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ABSTRACT 

 
The temporal dynamics of Campylobacter jejuni and protistan community structure 

in southwestern Alberta rivers were studied over a 1-year period. Culture-based isolations of C. 

jejuni were predominantly from the winter while real-time quantitative PCR indicated fluctuating 

densities of C. jejuni with no seasonal trend and no correlation with physicochemical properties 

of water. Protistan communities clustered according to season rather than location. Clinical C. 

jejuni isolates from southwestern Alberta survived longer when co-cultured with the model 

protozoan Acanthamoeba polyphaga than in the presence of by-products or growth medium. The 

use of wild type and mutant C. jejuni 81-176 strains revealed a cytotoxic effect toward A. 

polyphaga, and that invasion requires a functional flagellar apparatus but not quorum sensing nor 

cytolethal distending toxin. Combined, findings illuminate seasonal patterns of C. jejuni and 

protists and support the hypothesis that C. jejuni exploit phagotrophic protists as a survival 

mechanism in water.   



v 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisors, Dr. Doug Inglis and Dr. Brent Selinger for 

providing me with this opportunity. I am very grateful for their guidance, encouragement, and 

expertise. 

 I would also like to thank my committee members Dr. Inglis, Dr. Selinger, Dr. Goater, 

and Dr. H. J. Weiden for sharing their knowledge in the fields of microbiology, molecular 

biology, ecology and biochemistry. 

 This work was conducted in Dr. Inglis’ laboratories and would not have been possible 

without the multidisciplinary team there. Thanks to: Doug Inglis, Randy Wilde and Philip 

Kubara for their role in water sampling; Jenny Gusse, Kathaleen House, Tara Shelton, Philip 

Kubara and Amy Wright for their assistance in sample processing; Kathaleen House and Mitch 

Stevenson for assisting with the identification of campylobacteria; and Jenny Gusse for qPCR 

assistance and for her advice on an array of techniques. I would also like to thank Estela Costa, 

Nathan Puhl and Dr. Lisa Kalischuk for stimulating science-orientated discussions, and Dr. Tony 

Russell and Ashley Moore for supplying Euglena gracilis for the ethidium monoazide validation. 

 Lastly, I must thank my friends for putting up with my long breaks in communication and 

my family and fiancé for their unwavering support.  



vi 
 

TABLE OF CONTENTS 

 
Title page..........................................................................................................................................i 
 
Signature page.................................................................................................................................ii 
 
Dedication page..............................................................................................................................iii 
 
Abstract...........................................................................................................................................iv 
 
Acknowledgements..........................................................................................................................v 
 
Table of contents.............................................................................................................................vi 
 
List of tables...................................................................................................................................ix 
 
List of figures..................................................................................................................................xi 
 
List of abbreviations.................................................................................................................... xiv 
 

 
 

Chapter 1. Literature Review.........................................................................................................1 
 
1. Campylobacteria and Campylobacter jejuni....................................................................1 

 
1.1 Evolutionary origin and current state of the C. jejuni species...........................2 

 
1.2 Etiology of campylobacteriosis.........................................................................2 
 
1.3 C. jejuni pathophysiology..................................................................................3 
 
1.4 Campylobacteriosis treatment and secondary complications............................4 
 
1.5 Campylobacteriosis outbreaks and control measures........................................5 
 
1.6 Epidemiology of campylobacteriosis................................................................7 
 
1.7 Environmental persistence.................................................................................8 
 
1.8 Adaptations of non-endospore forming gram negative bacteria 

for extraintestinal survival ................................................................................8 
 
2. Protists in aquatic ecosystems..........................................................................................9 

 
2.1 Identification of protists in aquatic ecosystems...............................................10 



vii 
 

2.2 Role in nutrient cycling....................................................................................10 
 
2.3 Controlling bacterial populations.....................................................................12 

 
2.4 Role of protozoans in the persistence and transmission of bacterial     

pathogens........................................................................................................13 
 
2.5 Mechanisms of bacterial survival....................................................................13 
 
2.6 The current status of the C. jejuni-protist interaction......................................15 

 

Chapter 2. Hypotheses..................................................................................................................17 
 

Chapter 3. Temporal distribution of C. jejuni in river waters of southwestern Alberta and 
 evaluation of specialized culture-based isolation methods........................................21 
 
 3.1 Introduction..................................................................................................................22 
 
 3.2 Materials and Methods.................................................................................................23 
 
 3.3 Results..........................................................................................................................32 
 
 3.4 Discussion....................................................................................................................41 
 

Chapter 4. Seasonal diversity of planktonic protists in southwestern Alberta Rivers over 
 a 1-year period as revealed by T-RFLP and 18S rDNA clone library analysis.........46 

 
4.1 Introduction..................................................................................................................47 

 
4.2 Materials and Methods.................................................................................................49 

 
4.3 Results..........................................................................................................................55 

 
4.4 Discussion....................................................................................................................65 

 

Chapter 5. Interactions between the model protozoan Acanthamoeba polyphaga and  
C. jejuni.......................................................................................................................71 

 
5.1 Introduction..................................................................................................................72 

 
5.2 Materials and Methods................................................................................................75 

 
5.3 Results.........................................................................................................................80 

 
5.4 Discussion...................................................................................................................87 

 



viii 
 

Chapter 6. Conclusions and future research.................................................................................91 
 

References.....................................................................................................................................98 
 
Appendix A.................................................................................................................................117 
 
Appendix B.................................................................................................................................122 
  



ix 
 

LIST OF TABLES 

 
Chapter 3. 

 
Table 3.1. Primers for the identification of C. jejuni isolates and quantitative detection of C. 

jejuni by qPCR from river water including an internal amplification control 
(IAC)........................................................................................................................31 

 
Table 3.2. Culture-based isolation of C. jejuni from river water sampling sites. Sites are: 

Oldman River downstream of Fort McLeod (O1); Oldman River downstream of 
Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little Bow 
River near the confluence with the Oldman River (L1); and Willow Creek north of 
Fort McLeod (W1). See Figure 3.1 for additional information on sample sites......34 

 
Table 3.3. Spearman correlation coefficients (CC) and p-values (p) calculated for C. jejuni 

abundance (estimated by qPCR) and the physicochemical parameters for N 
measurements throughout the study period for each of the five sampling sites. 
Statistically significant correlations (p ≤ 0.05) are marked with an asterisk............40 

 

Chapter 4. 

 

Table 4.1. A pairwise significance matrix of protist T-RFLP community profiles of seasonally 
partitioned data. Values indicated with an asterisk are significantly different (P ≤ 
0.05)..........................................................................................................................61 

 
Table 4.2. Summary of 18S rDNA clone libraries including ACE and Chao1 non-parametric 

richness estimates.....................................................................................................64 
 

Appendix A. 

