopies are discussed below, and followed by a review of the major forest 

biophysical parameters estimated using remote sensing. 

2.3.2 Factors Affecting the Spectral Response of Forests 

2.3.2.1 Spectral Reflectance 

Numerous studies have explored the relationship between remotely sensed visible and 

infrared reflectance and forest biophysical parameters (e.g. Running et al. 1986; Franklin 

1986; Guyot et al, 1989; Carter, 1989). Generally, three spectral ranges or domains can be 

identified in the electromagnetic spectrum for which different factors affect the optical 

properties of leaves, as shown in Figure 2-2. The visible domain (400-700 nm) represents 

the main range of light absorption by plants (Guyot et al, 1989). The main sources of light 

absorption are chlorophyll a and b and caroteniods (xantophyll and anthocyamines) in the 

chloroplast cells. Two distinct spectral absorption bands are visible at 450 nm and 670 nm 

and represent the absorption due to chlorophyll a and b, respectively which are the dominant 

pigments during the growth phase of plants. These chlorophyll absorption bands are located 

in the blue and red portions of the visible spectrum, producing a peak in the green spectrum 

at 550nm, giving leaves their green colour. 

The near infrared region (700-1300 nm) is dominated by the influence of leaf 

structure. Pigments and cellulose are generally transparent to near infrared wavelengths 

consequently; there is very little absorption in this region. A plateau in spectral reflectance 

whose intensity depends on the internal structure of leaves, as well as the amount of 
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Figure 2-2. Typical Spectral Response Characteristics of Green Vegetation (Guyot et aL 
1989). Noticeable features are the green peak near 0.5 fim between the two chlorophyll 
absorption bands and the red edge near 0.7 u m marking the transition between the visible and 
near infrared bands, and strong water absorption bands in the short-wave infrared. 

mesophyll (internal leaf structural material) characterizes this region. Leaf reflectance 

increases with more heterogeneous cell shapes and with more cell layers, and intercellular 

spaces and with increased cell size. The near infrared spectral region can be separated into 

two sections: (1) between 700 - 1100 nm, where the reflectance is high, except for several 

water absorption bands (960 and 1100 nm) and (2) between 1100 and 1300 nm, which 

corresponds to the transition between the higher near infrared reflectance and water-related 

absorption bands of the short-wave infrared. The last optical domain is the short-wave 

infrared (1300-2500 nm) which is characterized by leaf water content. Water strongly 

absorbs radiation at 1450, 1950 and 2500nm because of this, these spectral regions are not 

used for reflectance measurements. In the rest of the short-wave infrared, reflectance is 

inversely related to leaf moisture content. 
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As explained above there is an inverse relationship between the amount of green 

vegetation and red reflectance which can be accounted for by the increased absorption by 

chlorophyll. In contrast, the reflectance in the near infrared spectrum is generally high and 

increases weakly with increased biomass. These relationships are the foundation of 

biophysical information extraction using remote sensing (Running et al. 1986; Peterson et al, 

1987; Curran et al, 1992). A more detailed study by Curran (1989) showed there were 

approximately 42 spectral absorption bands which could be attributed to different elements in 

leaves. Beyond the basic spectral characteristics of leaves, there are also a number of 

internal and external stand characteristics, which influence the spectral signal recorded by 

remote sensors (Table 2-1). 

2.3.2.2 Factors Internal to the Forest Stand 

Internal influences on the forest stand include the effects of canopy geometry, optical 

properties of the understory, and stand vigor (Treitz and Howarth, 1996) (Table 2-1). 

Canopy geometry or structure (density and crown closure) influences the relative 

contribution of the overstory and understory to the overall spectral response pattern. 

Variations in canopy geometry results in different amounts of sunlit canopy, sunlit 

background and shadow visible to the sensor thus changing the radiance recorded by the 

sensor. Optical properties of the soil and background can have a large effect on the total 

signal received by a sensor, particularly in low density stands where the ground cover is 

highly visible. Finally, stand vigor and health will influence the light absorption by 

chlorophyll and other photoactive pigments. 
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Table 2-1 Factors Internal and External to the Forest Canopy which affect reflectance (after 
Guyot et al, 1989). 

Internal Factors External Factors 
Background Influence 
Canopy Structure/Geometry 
Canopy Reflectance 

Sensor Resolution 
Solar Zenith Angle 
Solar Azimuth 
View Zenith 
View Azimuth 
Terrain 

The forest is a living entity and is influenced by diurnal, seasonal and annual cycles in 

site characteristics such as temperature and light regimes. As a function of these cycles, the 

structure and productivity of the stand change. As a result so do the spectral patterns of the 

forest stand (Bonan, 1991). Blackburn and Milton (1995) have shown that the seasonal 

differences in spectral response can be attributed to differences in canopy structure and the 

phenological stage of trees (Figure 2-3). 

Figure 2-3 Differences in the spectral signal due to phenological changes (Blackburn and 
Milton. 1995). As the phenologic stage of the tree progresses several changes are visible in 
the spectral curve: the elevation of the green peak and infrared plateau as well as the slope of 
the red edge. Each of these characteristics helps in the information extraction. 
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2.3.2.3 Factors External to the Forest Stand 

Factors external to the stand include elements such as size of the view area, 

atmospheric conditions, and sun and sensor geometry (Table 2-1). The size of the view area, 

or Instantaneous Field of View (IFOV) of the sensor, will influence the variability of the data 

in the image. Larger pixels tend to reduce the variability in the image whereas higher spatial 

resolution images maintain much of the variability of the landscape. 

Terrain influences the sun/surface/sensor geometry and accounts for a significant 

difference in the spectral response pattern of forest stands over differing terrain. The 

sun/surface/sensor geometry affects the spectral response pattern in two significant ways. 

First, at different times of the day, light will penetrate to different depths of the canopy, 

which will change the relative proportions of the canopy and background presented to the 

sensor. Second, the reflectance of a vegetation canopy is dependent on sensor view angle, as 

canopies do not reflect as Lambertian surfaces. The atmosphere is another significant 

influence on the signal received at the sensor. 

Different atmospheric conditions will influence the amount of direct and diffuse 

irradiance reaching the surface, thereby influencing the intensity of the reflected signal. The 

atmosphere can also influence the amount of reflected radiance reaching the sensor through 

scattering and absorption. 
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2.3.3 Biophysical Parameters 

Important forest biophysical parameters that characterize forest structure include leaf 

area index, biomass, and net primary production (Table 2-2). Forest structure is defined as 

the above ground spatial arrangement of trees both, horizontally and vertically. Some 

definitions also include reference to the change in their organization over time (Spurr and 

Barnes. 1973. 1980). The horizontal dimension is associated with stand density and 

distribution whereas the vertical dimension is associated with tree height and the height 

distribution of the canopy (Wulder, 1998b). Forest structure is a result of competition for 

resources (light, nutrients, and water), disturbance, and the successional phase of the site 

(Kimmins, 1997a, 1997b). Examples of important structural parameters include leaf area 

index, biomass, and above ground net primary productivity (ANPP) . The ability to measure 

or estimate these components permits estimation of environmental factors such as hydrologic 

regime, canopy albedo, forest productivity and soil nutrient availability (Wulder, 1998). 

These structural variables are defined next. 

The definition of leaf area index used here is a measure of the one sided unit area of 

foliage per unit ground area, rather than the one sided projected area, which does not account 

for all the interactions of light within the canopy (Chen et al, 1996). Biomass is the total 

amount of vegetation present at a particular site at a specific t ime. Two ways forest 

production can be described are gross and net production. Gross production refers to the 

total increases in organic matter plus losses to respiration per unit area and time (Kimmins, 

1997a). Net Production refers to the total increase in organic matter per unit area and time 

less respiration losses (Kimmins, 1997a). Respiration losses refers to the energy of 

photosynthesis which is used up during plant growth and maintenance (Kimmins, 1997a). 
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Table 2-2 Selected Forest Biophysical Parameters (after Wulder, 1998) 

Parameter 

Leaf Area Index (LAI) 

Biomass 

Above Ground Net Primary 
Production (ANPP) 

Details Reference 
-a measure of the amount of 
foliage per unit ground area 
-total amount of vegetation 
measured for a given time and 
location 

Cheng et al. 1996 

Kimmins, 1997a 

-the rate of increase in above 
ground organic matter after loses 
to respiration 

Kimmins, 1997a 
Spurr and Barnes, 1973 

Currently, ecologist face the challenge of integrating their understanding of plant 

atmosphere interactions at the leaf scale into models at regional and global scales (Schuepp, 

1993). This may be facilitated by process-based models capable of integrating basic 

processes of plant atmosphere exchange over a broad range of scales. These models require 

timely, synoptic observations of the ecosystem. In quantifying energy and mass exchange by 

plant canopies, LAI has been identified as the single most important ecological variable 

which can be derived from remote sensing of coniferous forests (Running et al, 1986). LAI 

is the focus of much research in remote sensing of vegetation. The following section outlines 

several methods and concerns involved with the extraction of biophysical data from remotely 

sensed data. 
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2.4 Remote Sensing Methods for Biophysical Information Extraction 

2.4.1 Multispectral Classification 

The intent of multispectral classification is to categorize all the pixels in an image 

into land cover classes or themes (Franklin, 1984; Franklin et al, 1986). Multispectral 

classification analyzes the spectral characteristics of each pixel within an image and assigns 

individual pixels to categories based on similar spectral properties. Classification is often 

used in remote sensing applications and provides important landcover information to a 

biophysical analysis. The scale of the data collected, the spectral bands recorded, and the 

complexity of the environment under investigation influence classification accuracy. The 

spatial resolution of the data affects the detail of the information classes that can be derived 

from the image (Wulder, 1998), whereas spectral and radiometric resolution affects the 

separability of the classes. Spectral response patterns are often used as a definition of a 

uniquely occurring combination of elements which will be identifiable on the surface 

(Jensen, 1996). The composition of the canopy (density, crown closure), however may result 

in different forest species producing spectrally similar response patterns (Hall and Crown, 

1987). This point adds significant uncertainty to the classification procedure and may lead to 

spectral classes representing several ground cover classes (information classes). 

When used properly, multispectral classification is an accurate method of assigning 

pixel values to information classes. Consideration of image properties, classification 

algorithm and the definition of classes are important in this process. There are two general 

methods of classification, supervised and unsupervised. Supervised classification requires a 

priori knowledge of the area to establish the class structure and select training sites on the 
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image to classify the remaining pixels. A training site is a collection of pixels, which 

represents a class and captures its spectral variability. Unsupervised classification requires 

no a priori knowledge of the area. It separates the image into statistically similar spectral 

groups. These spectral groups d o not necessarily correspond directly to information classes 

and are manually assigned to an information class after the classification. 

Advanced classification algorithms have been developed to process more complex 

data sets, such as higher dimensional or hyperspectral imagery, and spatial, terrain or multi-

source spatial information. Examples of these advanced methods include contextual neural 

networks and evidential reasoning classifiers (Peddle, 1995). The evidential reasoning 

approach (Peddle, 1995) allows incorporation of many types and scales of data into the 

classification and has been shown to improve the classification accuracy in complex 

environments compared to maximum likelihood and neural network approaches (Duguay and 

Peddle, 1995; Peddle and Duguay, 1998). 

2.4.2 Band Ratios and Vegetation Indices 

Vegetation indices take advantage of the differential reflectance characteristics of 

green vegetation in the visible and near infrared bands. Typically healthy vegetation absorbs 

strongly in the visible bands due to the influence of photo-active pigments such as 

chlorophyll and reflects strongly due to the internal structure of the vegetation in the infrared 

spectrum as discussed earlier. By comparing ratios of the relative brightness values of the 

visible bands to the infrared bands, estimates of vegetative biomass can be made (Tucker, 

1979). These ratios are related to the health and amount of green vegetation on the surface 
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(Curran and Williamson, 1987). As either the health or amount of vegetation changes so 

does leaf structure and the amount of chlorophyll in the canopy and therefore the ratio values 

will also change which provides the correlation between these indices and forest biophysical 

parameters. 

Probably the most commonly used vegetation index is the Normalized Difference 

Vegetation Index or NDVI (Rouse, 1972) which takes the ratio of red to near infrared 

radiation (Equation 2-1). 

Equation 2-1 Normalized Difference Vegetation Index 

NDVI= (N1R-R)/(NIR+R) 

Where: 
NIR = digital number recorded for the Near Infrared band 
R = digital number recorded for the Red band 

The effect of normalizing this ratio is that the values will range from - 1 (no or very low 

vegetation) to 1 (dense vegetation cover). NDVI has been related to several biophysical 

parameters such as LAI and biomass (Running et al, 1986; Franklin, 1986). However, it is 

limited at LAI values over approximately 3 (Running et al, 1986; Wulder et al.. 1998; Baret 

and Guyot, 1991, Chen and Guilbeault, 1996) because the ratio of red to near infrared 

reaches an asymptote. Vegetation indices are also influenced by the effects of understory 

vegetation (ground cover reflective properties) which can lead to problems in making 

accurate estimates of forest parameters (Hall et al, 1995; Sellers, 1987; Peddle, 1997). 

Sellers (1987) suggested that reflectance data derived from vegetation indices are more 

related to instantaneous rates associated with the canopy such as Gross Primary Production 
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or evapotranspiration rather than estimates of the state of the canopy such as LAI or biomass. 

However, Wulder et al, (1998) have shown improvements in the estimates of LAI using 

NDVI by incorporating texture values as a surrogate for forest structure. NDVI can also be 

useful in change detection studies, as many years of satellite data are available and this 

approach can be easily implemented between imaging dates, provided the data sets have been 

atmospherically corrected or normalized to one another. 

2.4.3 Texture 

Spatial information often plays an important role in the interpretation of remotely 

sensed data in forested areas (Bruniquel-Pinel and Gastellu-Etchegorry, 1998; Wulder, 1998; 

Peddle et al, 1999b). Texture is the analysis of pattern variability represented in adjacent 

pixel values (Townshend and Justice, 1981; Curran, 1988). These include the extraction of 

textural features from the image's Fourier power spectrum, local statistical properties of 

neighborhoods and gray-level spatial dependence or co-occurrence matrices (Franklin and 

Peddle, 1987). There are many procedures used in deriving texture from imagery which are 

dependent on image spatial resolution (Wulder et al, 1996) 

Texture derivatives provide new layers of image data and can provide additional 

information (Franklin and Peddle, 1989; 1990). Texture has been used in a number of 

applications, however, in forested scenes texture is most related to forest structure. Wulder 

et al, (1998) have shown that texture acts as a surrogate for forest structure and can be related 

to LAI. The variation in texture is related to changes in the spatial arrangement of 

vegetation. Image spatial resolution is important when considering texture. Coarse spatial 
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image resolutions tend to have lower variability between pixels than high spatial resolution 

images, as most of the variance has been incorporated into the pixel (Wulder et al., 1998). 

When processing imagery to assess textural information, several of the factors that need to be 

addressed include: i) the operating window size that can be related to the size of the feature 

being observed (Peddle and Franklin, 1991); ii) the data variance within the image channel 

(Wulder et al., 1998a); iii) and the algorithm to be used. The inclusion of texture measures 

into the estimation of LAI using NDVI have increased the accuracy of LAI by approximately 

20% over that obtained using NDVI alone based on an airborne CASI image dataset (Wulder 

et al, 1998). 

2.5 Spectral Mixture Analysis 

2.5.1 Theory 

Spectral Mixture Analysis (SMA) is used to quantify the subpixel abundance of scene 

components (Adams et al, 1993; Tompkins et al, 1997). SMA is based on the concept that 

the Instantaneous Field of View (IFOV) of a sensor contains a number of spectrally different 

surface components which combine to create the overall reflectance recorded by the sensor 

(Adams et al., 1993). The concept of mixed pixels was first identified by Horwitz et al 

(1971), who saw the influence of these mixtures in an agricultural setting. 

Spectral Mixture Analysis works by identifying the individual components expected 

to contribute to the overall pixel level reflectance. Once the scene components have been 

identified and their spectral properties obtained as spectral endmembers, the S M A algorithm 

then evaluates each pixel and estimates the spatial abundance of each material needed to sum 
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Figure 2-4 The left image is a fraction image at lm resolution. The right image is the same 
image draped over the R M S error. Non-forested areas such as the parking lot or areas of 
high relief exposed rock have the highest errors since these are not characterized by the forest 
endmember set. 

to the overall pixel brightness value. The algorithm expresses the amount of each material 

as a fraction of total pixel area (one fraction per each component). The fraction varies 

between 0 to 1, with 0 indicating that this material is not present and did not contribute to the 

overall pixel brightness, and 1 indicating that the pixel is composed entirely of that material. 

The fraction values must sum to 1 since each is expressed as a fraction of the total pixel area. 

If the fractions do not sum to 1, or if individual fractions are less than 0 (underflow) or 

greater than 1 (overflow) the endmembers used did not accurately characterize the materials 

in the pixel. A root mean square (RMS) error is also given for each pixel, which is also 

useful for assessing the accuracy of the endmembers (Figure 2-4). It is important to note that 

SMA depends on the accurate characterization of the endmembers (Adams et al, 1993, 

Tompkins et al, 1997). If the endmembers of their spectral values are incorrect in a physical 

sense the fractional abundances produced using SMA will be in error. 

i 

Exposed Rock Parking lot Exposed Rock Parking lot 
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The number of endmembers that can be accurately separated within a pixel is a 

function of the dimensionality of the image data. The number of uncorrelated wave bands 

determines the dimensionality of the image data. As was discussed earlier in section 2.3.2.1, 

the interaction of light and vegetation can be divided into three main segments, the visible, 

the near infrared and the short wave infrared. Each of these segments behaves similarly, 

providing little new information. Thus, it is the number of uncorrelated bands that 

determines the number of scene components which can be successfully unmixed; for 

example no more than three or four scene components for a Landsat band set (Hall et al, 

1995). 

2.5.2 Methods 

Most spectral mixture analysis applications have used a linear mixing assumption. 

The linear model assumes that the radiative transfer among individual vegetation components 

(twigs, leafs, bark, etc.) can be greatly simplified and expressed as a single scattering albedo 

(Mustard and Pieters, 1989). This assumption simplifies the mixture problem and allows the 

spectral variability of a scene to be modeled as a linear combination of endmembers. Linear 

mixture analysis is based on the assumption that each pixel is composed of a combination of 

scene components weighted by their surface abundances, and that the pixel spectrum is a 

linear combination of the endmember reflectance spectra (Tompkins et al, 1997). This 

assumption does not hold exactly but is a reasonable approximation that allows the 

simplification of an enormous problem (Hall et al, 1995). The general equations that govern 

linear spectral mixture analysis are shown in Equation 2-2 and 2-3. A linear combination of 
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Equation 2-2 The equations that govern linear spectral mixture analysis (Van der Meer, 
1996). 

Rc = £ /iReii + ei and X / ; <land >0 
j=i " j = i 

Where: 

R c = the reflectance of the mixed spectrum in image band i for each pixel 
/ i = the fraction of each endmember j 
Rc.ij = the reflectance of the endmember spectrum j in band i 
n = is the total number of endmembers 

Ei = the residual error 

A best-fit solution to this equation can be found by means of a linear least-squares 

approximation which minimizes the residual error, £j. The residual error is defined as the 

difference between the measured and modeled DN in each band (Equation 2.3). The residual 

errors from each band are summed and averaged to produce a root mean square (RMS) error. 

spectral endmembers is used to decompose or unmix the reflectance spectrum of each pixel 

R c , into fractional abundance f, of its endmembers, Rc.jj. When using this method, the 

constraints of fraction overflow and underflow and summation to unity are generally applied. 
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Equation 2-3 Root Mean Square Error 

m r ) 
R M S = X { I (R j k -R ' j k ) 2 / „ h 

k=! I, j=l J 

1/2 

/m 

Where: 

RMS = error calculated from the difference of the modeled (Rjk) and measured (R'jk) 
pixel spectrum. 

n = the number of spectral bands 
m = the number of pixels with in the image. 
Rjk = modeled pixel spectrum 
R'jk = measured pixel spectrum 

Finally the sum of the abundances are calculated on a pixel-by-pixel basis to produce the 

RMS error. Each of these fractions and the estimate of R M S error are calculated pixel-by-

pixel across the entire image. As a result each endmember fraction and the R M S error can be 

displayed in image format to illustrate the spatial variability of scene fractions and S M A 

errors (e.g. Figure 2-4). 

2.5.3 Forestry Applications 

Spectral mixture analysis has proven a robust method for the extraction of biophysical 

data from remotely sensed imagery in low relief environments. Significant improvements 

over more traditional methods, such as vegetation indices, have been shown (Hall et al . , 

1995: Peddle, 1997; Mustard and Pieters, 1989). Once S M A has produced component 

fractions they can be related to the biophysical parameters of interest through regression 

analysis. This method accounts for some of the factors which have limited the success of 
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other approaches based on overall pixel level reflectance (Peddle, 1997), such as the 

influence of background reflectance on vegetation indices. The relative abundance of each 

component within the IFOV will change with differences in forest structure and biophysical 

parameters, which is the basis for using SMA fractions to predict biophysical data. Hall et 

al.. (1995) have shown empirically and theoretically that the areal proportions of these 

radiometric elements are related to a number of stand biophysical parameters. Specifically, 

they showed that the shadow fraction increased with increased LAI; this relationship will be 

important to this thesis research. This method represents a shift away from direct inference 

of biophysical data from pixels to use of sub-pixel scale information. 

Little work has been reported in the literature that deals explicitly with spectral 

mixture analysis in high relief environments. It has been shown that the relative proportions 

of scene component fractions are a function of stand structure; however, they will also be 

influenced by terrain and illumination geometry. In low relief situations, illumination is a 

function of the sun and sensor location. In high relief environments, this geometry is also 

influenced by local terrain. Therefore, for a given image date and time in high relief 

environments, there will be variation in surface illumination geometry across the scene. This 

will influence the scene component fractions visible to the sensor, in turn influencing the 

fractions determined using S M A . For example, a forest stand with the same structure and 

density under different illumination conditions will have different scene component 

abundances visible to the sensor. These changes have not been documented, so their 

influence on the prediction of forest biophysical parameters is not known. 
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2.6 Spectral Endmembers 

The identification and spectral properties of the individual scene components that are 

expected to contribute to the overall pixel level reflectance are important concepts in spectral 

mixture analysis as well as with forest reflectance models (discussed later). 

Endmember selection is based on identifying the individual components expected to 

contribute to the overall pixel level reflectance recorded by the sensor. In a forestry setting, 

it is known that stand-level reflectance of canopies with distinct geometric features, such as 

conifers, are related to sunlit canopy, sunlit background, and shadow (Li and Strahler, 1985; 

Jasinski, 1991). Figure 2-5 shows conceptually the main scene components that contribute to 

the pixel radiance, these are called endmembers. Once the endmembers have been identified, 

their spectral properties are obtained. For both spectral mixture analysis and forest 

reflectance models, the purest (without the presence of other surface materials) spectral 

response patterns of these scene components are required. 

Endmember spectra values for each scene component are located at the vertices of a 

simplex in spectral space, occurring at the end of a spectral continuum associated with each 

material (hence the term 'endmember ' ) , as shown in (Figure 2-6). Endmember values 

represent the purest spectral measurement for each of the scene components. All the pixels 

which lie within the simplex will be composed of different compositions of scene 

components. In a physical sense, different mixtures of forest scene components represent 

different forest structures. Pixels outside the simplex would be comprised of materials not 

accounted for with this endmember set. For example, in a forestry setting, a road passing 

through the image would not be characterized using the sunlit canopy, sunlit background and 
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Shadow 

Sunlit Canopy 

Sunlit Background 

Figure 2-5 A conceptualized view of a forest canopy as seen by a remote sensing instrument, 
showing the three main scene components; sunlit canopy, sunlit background and shadow. 

shadow endmembers, and therefore would be outside the simplex. These endmember values 

can be estimated, measured or modeled in a number of ways. Generally there are two 

approaches: reference endmembers and image endmembers, as discussed next. 
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Figure 2-6 Left image: CASI band 1 versus band 2 - axis have been rotated to provide the 
best view of the relative spectral properties of various ground materials. Endmember values 
for each scene component are located at the vertices of a simplex in spectral space, shown as 
the white triangle. Right image: Shows the spatial positions in the image of those pixels 
shown in spectral space (colours match in both images). 

2.6.1 Reference Endmembers 

The spectral properties of reference endmembers are obtained using a 

spectroradiometer either in the field or in a laboratory setting. A reference endmember 

represents the purest measurement of an endmember value. However, the use of reference 

endmembers depends on having a well-calibrated image. If the reference endmember spectra 

collected on the ground are to be related to an image, both the image and endmember 

measurement need to be calibrated to reflectance, which is the fundamental unit o f 

measurement in remote sensing. Reflectance is a measure o f the spectral properties of a 
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material once the influence of the atmosphere, illumination and view angle have been 

removed. The concept of reflectance will be expanded on later. The use of reference 

endmembers is also dependent on the assumption that the sample material adequately 

represents the spectra of the endmember in the scene (Tompkins et al, 1997). For example, a 

Field or laboratory spectrum of the sunlit canopy maybe difficult to capture in a single 

spectral measurement, since the combination of needles and branches which most 

appropriately characterizes the sunlit proportion of the canopy may be difficult to reproduce 

and measure. However, carefully collected reference endmembers can provide an accurate 

measure of the spectral properties of the main scene components. 

2.6.2 Image Endmembers 

Image endmembers are selected directly from the imagery and there is no need for 

field or laboratory measurements or detailed image calibration. However, depending on the 

image spatial resolution and the size of the scene component features, individual pixels 

within an image may not always represent a pure sample of a scene component. Pixels may 

be deemed to contain homogeneous samples of the components of interest and can serve as 

spectral endmembers. Image endmembers are usually selected through an iterative process, 

similar to the process of selecting training sites in supervised classification. The difference 

between the two being that endmember selection is focused on selecting the purest sample of 

a surface material in an image rather than a training area which is a set of pixels that 

characterize the full variability of a class. Within the image, pixels are chosen from those 

areas that are thought to contain homogeneous samples of the endmember material. These 



34 

initial endmembers are used to produce fraction values and an estimate of RMS error for 

each pixel in the image. These initial selections are improved through a process of iterative 

fraction validation. The fraction values produced using the SMA algorithm are compared to 

fraction values assessed either manually or through a classification approach (discussed 

later). The error between the two methods is used to iteratively improve the initial 

endmember selection. 

2.6.3 Modeled Endmembers 

Another approach to the trial and error method would be a statistical approach such as 

principle component analysis (PCA) or convex hull geometry (Tomkpins et al, 1997, Peddle, 

1997). These methods attempt to locate endmembers in spectral space. PCA is used to 

determine the dimensionality of the image data, which defines the number of endmembers. 

Then an n-dimensional polyhedron is fit to the data using convex hull geometry, essentially 

fitting all the data within the smallest possible simplex. Unfortunately, these calculated 

endmembers must be used with caution, as they may not be realistic in a physical sense. 

Peddle (1997) suggested that the uncertainty associated with the physical representation of 

modeled endmembers makes their use inappropriate in complex environments from which 

quantitative information extraction is the goal. Canopy reflectance models have also been 

used to model endmember values, as in Hall et al, (1995, 1996) and Peddle et al, (1999b). 
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2.7 Geometric Optical Reflectance Models 

Physical models of forest stands provide a powerful image-processing tool for the 

extraction of forest structural information from remote sensing imagery. Physically based 

algorithms have not been as widely used as empirically based spectral or textural methods, 

although there are several researchers who have focused on these methods (Strahler and 

Jupp, 1990: Franklin et al., 1991; Woodcock et al., 1994; W u and Strahler, 1994; Li and 

Strahler, 1985). 

Goel (1998) provided a good review of the different types of canopy reflectance 

models. He categorized them into four groups: (1) geometric optical (2) turbid medium (3) 

hybrid models of 1 and 2 and (4) computer simulations. The type of model used will depend 

on the focus of the study; to derive forest related parameters from airborne or satellite 

images, geometric optical models have been recommended (Li and Strahler, 1986, Gemmell, 

1998). Previous studies have shown that geometric optical models have been able to provide 

useful biophysical information (Hall et al, 1995; Peddle, 1997; Woodcock et al, 1997). The 

development of geometric optical models and use of the Geometric Optical Mutual 

Shadowing (GOMS) model used in this study are described in the following sections. 

2.7.1 Theory 

In the geometric optical approach to forest reflectance modeling, the bi-directional 

reflectance is modeled as a purely geometric phenomenon (Li and Strahler, 1985). These 

models treat vegetation canopies as collections of individual, discrete three-dimensional 

objects, which cast shadows onto a contrasting background. The driving variables are the 
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shape of the objects, their count density and their spatial arrangement which control the 

amount of sunlit canopy, sunlit background and shadow visible to the sensor at a given view 

and illumination angle (Li and Strahler, 1992). Geometric optical models have progressed 

from simple cylinder model representations which characterized the tree crown as cylinders 

defined by the height and width of tree crowns as observed in the field (Jasinski and 

Eagleson, 1989, 1990). The advantage of these models is that only a small number of inputs 

are required, however the cylinder shape does not always accurately characterize the canopy 

which can lead to difficulties in representing canopy shadow. Li and Strahler (1985) 

introduced the next advancement in geometric optical models. This new model represented 

individual trees as cones, that provided a better characterization of the bi-directional 

reflectance of the canopy. The model could also be run in both forward and inverse mode. 

In forward mode the model predicts pixel brightness values based on size, shape, density and 

illumination angles. In inverse mode it estimates the mean height, shape and density of the 

canopy based on pixel brightness values in the image. 

The next evolution in geometric optical models (Li and Strahler, 1982) still 

incorporates the two modeling modes but introduces a spheroid shape to characterize tree 

canopies and the ability to account for terrain variations and off-nadir view angles. This 

model (Li and Strahler, 1992) is also enhanced to include the effects of shadows falling on 

adjacent tree crowns or mutual shadowing. This geometric optical mutual shadowing 

(GOMS) model has been incorporated into this research. The theoretical basis for the GOMS 

model can be found in Strahler and Jupp (1990) and Li and Strahler (1992, 1986). The 

GOMS model is designed to simulate the bi-directional reflectance function (BRF) of 

individual pixels. The model treats vegetation canopies as collections of individual, discrete 
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objects, that cast shadows onto a contrasting background (Figure 2-7). As a geometric-

optical model, it relies on the three-dimensional structure of the canopy as the primary factor 

influencing scene reflectance. The model assumes that the satellite or airborne measurements 

(pixels) are larger than the size of individual tree crowns, but smaller than the size of forest 

stands. The signal received by the sensor is modeled as a linear combination of reflected light 

from tree crowns, their shadows, and the background within the field of view of the sensor. 

The model is calibrated with three distinct types of data: i) data describing the physical shape 

of the tree crown and structure of the forest canopy; ii) spectral endmember values of scene 

components and; iii) viewing and illumination geometry. The physical dimensions of the 

individual crowns and the structure of the stand are defined by A. (stand density), r (horizontal 

crown radius), b (vertical crown radius), h (height) and dh (height distribution). The spectral 

properties of each scene component are specified as Pc (canopy endmember spectra), Pb 

(background endmember spectra), and Ps (shadow endmember spectra). The view geometry 

and terrain variables are defined with sip (slope), asp (aspect), SZA (solar zenith angle) and 

AZM (solar azimuth angle). These input values are outlined in Table 2-3. 
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Figure 2-7 The GOMS model characterizes forest vegetation (individual tree crowns) as 
discrete three-dimensional spheroids, note the input parameters: h = tree height, r = crown 
radius and b = crown depth. The right image shows a simulated assemblage of trees, shadow 
and background in a pixel. 

Table 2-3 Required inputs into the G O M S Optical Reflectance Model . 

Symbol Physical Description Units 
k Tree density within the pixel (sensor IFOV) Trees/pixel (dimensionless) 
r Horizontal crown radius (Spheroid, Figure 2-7) Metres 
b Vertical crown radius (Spheroid, Figure 2-7) Metres 
h Height from ground to base of crown (Spheroid, Figure 2-7) Metres 
dh Height distribution of trees dimensionless 
—c Endmember value of sunlit canopy % reflectance 
- b Endmember value of sunlit background % reflectance 
- s Endmember value of shadow % reflectance 
sip Slope of pixel degrees 
asp Aspect of pixel degrees 
SZA Solar Zenith Angle degrees 
AZM Solar Azimuth Angle degrees 

These models can be used in either forward mode or in inverse mode. In forward 

mode the model requires as input the tree shape and canopy density together with 

endmember spectra and terrain values. Forward mode output consists o f the pixel level 

reflectance value and the individual component fractions. In inverse mode, the model uses 

pixel reflectance values measured by airborne or satellite sensors together with endmember 
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reflectance values and terrain information as input, with the output consisting of tree height, 

shape and density within the pixel. Improvements are still needed in the ability of these 

models to estimate height (Woodcock et al, 1997, Franklin et al. 1988). However, these 

types of models provide the potential to help extract detailed biophysical parameters based 

on their measured spectral characteristics. Effective use of this model in simulating a real 

canopy requires attention to two issues. First, how to determine the appropriate endmember 

reflectance and the physical canopy dimension measures needed to parameterize the model, 

and secondly, how to relate the output to estimate stand level biophysical information. 

2.7.2 Forestry Applications 

Applications using forest reflectance models to extract biophysical data have often 

been based on model inversion (Strahler and Woodcock, 1986; Franklin et al., 1991: Wu and 

Strahler, 1994; Gemmell , 1998). The inversion method provides a more objective means by 

which to model biophysical characteristics directly from remote sensing. The inversion 

method works by adjusting model parameters until the model reflectance matches the 

radiance recorded in the image (Goel, 1998). The advantage of using reflectance models to 

extract biophysical data is that they do not require an empirical calibration of reflectance 

values in the image with measured biophysical data on the ground. Rather, reflectance 

models can be applied in all site and sampling conditions provided basic ecosystem 

characteristics are known (Gemmell, 1998). Variable results have been reported in the 

ability of these models to extract forest structure parameters. Woodcock et al., (1993) 

showed that these models can provide accurate estimates of timber volume, growth form, 
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species association labels and conifer cover; however, tree size labels were found to be 

unreliable with single date Landsat imagery. 

Fewer studies have been done using forest reflectance models in high relief 

environments. Gemmell (1998) has incorporated the effects of terrain on the inversion of a 

forest reflectance model. Gemmell identifies three ways that terrain influences stand 

reflectance: i) sloping terrain changes the area of shadow visible to the sensor, ii) component 

spectral distribution are related to terrain and iii) the effect of mutual shadowing on crowns. 

That study focused only on stands in the principal plane of the sun so that the influence of 

slope, coverage and stand structure could be examined. His results showed that the influence 

of terrain (slope and aspect) on reflectance, if not accounted for, would preclude the 

extraction of forest coverage information. Accounting for the influence of terrain does not 

require a significant amount of additional information, as only a measure of slope and aspect 

are required. However, the acquisition and registration of an appropriate resolution DEM 

can require significant efforts. 

2.8 Terrain Normalization of Spectral Data 

2.8.1 Theory 

One radiometric problem, which is explicitly related to high relief environments, is 

the influence of terrain on the data recorded by the sensor. The effects of terrain have been 

defined as the variation in radiance from inclined surfaces compared to the radiance from a 

horizontal surface as a function of the orientation of the surface to the light source and sensor 

position (Holben and Justice, 1980). Terrain normalization algorithms are used to reduce the 
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influence of terrain on remotely sensed spectral responses. However, a general problem in 

terrain normalization is that the effects of slope and aspect on forest reflectance are not well 

understood (Gemmell, 1998). Digital numbers (DNs) are used to represent the intensity of 

the reflected energy recorded by the sensor. Unfortunately the reflected energy recorded by 

the sensor is related to more than the reflective and emissive properties of the objects in the 

scene. There are a number of additional factors, which interact to influence the radiance 

recorded by the sensor, as described in section 2.3.2. If there were no atmospheric 

attenuation and the terrain were flat and all objects being imaged had Lambertian reflectance 

(reflected equally in all directions) characteristics, the radiance recorded by the sensor would 

simply be a function of the reflective properties of the forest and the intensity of irradiance. 

This section focuses on the correction of slope-aspect induced variations on irradiance values 

as measured by remote sensors. 

2.8.1.1 Radiometric Normalization of Spectral Data 

The goal of a slope-aspect terrain correction is to remove all the terrain-induced 

illumination variation so that two identical objects or surfaces will have the same brightness 

values (DNs) in the image, regardless of their different orientations toward the sun (Meyer et 

al., 1993, Jensen, 1996). As a visible consequence of this correction, the three-dimensional 

impression of terrain should be suppressed and the image should appear flat. Basic to any 

radiometric correction is illumination. Dlumination is defined as the cosine of the angle(s) of 

incident solar radiation reaching a pixel. The illumination is therefore dependent on the 

relative orientation of the pixel towards the sun 's position (Figure, 2-8) (Meyer et al , 1993). 
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In the following sections, four different terrain normalization methods are reviewed 

as identified by Teillet et al (1982). Each method is based on the amount of illumination 

incident on a pixel. Each of these methods requires a digital elevation model (DEM) to be 

geometrically registered and resampled to the same spatial resolution as the imagery (Jensen, 

1996). The DEM is used to calculate measures of slope and aspect for each pixel in the 

image. The spatial resolution of the DEM determines to a great degree the level of 

illumination correction that can be achieved. 

Vertical Normal 

Sun 

Z -

Azimuth of 
Normal lo Slope 

North 

Figure 2-8 Diagram showing the zenith angle, Z, incident angle Z', surface slope = angle of 
exitance, E, solar azimuth, Ao, aspect of the surface, Ap, and azpect of the surface, Az (After 
Holben and Justice, 1980). 
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2.8.1.2 Cosine Correction 

The cosine correction is a trigonometric approach which takes into account the 

portion of direct illumination incident on each pixel as a function of slope and aspect, 

(Equation 2-4). This approach makes several important assumptions: (1) the surface is 

Lambertian: (2) there is a constant distance between the sun and earth, and; (3) there is a 

constant amount of solar energy reaching the surface. 

Equation 2-4 The Cosine Correction 

Where 
Lh = radiance observed for a horizontal surface 
L, = radiance recorded by the sensor (the original DN in the image) 
8 = solar zenith angle 
/' = solar incident angle in relation to the normal of the pixel 

As a first approximation, this is a simple method of correction as only data on the 

solar zenith angle and terrain illumination are needed. However, this method does not 

account for diffuse illumination, which can account for a significant amount of irradiance 

within forest canopies and on slopes facing away from the sun. 

As the cos i decreases, the magnitude of the correction increases. Consequently, for 

weakly illuminated areas (e.g. facing away from the sun or on steep slopes), the cosine 

correction applies a disproportional brightening effect (Jensen, 1996; Meyer et al., 1993). 
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2.8.1.3 Statistical-Empirical Method 

For each location (pixel) in an image, it is possible to relate the predicted illumination 

(cos i x 100) from the D E M and the DN recorded by the sensor. Meyer et al., 1993 related 

the DNs for known forest stands with predicted illumination values by producing a scatter 

plot. The slope in this graph suggests that a constant forest type will appear differently (have 

different DNs in the image) on different terrain. By rotating the regression line to the 

horizontal, these effects can be reduced. The Statistical-Empirical equation is shown below. 