Table A.1. 18S rDNA clones detected in the summer, fall, winter and spring clone libraries 
showing percent similarity, organism and taxonomic rank ...................................117 

 

Appendix B. 

Table B.1. Similarity matrix for the alignment algorithm showing scores assigned to matched 
and mismatched nucleotide bases including scores for degeneracies....................127 

 
Table B.2. Primers analyzed in this study including target, Ribosomal Database Project (RDP) 

Probe Match search target for probe analysis, and target sequence in relation to 
Escherichia coli (GenBank Accession J01695).....................................................128 

 



x 
 

Table B.3. Primer sequences referenced in Table B.2 with coverage values from the RDP 
Probe Match showing target and non-target hits when allowing zero and two 
mismatches for target sequences..........................................................................132 

 
Table B.4. Primer analysis results showing primer modifications with the percent increase in 

target (specific) hits relative to the old primer and percent increase in non-specific 
hits relative to specific hits…………………………...........................................134 

 
  



xi 
 

LIST OF FIGURES 

Chapter 1. 

 
Figure 1.1. Graphical depiction of the microbial food web in aquatic ecosystems..................11 

 

Chapter 2. 

 
Figure 2.1. Prevalence of individuals in southwestern Alberta that were culture positive for C. 

jejuni, C. coli, or both (co-infection) by week over a 1-year period from May 2008 
to May 2009 (Inglis et al., unpublished)................................................................18 

 

Chapter 3. 

 
Figure 3.1. River sample sites...................................................................................................25 
 
Figure 3.2. Temporal isolation of C. jejuni by isolation method..............................................35 
 
Figure 3.3. Estimation of C. jejuni cell densities (Log10 cells per 100 mL) in river water by 

qPCR. Sites are: Oldman River downstream of Fort McLeod (O1); Oldman River 
downstream of Lethbridge (O2); Oldman River under the Highway 845 bridge 
(O3); Little Bow River near the confluence with the Oldman River (L1); and 
Willow Creek north of Fort McLeod (W1). See Figure 3.1 for additional 
information on the sites..........................................................................................36 

 
Figure 3.4. Representative flow rate in m3/s (filled circles) and total precipitation in mm 

(unfilled squares) for site W1 (top) and O1 (bottom) over the study period. Sites 
are: Oldman River downstream of Fort McLeod (O1); Oldman River downstream 
of Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little 
Bow River near the confluence with the Oldman River (L1); and Willow Creek 
north of Fort McLeod (W1). See Figure 3.1 for additional information on the 
sites.........................................................................................................................37 

 
Figure 3.5. Representative flow rate in m3/s (filled circles) and precipitation in mm (unfilled 

squares) for sites O2 and O3 (top) and site L1 (bottom) over the study period. 
Sites are: Oldman River downstream of Fort McLeod (O1); Oldman River 
downstream of Lethbridge (O2); Oldman River under the Highway 845 bridge 
(O3); Little Bow River near the confluence with the Oldman River (L1); and 
Willow Creek north of Fort McLeod (W1). See Figure 3.1 for additional 
information on the sites..........................................................................................38 

 
Figure 3.6. Turbidity (NTU) at each of the water sampling sites over the study period. Sites 

are: Oldman River downstream of Fort McLeod (O1); Oldman River downstream 
of Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little 
Bow River near the confluence with the Oldman River (L1); and Willow Creek 



xii 
 

north of Fort McLeod (W1). See Figure 3.1 for additional information on the 
sites.........................................................................................................................39 

 

Chapter 4. 

 
Figure 4.1. QIAxcel capillary electrophoresis image of 18S rDNA PCR amplified samples of 

Acanthamoeba polyphaga (lanes 1-4), Tetrahymena pyriformis (lanes 5-8), 
Chlamydomonas moewusii (lanes 9-12), and Euglena gracilis (lanes 13-16). 
EMA-treated samples are presented in odd numbered lanes, and non-EMA-treated 
samples are presented in even numbered lanes. The first two lanes for each protist 
are cells that were not heat-treated, whereas the second two lanes per protist are 
cells that were heat treated. The markers on the left side of the image correspond 
to fragment size (bp)..............................................................................................57 

 
Figure 4.2. Number of terminal restriction fragments over a 1-year sampling period (May 

2008 to May 2009). Vertical bars associated with means represent the standard 
deviation across the five sample sites. Means denoted with a single asterisk differ 
(P ≤ 0.05) from means indicated by a double asterisk...........................................58 

 
Figure 4.3. Four-way Venn diagram of unique terminal restriction fragments detected in river 

water by season......................................................................................................59 
 
Figure 4.4. Non-metric multidimensional scaling plots of T-RFLP community profiles from 

river water (stress = 14) with ellipses A-D encompassing 90% of respective 
markers by season; markers that appear close together are more similar than 
distant markers.......................................................................................................60 

 
Figure 4.5. Distribution of 18S rDNA clones (%) at the first rank taxonomic level (Adl et al., 

2005) by season......................................................................................................61 
 

Chapter 5. 

 

Figure 5.1. Capillary electrophoresis of PCR products from C. jejuni 81-176 wild type (1), C. 

jejuni 81-176 ∆LuxS (2), and undiluted no template control (3)...........................82 
 
Figure 5.2. Heat map depicting the survival of C. jejuni isolates (days) in which three out of 

three replicates were culture positive following co-culture with A. polyphaga, A. 

polyphaga growth by-products, and PYG broth....................................................83 
 
Figure 5.3. Intracellular survival of C. jejuni 81-176 wild type, ∆CDT, ∆FlaAFlaB, and 

∆LuxS  (CFU) co-cultured with A. polyphaga. Vertical bars represent standard 
error and significant differences exist between the two time periods based on 
Tukey’s test (α = 0.05)...........................................................................................84 

 
Figure 5.4. Live and dead A. polyphaga counts determined by trypan blue staining following 

48 h of co-culture with C. jejuni 81-176 wild type and ∆CDT, ∆FlaAFlaB, and 



xiii 
 

∆LuxS mutants. Vertical bars represent standard error and significant differences 
exist between groups with no common letters based on Tukey’s test (α = 0.05)..85 

 
 
Figure 5.5.  Ratio of A. polyphaga cysts to trophozoites when co-cultured with C. jejuni 81-

176 WT (white squares) and the control (black circles)........................................86 
 
Appendix B. 