Equation 2-5 The Statistical-Empirical Correction 

L h = Lt - cos(0m - b + L t 

Where 
Lh = radiance observed for a horizontal surface 
L, = radiance recorded by the sensor (the original DN in the image) 

~L7 = is the average of Lt for forest pixels (constant stand type) 

i" = sun's incident angle interrelation to the normal of the pixel 
m = slope of regression line 
b = y intercept of regression line 

This model assumes a linear correlation between the original DNs and illumination. 

The application of this method makes a specific object independent of illumination and 

corrects the difference in DNs or radiance value throughout the image caused by terrain. 
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2.8.1.4 C-Correction 

Where: 
Lh = radiance observed for a horizontal surface 
Lt = radiance recorded by the sensor (the original DN in the image) 
9 = solar zenith angle 
/ = solar incident angle in relation to the normal of the pixel 
c = correction parameter b/m 
m = inclination of regression line 
b = y intercept of the regression line 

Teillet et al. (1982) suggest that the c parameter emulates the path irradiance not 

previously accounted for; however, no physical analogies were presented. Essentially, the C 

correction weakens the over-brightening introduced to poorly illuminated pixels or pixels on 

steep slopes produced by the cosine correction. 

cos6 + c 

COSI + c 

The C correction takes advantage of the statistical empirical method to help account 

for the effects of path illumination. Teillet et al. (1982) introduced an additive term to the 

Cosine correction c, as shown in equation 2-5. 

Equation 2-6 The C-Correction 
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2.8.1.5 Minnaert Correction 

The Minnaert correction (Equation 2-7) is the basic cosine correction (Equation 2-4) 

with a coefficient k introduced to account for the Lambertian properties of the surface. 

Equation 2-7 The Minnaeart Correction 

Lt, = radiance observed for a horizontal surface 
L, = radiance recorded by the sensor (the original DN in the image) 
9 = solar zenith angle 
/ = solar incident angle in relation to the normal of the pixel 
k = Minnaert constant 

The Minnaert constant is considered to be the degree to which a surface is 

Lambertian. The k value varies between 0 and 1, where the smaller the k value the less 

Lambertian the surface. The less Lambertian the surface, the less influence the quotient has 

in Equation 2-6. Thus one can overcome the over correction obtained by the simple cosine 

correction (Meyer et al., 1993). The k parameter can be determined empirically, (Meyer et 

al, 1993), or alternatively values reported in the literature can be used. 

The improvement provided by each method is a function of the illumination value i 

(cos (Z')). Meyers et al., (1993) have shown that slope-aspect correction improved the 

Where: 
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accuracy of classification between forest and non-forest in faintly illuminated areas, without 

having an adverse effect in sunny areas. Improvements in classification accuracy of 

approximately 5% were achieved in faintly illuminated areas. The differentiation of different 

forest classes was more pronounced in sunny areas. Meyer et al, (1993) reported that 

improvements of between 10 and 30% could be achieved in brightly illuminated areas with 

cos (Z') >0 .6 . 

2.8.2 Sun-Canopy-Sensor Geometric Approach 

Terrain correction of forested images needs to be rooted in the consideration of 

canopy structure (Gu and Gillespie, 1998). The above methods of terrain normalization 

attempt to remove variations in illumination introduced as a function of sun-surface-sensor 

geometry. However, these methods make no attempt to account for variations internal to the 

forest canopy, often leaving residual topography (under correction) or 'negative' topography 

(over correction) (Gu and Gillespie, 1998). These residual effects can be attributed to an 

oversimplification of the canopy's bi-directional reflectance function (BRDF), the neglect of 

diffuse illumination, and inaccurate DEMs (Gu and Gillespie, 1998). Due to the inherent 

internal structure of forest canopies, sun-surface-sensor geometry is not the proper approach 

to terrain normalization. Rather, a method that accounts for the variations internal to the 

stand is required. As the terrain changes so does the stand structure relative to the sun. For 

example, the amount of sunlit canopy, sunlit background and shadow visible to the sensor 

will change. There will be more sunlit canopy visible to the sensor on slopes facing the sun 
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compared to those facing away, which is a function of stand structure relative to the sensor 

and shadow length. 

Gu and Gillespie (1998) introduced a method of terrain correction that accounts for 

the sub-pixel scale interactions within the forest canopy. This model is based on the Sun-

Canopy-Sensor (SCS) geometry rather than the sun-terrain-sensor approaches (cosine, C 

correction etc.). The authors identify three levels of interactions between light and a natural 

surface. At the first scale, light interacts with individual tree elements such as branches and 

needles. The second level is the crown, where the interactions of light are controlled by 

stand density, structure, and leaf orientation. The third scale is the canopy, which is 

characterized by interactions of light among trees. The SCS correction does not account for 

the first two scales of interactions; as trees are geostropic (grow perpendicular to the 

gravitational field) the first two scales are independent of terrain. Terrain effects are 

introduced at the third scale because the stand structure relative to the sensor is controlled by 

terrain. The SCS model works by characterizing the amount of sunlit canopy area as a 

function of the geometry between the sun, sensor and terrain. The authors suggest that 

complications introduced by stand structure (density, age etc.) make exact characterization of 

the forest structure difficult, therefore approximations were made to build several simplified 

models of tree crown shape, tree height, and tree density. This approach is a more physically 

based method and shows improved results over sun-terrain-sensor correction methods. The 

authors acknowledged that this approach only accounts for the sunlit portion of the canopy 

and that shadows and canopy obscured from the sensor's view may still substantially 

contribute to the total pixel reflectance. 
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2.9 Chapter Summary 

In this chapter, remote sensing of forest biophysical parameters was reviewed. The focal 

points included the use of spectral mixture analysis and forest reflectance models to account 

for the influences of terrain in predicting leaf area index. The advantage of spectral mixture 

analysis over traditional methods of estimating biophysical parameters is its ability to 

explicitly account for the influence of background vegetation and shadow in the radiance 

recorded by the sensor. S M A is able to quantify the abundance of each scene component 

that contributes to the overall pixel reflectance at the sub-pixel scale. The relationship 

between the sub-pixel scale fraction and forest structure has been well demonstrated in flat 

terrain and provides the basis for the strong predictive capability of SMA. The effect that 

terrain has on the scene fractions produced using SMA has not been well documented; 

however, it is believed that terrain changes the orientation of the forest structure relative to 

the sensor, limiting the ability to make an accurate estimation of LAI, if not account for. 

Forest reflectance models will be introduced into this analysis as they can provide the same 

sub-pixel scale fractions of the scene component but they also offer the ability to explicitly 

account for stand structure, terrain and illumination geometries. It is hypothesized that using 

forest reflectance to explicitly account for stand structure in images normalized for terrain 

will improve the estimation of LAI in mountainous terrain. 
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CHAPTER THREE 

METHODS 

3.1 Introduction 

In this chapter a description of the experimental design and methodology developed to 

test the ability of SMA and forest reflectance models to predict LAI in mountainous terrain is 

presented. The chapter begins with a description of the study area and the image and field 

data collected. Four distinct groups of data were collected to facilitate this research, airborne 

CASI image data, forest structural data, spectral field data, and field positional data, each of 

which was necessary for this analysis. The details of collecting and processing of each data 

set are provided. The chapter continues with the development of an experimental design to 

test the use of spectral mixture analysis in high relief environments using conventional 

illumination based normalizations. Next, the need for a new method that accounts for the 

internal forest structure in terrain normalization is described and a new approach to using 

forest reflectance models in multiple forward mode (MFM) is introduced. The details of the 

development, use, and output of the M F M are discussed in detail. Finally, the analytical 

approach developed to evaluate these various methods for predicting LAI is provided. 
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3.2 Study Area and Data Set 

3.2.1 Kananaskis Study Area 

The study site is centered at 115°4'20"W, 51°1 * 13"N on the eastern slopes of the 

Rocky Mountains straddling Barrier Lake in Kananaskis Provincial Park, Alberta, Canada 

(Figure 3-3). This region covers approximately 77km 2 and includes a full range of terrain 

aspects, and slopes ranging from 3° to 30°. The site is within the montane/sub-alpine forest 

region M.5, and is dominated by stands of Lodgepole Pine (Pinus contorta LAMB.), 

Engelmann Spruce (Picea engelmannii Parry ex Engelm), White Spruce {Picea glauca 

[Moench] Voss), trembling aspen {Populus tremuloides Michx.) , balsam poplar {Populus 

balsamifera L.) on lower, more moist slopes, and some scattered Douglas fir (Pseudotsuga 

menziesii (Mirb.) Franco) (Rowe, 1972). LAI ranged from 1 to 8 in this area. Within the 

greater Montane Cordilleran ecozone, this area lies near the southern border of the Eastern 

Continental Ranges ecoregion, as defined by Environment Canada (1997). Although these 

subalpine summers are cool and damp while the winters are cold with snow, there is 

considerable variation in temperature (e.g. Chinooks). Mean summer temperature is I2°C 

and the mean winter temperature is -7.5°C. Temperatures can range from -45°C to 35°C. 

Although only 30% of the precipitation received falls as snow, the mean annual precipitation 

ranges from 60O-8OOmm, which increases with elevation from east to west. The study area 

ranges in elevation from approximately 1400m at Barrier Lake to 2000m at the top of Prairie 

View. 
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Figure 3 - 1 Study Area. The Barrier Lake study site is located in Kananaskis Provincial Park, 
Alberta, Canada, on the eastern slopes of the Canadian Rockies. Barrier Lake is centered at 
115°4'20"W, 5 1 ° r i 3 " N . Photo A was taken looking south toward the end of Barrier Lake. 
Photo B was taken looking across Barrier Lake towards the southern knoll, to show the 
variability in terrain in the study area. The locations o f the images are shown on a Land sat 
TM image (red arrows). 
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3.2.2 Field Data Collection and Processing 

The collection of in situ ground data enabled the correction of atmospheric effects in 

the remote sensing imagery, servers as image and ground positional control, and provided the 

basis for associations between the image spectral properties and ground features (LAI in this 

study). Knowledge of what exists at a particular location in both the imagery and on the 

ground is the foundation needed to develop and test quantitative remote sensing methods. 

The data collected and the routines used to make the measurements in the field were 

specifically designed to address the needs of this research. Four distinct sets of ground data 

were collected. First, field spectra data were collected to correct for atmospheric effects and 

to function as reference endmembers for both spectral mixture analysis and the forest 

reflectance model. Second, ground-based estimates of LAI were made for each plot using 

two optical instruments, and formed the basis for comparing different remote sensing 

techniques. Third, forest structural data were collected to provided the needed geometric 

data for the forest reflectance model. And lastly, field and image position data were acquired 

using a global positioning system (GPS) to ensure that field measurements could be 

accurately identified in the image. These sets of data are described in the following sections. 

3.2.2.1 Ground Spectral Measurement 

Accurate spectral measurements were key to this research since, without them the 

relationships between image and field data could not be established. There were two 

requirements for the spectral data. First, field measurements were needed of ground 
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radiometric calibration targets visible in the imagery to correct for atmospheric effects. A 

proper atmospheric correction ensures that each of the image resolutions will be calibrated 

not only to one another, but also to other spectral measurements taken on the ground. 

Second, spectral measurements were collected of individual scene components to act as 

reference endmembers in both spectral mixture analysis and the forest reflectance model. To 

facilitate these measurements a spectroradiometer manufactured by Analytical Spectral 

Devices was used to collect the spectral measurements (ASD, 1998). The ASD full-range 

(ASD-FR) spectroradiometer model used in this research measures reflected radiance in the 

range 350 - 2500 nm. The magnitude of energy reflected by an object is a function of the 

amount of incoming solar radiation (irradiance), the atmospheric conditions, the time and 

date (solar angle), the orientation of the material relative to the sensor, and the characteristics 

of the material (Milton, 1987). Variations in the intensity and nature of illumination can be 

accounted for by taking a ratio of radiance to irradiance over a specific wavelength range, to 

produce a measure of reflectance. Spectral reflectance is related only to the characteristics of 

the target and is independent of illumination variations (Peddle, 1999; ASD 1995). This 

measurement can then be related directly to other reflectance measurements taken under 

different conditions, and is therefore the standard unit of spectral measurement in remote 

sensing. 

3.2.2.2 Spectroradiometer Instrumentation 

The ASD spectroradiometer is designed with a fibre-optic cable which extends to a 

pistol grip that holds a field-of-view (FOV) barrel. The FOV barrel allows the area viewed 
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Figure 3-2 ASD spectroradiometer setup for radiance measurements in the southern parking 
lot during image acquistion. 

by the sensor to be controlled (Figure 3-2). The pistol grip was attached to a tripod so that 

the view angle and sensor height above the target could be accurately controlled. A 

measuring tape was used to establish the height of the FOV barrel above the target and an 

inclinometer was used to ensure that the FOV barrel was nadir. A 5° FOV barrel was used 

for all measurements to ensure a good spatial coverage o f the target and to prevent the 

viewing of material other than the sample. The spectroradiometer used in this fieldwork was 

able to acquire rapid, multiple measurements of the target. To ensure an acceptable signal to 

noise ratio, each sample was the average of 10 spectral scans. To remove signal noise 

internal to the spectroradiometer, a dark current measure was recorded prior to each 

measurement. This measurement allowed any internal signal to be removed from the final 

spectral measurement (ASD, 1995). 
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3.2.2.3 Reflectance Calibration 

To acquire a measurement of irradiance coincident to the target radiance 

measurement, a reflectance panel is typically used. These panels have known spectral and 

angular reflective properties, that allow for an accurate measurement of irradiance to be 

obtained (Peddle, 1998). The panel used in this research was composed of pressed 

polytetrafluoroethylene (PTFE), commercially available as Spectralon (Labsphere, 1998). 

Spectralon offers nearly Lambertian properties and high reflectance values (nearly 98%) over 

a wide spectral range (350-2500nm). The manufacturer calibrated this panel, to allow for 

variation in the reflective properties of the panel to be characterized during post-processing. 

3.2.2.4 Reflectance Data and Post-processing 

The following procedures were followed for each set of spectral measurements. The 

measurement of each target consisted of a spectral radiance measurement of the target and 

irradiance spectra collected from the Spectralon panel. Spectral reflectance values for a 

given SZA (9) and at nadir view angle (<{>) were computed over the full wavelength range 

recorded by the spectroradiometer, using equation 3-1. Subsequently, these values were 

reassigned to match the spectral bands collected in the CASI imagery. A linear spectral 

response function was used to relate the spectroradiometer measurements with the CASI 

band set. The individual spectral values measured by the spectroradiometer between the 

beginning and end point of each CASI band were averaged to produce a single spectral value 

representing that band (Figures 3-5, 3-6 and 3-7). 
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Equation 3-1 Surface Reflectance Equation 

Reflectance (G,(J>) = T a r g e t R a d i a n c e % Panel Calibration 
Panel Radiance 

Where: Reflectance (8,(j)) = is the spectral reflectance for a given SZA (8) and view angle (<j>) 

3.2.2.5 Airborne Image Calibration 

To aid in atmospheric correction, ground based radiometric calibration spectra were 

collected during image acquisition at the south parking lot near Barrier Lake. Radiance 

measurements were acquired over four 3 x 3 m calibration targets, in addition to the asphalt 

parking lot (Figure 3-3). The radiometric targets were constructed of coloured bristle board. 

The radiance measurements were corrected to reflectance using calibrated irradiance 

measurements from the Spectralon panel. These targets were located in the imagery and 

used as pseudo-invariant targets to perform a linear atmospheric correction (Jensen, 1996). 

Subsequent examination of the reflectance values of each target showed that the white 

cardboard panels had nearly specular reflectance properties. Therefore, the white target was 

not used in the atmospheric correction. 
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Figure 3-3 Calibration targets placed in the southern parking lot during image acquisition. 
Each target was 3 X 3 m to ensure that a pure pixel o f each target could be located in the 
60cm, 1 m and 2m data sets. The collection site was established in an open area away from 
adjacent vegetation to avoid any illumination variations. 

3.2.2.6 Endmember Spectra Collection 

As a first step in endmember or scene component spectral data collection, each 

dominant canopy and understory species in the study area was identified. For each 

component, two separate spectral measurements were needed, a sunlit and shadowed spectra. 

The sampling strategy described by Peddle (1998) was used to acquire the needed component 

spectra. A stationary field measurement site was established in an open parking lot at the 
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southern end of the study site. This site ensured accurate measurements of spectra, avoiding 

the influence of adjacent, or understory vegetation, uneven terrain, and any other variations 

in the setup of the spectroradiometer. For this study, pure samples of each scene component 

were required. To facilitate these measurements, component samples were collected and 

removed to the measurement site. Samples were clipped from the vegetation of interest and 

assembled together into an optically thick stack, as described by Go ward et al (1994) and 

Peddle (1998). Great care was taken to ensure that the natural orientation of the material was 

maintained while creating an opaque configuration such that the background was obscured 

from the sensor. The advantage of this method was that the operator could ensure that only 

component material of interest was visible to the sensor. The potential drawback would be 

an alteration in the natural orientation of the material; however, with due attention this 

approach can provide an efficient and accurate means of acquiring endmember spectral 

values. 

The acquisition of sunlit component spectra was straightforward once the samples 

had been collected and arranged into optically thick stacks. The spectroradiometer was 

arranged such that the sample filled the FOV of the sensor. Two measurements were 

collected for each sample; the first was a target radiance measure, the second was a 

coincident measure of incident irradiance taken as the radiance of the Spectralon panel under 

the same illumination conditions. These measures were subsequently used to calculate the 

reflectance measure for each material, as described earlier. In contrast, the acquisition of 

shadowed component spectra was more involved. Radiance measurements of each target 

were collected under diffuse light conditions. A sheet of plywood was positioned in the 

principal plane of the sun in order to block all direct solar illumination (Figure 3-4). This 
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Figure 3-4 The collections of apparent reflectance spectra to represent the shadow 
endmember in the reference endmember set. 

setup was used to acquire target radiance measurements of each of the samples of 

background and canopy component vegetation. Coincident with each diffuse target 

illumination measurement, a fully illuminated incident irradiance measurement was acquired 

using the Spectralon panel. Subsequently, an apparent reflectance measure (Peddle et aL 

2000) was calculated, taking the ratio of diffuse target radiance to incident irradiance to 

generate the shadow component endmember. This method o f computing the shadow 

component spectrum provides an appropriate representation of shadow for use in spectral 

mixture analysis and forest reflectance modeling (Peddle, 1998). Figures 3-5 and 3-6 show 

spectral curves of the reference endmember set for a pine stand as measured with the 

spectroradiometer. Note that in these figures the unusually high reflectance values at 

1400nm, 1800nm and 2500nm are a result of signal errors near the ends of the spectral range 

of individual detectors within the ASD spectroradiometer (it has three detectors). 
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Figure 3-5 Reference endmembers reflectance spectra for a Lodgepole pine stand, measured 
with the spectroradiometer. The reference measurement for sunlit pine canopy is shown in 
green; sunlit background is shown in blue and the apparent reflectance value for the shadow 
pine endmember is shown in red. 
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Figure 3-6 Spectroradiometer measurements o f calibration targets collected during image 
acquisition. These measurements were subsequently resampled to the CASI band set and 
used in the atmospheric correction. 
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3.2.2.7 Forest Structural Data 

The field collection was undertaken with the knowledge that optical reflectance 

models would be incorporated into the study. Therefore, stand structural data required for 

these models were collected. These variables were used to define the shape and spatial 

distribution of trees within a stand. Of interest, then, were tree species, stand density, crown 

closure, horizontal crown radius, vertical crown radius, tree height, and height distribution 

(derived from field measurements). Other forest structure measurements collected included 

ground-based estimates of slope and aspect, diameter at breast height (DBH), ground cover 

vegetation composition, and plot maps detailing the location of each tree. 

Comprehensive sets of structural measurements were collected at each site. Data 

collection began by locating the centre of the plot and setting out the boundaries as described 

above. Next, each tree within the plot was flagged, labeled and mapped, and tree species 

were recorded. Tree height and the height to live crown were collected using a clinometer at 

an average distance of 15m from the tree. The horizontal crown radius of each tree was 

measured using a metric measuring tape from opposite edges of the main tree canopy 

projected vertically to the ground. A second measurement of crown radius was also obtained 

perpendicular to this measurement and the average of the two was used to represent the 

horizontal crown radius of the tree. Crown closure measurements were taken 2m in from 

each corner and at the center of the plot using a spherical densitometer. Tree diameter at 

breast height (DBH) measurements were collected at 1.3m above the ground using a DBH 



64 

tape for each tree. Tree cores were also collected for a representative sample of trees at each 

plot, based on the number of each tree species in the plot. 

3.2.2.8 Plot Location 

One requirement of data collection in this study was to capture variability in both 

forest structure and terrain. Plots were located to capture a full range of slopes and aspects as 

well as to provide a wide variety of forest structures. Due to the timing of the airborne data 

collection, much of the fieldwork had to be completed prior to image collection. This led to 

several constraints on plot location, as the images could not be used as a guide. To ensure 

that the plots would be located within the imagery, the proposed centerlines of the CASI 

airborne image flight lines were used as a base location in the field. From this point plots 

were randomly located along these lines with respect to the criteria of capturing a range of 

forest structure and terrain variability. A total of 31 plots were initially identified. Each plot 

was 10m x 10m, to ensure that a good number of pixels at each spatial resolution would be 

within the plot. Each plot was aligned north-south with the corners labeled clockwise 

beginning at the northwest comer # 1 , and the plot center labeled as 5, (Figure 3-7). This 

consistent scheme provided for easy comparison between plots. Also, since the orientation of 

the flight lines was either north-south or east-west, the plot and image pixel orientation was 

aligned. This simplified the identification of plot locations within the image. Of the total 

number of plots collected, 31 were used in the study and consisted of pure and mixed 

softwood species (Lodgepole pine, white spruce and Douglas fir). Due to the limited sample 
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size, separating the plots by species was not feasible, therefore the analysis was undertaken 

using all the conifer plots together. 

Figure 3-7 Plot Layout. Each plot was aligned with Magnetic North and a consistent labeling 
scheme (plot corners and center) was used to allow easy comparison between plots. 

3.2.2.9 Field and Image Position 

A key component of this analysis was the ability to accurately locate field 

measurements in the image data. To facilitate this, a differential global positioning system 

(DGPS) was used to obtain field positions with +/- l m accuracy. GPS data were collected 

for each field plot as well as for a number of temporary and permanent ground control points 

(GCPs). At each field plot a GPS point was collected for each plot comer. Ground control 

targets were set out prior to image acquisition and the center of each was also recorded with 
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Figure 3-8 Ground Control Points (GCPs) were established throughout the study area and 
accurate locations were established for each using a DGPS systems, these targets were then 
used to test the positional accuracy of the image data set. 

the DGPS (Figure 3-8). These targets were made of highly contrasting material and were 

easily located on the images. These were used to control and correct field and image 

positions. Careful examination of the geometric correction showed less than a single pixel 

variation between the 60 cm and 2 m resolutions (less than 2m absolute variation in 

alignment) which was acceptable for our analysis. 
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3.2.3 Ground Based LAI Estimation 

Two optical instruments were used to estimate canopy leaf area in the test plots. The 

first instrument was the LAI-2000 Plant Canopy Analyzer, which provided an estimate of 

effective LAI (Welles and Norman 1991). The second optical instrument was the Tracing 

Radiation and Architecture of Canopies (TRAC) which provided an estimate of the clumping 

index and LAI (Chen and Kwong, 1997). Operational limitations related to the illumination 

requirements of each instrument precluded their use at the same time, and consequently, 

these limitations generally required that each plot be visited more than once. However, due 

to the distance between plots, time constraints, and variable sky conditions, a modified 

approach that allowed the two instruments to be used under clear sky conditions was 

adopted. In the next sections, the LAI-200 and T R A C instruments are described and their 

use in the field. 

3.2.3.1 LAI-2000 Instrument 

The LAI 2000 assumes a random leaf distribution and does not account for canopy 

architecture and therefore provides an estimate of effective leaf area index (eLAI) (Welles, 

1990). This is not a true measure of LAI because foliage in plant communities is often not 

randomly distributed (Chen and Chilar, 1996). The LAI 2000 uses a fish-eye optical sensor 

sampled at five concentric angles (0-13, 16-28, 32-43, 47-58, 61-74 degrees) to measure the 

amount of foliage in the vegetation canopy as a function of the change in attenuation of 

radiation through the canopy. To quantify the change in radiation as it passes through the 

canopy, two measurements are needed: a measure of diffuse light outside the canopy, and a 
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second measure of diffuse light taken below the canopy. Two operational considerations with 

the use of the LAI-2000 included: (i) limiting data collection only to diffuse light conditions 

available early and late in the day, and (ii) due to the very large field of view, the LAI-2000 

was difficult to use in small stands or near open areas. The LAI 2000 resolves the leaf angle 

orientation but assumes a random spatial leaf distribution to avoid biasing the eLAI values. 

The LAI-2000 is also influenced by terrain, since with the large field-of-view the outer 

concentric rings (i.e. angles closer to the horizon) of the sensor may not be recording incident 

radiation for the overstory canopy. To account for the terrain variation, the fourth and fifth 

rings of each measurement were evaluated and adjustments were considered for each 

measurement. If it was determined that the outer rings were not recording canopy 

attenuation, the associated measurements were removed using the LAI 2000 software. 

The field logistics and the time available in the field prevented multiple visits to each 

plot. This presented a problem since the LAI-2000 and T R A C (described next) require 

different illumination conditions (diffuse and direct, respectively). However, to facilitate 

using the TRAC and LAI-2000 instruments together, eliminating the need for multiple trips 

to each plot, a modified approach was adopted which allowed the LAI-2000 to be used under 

clear sky direct illumination conditions. To mimic the conditions of a diffuse sky, the 

operators body was used to cast a shadow onto the sensor, thus blocking all direct 

illumination. To prevent the sensor from including the operator in the field of view (FOV), a 

view cap was attached to the optics to restrict the direction of view of the sensor. The FOV 

cap also allowed the operator to focus the measurements beneath the canopy on the forest 

stand under study. Both the outside and below canopy measurements were collected in this 
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manner. Adopting this method of using the LAI 2000 greatly increased the efficiency of data 

collection since field plots could only be visited once. 

3.2.3.2 TRAC Instrument 

The TRAC was developed at the at the Canada Centre for Remote Sensing (CCRS) 

for the purpose of measuring PAR (Photosynthetically Active Radiation, 400 - 700nm), from 

which LAI can be calculated (REFERENCE). The instrument consists of three quantum 

sensors. Two of these sensor are pointed upwards to measure the down-welling total diffuse 

PAR, with the third sensor pointed downward to measure the reflected PAR from the ground. 

In addition, the TRAC measures sunfleck width, which is related to gaps in the overhead 

canopy. Based on the assumption that foliage is rarely distributed randomly in canopies, the 

resulting gap fraction and gap size distribution are used to calculate a foliage-clumping index 

in the TRAC software to produce the final LAI value. 

The TRAC collects continuous measurements while the operator walks a transect 

perpendicular to the principal plane of the sun and parallel to the slope. Optimal data 

collection occurs within two hours of solar noon when the solar zenith angle is less than 55°. 

The TRAC also requires clear sky conditions with minimal or no cloud cover. 

As the TRAC is dependent on sunfleck area it is also influenced by terrain. Shadow 

length and sunfleck area change as a function of slope and aspect. A terrain normalization 

method was developed based on the depth of canopy which the light had to penetrate. As the 

orientation of the terrain changes so does the depth of canopy relative to flat ground. As a 

first order normalization, the LAI value produced by the T R A C software was multiplied by a 

ratio of the depth of the canopy on flat ground by the depth of canopy on sloped terrain. 
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Although this normalization method was developed in conjunction with the designer of the 

TRAC system (Chen, pers. comm., 1999), it is recognized that this represents only a first 

order normalization. Development of a more robust normalization method would be 

desirable: however, this lies beyond the scope of this research. 

3.2.4 Remote Sensing Imagery and Digital Elevation Data 

3.2.4.1 Airborne Imagery 

The multispectral Compact Airborne Spectrographic Imager (CASI) (Anger et al, 

1991) from Itres Research in Calgary, Alberta is designed to provide the user with a high 

performance visible-near infrared (VNIR) pushbroom imaging spectrograph (Wulder et al, 

1996). The CASI incorporates a charge-coupled device (CCD) into a two-dimensional 

sensor array. The sensor array is analogous to having an array of 512 separate spectrographs 

simultaneously imaging adjacent points across the field of view beneath the aircraft (Wulder 

et al, 1996a; Anger et al, 1994). The ground coverage and pixel size is dictated by aircraft 

altitude above ground level, and the aircraft speed. The across track pixel resolution (i.e. 

perpendicular to flying direction) is determined by aircraft altitude, whereas the along track 

resolution (in the direction of flight) is a function of aircraft speed over the target and the 

integration time of the sensor. The length of the flight line is limited only by the storage 

constraints of the CASI system. The CASI sensor has a spectral range of 545 nm, which may 

be located within 400 nm to 1000 nm. The actual spectral resolution of the CASI sensor is 

2.2 nm at Full Width Half Maximum (FWHM) (Wulder et al, 1996a). The CASI has three 

operating modes that balance the collection of spatial and spectral information: spatial, 
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Figure 3-9 Sub-area o f multi-scale CASI imagery collected over Kananaskis Provincial Park. 
The southern parking lot used for radiometric data collection is shown near the center of each 
image. 

A CASI image data set was acquired over Kananaskis from 9:30 to 13:00 hrs on July 

18, 1998. The image data set was acquired at three nominal spatial resolutions of 60cm, lm, 

and 2m (Figure 3-9). The weather during image acquisition was judged to be ideal 

throughout the mission, with clear skies and only light winds. For this analysis, the CASI 

was used in a modified spatial mode configuration. At the 1 m and 2m spatial resolutions, 18 

separate spectral bands were recorded; however, at the 60cm resolution a maximum of 8 

bands could be collected. The spectral bands that were acquired at the 60cm spatial 

spectral, and full frame mode. In spatial mode, the CASI has the potential to obtain a 

maximum of 19 spectral bands. The band widths and locations are fully programmable with 

the only constraints being that the bands may not overlap and must fall within the 545 nm 

spectral range of the sensor. In spectral mode, the CASI records a continuous spectrum from 

430 to 870 nm in 1.9nm increments. In this mode, the sensor is limited to 101 imaging 

points and results in a spatially non-contiguous data set (Wulder et aL 1996a). In full frame 

mode, the sensor collects 288 spectral bands for each of the 512 spatial pixels. 
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Table 3-1 CASI Image Band Set collected at all spatial resolutions. 

Band Wavelength 
Number (nm) 

Start End 
1 450 500 
2 540 560 
3 610 640 
4 640 680 
5 690 715 
6 730 755 
7 790 810 
8 850 875 

resolution are shown in Table 3-1 . Eight of the 18 bands acquired at l m and 2m spatial 

resolutions, were selected that correspond to those recorded at the 60cm. The spectral curves 

for a pine stand resampled to these 8 bands are shown in Figure 3-10. The discrepancy in the 

number of bands collected is a function of the finite rate at which the CASI sensor can record 

data. At the flying elevation required to capture 60 cm data, aircraft speed was too fast for 

the sensor to integrate 18 spectral bands. Therefore, a compromise between spectral and 

spatial information had to be made. 
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Figure 3-10 The ASD measurements collected in the field were resampled to the 8 CASI 
bands using a linear spectral response function. The reference measurement for sunlit pine is 
shown in green; sunlit background is shown in blue and the apparent reflectance value for the 
shadowed pine endmember is shown in red. 

Several geometric and illumination issues had to be considered during mission 

planning because of the terrain within the study area. The terrain prevented the aircraft from 

maintaining a constant elevation above the ground surface during image acquisitions; 

therefore, the across track pixel resolution varied along all flight line. This was accounted 

for by identifying a nominal flying datum (1550m ASL), which distributed the amount of 

variation more evenly throughout the study site. Imagery were collected at three flying 

altitudes above this datum to produce imagery at 60cm, l m and 2 m spatial resolution. The 
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mountainous terrain further constrained the range of solar position and illumination 

conditions for acceptable data collection. 

There were three important considerations taken into account when determining the 

best time to collect the image data. First, it has been shown that understory vegetation can 

limit extraction of biophysical information about the forest canopy. Therefore, a high solar 

zenith angle was desirable to increase canopy shadowing thus obscuring the background 

vegetation. Second, the orientation of terrain in the study area with respect to the morning 

solar azimuth was preferable for data collection to prevent large shadows cast by mountains 

from falling on the study site. Third, clear sky conditions suitable for image acquisition were 

more likely to occur in the morning, than in the afternoon. Cloud cover generated by surface 

warming and characteristic diurnal mountainous weather patterns typically generate ear ly to 

mid afternoon cloud. All data were acquired in the same flight direction from north to south 

to maintain the across track illumination difference caused by the position of the sun. Th i s 

was facilitated using a race-track pattern of image acquisition. The aircraft collected da ta 

only on the south bound leg of a circuit (which was into the sun) and then flew back to the 

beginning of the flight lines to collect the next image. Each adjacent image flight line was 

collected to ensure a 40% sidelap, which ensured good spatial coverage over the study area. 

In addition to the preparations for image acquisition, ground control points (GCPs) 

were established throughout the study area to assess the geometric correction provided by 

Itres Research. These GCPs were discussed in more detail in section 3.2.2.9. 
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3.2.4.2 Image Preprocessing 

Itres Research performed the initial image pre-processing and the data set was 

provided as a geometrically-corrected image data set. The corrections performed by Itres 

accounted for aircraft attitude that include role, pitch and yaw. To correct for these effects, 

real-time attitude measurements were recorded during image acquisition using an Inertial 

Navigation System (INS). The imagery was also digitally resampled to the nominal image 

resolution thereby removing the across track variation in pixel resolution. This provided a 

good correction on most moderately sloping terrain, however, on very steep slopes it did 

introduce some error. These errors represented only a very small portion of the study area 

and did not influence our analysis as none of them fell on the study sites. 

Further corrections applied once the data set was provided included an empirical 

radiometric normalization performed to account for the atmospheric variations between 

images. Four pseudo-invariant targets placed in the southern parking lot were identified in 

the imagery and used to normalize each image resolution to the ground based reflectance 

spectra measured for each target, as described earlier. The ground based reflectance values 

for the calibration targets and asphalt were related to the CASI data using a linear spectral 

response function for each image band. Careful examination of the data set showed that 

there was considerable variation in the radiance recorded at the different spatial resolutions; 

however, variations between images from adjacent flight lines at the same resolution were 

negligible. Given these characteristics of the data set, the parking lot and pseudo-invariant 

targets were identified in one image at each resolution. Three sets of normalization equations 

were calculated and applied to all images with respect to their spatial resolution (Jensen, 

1996). This produced a radiometrically normalized image data set corrected to reflectance. 
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3.2.4.3 Digital Elevation Model 

The Miistakis Institute for the Rockies provided a 10m resolution digital elevation 

model (DEM) of the study area. The DEM was acquired from the provincial data base and 

was compiled using data photogrametrically compiled from 1:60 000 scale aerial 

photographs (Altaiis, 1999), and subjected to detailed post processing to remove or minimize 

data errors. The DEM was resampled and co-registered to the spatial resolution of each 

image by Itres Research as part of the product they provided. A limited amount of post 

processing was required to generate a measure of slope and aspect for each plot within the 

study area. These values were easily generated using algorithms provided in the 

Environment for Visualizing images (ENVI) image analysis system (ENVI, 1997). Slope 

and aspect values were generated for each pixel within the DEM and then aggregated to the 

plot level (10m x 10m), to produce a single slope and aspect value for each plot. 

3.3 Spectral Mixture Analysis 

Spectral mixture analysis (SMA) is based on the fact the IFOV of a sensor is 

composed of a number of individual surface components which together contribute to the 

overall pixel level reflectance recorded (Adams et al., 1993). It is a tool to estimate the sub-

pixel scale abundance of each scene component (or endmember) based on their individual 

spectral properties. Changes in forest structure result in different levels of scene component 

fractions. The relationship between component fractions and forest structure is the basis for 

the strong predictive capabilities of biophysical information using SMA (Hall et al, 1995; 
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1996; Peddle et al, 1995; 1997; 1999b). To test the ability of spectral mixture analysis to 

predict forest leaf area in mountainous terrain, a series of tests was designed. 

As a basis for comparison, a SMA trial was first performed without any attempt to 

account for the variations induced by terrain. Subsequent SMA trials were performed after 

applying various terrain normalizations to the imagery. Four Terrain normalization equations 

(Cosine. Statistical-Empirical, Minnaert, and C-corrections) were evaluated in terms of their 

ability to improve scene fraction extraction using SMA. The scene fractions obtained from 

the various terrain-normalized images were to optical LAI measurements taken in the field 

with the TRAC and LAI-2000. These results were also compared to NDVI to determine how 

similar these measures were at the different spatial resolutions of imagery. 

In this study, three main scene components were identified as sunlit canopy, sunlit 

background, and shadow. S MA does not require a great deal of parameterization; however, 

the accurate spectral characterization of these main scene components is central to the ability 

of SMA to derive accurate scene component fractions, and to make accurate estimates of 

LAI. Three different sets of spectral endmembers were collected. The component 

endmember values used were based on the species composition recorded in the field data for 

each plot. Each SMA trial was repeated for the different endmember sets, which allowed 

both the terrain normalization methods and endmember types to be evaluated in terms of 

predicting LAI. The three endmember sets: reference, image and integrated are described in 

3.4.1,3.4.2 and 3.4.3. 
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3.4 Component Endmember Specification 

To ensure consistency throughout the study, three sets of endmember inputs were 

identified for the spectral mixture analyses, as well as for use with the optical reflectance 

model. The first set was composed of reference endmembers measured in the field with the 

spectroradiometer, as described earlier. The second set was composed of image endmembers 

selected directly from the 60cm image data. The third set was composed of both reference 

and image endmembers to take advantage of benefits from each approach. These 

endmember sets were held constant throughout the remainder of the research, allowing each 

to be used to predict leaf area index using either SMA or the optical reflectance model. 

3.4.1 Reference Endmember Set 

The reference endmember spectra used were selected from a spectral library of 

measurements collected in the field using the spectroradiometer. The canopy endmember 

was the reflectance obtained for lodgepole pine, white spruce or Douglas-fir, depending on 

the species composition of the plot. The reference values from the main species present on 

the forest floor in these plots (pine grass (calamagrostis rubescens buck!.), step moss 

(Shepherdia canadensis (L.( Nutt) and buffalo berry) were aggregated to produce the 

background endmember spectrum. This did not account for the complexity of the forest floor 

as other species (e.g. juniper) were not measured, nor was the spatial abundance of each 

background component considered. The shadow endmember was chosen as the darkest 

apparent reflectance measure of the canopy and background species, which was pine grass. 