 
Figure B.1. E. coli 16S rRNA gene (GenBank Accession J01695) reference strain with 

approximate locations of variable regions V1-V9 (Van de Peer et al., 1996) 
annotated using Geneious 5.1 (Drummond et al., 2010).....................................130 

  



xiv 
 

LIST OF ABBREVIATIONS 

 

ACE  Abundance coverage estimator 

AGI  Acute gastrointestinal illness 

ASBE  Arcobacter selective isolation broth enrichment 

ATCC  American Type Culture Collection 

BE  Bolton enrichment 

BSA  Bovine serum albumin 

CC  Correlation coefficient 

CCAP  Culture Collection of Algae and Protozoa 

CDT  Cytolethal distending toxin 

CFU  Colony Forming Unit 

CGF  Comparative genomic fingerprinting 

CHR  Chinook Health Region 

CSB  Columbia agar supplemented with 5% sheep blood 

DPG  2,3-diphosphoglycerate 

DPO  Dual priming oligonucleotide 

dsDNA Double stranded deoxyribonucleic acid 

EMA  Ethidium monoazide 

ESRD  Alberta Environment and Sustainable Resource Development 

FAM  6-carboxyfluorescein 

GBS  Guillain-Barré Syndrome 

gDNA  Genomic deoxyribonucleic acid 

IAC  Internal amplification control 

IBD  Inflammatory Bowel Disease 

IBS  Inflammatory Bowel Syndrome 

JM  Johnson and Murano 

KM  Karmali agar 

KS  Karmali agar + supplement 

MF  Membrane filtration 

MLST  Multilocus sequence typing 

MOI  Multiplicity of infection 



xv 
 

NCBI  National Center for Biotechnology Information 

NMS  Non-metric multidimensional scaling 

NTU  Nominal turbidity unit 

OD  Optical density 

OTU  Operational taxonomic unit 

PAS  Page's amoeba saline 

PCR  Polymerase chain reaction 

PHAC  Public Health Agency of Canada 

PFGE  Pulsed field gel electrophoresis 

PYG  Peptone-yeast-glucose 

qPCR  Quantitative polymerase chain reaction 

ReA  Reactive arthritis 

RFLP  Restriction fragment length polymorphism 

RDP  Ribosomal database project 

RNA  Ribonucleic acid 

rRNA  Ribosomal ribonucleic acid 

SSR  Simple sequence repeats 

SVR  Short variable region 

T3SS  Type III secretion system 

T3SSE  Type III secretion system effector 

TCA  Tricarboxylic Acid Cycle 

T-RF  Terminal restriction fragment 

T-RFLP Terminal restriction fragment length polymorphism 

UV  Ultraviolet 

VAP  Variably absent or present 

VBNC  Viable but non-culturable 

WHO  World Health Organization 

 
 
 



1 
 

CHAPTER ONE 

Literature Review 

1. Campylobacteria and Campylobacter jejuni 

The Campylobacter genus was proposed by Sebald and Véron in 1963 (Millson et 

al., 1991). At the time, the genus comprised two species: Campylobacter fetus, and 

Campylobacter bubulus, which has since been reclassified as Campylobacter sputorum 

(Forbes et al., 2009). Members of the genus Campylobacter are gram negative, non-spore 

forming, and are mostly spirally curved rods measuring 0.2-0.8 by 0.5-5.0 µm in size 

(Vandamme et al., 2005). Campylobacter species are microaerophiles, requiring oxygen 

concentrations ranging from 3 % to 15 % for growth. Furthermore, members of this genus 

are chemoorganotrophic, obtaining energy from amino acids or tricarboxylic acid (TCA) 

cycle intermediates (Vandamme et al., 2005).  

Currently, the Campylobacter genus consists of 25 recognized species (i.e. 

campylobacteria) (Debruyne et al., 2009), many of which are not considered to be 

pathogenic in humans. Campylobacteria are fastidious to culture, but using advanced 

isolation techniques many have been recovered from human feces (Engberg et al., 2000; 

Kulkarni et al., 2002; Lastovica and le Roux, 2000, 2001; Lawson et al., 1999; Maher et 

al., 2003) as well as from the human oral cavity (Baker et al., 2006). Among recognized 

pathogenic species, C. jejuni and C. coli are most commonly associated with disease in 

humans (Public Health Agency of Canada; http://dsol-smed.phac-aspc.gc.ca/dsol-

smed/ndis/diseases/camp-eng.php). Campylobacteriosis (enteritis incited by 

campylobacteria) resulting from C. jejuni and C. coli infection is the leading cause of 

bacterial enteritis in the developed world (Wilson et al., 2008). In Canada, the number of 

confirmed cases of enteritis due to campylobacteria is greater than that of all other 
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bacterial enteric pathogens combined (PHAC; http://dsol-smed.phac-aspc.gc.ca/dsol-

smed/ndis/index-eng.php). 

 

1.1. Evolutionary origin and current state of the C. jejuni species 

C. jejuni is a member of the delta-epsilon group of the Phylum Proteobacteria 

(Heuvelink et al., 2009). Although the species taxonomy within the genus has not been 

fully resolved, genetically C. jejuni is most closely related to C. coli. Current estimates, 

based on a molecular clock of base substitution rates, predict that C. jejuni and C. coli 

diverged from a common ancestor during the Neolithic period and may have occurred 

following the domestication of pigs (Wilson et al., 2009). Pinpointing the precise time of 

speciation is especially difficult as bacteria do not fossilize easily and when they do, their 

morphological characteristics are insufficient for accurate taxonomic placement. At 

present, it is believed that C. jejuni and C. coli are converging based on patterns of genetic 

exchange (Sheppard et al., 2008). 

 

1.2. Etiology of campylobacteriosis 

Campylobacteriosis is an inflammation of the intestinal tract characterized by 

diarrhea, abdominal pain, fever, nausea, and vomiting (World Health Organization; 

http://www.who.int/water_sanitation_health/diseases/campylobacteriosis/en/). Infection 

by C. jejuni has been demonstrated to occur following ingestion of as few as 500 to 800 

cells (Baker et al., 2006; Tustin et al., 2011). As these observations were based on single 

cases, they may not be representative of the general population and campylobacteriosis 

may require a higher dose of C. jejuni. A recent clinical trial using human subjects 

suggests that the number of C. jejuni cells required to cause disease is higher than the 
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minimum amount of cells required to establish colonization as only 50 % of volunteers 

receiving 105 CFU of C. jejuni 81-176 developed the disease state (Baker et al., 2007). 

The human intestinal microbiota is incredibly complex and varies substantially from one 

person to another (Robinson et al., 2010). A healthy intestinal microbiota may provide 

colonization resistance in which host colonization with foreign organisms is less likely 

due to competition from the native gut flora. 

 

1.3. C. jejuni pathophysiology 

Once ingested, C. jejuni cells must pass through the stomach and into the intestine 

where the bacterium incites disease. The incubation time prior to the onset of symptoms is 

commonly between 24 and 48 h, but has also been documented to occur up to 7 days 

following ingestion (Blaser et al., 1987; Wood et al., 1992). The predominant symptoms 

early in the course of infection are malaise, myalgia, and cramping abdominal pain which 

can be generalized or localized, and sometimes difficult to discern from acute appendicitis 

(Blakelock and Beasley, 2003). Other early symptoms may include fever, headaches and 

vomiting (Acheson and Allos, 2001). Shortly after the onset of abdominal cramps, 

diarrhea typically follows. The severity of diarrhea varies substantially between 

individuals, with some experiencing enteritis with mild watery diarrhea, and others 

experiencing severe enteritis with bloody diarrhea characteristic of colitis (Blaser, 1997). 

In immunocompetent individuals, symptoms usually subside in approximately 7 days 

(Zilbauer et al., 2008), but hospitalization can be required in severe cases. 

Once established in the intestine, C. jejuni can survive within mucus of the 

intestine or invade the host intestinal epithelium or both (Wassenaar and Blaser, 1999). It 

is thought that the spiral shape and motility of C. jejuni aids in its ability to penetrate 
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mucus and is thus essential to epithelial invasion and intestinal colonization. Once in 

contact with the host epithelium, adhesion is the first step in pathogenesis followed by 

invasion of epithelial cells. A variety of extracellular/transcellular proteins are thought to 

play a role in adhesion, including the autotransporter CapA (Ashgar et al., 2007), the 

fibronectin binding outer-membrane protein CadF (Konkel et al., 1990), the surface 

exposed lipoprotein JlpA (Jin et al., 2001), and the periplasmic binding protein PEB1 (Pei 

and Blaser, 1993). Invasion of intestinal epithelial cells occurs with the tip of C. jejuni 

first, followed by its flagellar end (Krause-Gruszczynska et al., 2007). The invasion 

process is microtubule-dependent and not actin filament dependent (Dasti et al., 2010). C. 

jejuni does not escape the vacuole it uses to enter host cells (Kopecko et al., 2001). 

Virulence of C. jejuni is largely dependent on the flagellar apparatus, which consists of a 

basal body, hook, and filament. The flagellar apparatus of C. jejuni functions as a type III 

secretion system, exporting effector proteins into the host cell, including the cytolethal 

distending toxin (CDT) which functions as a DNAse. When the toxin gains access to the 

nucleus, CDT arrests the cell cycle by causing breaks in gDNA and subsequently induces 

cell death (Zilbauer et al., 2008). 

 

1.4. Campylobacteriosis treatment and secondary complications 

Campylobacteriosis is self-limiting in most cases (Wassenaar and Blaser, 1999). 

Relapse occurs in as many as 20% of infected individuals and is normally milder than 

initial infection (Crushell et al., 2004). Macrolides are the antibiotics of choice for severe 

or prolonged enteritis as well as extraintestinal manifestations of infection such as 

septicemia (Zilbauer et al., 2008).   Complicated sequalae including premature birth and 

abortions in pregnant women, Gullian-Barré Syndrome (GBS), reactive arthritis (ReA) 
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(Hannu et al., 2004), inflammatory bowel syndrome (IBS) (Kalischuk and Buret, 2010) 

and inflammatory bowel disease (IBD) (Gradel et al., 2009) have been documented in 

patients following infection with Campylobacter spp. (Crushell et al., 2004). 

 

1.5. Campylobacteriosis outbreaks and control measures 

The majority of campylobacteriosis cases reported are sporadic; however, 

outbreaks in both natural and engineered environments have been documented. However, 

recent evidence indicates that mini-outbreaks are common in southwestern Alberta (Inglis 

et al. unpublished). Outbreaks have been associated with consumption of raw cow’s milk 

(Heuvelink et al., 2009), raw peas (Gardner et al., 2011), fresh chicken (Pearson et al., 

2000), water (Clark et al., 2003) and contact with mud (Stuart et al., 2010). 

Water is a common point of contamination preceding C. jejuni outbreaks. In 1986, 

an epidemic of campylobacteriosis occurred in Greenville, Florida. This outbreak was 

attributed to a failure of chlorination, an unlicensed water treatment operator, and exposed 

treatment towers. The exposed treatment towers were frequented by birds, 37 % of those 

tested were later discovered to harbour C. jejuni (Sacks et al., 1986). In 1985, an outbreak 

in southern Ontario resulted from the contamination of well water by spring run-off 

following heavy rains (Millson et al., 1991). A second outbreak occurred in a nearby 

town, Walkerton, ON in 2000 when surface water containing livestock waste from farms 

contaminated the town water supply (Clark et al., 2003). Of note, the Walkerton outbreak 

was linked to C. jejuni from cattle.While the role of waterborne infection in 

campylobacteriosis outbreaks is well understood, less is known concerning waterborne 

sporadic disease. 
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Consumption of undercooked chicken is believed to be a prominent source of 

infectious C.jejuni in campylobacteriosis outbreaks (Sheppard et al., 2009). In New 

Zealand, there have even been calls for a ban on the sale of fresh chicken (Baker et al., 

2006). Of note, freezing chicken reduces viable C. jejuni populations by greater than two 

log units. However, a freezing requirement would represent a substantial cost to the 

poultry industry by requiring significant investment in equipment suitable for freezing and 

storing large quantities of fresh product. This cost would undoubtedly be passed onto the 

consumer in the form of increased prices. A unique scenario arose in Belgium in 1999 to 

ascertain the importance of poultry products in campylobacteriosis rates. Due to dioxin-

contaminated feed components, chicken and egg products were withdrawn from the 

Belgium market. Retrospective studies estimate that the poultry ban resulted in the decline 

of C. jejuni infections by 40% (Vellinga and Van Loock, 2002). Similarly, an outbreak of 

avian influenza in the Netherlands in 2003 resulted in extensive culling of poultry in the 

region. This coincided with a decrease in campylobacteriosis cases, particularly in regions 

most impacted by the culling (Friesema et al., 2012). These studies suggest a link between 

poultry and campylobacteriosis; however, it is uncertain whether the decline in 

campylobacteriosis cases was a result of the elimination of a source of direct infection or 

a reservoir. Furthermore, the market withdrawal of poultry did not eliminate infections 

indicating the existence of other significant reservoirs of infectious C. jejuni.  

The most comprehensive campylobacteriosis control measures to date were 

implemented in Iceland following an outbreak in 1999 (Tustin et al., 2011). Control 

measures were very broad and included technical, organizational, and policy changes. 

Measures at farms producing poultry included producer education, enhanced biosecurity 

and on-farm surveillance for C. jejuni. Changes at the poultry processing stage included a 
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leak-proof packaging policy, mandatory freezing of products originating from 

Campylobacter positive poultry flocks, and changes to the poultry processing. 