The reference endmember set is outlined in Table 3-2. 
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TABLE 3-2 DESCRIPTION OF REFERENCE ENDMEMBERS AND REFLECTANCE CURVES OF SUNLIT BACKGROUND, 
Sunlit CANOPY AND SHADOW 

IMAGE ENDMEMBER DESCRIPTION 
Sunlit Canopy REFLECTANCE MEASURE OF LODGEPOLE 

PINE, WHITE SPRUCE, OR DOUGLAS-FIR 
Sunlit Background AVERAGE REFLECTANCE MEASUREMENT OF 

DOMINANT BACKGROUND SPECIES 
E H Apparent Reflectance MEASUREMENT 

OF PINE GRASS 
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3.4.2 Image Endmember Set 

Image endmembers selected from all eight bands of the 60cm image data were 

interpreted to represent pure samples of the scene components under investigation (Table 3 -

3). Image endmembers were selected based on spectral plots using the n-dimensional 

visualization capability available in the ENVI image analysis system (ENVI, 1998). In each 

band, the sunlit canopy endmember was selected based on the brightest canopy pixel value 

representation of lodgepole pine, white spruce, or Douglas fir trees. The sunlit background 

endmember was selected from an adjacent clearing that had similar vegetation composition 

as the forest floor and again the brightest image values were used. Three types of canopy 

shadowing were evident in the imagery: (1) infinitely dark, (2) transitional, and (3) diffuse 

shadow, as outlined in Seed et al, (1997) and Peddle and Johnson (2000). The darkest image 

endmember was selected as the purest case of shadow. Preliminary sets of SMA results were 

produced and their Root Mean Square (RMS) error evaluated against what were deemed to 

be pure pixels in the image prior to final endmember selection. 
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Table 3-3 Description of image endmembers and reflectance curves of Sunlit Background, 
Sunlit Canopy and Shadow. 

Image Endmember Description 
Sunlit Canopy Brightest canopy pixel from each 

band 
Sunlit Background Brightest background pixel selected 

from adjacent clearing for each band 
Darkest image value from shadow 
pixels 

3.4.3 Integrated Endmember Set 

The integrated endmember set was created to take advantage of both the image and 

reference endmembers (Table 3-4). The integrated endmember set used the reference 

measure of sunlit canopy (lodgepole pine, white spruce, or Douglas fir), to represent a purer 

sample than could be identified in a 60cm image pixel. Image endmembers were selected for 

the sunlit background and shadow endmembers. The sunlit background image endmember 



more accurately represented the complex mixtures of background vegetation compared to 

combinations of individual reference endmember spectra. Both the image shadow and 

reference shadow endmember values were very similar to each other in bands 1 through 5; 

however, the image endmember values were chosen since they were darker in bands 6 

through 8. 

Table 3-4 Description of integrated endmembers and reflectance curves of Sunlit 
Background, Sunlit Canopy and Shadow 

Integrated Description 
Endmember 
Sunlit C 

Sunlit E 

anopy Reference measure of lodgepole 
pine, white spruce o r Douglas-fir 

ackground Image background endmember 
Image shadow endmember 



83 

3.5 Spectral Mixture Analysis Post Processing, Evaluation and LAI Prediction 

3.5.1 Spatial Aggregation of Fractions to the Plot Scale 

The SMA algorithm produces a set of scene fraction values and an estimate of RMS 

error for each pixel. The fraction values produced by the algorithm represent the physical 

abundance of these materials on the ground which were visible to the sensor. 

To match the scale of the LAI measurements collected on the ground, the output of 

the SMA needed to be aggregated to the plot scale. There were two options considered to 

facilitate this. First, the spectral values of each pixel could be resampled to produce a single 

reflectance value for the plot. This single spectral value could then be unmixed and the 

fractions would be at the plot scale. Alternatively, each individual pixel which composed the 

plot could be unmixed and the resulting scene fractions summed and averaged over the plot 

area. To avoid the difficulty of resampling the spectral values to the plot scale, the scene 

fraction values were aggregated. In a physical sense, the scene fractions represent the spatial 

abundance of material on the ground, which is an appropriate measurement to aggregate, 

whereas resampling the spectral values does not have the same simple physical analogy. 

This approach also allowed SMA fractions of individual pixels to be evaluated (e.g. RMS 

error, fraction over flow or under flow) which would not have been possible if the spectral 

data were aggregated prior to mixture analysis. 
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3.5.2 Scene Fraction Validation 

Once the scene fractions have been scaled to the plot level, they need to be validated 

to ensure that they accurately represent the spatial abundance of materials on the ground. 

The validation of sub-pixel scale fractions is important when using SMA in more complex 

environments such as mountainous terrain. If the sub-pixel fractions of scene components 

are to be used to predict physical variables, it is important first to quantify their accuracy. 

The results of each SMA trial were a set of three fractions corresponding to sunlit 

canopy, sunlit background, and shadow, as well as an estimate of RMS error for each pixel. 

A quantitative validation of sub-pixel scale fractions at l m and 2m resolution was performed 

using a maximum likelihood (ML) supervised classification of sunlit canopy, sunlit 

background and shadow at the 60cm resolution. This validation was then repeated for each 

endmember set (i.e. reference, image and integrated). For example, a 10 x 10 m test plot 

contained approximately 25 pixels at 2m resolution for which a set of scene fractions were 

produced and aggregated. These scene fractions were compared to the ML classification of 

nearly 280 pixels at the 60cm resolution that comprised the same plot area. A supervised 

classification approach was used to classify the image into three classes (sunlit canopy, sunlit 

background and shadow), using training data obtained from the 60cm imagery. This 

provided a way of validating the fractions produced using the three sets of endmembers at the 

1 m and 2m image resolutions. Potential error can be introduced into this analysis due to the 

mixtures of materials that occur within a 60cm pixel as well as from errors in classification. 

However, the method of validation used in this study provided a meaningful way of 

evaluating the SMA fractions prior to biophysical analysis (Johnson and Peddle, 1998). 
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3.5.3 Leaf Area Index Prediction 

After the scene fractions were validated, each set of fractions from the different 

endmember sets and terrain normalization methods were evaluated in terms of their ability to 

predict ground-based measurements of leaf area index acquired using the LAI-2000 and 

TRAC. Separate linear regression analyses to predict LAI values were performed using the 

shadow, sunlit canopy and sunlit background fractions produced from each endmember set, 

at different image resolutions and using different normalization methods. This resulted in a 

total of 180 separate regression trials, as outlined in Table 3-5. The ability to predict LAI 

was based on the magnitude of the regression coefficient of determination (r 2 ) . These results 

were also compared to the ability of NDVI to predict the measurements of LAI. 

Table 3-5 The number of regression trials is a function of different combinations of various 
options and data sets available in the study. 

Total Number of Separate Regression Analyses 
Variable Name and Description Number of Variables (N) 
Number of scene fractions (Sunlit canopy, sunlit 
background and shadow) 

3 

Normalization method (None, Cosine, C-
correction, Statistical-empirical, and Minneart) 

5 

Image resolution ( l m and 2m) 2 
Number of endmember sets (Reference, Image and 
Integrated) 

3 

Different LAI measurements (LAI 2000 and 
TRAC) 

2 

TOTAL 180 
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3.6 Geometric Optical Reflectance Modeling 

For the modeling analysis, the Li and Strahler (1992) Geometric Optical Mutual 

Shadowing (GOMS) model was selected because of several advantages over other geometric 

optical reflectance models. Firstly, the GOMS model represents tree crowns as spheroids 

that have been shown to be superior to other crown geometric forms such as cylinders and 

cones (Peddle et al ,1999b). Secondly, the GOMS model provides capabilities to deal with 

complex crown mutual shadowing influenced by solar zenith angles and influenced by stand 

structure. Mutual shadowing is more likely at higher latitudes and in mountainous terrain 

where shadows are often longer. Thirdly, the GOMS model is relatively easy to parameterize 

from fieldwork or baseline inventory data (e.g. Alberta Vegetation Inventory). Fourthly, the 

GOMS model uses slope and aspect in model calculations and is therefore more appropriate 

for mountainous terrain compared to other models which do not have this capability. 

The model can be used in either forward or inverse mode. In forward mode, the model 

produces as output an average pixel level reflectance value in each spectral band, as well as 

scene component fraction values. As input, the forward mode requires an estimate of tree 

dimension, illumination geometry, stand density, and the spectral component reflectances. In 

inverse mode, the model provides as output the physical descriptions of forest structure (tree 

height, stand density, and tree height distribution, and horizontal and vertical crown radius). 

Requirements for inverse modeling are pixel level reflectance values, spectral properties of 

each individual stand component, and the sun and view positions. In the next section, a new 

approach using the G O M S model is introduced, which is capable of accounting for changes 

in pixel level reflectance as a function of stand structure and terrain. 
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3.6.1 Multiple Forward Mode (MFM) Approach 

Terrain has no influence over the sun-crown geometry because trees are considered 

geotropic (perpendicular to the geoid) (Gu and Gillespie, 1997). Terrain roughness and 

slope/aspect position, however, influences the position of trees within the canopy relative to 

the sensor, thus changing the contribution of sunlit canopy, sunlit background, and shadow to 

the overall pixel radiance recorded by the sensor (Figure 3-11). As has been described 

above, the signal recorded by the sensor is a collective radiance of the main scene 

components within the sensor's instantaneous field of view weighted by their spatial 

abundance. To account for differences introduced in the abundance of subpixel components 

as a function of terrain and forest structure, a new approach was developed to accounts for 

these differences at the sub-pixel scale. This new approach for mountainous terrain has been 

adapted from previous work in a flat, mixed forest environment in eastern Canada, in which 

the multiple forward mode idea was first developed (Peddle et al, 1999a). 
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Side View 

The Influence of Terrain 
Top (Sensor) View 

Terrain influences the 
relative a m o u i o f shadow 
and background visible to the 
sensor, which influences the 
overall pixel brightness. 

! Pixel brightness decreases from 
sun-facing to facing away from 
the nm 

NOTE: that die Sun-Canopy-Senior 
geometry does not vary with 
terrain, therefore BRDF effects are 
mmunal 

Figure 3-11 Influence of terrain on stand structure. Terrain influences the relative amount o f 
shadow and background visible to the sensor, which influences the overall pixel brightness. 
Pixel brightness decreases from sun-facing to facing away from the sun. NOTE: Sun-
Canopy-Sensor geometry does not vary with terrain, therefore BRDF effects are minimal 

Typically, any study focused on providing quantitative forest structural information is 

set in the context of model inversion since that mode provides physical descriptors of stand 

structure based on spectral input data. However, an approach that provides the proper basis 

for quantifying forest reflectance as a function of varying stand structure and terrain is 

needed. This methos should be able to characterize the variability in physical structural data 

as a function of pixel reflectance values. To this end, an approach that is able to quantify the 

change in scene component fractions was desired. Not only would such a method provide a 

means of characterizing forest reflectance as a function of terrain, but it would also provide 

an inherent ability to normalize these effects. Accordingly, a method has been developed to 
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provide a framework to quantify forest reflectance as a function of stand structure and terrain 

at the sub-pixel scale. 

To account for these variations, a modified approach using the GOMS model in 

"multiple forward mode" (MFM) has been developed. In standard forward mode, the user 

must provide input data for each model trial. The model then computes a single pixel value 

corresponding to the set of physical inputs and spectral component measurements. The 

MFM permits a range of input values to be specified. For example, instead of specifying a 

single stand specific value for horizontal crown radius, the user may provide a range of 

values and a model increment. This method allows the user to explicitly address the 

variability in the stand. The model then runs multiple times in forward mode for each 

possible combination of physical canopy descriptors, view geometries, and illumination 

angles, over the full range specified for each parameter. For a given set of physical inputs, 

all values are considered throughout the range with respect to the increment steps specified 

by the user. As output, the model produces a large array or look-up-table of values that 

relates pixel level reflectance, scene component fractions, and input structure and 

illumination geometry values. A graphical form of these tables appears in Figure 3-12. 

These MFM look-up tables were computed over the full range of forest structural and terrain 

variability in the study area. These tables can then be searched and sorted to retrieve 

quantitative information relating scene reflectance or scene component fractions to any 

model input. 



90 

A) I PUNCTTON OF TCTFVJN 

AI* 

FOREST 

011 

am • 

-3KCC 
-31% CC 
-SMCC 

-SO 

B) VALUES AS A FUNCTION OF TOMAN AND FOREST 
•AMOUNT 

Figure 3-12 Graphical representation of the look-up tables produced using the MFM 
approach. A) variation in modeled reflectance; B) variation in shadow fraction. Each 
diagram is in the principal plane o f the sun with a SZA of 45° and an azimuth of 180°. 
Negative slope values represent slopes facing the sun while positive slopes are facing away 
from the sun. Three stand densities are shown for a pine stand with 30%, 50% and 8 0 % 
crown closure (CC). Note the increased effect terrain has on both reflectance and shadow 
fraction in lower density stands. 



91 

In terms of forest image analysis and reflectance modeling, the M F M approach 

provides several advantages. The first advantage is that the MFM approach allows a wide 

range of structural and illumination inputs to be tested in a single set of model runs. The 

model can also be parameterized to focus on a single input variable while several other 

parameters are held constant. For example, varying only the slope and aspect values (holding 

all other values constant) allows the model to test the effects of changing terrain on modeled 

spectral response. Another advantage of the MFM approach is it does not require specific or 

exact physical parameters. Instead, only a range is required which can more easily be 

discerned from baseline inventory data or field data. If this information is unknown, the 

MFM can still be used by specifying the full range of possible model inputs. Lastly, unlike 

typical modeling which produces a single set of output results (e.g. inversion models), the 

MFM produces a range of output values related to variations in forest structure and 

illumination allowing a better understanding of the influence of stand structure and terrain on 

scene reflectance. 

3.6.2 Multiple Forward Mode User Interface 

The graphical user interface developed provides a researcher with an easy method to 

enter tree dimensions and form parameters, scene component endmember values as well as 

illumination and view angles (Figure 3-13). The current software is based on software 

developed by Peddle (1997) that was designed to facilitate G O M S model input and 

execution. Once all the input parameters have been set, the program builds the input files 

and a batch file to control all model processing. The program first computes the geometric 
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form factors used by the G O M S model as a function of the user inputs. The new MFM 

software calculates each possible combination of input parameters and produces a set of 

input files for the G O M S model. The software also records the input data used for each trial 

so that these values can be included with the output data in the look-up tables. 

In addition to creating all the input files required by the G O M S model, the MFM 

software writes either a UNIX command shell file or a Windows WinBatch file to direct 

batch (i.e. automated) mode execution of all model runs. After creating the input files, the 

batch program is run as either a system command shell file in UNIX or as a WinBatch file in 

Windows. Once the G O M S model has completed all model runs, a second program called 

GROUP is used to format the output into a look-up table suitable for search, analysis or 

query. Examples and a description of the GOMS input files and the M F M software are 

provided in Appendix 1. 
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Figure 3-13 MFM graphical user interface provides the user with an easy way of 
parameterizing the model. 

3.6.3 Multiple Forward Mode Parameterization 

The GOMS model requires three fundamental types of data: 1) spectral component 

endmember values, 2) physical descriptors of stand structure, and 3) view and illumination 

geometry. The M F M approach provides the user with the ability to characterize variations 

in the stand using input ranges rather than single values to characterize forest structure. For 

accurate results, it is important to understand how the G O M S model uses the structural input 

data to derive forest reflectance and scene fractions prior to assigning input ranges. The 

GOMS model uses the five measures of forest structure to derive four model-input 
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parameters. Using these input parameters the model is able to reduce the sensitivity to any 

single input value. 

Appropriate ranges of physical input data were assessed based on direct 

measurements collected in the field. Each range of input values was expanded beyond the 

variability seen in the field to ensure that the model captured all the variability in the scene. 

The view angle was held constant as nadir and the illumination geometry was assigned based 

on the solar positions during the CASI airborne image acquisition. The terrain inputs were 

assigned based on the variation in slope and aspect derived from the DEM. Each endmember 

set was used in a separate trial of the MFM software to allow the ability of each to 

parameterize the model to be tested. The modeling intervals for each parameter were 

selected based on two criteria. First, an interval was selected which allowed sufficient 

variation in stand structure to be characterized. Secondly, since a smaller interval size 

resulted in more model runs, a balance between model intervals and numbers of trials was 

also considered. A sample model parameterization is shown in Figure 3-13. 

3.6.4 Terrain Normalization 

The main hypothesis presented in this research is that a terrain normalization method 

that explicitly accounts for forest structure will provide improved estimates of leaf area index 

in mountainous terrain. The first step in the development of such a method is the validation 

of the scene component fractions produced by the M F M approach. To facilitate this, the 

MFM model was parameterized with the stand structure and terrain variables of each plot, 

from which scene component fractions were produced from the model runs. Both SMA and 
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the GOMS MFM require endmember spectral inputs, and both approaches produced sub-

pixel scale fractions as output. This permits SMA and G O M S MFM fraction output to be 

directly compared. This was done for each set of endmembers (reference, image and 

integrated). Initial observation of these results showed that the SMA fractions and those 

produced using the M F M approach consistently indicated acceptable agreement. The next 

step was to quantify the influence of terrain on scene fraction values given the same stand 

structure. This was easily achieved using the M F M interface, as input stand structural values 

for a given stand were held constant and only the slope and aspect values were input as 

ranges. The output was a graphical look-up table that quantified the influence of terrain on 

forest reflectance and scene fraction values. Three-dimensional graphical representation of 

the influence of terrain on forest stand reflectance and the amount of shadow visible to the 

sensor appear in Figures 3-14 and 3-15. These figures are a graphical representation of the 

change in reflectance and shadow fraction as a function of terrain. For this model trial forest 

structure was held constant, a crown closure of 50% was used and only the terrain variables 

were allowed to change. Terrain was modeled at 45° aspect intervals and 10° slope intervals. 



Figure 3-14 Forest reflectance as a function of terrain. Shaded surface represents the relative 
change in reflectance as a function of terrain variables (slope and aspect). The wire mesh 
surface represents a generic terrain surface. Forest structure is constant with a 50% crown 
closure, terrain was modeled at 45° aspect intervals and slope was modeled with 10° 
intervals. The sun position would be behind the shaded surface casting light towards the 
front. 



Figure 3-15 Forest shadow fraction as a function of terrain. Shaded surface represents the 
relative change in shadow as a function of terrain variables (slope and aspect). The wire 
mesh surface represents a generic terrain surface. Forest structure is constant with a 50% 
crown closure, terrain was modeled at 45° aspect intervals and slope was modeled with 10° 
intervals. The sun position would be behind the shaded surface casting light towards the 
front. 
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Using this look-up table approach, the reflectance and scene fraction values for any 

forest stand can be normalized to flat terrain. To accomplish this, several steps were 

followed. First, the MFM model was parameterized with the range of forest structure 

measured on the ground for a given plot. The illumination and terrain inputs were kept 

constant for the time of image acquisition and the position of the plots, respectively. Then 

for each endmember set, the scene fraction output from the G O M S M F M was compared to 

scene fractions produced for the plot using SMA. Once a match was found, the structural 

inputs, which produced them, were recorded from the look-up table. This set of forest 

structure variables most accurately characterizes the stand structure variability in the plot. 

Next the MFM model was re-parameterized using these structural values and the slope and 

aspect values were adjusted to flat terrain. The output from this trial was a set of terrain 

normalized scene fraction values that this stand structure would produce on flat terrain. 