Furthermore, the Icelandic government implemented a consumer education program and 

an inter-organizational response committee (Tustin et al., 2011). Overall, the combined 

measures were successful in reducing rates of campylobacteriosis. Interestingly, despite 

all of these measures, the rate of campylobacteriosis did not decline below pre-outbreak 

levels. This fact led researchers to speculate that there is likely an underlying 

environmental factor involved in the epidemiology of C. jejuni (Tustin et al., 2011). 

 

1.6. Epidemiology of campylobacteriosis 

 C. jejuni is a zoonotic pathogen found in birds and mammals, including livestock 

such as poultry, cattle, sheep, poultry, and pigs (Kärenlampi et al., 2007; McCarthy et al., 

2007; Young et al., 2007). Although C. jejuni has been associated with sporadic cases of 

diarrhea in chickens, it is generally considered a commensal in both wild and farm 

animals. C. jejuni is believed to infect humans through a variety of routes including the 

consumption of raw or under cooked meat, untreated drinking water, and raw or 

improperly pasteurized milk. The mode of transmission is the fecal-oral route. Thus, 

individuals in direct contact with afflicted animals, or animals carrying the pathogen, such 

as abattoir workers, are at an increased risk of infection (Blaser et al., 1987). 

The incidence of campylobacteriosis in southwestern Alberta is higher than both 

the provincial (AH; http://www.health.alberta.ca/documents/Notifiable-Diseases-Report-

2004.pdf) and national (PHAC; http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/index-

eng.php) averages, however, reasons for the high rates of campylobacteriosis in this 

region are unknown. 
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1.7. Environmental persistence 

Once voided from suitable hosts, C. jejuni may be subjected to harsh 

environmental conditions including UV irradiation, oxidation, desiccation, 

freeze/thawing, and hypotonic/hypertonic stress. Furthermore, cells face competition for 

resources from other bacteria and predation. C. jejuni was once thought to persist poorly 

in extraintestinal habitats; however, using advanced culture techniques, C. jejuni is 

commonly isolated from surface waters and it has been demonstrated to remain culturable 

for up to four months in microcosm water held at 4 °C without aeration (Rollins and 

Colwell, 1986). C. jejuni will enter a viable but non-culturable (VBNC) state in response 

to unfavourable conditions (Baffone et al., 2006). This state is characterized by reduced 

metabolic activity, a change in cell morphology (from spiral shaped to coccal), and the 

inability to be cultured directly. Suspensions of VBNC C. jejuni cells have a variety of 

morphologies including intact coccal, degenerated coccal and spiral forms; such 

suspensions are able to colonize mice (Jones et al., 1991) and it is thought the intact 

coccal cells are actually VBNC. This is consistent with the recent microbial scout 

hypothesis, which proposes that microorganisms exit dormancy in a stochastic manner as 

a long term survival strategy (Buerger et al., 2012; Epstein, 2009). 

 

1.8. Adaptations of non-endospore forming gram negative bacteria promoting 

survival outside of traditional host organisms  

 Non-endospore forming gram negative bacteria were traditionally considered to be 

poor persisters in comparison to gram positive bacteria and Archaea. This is due to their 

less robust cell wall in comparison to gram positive bacteria and Archaea, which have 

adaptations, including heat stable proteins and/or a thick layer of peptidoglycan, to 
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withstand harsh environmental conditions such as desiccation, extreme temperatures, and 

barometric pressure. Notably, the putatively poor environmental persistence of many 

gram negative animal pathogens including the Proteobacteria, has led to the conclusion 

that these bacteria must be ingested by a susceptible host shortly after expulsion from an 

infected animal. Recent research has demonstrated that some Proteobacteria can persist 

for prolonged periods extraintestinally via a number of remarkable adaptations. One 

example is that of Salmonella enterica (the causative agent of salmonellosis), which is 

able to not only attach and survive on, but can also replicate within living plants by 

invading open stomata (Kroupitski et al., 2009; Shirron and Yaron, 2011). Another 

example is that of Legionella pneumophila (the causative agent of legionnaires disease). 

This bacterium is able to invade the free-living freshwater protist Acanthamoeba 

castellani. This amoeba is the only known host apart from mammals within which L. 

pneumophila is able to replicate (Cirillo et al. 1994). Remarkably, the ability to invade 

and replicate within A. castellani enhances the ability of L. pneumophila to invade human 

epithelial cells and macrophages (Cirillo et al., 1994). Furthermore, L. pneumophila has 

been observed to survive encystment within Acanthamoeba polyphaga making it resistant 

to high levels of chlorine (Kilvington and Price, 1990). Whether plants or protists harbour 

other bacterial pathogens and serve as vectors in transmitting bacterial pathogens from 

animal to animal has not been extensively examined. 

 

2. Protists in aquatic ecosystems 

Protists are defined as eukaryotes with a unicellular level of organization without 

differentiation into tissues (Adl et al., 2005). Protists are the most ancient eukaryotes, 

believed to have emerged between 1.8 and 2.2 billion years ago (Knoll et al., 2006). They 
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are considered to be the most biologically diverse group of organisms on the planet 

(Farmer and Habura, 2010). Protists range in size from 0.2 µm to 2.0 mm and can be 

found in forest soils (Adl and Gupta, 2006), freshwater bodies of water including rivers 

(Kiss et al., 2009), streams (Ribblett et al., 2005), lakes (Lefranc et al., 2005), and oceans 

(Not et al., 2009). Protists are important in nutrient cycling (including the mobilization of 

trace nutrients) and controlling bacterial populations (Figure 1.1). 

 

2.1. Identification of protists in aquatic ecosystems 

 Although the importance of protists in aquatic ecosystems is known, little research 

has focused on their temporal distribution in freshwater rivers. Traditionally, surveying 

ecosystems for protists was enormously time consuming and required a great deal of 

expertise as protists were identified one at a time by light microscopy. Recently, 18S 

rDNA sequencing of total DNA extracted from a sample has been employed to great 

success in protistan surveys of aquatic ecosystems. Sequencing combined with a simple 

BLAST (Basic Local Alignment Search Tool; http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

search takes a fraction of the time to identify constituients of a sample compared to 

traditional identification methods. 

  

2.2. Role in nutrient cycling 

 Perhaps one of the most often cited roles of protists includes nutrient cycling. In 

aquatic systems, protists are important members of the microbial loop. Protists have a 

range of trophic states including autotrophy, phagotrophy, and mixotrophy. Autotrophic 

protists, with the exception of cyanobacteria, are the smallest phototrophic organisms on 

the planet and perhaps the most numerous. Autotrophic protists, bacteria, and other  



11 
 

 

 

 

 

 

 

Figure 1.1. Graphical depiction of the microbial food web in aquatic ecosystems 
(Ducklow, 1994; Sherr and Sherr, 2002). 
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phagotrophic protists are grazed by phagotrophic protists, which obtain energy via the 

digestion of phagocytosed microorganisms. Mixotrophic protists employ a combination of 

heterotrophy and autotrophy and can be either dominant phagotrophs capable of 

autotrophy or vice versa. Phagotrophic and mixotrophic protists are collectively defined 

as protozoans. In freshwater systems, protozoans are thought to regulate bacterial 

population densities via predation. Protozoans also feed on other protists as well as 

metazoan eggs and small crustaceans. Furthermore, they are a significant food source for 

metazooplankton and are a major source of regenerated nutrients through the excretion of 

nitrogen, phosphorus, and trace metals including iron (Sherr and Sherr, 2002). Despite 

their importance in freshwater ecosystems, protists have not been extensively studied in 

this environment. 