The normalized scene fraction values were then used to predict LAI using linear 

regression analysis. These regressions were repeated for both the lm and 2m image 

resolutions and for the different endmember sets, resulting in 36 regression trials, as outlined 

in Table 3-6. The ability to predict LAI was again based on the magnitude of the coefficient 

of determination (r 2 ) . 
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Table 3-6 The number of regression trials is a function of different combinations of various 
options and data sets available in the study. 

Total Number of Separate Regression Analyses 
Variable Name and Description Number of Variables (N) 
Number of Scene fractions (sunlit canopy, 
sunlit background, and shadow) 

3 

Image Resolution 2 
Number of endmember sets (reference, 
image and integration) 

3 

Different LAI measurements (LAI 2000 and 
TRAC) 

2 

TOTAL 36 

3.7 Chapter Summary 

In this chapter, two separate methods were presented and developed for improved 

prediction of ground-based measurements of leaf area index. The first method is based on 

spectral mixture analysis of terrain normalized images using illumination-based algorithms at 

the pixel scale. This method was designed to build on the continued success of spectral 

mixture analysis in low relief environments. The second method was developed to 

incorporate physically-based optical reflectance models to account for stand structure at the 

sub-pixel scale in terrain normalization. This method was developed to provide a means of 

characterizing the variability in terrain and forest structural information as a function of pixel 

reflectance values. When used in this context the GOMS MFM approach can provide an 

improved information for relating forest structure and terrain with pixel level reflectance. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, the ability of scene fraction values derived using SMA and GOMS 

MFM to predict leaf area index (LAI) will be assessed and compared. It will be shown that a 

terrain normalization method that accounts explicitly for forest structure and terrain improves 

the ability to predict LAI using scene fraction values. Prior to testing the relationship 

between scene fraction values and forest leaf area, scene fraction values produced by S M A 

and the forest reflectance model had to be validated. The scene fractions produced at the l m 

and 2m image resolutions using the two methods were tested against a maximum likelihood 

(ML) classification performed at the 60cm image resolution. This provided a way of testing 

the scene fractions produced using the different endmember sets. 

Once the fractions had been validated, separate linear regression analyses were 

performed to test each endmember set and terrain normalization method for predicting field 

based LAI measurements from the LAI-2000 and TRAC systems at the lm and 2m image 

resolutions. Linear regression analysis was used to assess the statistical relationship between 

remote sensing derivatives and forest leaf area. The regression analysis was employed to 

assess the amount of variation in the dependent variable, leaf area index, which may be 

explained by the independent variables, scene fraction values. The ability to predict the leaf 

area index was based on the magnitude of the regression coefficient of determination r 2 for 

the bivariate case and R 2 for the multivariate case. A multivariate regression analysis was 

also performed using the best S M A fractions with NDVI to examine the possibility of using 
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these two methods together. The initial NDVI results were significantly lower than the 

mixture fractions, however, NDVI was incorporated into the regression analysis to determine 

if it provided any additional information not contained in the SMA fractions. The combined 

ability to predict forest leaf area was again determined by the magnitude of the coefficient of 

determination R 2 . All regression results are based on the use of 27 field plots composed of 

softwood species, lodgepole pine, white spruce and Douglas-fir. 

4.2 Spectral Mixture Analysis 

4.2.1 Scene Fraction Validation 

Each set of scene fractions and R M S error produced using each endmember set and 

normalization method were evaluated separately to ensure that the fractions produced were 

correct in a physical scene prior to any attempt to predict LAI. During the initial testing of 

the algorithms, it was obvious that the cosine correction was unusable in most of the study 

area. The correction factors produced using the cosine correction method could not account 

properly for steep slopes and aspects facing away from the sun. The correction produced 

adjusted the digital values of the pixels to such an extent that the endmembers no longer 

properly characterized the scene as depicted in Figure 4 -1 . Only 8 plots were considered 

usable based on the amount of correction applied by the cosine method. The cosine 

correction did, however, improve the estimation of LAI in these stands compared to the same 

8 stands with no terrain correction. As a result of this over correction, the cosine correction 

approach to terrain normalization was removed from the subsequent analysis. 
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FIGURE 4 - 1 THE OVER CORRECTION PRODUCED BY THE COSINE CORRECTION ADJUSTED THE RAW D N S TO 
SUCH AN EXTENT THAT THE DIFFERENT ENDMEMBER SETS WERE NO LONGER ABLE TO CHARACTERIZE THE 
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A S A FIRST TEST, THE R M S ERROR PRODUCED FROM EACH ENDMEMBER SET AND NORMALIZATION 
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R M S ERROR WAS LOW IN ALL TRIALS, (MAXIMUM OF ONLY 0 . 0 2 % ) , WHICH SUGGESTED THAT THE 
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THE AMOUNT OF ERROR FOUND BETWEEN THE SCENE FRACTIONS PRODUCED AT LM AND 2 M SCALES 
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ORIGINAL C A S I IMAGERY. THEN, S M A WAS APPLIED TO EACH NORMALIZED IMAGE, AND THE RESULTING 

FRACTIONS COMPARED TO THE M L CLASSIFICATION OF THE NORMALIZED IMAGE. PRIOR TO ANY ATTEMPT TO 
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normalize terrain. There was good agreement between the fractions produced at the lm and 

2m resolutions with the ML supervised classification at 60cm resolution. The difference, 

expressed as a percentage, was determined for each of the three scene components sunlit 

canopy, sunlit background and shadow with respect to the ML classification. The reference 

endmember case offered the closest agreement between the SMA fractions and the ML 

classification results. Differences ranged between 3 % and 6% for each scene component, 

with the maximum variation observed for the shadow component. The image and integrated 

endmembers cases showed a greater difference between the ML classification result and 

SMA fractions. Differences ranged from 3 % to 11% (mean = 6%) for the shadow 

endmember. The image sunlit canopy and background fractions ranged between 4% and 6% 

difference (mean=4%). Image scale seemed to have little effect on the results obtained from 

the lm and 2m CASI data. These results suggest that the SMA trials were in fact producing 

representative scene fractions prior to terrain normalization. 
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FIGURE 4 - 2 DIFFERENCE BETWEEN THE SCENE FRACTIONS PRODUCED USING THE REFERENCE ENDMEMBER 
SET AND M L SUPERVISED CLASSIFICATION UNDER DIFFERENT TERRAIN NORMALIZATION CONDITIONS. THE 
MINIMUM AND MAXIMUM DIFFERENCE IS SHOWN FOR EACH SCENE COMPONENT, C (SUNLIT CANOPY), S 
(SHADOW) AND B (SUNLIT BACKGROUND). THE BEST OVERALL RESULTS WERE WITHOUT TERRAIN 
NORMALIZATION. 



105 

Difference between 1 m Scene Fractions using Image Endmembers and 60cm ML 
Classification 
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Figure 4-3 Difference between the scene fractions produced using the image endmember set 
and ML supervised classification using different terrain normalizations. The minimum and 
maximum difference is shown for each scene component, C (sunlit canopy), S (shadow) and 
B (sunlit background). The best overall results were found without terrain normalization. 
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Difference between 1 m Scene Fractions using Integrated Endmembers and 60cm ML 
Classification 
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Figure 4-4 Difference between the scene fractions produced using the integrated endmember 
set and ML supervised classification using different terrain normalizations. The minimum 
and maximum difference is shown for each scene component, C (sunlit canopy), S (shadow) 
and B (sunlit background). The best overall results were without terrain normalization. 
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When the terrain normalizations were applied prior to SMA the percent difference 

increased using each of the C-correction, Statistical-Empirical and Minnaert approaches for 

each endmember set. The best overall correspondence between the scene fractions and ML 

classification was found using the reference endmember set and the C-correction. 

Differences ranged between 2% and 5% for the sunlit canopy component (Figure, 4-2), 

providing a small improvement over that obtained without terrain normalization. The 

difference increased for the sunlit background and the shadow component from 7% to 10% 

and 3% to 11%, respectively (Figure 4-2). There was little difference between the image and 

integrated endmembers sets for each normalization trial, however, the poorest overall results 

were found using the image endmember set with the C-correction with the difference ranging 

from 5% to 15% (Figures 4-3 , 4-4). 

These results were important as they suggest that terrain normalizations based on 

pixel level illumination differences did not properly account for the variations induced by 

changes in slope, aspect and forest structure at the sub-pixel scale. However, as will be 

shown later, they still provided an improved estimate of LAI over no terrain normalization. 

4.2.2 LAI Prediction using Spectral Mixture Analysis 

The results of the linear regression analysis to predict two sets of leaf area index 

measurements from the T R A C and LAI-2000 are summarized in Tables 4-2 to 4-6 for the lm 

and 2m resolutions. Each scene component fraction was used as an independent variable in 

predicting both LAI and eLAI measured from the two optical instruments. The tables below 

summarize the results and show only the best predicting variable in each case, sunlit canopy 
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(c), sunlit background (b) or shadow (s) (Tables 4 -1 ,4 -2 ) . As a basis for comparison, NDVI 

was also computed from each terrain normalization method and used as an independent 

variable for the various regression trials. The results show that prior to terrain normalization, 

the reference endmember set provided the best overall results. The best results were r 2 of 

0.69 and 0.67 for the T R A C measurements (Table 4 - 1 , 4-2) and r 2 of 0.62 and 0.72 for the 

LAI-2000 (Table 4 -3 , 4-4) for the lm and 2m resolutions respectively. NDVI yielded r 2 of 

0.33 and 0.34 (Table 4 -1 ,4 -2 ) for the T R A C . with r 2 0.45 and 0.44 obtained for the LAI-

2000 (Table 4-3 ,4-4) measurements at the l m and 2m resolutions. 

Table 4-1 Magnitude of the regression coefficient of determination (r 2 ) using SMA 
applied to images corrected with different terrain normalization methods to predict T R A C 
LAI at lm image pixel resolutions. The best scene fraction for each SMA trial is shown in 
brackets for sunlit canopy (c), sunlit background (b) and shadow (s). 

Image Endmember SMA SMA after SMA after SMA after 
Spatial Set & NDVI of Minnaert C-correction Stat-Empirical 

Resolution original correction correction correction 
image 

lm Reference 0.69(b) 0.72(c) 0.76(c) 0.77(c) 
lm Image 0.6l(s) 0.69(c) 0.74(s) 0.74(b) 
lm Integrated 0.68(s) 0.70(s) 0.77(s) 0.78(s) 

NDVI 0.33 0.51 0.41 0 . 4 6 

Table 4-2 Magnitude of the regression coefficient of determination (r 2) using SMA applied to 
images corrected with different terrain normalization methods to predict TRAC LAI at 2m 
image pixel resolutions. The best scene fraction: for each SMA trial is shown in brackets for 
sunlit canopy (c), sunlit background (b) and shadow (s). 

Image Endmember S M A S M A after SMA after SMA after 
Spatial Set & NDVI of Minnaert C-correction Stat-Empirical 

Resolution origina correction correction correction 
1 image 

2m Reference 0.65(b) 0.70(s) 0.75(c) 0.75(s) 
2m Image 0.55(b) 0.69(s) 0.68(s) 0.7 l(s) 
2m Integrated 0.67(c) 0.72(s) 0.71(c) 0.7 l(s) 

NDVI 0.34 0.50 0.41 0.48 
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Table 4-3 Magnitude of the regression coefficient of determination (r 2) using SMA applied to 
images corrected with different terrain normalization methods to predict LAI-2000 eLAI at 
1 m image pixel resolutions. The best scene fraction: for each SMA trial is shown in brackets 
for sunlit canopy (c), sunlit background (b) and shadow (s). 

Image Endmember SMA SMA after SMA after SMA after 
Spatial Set & NDVI of Minnaert C-correction Stat-Empirical 

Resolution original correction correction correction 
image 

l m Reference 0.62(b) 0.70(c) 0.71(c) 0.68(c) 
l m Image 0.52(b) 0.62(c) 0.66(s) 0.66(b) 
l m Integrated 0.55(c) 0.62(s) 0.69(s) 0.7 l(s) 

NDVI 0.45 0.54 0.48 0.50 

Table 4-4 Magnitude of the regression coefficient of determination (r 2) using SMA applied to 
images corrected with different terrain normalization methods to predict LAI-2000 eLAI at 
2m image pixel resolutions. The best scene fraction: for each SMA trial is shown in brackets 
for sunlit canopy (c), sunlit background (b) and shadow (s). 

Image Endmember SMA S M A after SMA after SMA after 
Spatial Set & NDVI of Minnaert C-correction Stat-Empirical 

Resolution original correction correction correction 
image 

2m Reference 0.62(b) 0.70(s) 0.69(c) 0.68(s) 
2m Image 0.53(b) 0.63(s) 0.68(s) 0.68(s) 
2m Integrated 0.72(c) 0.69(s) 0.70(c) 0.70(s) 

NDVI 0.44 0.55 0.48 0.50 

In terms of overall improvement in prediction using SMA, the C-correction and 

statistical-empirical methods showed improvements in r 2 of 0.14 and 0.15 using the image 

endmember set at the 1 m and 2m image resolution respectively for the LAI 2000 as 

compared to SMA alone (Tables 4-3,4-4) . The magnitude of the prediction for the TRAC 

values still remained higher; however, they showed smaller improvements in prediction 

compared to the improvements found using the LAI-2000. The greatest improvements in 
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predicting TRAC LAI were again using the C-correction and statistical-empirical approach, 

with improvements in r 2 of 0.13 and 0.08 using the image endmember set at the lm and 2m 

resolutions, respectively. Improvements to NDVI were significant, with maximum increases 

in r 2 of 0.18 and 0.11 using the Minnaert to predict LAI and eLAI, respectively. However, 

the ability to predict LAI using NDVI remained lower than the SMA fractions in all cases. 

Previous research (Peddle, 1997; Hall et al, 1995) has shown that the shadow fraction 

is consistently the best predictor of LAI in low relief environments, however, these results 

have shown no pattern in which a particular fraction provided consistently better results. 

This is likely to be a function of terrain, which influences which scene fraction is most 

visible to the sensor. 

4.2.3 Multivariate Regression using NDVI and SMA Fractions 

A multivariate regression analysis was performed using the best SMA fraction with 

NDVI to examine the possibility of using these two methods together, under each of the 

normalization methods. Although results from NDVI alone were significantly lower than 

results from SMA alone a set of tests were undertaken to see if using both SMA and NDVI 

together in a multiple regression would provide any additional improvements. 

This would determine if NDVI provided any new or additional predictive information 

not included in the SMA fractions. Since NDVI is simple to compute, it would not be 

impractical to use both methods together. The best results of the multivariate regression are 

shown in Tables 4-5 and 4-6 (for the l m and 2m images respectively), in which the far right 

column shows the improvement provided by incorporating NDVI. 
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Table 4-5 Improvements provided by incorporating NDVI into the prediction of TRAC LAI 
and LAI-2000 eLAI using the uncorrected SMA fractions at lm image pixel resolution. 

Image 
Spatial 

Resolution 

Endmember 
Set 

TRAC LAI 
R 2 SMA 
and NDVI 

Improvement 
over SMA 

Fraction 
Alone 

LAI-2000 
eLAI R 2 

S M A and 
NDVI 

Improvement 
over SMA 

Fraction 
Alone 

lm Reference 0.74 0.05 0.62 0.02 
lm Image 0.72 0.11 0.54 0.02 
lm Integrated 0.73 0.05 0.56 0.01 

Table 4-6 Improvements Provided by Incorporating NDVI into the Prediction of TRAC LAI 
and LAI-2000 eLAI using the Uncorrected SMA Fractions at 2m image pixel resolution. 

Image 
Spatial 

Resolution 

Endmember 
Set 

TRAC LAI 
R 2 SMA 
and NDVI 

Improvement 
over SMA 

Fraction 
Alone 

LAI-2000 
eLAI R 2 

SMA and 
NDVI 

Improvement 
over SMA 

Fraction 
Alone 

2m Reference 0.72 0.07 0.62 0.00 
2m Image 0.67 0.12 0.54 0.01 
2m Integrated 0.67 0.00 0.73 0.01 

The incorporation of NDVI provided very limited improvements for predicting LAI and 

eLAI. The inclusion of NDVI showed improvements in R 2 values between 0 and 0.12 for the 

prediction of TRAC LAI. The greatest improvements were found using the image 

endmember set which were R 2 values of 0.11 and 0.12 for the lm and 2m resolutions. In 

terms of improvement the inclusion of NDVI provided a maximum increase in R 2 of 0.2 to 

the prediction of eLAI measured with the LAI-2000. 
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Using the S MA fraction from the image endmember set in combination with NDVI 

improved the prediction of TRAC LAI to a level similar to the reference endmember set 

when used alone. For the prediction of eLAI, the inclusion of NDVI provided only minimal 

improvements. It is therefore concluded that use of the reference and integrated endmember 

sets provided the best estimates of LAI and eLAI when used alone. The inclusion of NDVI 

with the SMA image endmember fractions can provide estimates of LAI that are comparable 

with the estimates provided by the reference endmember set. This would be an option if the 

collection of reference spectral data were not possible, however, the inclusion of NDVI did 

not provide any significant improvement to the prediction of eLAI using image endmembers. 

4.3 Multiple Forward Mode Results 

The output from the MFM approach was evaluated in a similar manner as the SMA 

results. The first step was to validate the scene fractions produced from the reflectance 

model. The same M L supervised classifications produced at the 60cm resolution to test the 

SMA results were used here to test the output of the MFM approach. The first, significant 

difference between the SMA results and the M F M approach was that the M F M approach 

produced its output as a series of scene fractions based on structural input parameters, 

whereas, SMA produced a single set of fraction values based on spectral input values. In the 

GOMS model, the fractions of material visible to the sensor (scene fractions) are solely a 

function of geometry, whereas, in SMA the abundances produced are solely a function of the 

spectral endmember values for each scene component. For each plot, the M F M model was 

parameterized with a range of structural information measured on the ground, the solar zenith 
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position and azimuth during the time of image acquisition, endmember values for each set 

(reference, image and integrated) and the terrain variables of slope and aspect derived from 

the DEM. The MFM runs produced scene fractions as well as pixel level reflectance values. 

The variation between the ML supervised classification results and the MFM scene fractions 

were variable based on the structural information used to parameterize the model. However, 

for all plots there was a range of structural data near the mean for the plot which showed 

good overall correspondence between the classification and MFM scene fractions (Table 4-

5). 

The results shown in Figure 4-5 are the minimum and maximum for the entire range 

of input structural data. The reference endmember set provided the best correspondence 

between the classification and the MFM scene fractions. Differences ranged from 3 % to 

17%, with the largest difference found in the shadow fraction. Image resolution had no 

effect on the difference in scene fractions as the fractions produced were only a function of 

the model-input measurements collected on the ground. The results from the image and 

integrated endmember sets were more variable. The image endmember set had the largest 

differences of the three sets tested. Results ranged from 3 % to 26% difference, with the 

maximum difference again found with the shadow fraction. The integrated endmember set 

performed better, with differences ranging from 2% to 20%. In this case, the background 

fraction exhibited the maximum variation. Examination of the structural input data for each 

trial showed that the maximum errors occurred near the extremes of the structural range 

provided to the model for each plot. The results suggest that, as expected, the extremes in the 

structural range measured on the ground did not accurately characterize the plot and that the 

mean structural data provided the best representation of stand structure based on the 
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Figure 4-5 Difference between the scene fractions produced using the MFM model and ML 
supervised classification using each endmember set. The minimum and maximum difference 
is shown for each scene component, C (sunlit canopy), S (shadow) and B (sunlit 
background). 

magnitude of difference between the ML classification and scene fractions produced from the 

MFM. 
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4.3.1 SMA and MFM Fraction Matching 

For each plot, scene fraction values were computed using S M A with each of the three 

endmember sets. The M F M lookup table containing the full set of modeled fractions was 

then searched to Find modeled fractions which matched those produced by SMA. Once a 

match had been found, the structural input data associated with that set of modeled fractions 

were recorded. This structural information was then used to re-parameterize the model prior 

to terrain normalization. This first step ensured that the forest structure inputs to the MFM 

model accurately characterized each stand. After the match had been established the model 

was re-parameterized with this structural data and the terrain variables were adjusted to flat 

terrain. The output from this second model trial was a set of scene fractions which had been 

normalized to flat terrain. These scene fractions were subsequently used in the linear 

regression analyses. 

4.3.1.1 M F M prediction of Leaf Area Index 

The results of the linear regression analyses to predict the two sets of leaf area index 

estimates from the T R A C and LAI-2000 are summarized in Tables 4-7 and 4-8 for the lm 

and 2m resolutions. Each scene component fraction was used in a separate regression 

analysis to test the ability to predict leaf area index. The highest magnitudes of r 2 were found 

for the prediction of LAI measured with the T R A C using the shadow fraction produced from 

the reference and integrated endmember sets (Table 4-9). For the reference endmember set r 2 

values ranged from 0.83 to 0.82 for the l m and 2m data. The integrated set had r 2 values of 

0.83 and 0.77 for the l m and 2m data, respectively. 
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The results for the LAI-2000 were similar, with r 2 values of 0.82 and 0.79 for the lm 

and 2m data (Table 4-10). The best result of 0.82 was based on using the background 

fraction as the independent variable in the regression analysis at the lm resolution. This 

result was the only case where the shadow fraction did not provide the best prediction of both 

LAI and eLAI. This result is consistent with previous research where the shadow fraction 

was the best predictor of forest biophysical parameters (Hall et al, 1995 and Peddle, 1997). 

Therefore, the results obtained here suggest that this normalization method is accounting for 

forest structure at the sub-pixel scale. Overall improvements in prediction of LAI provided 

by the MFM approach are shown in Tables 4-9 and 4-10. 
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Table 4-7 Magnitude of the regression coefficient of determination (r 2) using the M F M 
approach to predict TRAC LAI at the l m and 2m image resolutions. The best result is shown 
in bold for each image resolution. 

Image Endmember Canopy Fraction Shadow Fraction Background Fraction 
Spatial 

Resolution 
Set 

lm Reference 0.82 0.83 0.60 
lm Image 0.64 0.82 0.79 
lm Integrated 0.55 0.83 0.80 
2m Reference 0.14 0.80 0.79 
2m Image 0.45 0.79 0.50 
2m Integrated 0.12 0.77 0.15 

Table 4-8 Magnitude of the regression coefficient of determination (r 2) using the M F M 
approach to predict LAI-2000 eLAI at the lm and 2m image resolutions. The best result is 
shown in bold for each image resolution. 

Image 
Spatial 

Resolution 

Endmember 
Set 

Canopy Shadow Background 

lm Reference 0.69 0.79 0.47 
lm Image 0.46 0.76 0.82 
lm Integrated 0.38 0.80 0.69 
2m Reference 0.69 0.75 0.34 
2m Image 0.12 0.79 0.72 
2m Integrated 0.37 0.73 0.71 
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Table 4-9 Improvements provided by the Multiple Forward Mode Approach to Predict 
TRAC LAI 

Image Endmember Magnitude of Improvement Improvement Improvement 
Spatial Set r 2 using MFM over SMA over best terrain over terrain 

Resolution using the Fraction normalized SMA normalized 
Shadow without terrain Fraction NDVI 
Fraction correction 

lm Reference 0.83 0.14 0.06 0.32 
lm Image 0.82 0.21 0.08 0.31 
lm Integrate 0.83 0.15 0.05 0.32 
2m Reference 0.80 0.15 0.05 0.30 
2m Image 0.79 0.24 0.08 0.29 
2m Integrate 0.77 0.10 0.05 0.27 

Table 4-10 Improvements provided by the Multiple Forward Mode Approach to Predict LAI-
2000 eLAI 

Image Endmember Magnitude of Improvement Improvement Improvement 
Spatial Set r 2 using MFM over SMA over best terrain over terrain 

Resolution using the Fraction normalized SMA normalized 
Shadow without terrain Fraction NDVI 
Fraction correction 

lm Reference 0.79 0.17 0.08 0.25 
lm Image 0.82 0.30 0.16 0.32 
lm Integrate 0.80 0.25 0.11 0.26 
2m Reference 0.75 0.13 0.05 0.20 
2m Image 0.79 0.26 0.11 0.24 
2m Integrate 0.73 0.01 0.03 0.18 
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The greatest improvements in predicting LAI were provided using the M F M 

approach to account for the effects of terrain, and forest structure as compared to each 

normalization method. The highest r 2 values for predicting TRAC LAI were 0.83 and 0.80 

using reference endmembers at the l m and 2m resolutions (Table 4-9). Increases in r 2 values 

of 0.21 and 0.24 were obtained using the image endmembers to predict TRAC LAI values at 

the 1 m and 2m resolutions respectively, compared to S M A without normalization (Table 4 -

10). The MFM also provided improvements in r 2 of 0.32 and 0.30 compared to the best 

normalized NDVI results. Prediction of LAI-2000 eLAI increased by a magnitude of 0.25 

and 0.26 using the image and integrated endmember sets at the lm and 2m image resolutions, 

compared to SMA without normalization. The best prediction of eLAI values showed r 2 

values of 0.80 and 0.73 using the integrated endmember set with the MFM approach for the 

1 m and 2m image resolutions. The MFM approach also provided improvements in estimating 

eLAI over terrain normalized NDVI with increases in r 2 of 0.32 and 0.24 for the l m and 2m 

data respectively. These improvements can be attributed to accounting for the internal stand 

structure during terrain normalization using the MFM approach. 

4.3.2 Discussion 

Summaries of all the results obtained are shown in Figures 4-6 and 4-7, which outline 

the magnitude of the coefficient of determination r 2 for each method tested (NDVI, NDVI 

with terrain normalization, SMA, SMA with terrain normalization and MFM). This provides 

a way to compare results with respect to the different types of endmember sets (reference, 

image and integrated), the different image resolutions ( l m , 2m), and the different LAI 
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instruments (TRAC and LAI-2000). The most appropriate method to use would depend on 

the research objectives of the particular study as well the data sets available. 

0 90 • NDVI 
•TERRAIN NORMATIZTD ONVI 
• SMA 
•TERRAIN NORMALIZED SMA 
• MFM 

Endmember Set used and Image Resolution 

Figure 4-6 The magnitude of the coefficient of determination for each method tested is 
shown for predicting TRAC LAI 
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0 90 • NDVI 
•TERRAIN NORMALIZED DNVI 
• SMA 
• TERRAN NORMALIZED SMA 
• MFM 

Endmember Set used and Image Resolution 

Figure 4-7 The magnitude of the coefficient of determination for each method tested is 
shown for predicting LAI-2000 eLAI 

The reference and image endmember sets provided better results, compared to the 

integrated set. This result was surprising as it was thought that the integrated endmember set 

would be better able to characterize the canopy using the reference endmember, and the 

background and shadow components with the image endmembers. Overall, for most 

applications the use of image or reference endmember with the MFM approach provided the 

best overall predictions o f forest LAI in mountainous terrain. 

The difference between the l m and 2m image resolutions had little influence on the 

ability to predict leaf area index using any of the methods tested. Generally, a decrease in the 

spatial resolution in the remote sensing imagery will cause a decrease in the variance among 

pixels, reducing the ability to extract biophysical information using traditional methods. 
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However, neither spectral mixture analysis nor the geometric optical reflectance model were 

considerably affected by this resolution change. The relative change in image resolution did 

not affect the analysis to a great extent, as the pixel resolution in both cases was still smaller 

than individual tree crowns. If the pixel size was larger than an individual tree crown (low 

resolution), the effects may have been more notable. 

Based on the results obtained, the ability to predict LAI measured with the T R A C 

was greater than the ability to predict eLAI measured with the LAI-2000. There are two 

possible reasons for this. First, the orientation of the optics on the TRAC instrument 

constraint the FOV to only the canopy above the sensor, which was inside the plot 

boundaries, whereas, the large FOV of the LAI-2000 may have included an area of canopy 

outside the plot. This is significant since image analysis was performed only on pixels within 

the boundaries of the plot. Therefore, it is possible that the LAI-2000 captured information 

from outside the plot, which was not accounted for in the image analysis. Second the TRAC 

accounts for the non-random nature of forest canopies by measuring sunfleck width, which is 

related to gaps in the overhead canopies. These sunfleck values are strongly related to the 

canopy structure and geometry. Both SMA and the GOMS MFM account for forest structure 

as part of their predictive ability. SMA estimates the abundance of sunlit canopy, sunlit 

background and shadow visible to the sensor, which is directly related to forest structure. 

The GOMS MFM approach directly accounts for forest structure through the structural 

model inputs provided by the user. 

Accurate forest information is particularly important if the results are to be used in 

process based ecophysiological models where LAI is one of the primary variables used to 

characterize the forest canopy. The M F M approach provided the best results in all cases, in 
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terms of the ability to predict LAI. With respect to practicality and ease of use, the MFM 

approach required additional inputs. However, based on the relative ease with which the 

input data can be acquired through base line vegetation inventories such as the Alberta 

Vegetation Inventory (AVI), and the relaxed requirement for detailed forest measurements 

using the MFM, approach it is a suitable approach in most circumstances. This approach 

does not require exact forest measurements; instead a range of values is required as input, 

which is easily obtained. Detailed field measurements are not required for this approach to 

be used effectively. 

4.4 Chapter Summary 

In this chapter, two sets of results were presented and discussed for predicting ground-

based measurements of leaf area index. Each set of scene fractions were validated against a 

ML supervised classification of the 60 cm spatial resolution imagery prior to LAI prediction. 

The first set of results were based on spectral mixture analysis of terrain normalized images 

using illumination based algorithms. These results have shown that the cosine correction was 

inappropriate for the high relief environment present in the study area. The C-correction and 

Statistical Empirical normalization method provided the greatest improvements for 

predicting LAI measured with the TRAC, using the SMA approach. There was very little 

difference between the Minnaert, C-correction and Statistical method for the prediction of 

eLAI measured with the LAI-2000, using the SMA approach. The second set of results from 

the MFM trials has shown that a method of terrain normalization that explicitly accounts for 
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forest structure provided improved estimates of LAI in mountainous terrain. The MFM 

approach provided the best estimates of LAI and eLAI compared to all other methods tested. 
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CHAPTER FIVE 

CONCLUSIONS 

5.1 Summary of Results 

The ability to provide accurate and timely estimates of forest biophysical information 

over mountainous terrain provides improved parameterization of regional and global scale 

process-based ecological models. These models form the foundation, upon which 

predictions about regional and global scale carbon budgets can be based, which is important 

in studies of global change. Forest leaf area is an important structural parameter of forest 

ecosystems, as it provides information on energy, gas and water exchange with the 

atmosphere. LAI is related to NPP, which is important in global climate change research 

since NPP can be related to carbon storage. 

Significant improvements in the estimation of LAI have been shown using spectral 

mixture analysis in low relief environments (Peddle et al, 1997, 1999b). However, previous 

to this thesis, little research had been done to assess the ability to predict LAI in mountainous 

terrain using SMA. The Barrier Lake study site in Kananaskis Provincial Park, Alberta, 

Canada, provided an environment well suited to studying and accounting for the effects of 

terrain in the prediction of LAI. The Barrier Lake site provided a range in forest species, 

stand structure and terrain needed for this study. The influence of terrain has been shown to 

affect the amount of scene components visible to the sensor thereby affecting the radiance 

recorded by the sensor. 

In this research the use of geometric optical reflectance models, and in particular the 

introduction of a new 'multiple forward model' (MFM) approach has provided a means to 
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account for the influence of terrain at the sub-pixel scale, improving the estimation of LAI. 

The best overall remote sensing estimates of ground-based LAI measured with the TRAC 

instrument were found using the M F M approach with the reference endmember set with r 2 

values of 0.83 and 0.82 for the l m and 2m image resolutions, respectively. The best 

estimates of eLAI measured with the LAI-2000 were found using the image endmember set 

with r 2 values of 0.82 and 0.79 for the lm and 2m image resolutions, respectively. The 

inclusion of NDVI provided only minimal improvements in the prediction of LAI when 

combined with SMA, with improvements in R 2 values between 0 and 0.12 for the prediction 

of TRAC LAI and a maximum increase of 0.2 in the prediction eLAI. No improvements 

were found in the prediction of LAI when NDVI was incorporated with the MFM results, 

which suggests that NDVI provides no additional information to the MFM approach. 

5.2 Conclusions 

A number of major conclusions have been drawn from this research: 

• Use of spectral mixture analysis and optical reflectance models provided substantial 

improvements over traditional vegetation index methods for estimating LAI in 

mountainous terrain. 

• Terrain significantly influences the relative proportions of sunlit canopy, sunlit 

background and shadow visible to the sensor, thereby reducing the ability to predict 

LAI using traditional methods. Without some type of terrain normalization, the ability 

of image processing techniques to predict LAI is compromised. The best SMA 
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results were obtained from imagery which had been subjected to prior terrain 

normalization. 

• Using geometric optical reflectance models in the multiple forward mode to account 

explicitly for forest structure in terrain normalization provided a way to characterize 

the change in sub-pixel scale fractions as a function of terrain and provided the most 

accurate LAI estimates in this mountainous environment. The predictive ability 

achieved using this approach was compared to other forested areas (e.g. flat boreal 

forest) and provided an acceptable level of accuracy for a mountainous environment. 

• The multiple forward mode approach to geometric optical reflectance modeling 

eliminated the need for exact model inputs, by allowing the user to provide ranges of 

terrain and structural inputs. This has made these powerful physical models more 

accessible and easy to use, as well as providing a valuable source of forest 

information which provides explicit linkages between forest structure, terrain and 

image reflectance. 

A number of additional conclusions may be drawn with reference to the observations made 

during this research: 

• The reference endmember set consistently provided the best estimates of LAI 

measured using the TRAC using both the SMA and MFM approaches. 

• The measurements of eLAI from the LAI-2000 were best predicted using image 

endmembers and integrated endmembers, regardless of the method used. 



The integrated endmember set did not perform as well as expected - it was assumed 

that this endmember set would provide the best combination of the advantages which 

the reference and image endmember sets provide. This suggests it may not b e 

desirable to use different sources for endmembers in this type of mountainous 

environment. 

The C-correction and Statistical Empirical approaches to terrain normalization 

provided the best improvements in the prediction of LAI measured using the TRAC. 

There was very little difference among the Minnaert, C-correction and Statistical 

Empirical methods for the prediction of eLAI as measured using the LAI-20O0. 

The inclusion of N D V I in a multiple regression analysis provided only limited 

improvements to the prediction of LAI using the SMA approach, and provided no 

improvements when combined with the MFM approach. 

Based on the regression results obtained, the TRAC system appeared to be more 

related to the scene fraction values compared to those obtained from the LAI-2000 

(eLAI). This is probably because both the TRAC estimates of LAI and the scene 

fraction values are related to a great extent to the canopy gap distribution and 

architecture. 

The relationship between the scene fractions and the TRAC measurements were 

greater than for the LAI-2000, since both the TRAC and scene fractions are related to 

gap size distribution and canopy architecture. 

In terms of image spatial resolution, the results obtained from l m and 2m C A S I data 

were similar. This is likely due to the similarities in spatial scale, and that both were 

smaller than the main objects being sensed on the ground (tree canopies). 
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5.3 Contribution to Research 

Contributions of this thesis to the research community include: 

• A new approach to using geometric optical reflectance models in forest remote 

sensing studies. The new MFM approach provides researchers with easy-to-use tools to 

investigate the influence of forest structure, illumination and terrain on scene reflectance 

through new software which provides an interface with the GOMS optical reflectance 

model. 

• Using the MFM approach, the influence of terrain on forest reflectance can be 

quantified and reduced, providing improved estimates of LAI in mountainous terrain. 

• A comparison of the different endmember sets in the prediction of forest leaf area. 

5.4 Future Research 

Based on the work accomplished to date there are a number of areas for future research: 

• Testing the ability of this method to predict other forest biophysical parameters such 

as biomass and NPP. 

• Continued work using the MFM approach could provide a basis for greater 

understanding of the influence of terrain and stand structure on forest reflectance. 
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Integration with other methods, such as tree delineation algorithms (Gougeon, 1995; 

Foumier et al, 1995), to possibly provide further improvements over that obtained using 

MFM alone. 

The expansion of this method to regional scales using satellite remote sensing 

imagery. This would also facilitate further development of a physically based approach 

to integrate land classification and biophysical parameter estimation (after Hall et al, 

1997; Peddle et al, 1997), as well as the investigation of scale issues. 

There is also the potential of using the MFM approach in change detection studies. 

Application of this approach to other mountainous forests, and possibly to other types 

of forested ecosystems. 
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Appendix 1: Model Inputs and Multiple Forward Mode Software 

The input files required by the GOMS model include an angle file (angles*.dat) and a 
structural parameter file (goms*.par) and are produced using the MFM.c program. As output 
the GOMS model creates a file which provides the component fractions for canopy, 
background and shadow as well as the pixel level reflectance value (fr*.out) and the M F M 
program produces a file which contains the input structural data. These outputs are then 
arranged into the lookup table using the Group.c program. 

Angles*.dat 

l l 
(band 1 of 1 (this version of the software can only compute a single band 
for each trial)) 
30.00000 175.8888 52.383999 138.11234 
(slope) (Aspect) (SZA) (Azimuth) 

The MFM program produces a new angle file for each combination of s lope , aspect, SZA 
and Azimuth specified by the user. 

G O M S . P A R F i l e 

goms *.par 

SComponentSignaturesCrown: 0.040000 
#ComponentSignaturesGround: 0.040000 
ffComponentSignaturesShade : 0 . 000000 
#Slope+SlopeAspect: 0.0 0.0 
*L 
TT 

^Parameters: lambda*r~2, b/r, h/b, dh/b 
MutShadwTopo { 

0.705600 3.011905 3.051383 
} 

7 . 2 1 2 1 2 1 

The MFM calculates the ratios for the structural input file based on the use r specified data 
and intervals, the model also varies the endmember reflectance values in th is file. 

fr*.out 

1 1 
30.00000 
(slope) 
0.43234213 
(canopy) 

175.8888 
(Aspect) 
0.234286 
(background) 

52.383999 
(SZA) 
0.33371 
(shadow) 

138.11234 
(Azimuth) 
0.0321 
(pixel reflectance) 
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A new fir* .out is created for each model trial, the M F M program subsequently combines 
these files into a single output file. 
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MFM.C 

/* 

Program Name: MFM.c 

Author: Ryan Johnson 
University of Lethbridge 
Ryan.johnson @ uleth.ca 

This C language program is a console version of the multiple forward GOMS application. The 
program accepts the range and modeling interval of input data for the GOMS geometric optical 
reflectance model. The model computes every possible combination of structural, endmember and 
geometric input data for the GOMS model and then produces all the needed input files for the GOMS 
model as well as creating a UNIX command shell file to execute all model trials in batch mode. The 
UNIX shell command is %sh GOMS.MFM. (A GUI version of this software is also available and run 
using WinBatch on any PC. - but is not shown, as the code is more complex. Email 
ryan.johnson @uleth.ca for a copy of the PC version.) As output then are a series of input files and the 
shell file. Once the batch file has run the program concatenates the GOMS output and input 
parameters into two separate files and removes all the input files. Subsequent use of the Group.c 
program will combine these files into the lookup tables. 