 

2.3. Controlling bacterial populations 

Phagotrophy in protists is an ancient feeding mechanism and is deeply rooted in the 

eukaryotic tree of life and thus widespread among protistan lineages. Phagotrophy in 

protists is a significant source of bacterial mortality and many bacteriophagous protists 

display selective feeding habits. This may be due to the fact that the digestion of gram 

positive cells is more time consuming than gram negative cells (González et al., 1990). 

Interestingly, bacteria have evolved complex measures to avoid predation by 

phagotrophic protists. Phenotypic characteristics that may have evolved in bacteria in 

response to grazing by protists include cell-cell communication (quorum sensing), cell 

miniaturization, biofilm formation, cell wall structure, filamentation, motility patterns, 

and toxin production (Pernthaler, 2005). Many of these characteristics also function as 

virulence factors in other organisms. The coincidental evolution hypothesis postulates that 
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virulence factors arose from adaptation to other niches. In the case of human bacterial 

pathogens, the theory suggests that virulence evolved in response to the selective pressure 

of protistan grazing (Adiba et al., 2010). 

 

2.4. Role of protozoans in the persistence and transmission of bacterial pathogens 

Interest in the role of protists in the environmental persistence and transmission of 

pathogenic bacteria stemmed from the work of King et al. in 1988. In this study, several 

coliform bacteria including Citrobacter freundii, Enterobacter agglomerans, 

Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumonia, and 

bacterial pathogens Salmonella enterica Typhimurium, Yersinia enterocolitica, Shigella 

sonnei, Legionella gormanii and C. jejuni were incubated in the presence of the amoeboid 

protozoan Acanthamoeba castellani and ciliate protozoan Tetrahymena pyriformis and 

then subjected to different concentrations of chlorine (King et al., 1988). All bacteria 

tested exhibited increased resistance to chlorine when co-cultured with one or both of the 

protozoans examined and all bacterial pathogens tested were 50-fold more resistant to 

chlorine when co-cultured with Tetrahymena pyriformis (King et al., 1988). The authors 

speculated that the enhanced survival observed was the result of engulfment of bacteria by 

the protozoan cells, that this mechanism is an evolutionary precursor for pathogenicity, 

and is a survival mechanism for bacteria in inhospitable aquatic environments (King et 

al., 1988). 

 

2.5. Mechanisms of bacterial survival 

Amoebae and bacteria have evolved together over millions of years and have 

developed some interesting symbioses. The social amoeba Dictyostelium discoideum (i.e. 
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a ‘slime mould’) has been shown to employ a unique survival strategy under depleting 

nutrient conditions that has been referred to as primitive farming behavior. As food 

sources are depleted, D. discoideum stops feeding on bacteria and incorporates bacterial 

cells into its fruiting body. Following dispersal, the bacteria are released, effectively 

seeding a new crop of food for the amoeba (Brock et al., 2011). Bacterial entry into 

protozoans occurs by phagocytosis, in which a small vacuole called a phagosome is 

formed following attachment of bacteria to the protozoan cell wall. Bacterial survival in 

protozoans relies on either the bacteria escaping from the phagosome, by preventing 

phagosomes from binding to lysosomes, or surviving within phagolysosomes (Scola and 

Raoult, 2001). Exploitation of nearby cells via invasion of the cytoplasm is not restricted 

to bacteria-protozoa interactions as it has also been observed in bacteria invading other 

bacteria, such as the case with Bdellovibrio bacteriovorus (Rendulic et al., 2004). In 

addition to protists, there are numerous examples of bacteria avoiding digestion in 

mammalian macrophages (Molmeret et al., 2004; Oyston, 2008; Rosenberger and Finlay, 

2003). Mycobacterium tuberculosis, an obligate intracellular pathogen resides within 

phagosomes and diminishes their ability to fuse with lysosomes but not early phagosomes 

(Sturgill-Koszycki et al.; Sturgill-Koszycki et al., 1994). By retaining the ability to fuse 

with early phagosomes, M. tuberculosis has a readily available source of transferrin, a 

source of iron packaged for delivery throughout the body (Johnson and Wessling-Resnick, 

2012). 

The facultative intracellular pathogen L. pneumophila is perhaps the best studied 

bacterium in terms of its ability to exploit protozoans. Legionella spp. have been isolated 

from environmental protozoans on many occasions (Newsome et al., 1998). Entry of L. 

pneumophila into the protozoans A. castellani, Hartmannella veriformis and Naegleria 
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lovaniensis is a receptor mediated process in which initial attachment is mediated by a 

galactose/N-acetylgalactosamine (Gal/GalNAC) lectin (Declerck et al., 2007; 

Venkataraman et al., 1997). Following adhesion, L. pneumophila enters the protozoan by 

cytoskeleton rearrangement (Abu Kwaik et al., 1998). A portion of uptake (~10 %) is 

mediated by coiling phagocytosis, however, little is known about this process (Abu Kwaik 

et al., 1998). Similar to M. tuberculosis, the bacterial phagosome does not fuse with 

lysosomes (Bozue and Johnson, 1996). The phagosome is initially surrounded by host cell 

vesicles and mitochondria (Abu Kwaik, 1996). Over the next 4 h following entry, the 

phagosome containing L. pneumophila is surrounded by a multilayer membrane derived 

from the rough endoplasmic reticulum (Abu Kwaik, 1996). At this point, L. pneumophila 

undergoes intracellular replication; however, it is uncertain if the delay in replication is 

the result of a lag phase associated with environmental adaptation or reflects the time 

necessary to recruit required host cell organelles (Abu Kwaik et al., 1998). After 

replicating, L. pneumophila produces a pore in the replication vacuole which induces 

oncotic cell death of the amoeba resulting in  the liberation of L. pneumophila (Gao and 

Abu Kwaik, 2000). 