This program is based on the bat_goms.c program (Peddle, 1997) but adds the ability to provide the 
model with ranges and model intervals of input parameters to run the entire scope of data in a single 
trial. This ability allows for the influence of terrain and structure to be explicitly examined. 

*/ 

#include <stdio.h> 
#include <iostream.h> 

/* variable declaration 
r. r2: horizontal radius of tree crown 
B: half crown height 
h: height from ground to center of crown 
dh: height distribution of trees 

*/ 
float r. r2, b, h. dh. Pc. Pb, Ps, hb. dhb. lam. br, td; 
float slope, aspect, sza, azimuth: 
float minslopc. maxslope, intervalslope, holdslopc, holdslope2, tcmpslopc: 
float minaspect, maxaspect, intervalaspect, holdaspect, holdaspcct2, lempaspect; 
float minsza, maxsza, holdsza, intervalsza, holdsza2, tempsza; 
float minazimuth, maxazimuth, intervalazimuth, holdazimuth, holdazimulh2, tempazimuth; 
float minr, maxr, intervalr, holdr, holdr2, tcmpr: 
float minb, maxb, intervalb, holdb, holdb2, tempb; 
float minh, maxh, intervalh, holdh, holdh2, temph; 
float mindh, maxdh, intervaldh, holddh, holddh2, tempdh; 
float minlam, maxlam, intervallam, holdlam, hollam2, tcmplam; 
float mincanopy, maxcanopy, intercanopy, holdcanopy, holdcanopy2, lempcanopy; 
float minbg, maxbg, interbg, holdbg, holdbg2.tcmpbg; 
float minS, maxS, interS, holdS, holdS2, tempS; 
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int filec=0. lest, count, tempcount. n. countl. band_number; 
float i. j , k. 1, m, o. p.q; 
int s.t: 
float x. y. z. w; 
char angle_filcname[80]; 
int countanglc. total: 
char output_filename[80], tempgoms_outfilename[80], goms_outfilename[80], par_filcname[80], 
input_filename[80]; 

FILE *par_file. *sh_file. *ang_file, *var_file, *fopen(); 

main() 
( 

//obtain user input o f tree dimension and form parameters for site 

printf ("\n\t Please enter the band to test (eg 1, 2, 3, . . . ) ?"); 
scanf ("9£d". &band_number); 
printf ("\n\t Please enter the input parameters for the GOMS modelAn Enter the minimum and maximum value 
for each."); 
printf ("\n This program will then calculate the range and set up the input files."); 
printf ("\n If you want to hold a variable constant set max and max equal and enter 1 for the interval."): 
printf ("\n\n"); 
printf ("\n Minimum pixel slope (slope) ?"); 
scanf ("9£f",&minslope); 
printf ("\n Maximum pixel slope (slope) ?"); 
scanf ("%f',&maxslope); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%f",&intcrvalsIope); 
holdslope = maxslope - minslope ; 
printf (" The Range of r is : %f ", holdslope); 
tempslope = minslope; 
for (i=minslope; i<maxslope + intervalslope; i= i +intervalslope) 

{ 
printf (" \n The values of slope will be: %f", tempslope); 
tempslope = tempslope + intervalslope; 
I 

tempslope = minslope; 
printf("\n"); 
printf ("\n Minimum pixel aspect (aspect) ?"); 
scanf (""YFCF \&minaspect); 
printf ("\n Maximum pixel aspect (aspect) ?"); 
scan f (*' % f' ,&maxaspecl); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%f',&intervalaspect); 
holdaspect = maxaspect - minaspect; 
printf (" The Range of r is : %f ", holdaspect); 
tempaspect = minaspect; 
for (i=minaspect; i<maxaspect + intcrvalaspect; i= i +intervalaspect) 

{ 
printf (" \n The values of aspect will be: %f ", tempaspect); 
tempaspect = tempaspect + intcrvalaspect; 
} 

tempaspect = minaspect; 
printf("\n"): 



printf ("\n Minimum solar zenith angle (sza) ?"); 
scanf ("9fcf'.&minsza); 
printf ("\n Maximum solar zenith angle (sza) ?"): 
scanf ("%P'.&maxsza); 
printf ("\n Enter the interval for this range ?"): 
scanf ("%f \&intervalsza); 
holdsza = maxsza - minsza ; 
printf (" The Range of r is : %f ", holdsza); 
tempsza = minsza; 
for (i=minsza; i<maxsza + intervalsza: i= i +intervalsza) 

{ 
printf (" \n The values of sza will be: %i ", tempsza); 
tempsza = tempsza + intervalsza; 
} 

tempsza = minsza: 
printf("\n"): 
printf ("\n Minimum solar azimuth angle (azimuth) ?"); 
scanf ("%f'.&minazimuth); 
printf ("\n Maximum solar azimuth angle (azimuth) ?"): 
scanf ("%P',&maxazimuth); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%P',&intervalazimuth); 
holdazimuth = maxazimuth - minazimuth ; 
printf (" The Range of azimuth is : %f", holdazimuth); 
tempazimuth = minazimuth; 
for (i=minazimuth; i<maxazimuth + intervalazimuth; i= i +intervalazimui 

{ 
printf (" \n The values of azimuth will be: %f ", tempazimuth); 
tempazimuth = tempazimuth + intervalazimuth; 
} 

tempazimuth = minazimuth; 
printf("\n"); 
printf ("\n Minimum tree density LAMBDA (lam)'?"); 
scanf ("%f",&minlam); 
printf ("\n Maximum tree density LAMBDA (lam)'?"); 
scanf ("%R,&maxlam); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%f',&intervallam); 
holdlam = maxlam - minlam ; 
printf (" The Range of r is : %f ", holdlam); 
templam = minlam; 
for (i=minlam; i<maxlam + intervallam; i= i +intervallam) 

{ 
printf (*' \n The values of r will be: %( ", templam); 
templam = templam + intervallam; 
I 

templam = minlam; 
printf("\n"); 
printf ("\n Minimum Horizontal Crown Radius (r) ?"); 
scanf ("%P',&minr); 
printf ("\n Maximum Horizontal Crown Radius (r) ?"); 
scanf ("%f',&maxr); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%f',&intervalr); 
holdr = maxr - minr ; 
printf (" The Range of r is : %( ", holdr); 



lempr = minr. 
for (j=minr; j<maxr + intervalr: j= j +intervalr) 

{ 
printf (" \n The values of r will be: %f ", tempr); 
tempr = tempr + intervalr: 
) 

lempr = minr; 
printf("\n"); 
printf ("\n Minimum vertical radius (b) ?"); 
scanf ("%R.&minb); 
printf ("\n Maximum vertical radius (b) ?"); 
scanf ("%R.&maxb); 
prinif ("\n Enter the interval for this range ?"); 
scanf ("9T:f',&intervalb); 
holdb - maxb - minb ; 
printf (" The Range of b is : %f ". holdb): 
tempb = minb; 
for (k=minb; k<maxb + intervalb; k = k +intervalb) 

{ 
printf (" \n The values of b will be: %( ". tempb); 
tempb = tempb + intervalb; 
> 

tempb = minb: 
printf("\n"); 
printf ("\n Minimum Height to center of crown (h) ?"); 
scanf C % f ,&minh); 
printf ("\n Maximum Height to center of crown (h) ?"); 
scanf ("%R.&maxh); 
printf ("\n Enter the interval for this range ?"); 
scanf ("%R\&intervalh); 
holdh = maxh - minh : 
printf (" The Range of h is : 7cf ", holdh); 
temph = minh; 
for (l=minh; I<maxh + intervalh; 1= 1 +intervalh) 

{ 
printf (" \n The values of h will be: %f ", temph); 
temph = temph + intervalh; 
} 

temph = minh; 
printf("\n"); 
printf ("\n Minimum Height Distribution (dh) ?"); 
scanf ("%f,&mindh); 
printf ("\n Maximum Height distribution (dh) ?"); 
scanf ("<7RF ,&maxdh); 
printf ("\n Enter the interval for this range ?"): 
scanf ("^cr.&intervaldh); 
holddh = maxdh - mindh ; 
printf (" The Range of r i s : %f ", holddh); 
tempdh = mindh; 
for (m=mindh; m<maxdh + intervaldh; m= m +intcr\'aldh) 

{ 
printf (" \n The values of r will be: %f ", tempdh); 
tempdh = tempdh + intervaldh; 
} 

tempdh = mindh; 
printf("\n"); 
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/* Obtain end-member reflectance values for each component */ 
printf ("\n This section will require the input of the spectral signatures."): 
printf ("\n These values can also be input ranges:"); 
printf ("\n Minimun End-member reflectance for \n\t Sunlit Canopy (Component signature crown, Pc) ?: "); 
scanf ("9£f".&mincanopy); 
printf ("\n Maximun End-member reflectance for\n\t Sunlit Canopy (Component signature crown. Pc) ?: "); 
scan f (" 9c f' .&maxcanopy); 
printf ("\n Interval for End-member reflectance of \n\t Sunlit Canopy (Component signature crown. Pc)'?: "); 
scanf ("9cf ',&intercanopy); 
holdcanopy = maxcanopy - mincanopy : 
printf (" The Range of r is : 9c( ", holdcanopy); 
tempcanopy = mincanopy; 
for (q=mincanopy: q<maxcanopy + intercanopy; q= q +intercanopy) 

( 

printf (" \n The values of r will be: 9cf tempcanopy); 
tempcanopy = tempcanopy + intercanopy; 
I 

tempcanopy = mincanopy: 
printf("\n"); 
printf ("\n Minimun End-member reflectance for\n\t Shadow (Component signature shadow. Ps) ?: "): 
scanf ("%f\&minS); 
printf ("\n Maximun End-member reflectance for\n\t Shadow (Component signature shadow. Ps) ?: "); 
scanf ("%f'.&maxS); 
printf ("\n Interval for End-member reflectance of \n\l Shadow (Component signature shadow. Ps) ?: "); 
scanf ("%f \&interS); 
holdS = maxS - minS ; 
printf (" The Range of r is : 9c( ", holdS); 
tempS = minS; 
for (o=minS; o<maxS + interS; o= o +interS) 

{ 
printf (" \n The values of r will be: 9cf ", tempS); 
tempS = tempS + interS; 
I 

tempS = minS: 
printf("\n"); 
printf ("\n Minimun End-member reflectance for\n\t Sunlit Background (Component signature ground Pb) ?: 
" ) : 
scanf ("%f'.&minbg); 
printf ("\n Maximun End-member reflectance for \n\t Sunlit Background (Component signature ground Pb) ?: 
"): 
scanf ("%f'.&maxbg); 
printf ("\n Interval for End-member reflectance of \n\t Sunlit Background (Component signature ground Pb)'?: 
" ) ; 
scanf ("%f',&interbg); 
holdbg = maxbg - minbg ; 
printf (" The Range of r is : %f ", holdbg); 
tcmpbg = minbg; 
for (p=minbg; p<(maxbg + interbg); p= p +interbg) 

{ 
printf (" \n The values of r will be: %f ", tempbg); 
tcmpbg = tcmpbg + interbg; 
1 

tempbg = minbg; 
printf("\n"); 
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printf ("\n ***********p | e a se Wait this program is now writing GOMS input files to disk**********"); 
printf ("\n * * * * * * * * * * * T 0 run the GOMS model type sh MFM.bat - al the command 
prompt*************\n"); 

//printf("\n Enter the OUTPUT filename for GOMS ouput: "); 

//scanf ("%s", &tempgoms_outfilename); 
sprintf(goms_outfilename,"modelout%d.cmb",band_number); 

// start creating the input values for the GOMS model 

//create the nested for loops for the angles.dat file here 
countanglc = 1; 
tempslope = minslope; 
for (x=minslopc: x<maxsiope + intervalslope; x = x +intervalslope) 

{ 

tempaspect = minaspect: 
for (y=minaspect; y<maxaspecl + intcrvalaspect; y = y +intervalaspecl) 

{ 
tempsza = minsza; 
for (z=minsza; z<maxsza + intervalsza: z = z +intervalsza) 

1 
tempazimuth = minazimuth; 
for (w= minazimuth; w<maxazimuth + intervalazimuth; w = w -t-intcrvalazimuth) 

{ 
sprintf (angle_filenamc,"angles%d.dat".countangle); 
ang_file = fopen (angle_filename, "w"); 
fprinlf (ang_file," I l\n"); 
fprintf (ang_file,"%f %f %(%f", tempslope, tempaspect, tempsza. 

tempazimuth); 
fclose (ang_file): 
countangle ++; 

tempazimuth — tempazimuth + intervalazimuth; 
> 

tempsza = tempsza + intervalsza; 
} 

tempaspect — tempaspect + intcrvalaspect; 
} 

tempslope = tempslope + intervalslope; 
} 

/* compute input factors from physical tree parameters */ 
count = 1; 
templam = minlam; 
for (i=minlam; i<maxlam + intervallam; i= i -f-intervallam) 

{ 
tempr = minr; 
for (j=minr; j<maxr + intervalr; j= j +intcrvalr) 

{ 
tempb = minb; 
for (k=minb; k<maxb + intervalb; k = k +intcrvalb) 

{ 
temph = minh; 
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for (l=minh: l<maxh + intervalh; 1= 1 +intervalh) 
{ 
lempdh = mindh: 
for (m=mindh; m<maxdh + intervaldh; m= m +intervaldh) 

{ 
tcmpcanopy = mincanopy; 
for (q=mincanopy; q<maxcanopy + intercanopy; q= q 

+iniercanopy) 
{ 
tempbg = minbg; 
for (p=minbg; p<maxbg + interbg; p= p +interbg) 

{ 
tcmpS = minS; 
for (o=minS; o<maxS + intcrS: o= o +interS) 

{ 
sprintf (output_fiIename,"fr%d.out",count); 
sprintf (par_filename,"goms%d.par",count); 
sprintf (input_filename,"parameter_MFM%d.stf'.count): 

r2 = tcmpr*tempr; 
br - tempb/tcmpr: 
hb = temph/tempb; 
dhb = tcmpdh/tcmpb; 
td = templam; 

par_file = fopen (par_filename. "w"); 

fprintf (par_file,"#ComponentSignaturesCrown: 
%f\n".tcmpcanopy); 

fprintf (par_file,"#ComponentSignaturesGround: %f\n",tempbg); 
fprintf (par_file,"#ComponentSignaturesShade: %f\n",tcmpS): 
fprintf (par_file,"#Slope+SlopeAspect: 0.0 0.0\n"); 
fprintf (par_file,"#\n"); 
fprintf (par_fiIe,"#Paramelers: lambda*rA2, b/r. hTb, dh/b \n"); 
fprintf(par_file."MutShadwTopo ( W ) ; 
fprintf (par_file," %8.6f %8.6f %8.6f 

%8.6f\n",td*r2,br,hb,dhb); 
fprintf (par_file," }\n"); 

fclosc (par_file); 

//write to the parameter file 
var_file = fopen (input_filename,"w"); // opens the 

parameter file to hold inputs 
fprintf (var_file."%f %f %f %i %f %i %{%f%{ %(7c( 7cf\n", 

templam, tempr, tempb, temph, tempdh,td*r2,br,hb,dhb, tempcanopy, tempbg, tempS); 
fciose (var_file); 

count ++; 
count 

tempS = tcmpS + interS;} 

tempbg = tempbg + interbg;} 

tempcanopy = tempcanopy + intercanopy;} 
lempdh = tcmpdh + intervaldh;} 



temph = temph + intervalh:} 
tempb = tempb + intervalb;} 

tempr = tempr + intervalr;} 
templam = templam + intervallam;} 

total = 1; 
sh_file = fopen("MFM.bat","w"); // opens the batch file 
for (s= 1; s<countangle; s= s +1) 

( 
for (l= 1; Kcount; t= t +1) 

{ 
/* add next line to UNIX command shell file. BRDF2.exe is the GOMS 
executable file: angles.dat contains the view and illumination data, 
and the model is run in forward mode */ 
fprintf (sh_file, "BRDF2.exe < angles%d.dat > fr%d%d.oul -forward -model 

goms9?-d.par\n",s.s,t,t); 
total++; 
} 

I 
//Add the cat stament to the GOMS.MFM file 
tempcount = total; 
fprinif(sh_file."cat "); 

for (s= 1; s<countangie; s= s +1) 
{ 
for (t= 1; Kcount; t= t +1) 

{ 
fprintf (sh_file, "fr%d%d.out ",s,t); 

} 
) 

fprintf (sh_filc." > %s\n".goms_outfilename); 
fprintf(sh_file."cat"); 
for (s= 1; s<countang!e; s= s +1) 

F 
for (t= 1: Kcount; t= t +1) 

{ 
fprintf(sh_file,"parameter_MFM%d.stf ",t); 

} 
) 

fprintf (sh_file," > parameters.mfmVn"); 
// remove the intermediate files 
fprintf (sh_file,"rm *.out\n"); 
fprintf (sh_file,"rm *.par\n"); 
fprintf (sh_file,"rm *.daf\n*'); 
fprintf (sh_file,"rm *.stf\n"); 
fclosc (sh_filc); 
printf ("%d",total); 
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Group.c 

/* 

Program Name: Group.c 

Author Name: Ryan Johnson 
University of Lethbridge 
Ryan.johnson @ ulcth.ca 

This program will combine the output form the Multiple Forward Mode into a comma delimitated text 
file for import into a spreadsheet or database program (e.g. Excel). The program requires as input the 
parameters (parameters.stff) file which contains all the user input and structural data for the model run as well 
as the 

This program will Combine the output from the GOMS model with the input parameters */ 

#includc <stdio.h> 
int band, set; 
float slope.aspcct,sza,azm,fc,fg,fs,pixellevel,templam,tempr,tempb.temph,tempdh,tdr2,br.hb,dhb.Pc.Pb,Ps; 
FILE *fopcn(),*infile, *outfile, *infile2; 
char infilename[80]. outfilename[80). infile2name[80]; 
main() 
{ 
printf ("\n Input modelout file name: "); 
scanf ("%80s", infilename); 
infile = fopen (infilename, "r"); 
printf ("\n Input parameter file: "); 
scanf ("%80s", infilc2name); 
infile2 = fopen (infilc2name, "r"); 
printf ("\n Output Filename for cmb file: "): 
scanf ("%80s", outfilenamc); 
outfile = fopen (outfilename."w"); 
fprintf(outfile."sIope,aspect,sza.azm.fc,fg,fs,pixellevel.templam,tempr,tempb,temph.tcmpdh.tdr2.br,hb,dhb.Pc,P 
b.Ps\n"); 
while ( (fscanf (infile, " %d %d %f %f %(%{%f 9fcf %( %f 
&band.&sct,&slopc,&aspcct.&sza.&azm,&fc.&fg.«&fs.&pixellevel)) !=EOF) 
{ fscanf (infile2." %f %f %f %f <7cf %f %f %f %f %f %f %f\n". &templam. &tempr, &tempb. &temph. 
&tempdh.&tdr2.&br,&hb,«&dhb, &Pc, &Pb, &Ps); 
fprintf 

(out^lle,••%f.%f.%f,%f,%f,7cf,%f.%f,%f,%f.%f,%f,%f,%f,%f.%f,%f,%f,%f,%f\n^slo^ 
pixelIevel.templam,tempr,tempb,temph,tempdh,tdr2.br,hb,dhb,Pc,Pb,Ps); 
} 
fclose (infile); 
fclose (infile2); 
fclose (outfile); 
} 