 

2.6. The current status of C. jejuni-protist interaction 

Since the original paper by King et al. (1987) relatively little work has been 

conducted on the role of freshwater protists in the persistence of C. jejuni. In the early 

1990s, much work focused on L. pneumophila. Not until 2005 were additional studies 

conducted examining a potential association between C. jejuni and freshwater protists 

(Axelsson-Olsson et al., 2005; Snelling et al., 2006; Snelling et al., 2005). The early work 

by Snelling et al. (2005) was largely circumstantial as they isolated C. jejuni and protozoa 



16 
 

from broiler drinking water. Furthermore, only broilers exposed to drinking water in 

which C. jejuni was detected were colonized by C. jejuni, which suggests water-borne 

transmission. They also demonstrated that C. jejuni survived significantly longer when 

co-cultured with A. castellani than when in a planktonic state. Axelsson-Olsen et al. 

(2005) yielded similar results in their persistence assays with A. polyphaga. Their work 

also suggested the presence of A. polyphaga resulted in the resuscitation of VBNC C. 

jejuni (Axelsson-Olsson et al., 2007). Another research group later provided data 

suggesting that C. jejuni cells internalized by A. castellani and T. pyriformis under 

laboratory conditions (i.e. ideal growth conditions for each organism) were able to 

colonize broilers (Snelling et al., 2008). It is important to note that these observations 

were made under idealized conditions and may not be representative of what is likely to 

be encountered in the environment as a high ratio of C. jejuni to protist cells was used, as 

well as a large inoculum for the broilers. 

Since the co-culture work with the amoebae A. polyphaga and A. castellani, and 

the ciliate T. pyriformis, an array of protists capable of phagotrophy including the 

stramenopile Dinobryon sertularia, the euglenozoan Euglena gracilis, and the 

heterolobosean Naegleria americana have been shown to prolong the survival of C. jejuni 

in co-culture (Axelsson-Olsson et al., 2010). The above studies did not address whether 

the prolonged survival observed was the result of the protists creating a low oxygen 

environment more suitable for the survival/growth of C. jejuni through respiration or 

whether C. jejuni cells were internalized within these protists. To date, no investigations 

into the mechanisms by which C. jejuni persist in co-culture with protists have been 

published. 
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CHAPTER TWO 

Hypotheses 

Campylobacteriosis is the leading cause of bacterial enteritis in Canada and other 

developed nations and gaining a better understanding of the epidemiology of C. jejuni is 

of the utmost importance for the development of practices to reduce infection rates 

(Nachamkin et al., 1998; Spiller et al., 2000). Southwestern Alberta, the region formerly 

known as the Chinook Health Region (CHR) has high rates of campylobacteriosis within 

its human inhabitants when compared to the Canadian average, and the number of 

infections is increasing three times faster than population growth (Inglis et al., 2005). 

Furthermore, recent studies conducted by our group have shown that large numbers of 

individuals infected with C. jejuni are not diagnosed. Cattle, chicken, sheep, and wild 

birds have all been shown to harbor significant amounts of C. jejuni, which has also been 

isolated from environmental sources such as agricultural runoff, rivers, and streams 

(Hudson, 1999; Inglis et al., 2005; Jones, 2001; Newell and Fearnley, 2003; Stanley and 

Jones, 2003). Undercooked meat, including chicken, beef, and pork, untreated water, 

unpasteurized milk, and fecal-oral transmission are known pathways by which humans 

become infected with Campylobacter (Brown et al., 2004). Water-borne outbreaks of 

campylobacteriosis are relatively common with the most infamous Canadian outbreak 

occurring in Walkerton, Ontario in 2000 (Clark et al., 2005). Most water-borne outbreaks 

are attributed to inadequate water treatment. In the former CHR in 2008-2009, our 

research group showed high rates of campylobacteriosis throughout the spring, summer, 

and fall (Figure 2.1). This observation coupled with the substantially higher rates of 

campylobacteriosis in southern versus central and northern Alberta suggests that the 

environment of southwestern Alberta influences the epidemiology of this disease. 
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Figure 2.1. Prevalence of individuals in southwestern Alberta that were culture positive 

for C. jejuni, C. coli, or both (co-infection) by week over a 1-year period from May 2008 
to May 2009 (Inglis et al., unpublished). 
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C. jejuni is commonly isolated from river water, including river water within the 

Oldman River watershed (Walters et al., 2007). This bacterium is a highly evolved enteric 

pathogen, and it is putatively incapable of replication extraintestinally (Vliet and Ketley, 

2001). Furthermore, C. jejuni is thought by many not to persist in the environment. 

However, this is inconsistent with the high rates of campylobacteriosis observed in the 

southwestern Alberta and with the frequent isolation of C. jejuni from river water. In 

addition to our poor understanding of the impact of water-borne C. jejuni on 

epidemiology of outbreaks, the mechanisms by which this bacterium persists in water are 

poorly understood. Campylobacteria are capable of entering a VBNC state under 

unfavorable conditions (Rollins and Colwell, 1986). The VBNC state has been well 

documented for many bacterial species and is generally accepted as a persistence stage as 

opposed to the onset of cellular death (Oliver, 2005). VBNC C. jejuni has been reported to 

resuscitate following passage through a vertebrate host (Baffone et al., 2006), and 

Axelsson-Olsson et al. (2008) demonstrated that VBNC C. jejuni may regain culturability 

following co-culture with the fresh water amoeba A. polyphaga, however, they could not 

definitively rule out the possibility of residual cultivable cells. 

To date, there have been no investigations in the southwestern Alberta in relation 

to the persistence of bacterial pathogens in water resulting from the exploitation of 

protists. Due to the higher resistance to chlorine and UV irradiation exhibited by some 

bacteriophagous protists, such an interaction could have significant implications for the 

health of residents of southwestern Alberta. In addition, some species of protozoa 

themselves are pathogenic (i.e. keratitis and encephalitis incited by Acanthamoeba spp.), 

and many protozoa are able to withstand levels of chlorine and UV irradiation higher 
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than that used in water treatment plants to produce potable water supplies (King et al., 

1988). Given the above, it may be possible for pathogenic bacteria, such as C. jejuni, to 

enter and persist in water distribution systems within free-living freshwater protozoa. To 

our knowledge, protistan community structure in southwestern Alberta has never been 

investigated in depth. Even on a global level, very few studies have examined the 

community structure of protists in river water and none have been conducted in Canada. 

Furthermore, few studies have been conducted to elucidate the mechanisms by which C. 

jejuni persists in freshwater environments. It is also unknown whether these same 

mechanisms allow the bacterium to bypass chemical and UV deactivation within free-

living freshwater protozoa in water treatment plants and subsequently infect humans. 

Given the high rates of campylobacteriosis, southwestern Alberta is an ideal 

agroecosystem to conduct such studies. As part of this thesis, the following hypotheses 

were formulated: 

1. C. jejuni is present in southwestern Alberta rivers and exhibits a seasonal trend of 

abundance and persistence similar to other waterborne pathogens. 

2. A diverse community of viable protists, including phagotrophic protists are present in 

southwestern Alberta rivers and the composition of the protistan community varies 

seasonally. 

3. The ability of C. jejuni to exploit phagotrophic protists is dependent on the bacterium 

possessing a functional flagellar export apparatus, the capability to communicate in a 

density dependent manner (quorum sensing), and the ability to produce the cytolethal 

distending toxin (CDT). 
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CHAPTER 3 

Temporal distribution of C. jejuni in river waters of southwestern Alberta and 

evaluation of specialized culture-based isolation methods 

ABSTRACT 

Southwestern Alberta experiences high rates of campylobacteriosis yet the source 

of infectious C. jejuni cells responsible is as yet unknown. Water is thought to play a role 

in outbreaks as well as sporadic cases yet isolation of C. jejuni from river water for 

comparison is challenging. This may be due at least in part to the cells being present in a 

VBNC or stressed/injured state and unable to grow on traditional isolation media. In this 

study, seven enrichment techniques were evaluated for their ability to isolate C. jejuni 

from river waters in southwestern Alberta. Samples were collected on a weekly basis over 

a 1-year period from five sites including Willow Creek (one site), the Oldman River 

(three sites) and the Little Bow river (one site). The majority of isolates (93%) were from 

river water samples collected between December 17, 2008 and March 11, 2009 and were 

collected near waste water outflows in Fort McLeod and Lethbridge. The majority of C. 

jejuni isolates (72%) were recovered using two methods (ASBE and KM) with 21 and 20 

isolates recovered, respectively. Real-time quantitative PCR applied to DNA extracts 

from river water samples indicates fluctuating densities of C. jejuni cells with no seasonal 

trends. Furthermore, there was no correlation between the density of C. jejuni cells and 

physicochemical properties of water (e.g. precipitation, river flow rate, dissolved oxygen, 

temperature, turbidity and chlorophyll-a).The presence of high copies of C. jejuni detected 

by qPCR when culture-based approaches were negative suggests an abundance of VBNC 

cells which may play a significant role in the epidemiology of campylobacteriosis.  
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3.1 INTRODUCTION 

Campylobacter jejuni is the predominant etiological agent of campylobacteriosis, 

which is the leading cause of bacterial enteritis among developed nations. In a recent 

study, the annual cost of acute gastrointestinal illness (AGI), including hospital time and 

missed paid employment was estimated to be $3.7 billion in Canada (Public Health 

Agency of Canada; http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/08vol34/dr-rm3405b-

eng.php#ref). Campylobacteriosis is characterized by diarrhea, vomiting malaise and can 

lead to serious secondary complications such as Gullian-Barré Syndrome (GBS) (Acheson 

and Allos, 2001), reactive arthritis (ReA) (Hannu et al., 2004), irritable bowel syndrome 

(IBS) (Kalischuk and Buret, 2010) and inflammatory bowel disease (IBD) (Gradel et al., 

2009). It is believed that C. jejuni infection is considerably underdiagnosed, with 

estimates as high as 49 actual cases for every confirmed case (Thomas et al., 2006). 

C. jejuni infection trends in temperate regions resemble that of classical 

waterborne pathogens, with a peak in the early spring, a trough in the summer and a 

smaller peak in fall (Jones, 2001). Recent surveillance studies conducted in southwestern 

Alberta support this trend within inhabitants of this region and also suggest infection rates 

significantly higher than previously thought (Inglis et al., 2005; Inglis et al., unpublished 

data). The source of infection is difficult to pinpoint because many C. jejuni infections are 

sporadic; also greater sampling in clinical settings compared to environmental isolation 

obfuscates source attribution. Water systems have been associated with 

campylobacteroisis outbreaks (Clark et al., 2003; Richardson et al., 2007) and are also 

thought to play a role in sporadic infection. The presence of C. jejuni in river water is 

thought to be exclusively due to fecal contamination as C. jejuni is not believed to be able 

to replicate apart from warm-blooded hosts and laboratory culture media (Abulreesh et 
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al., 2006; Jones, 2001). Currently, little is known with regards to the seasonal occurrence 

of C. jejuni river water in southwestern Alberta, however, the vast collection of clinical 

isolates combined with high rates of infection make it an area of interest for 

environmental studies preceding molecular epidemiological investigations 

Recovery of C. jejuni from water is challenging as the bacterium often occurs in 

low densities and may be in a VBNC state (Rollins and Colwell, 1986), thought by many 

to be a physiological response to adverse conditions. Cells may also be injured as a result 

of exposure to a variety of environmental stressors including low temperature, drying, 

osmotic shock, and predation (Wu, 2008). VBNC cells, by definition, cannot be cultured 

using laboratory techniques. Injured cells, however, can be recovered through the use of 

specialized enrichment techniques. 

 The objectives of this study were to: (1) evaluate various culture-based techniques 

for isolation of C. jejuni from water samples; (2) expand the collection of environmental 

C. jejuni isolates from southwestern Alberta for future epidemiological studies; (3) 

determine the prevalence of C. jejuni in southwestern Alberta rivers over a 1-year period 

using quantitative PCR; and (4) examine physicochemical properties of river water in 

relation to the prevalence of C. jejuni. 

 

3.2 MATERIALS AND METHODS 

Sample collection and processing 

 Southwestern Alberta is a semi-arid ecosystem dominated by a short-grass 

grassland ecosystem. The region contains the headwaters of the Oldman River and its 

tributaries which constitute the primary watershed of the region. A total of five river sites 

in the Oldman watershed were sampled on a weekly basis over a 1-year period (April 
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2008 to May 2009). Three of the five sites were along the Oldman River from west to east 

(49°44'35.15"N 113°22'27.60"W; 49°43'5.10"N 112°51'56.97"W; 49°51'24.41"N 

112°37'27.10"W), and are subjected to an increasing gradation of inputs from west to east. 

The remaining two river sites were tributaries of the Oldman River: Willow Creek 

(49°45'15.32"N 113°24'23.72"W) and the Little Bow River (49°54'5.22"N 

112°30'24.19"W) (Figure 3.1). Latitude and longitude coordinates of sampling sites were 

determined using Google Earth (version 6.1.0.5001, Google Inc., 

[http://earth.google.com/]).  

 Samples were collected at 1-week intervals commencing May 7, 2008 through to 

May 13, 2009. At each site, samples of approximately 800-900 mL were obtained using 1 

L Nalgene bottles attached to the end of a sampling pole; water was collected at a depth of 

≈ 20 to 30 cm in the flowing portion of the river. Samples were stored on ice and 

processed within 6 h of collection.  

 

Flow rate, precipitation, temperature, pH, turbidity and chlorophyll-a measurement 

 Temperature and dissolved oxygen were measured at each sample site at the time 

of sample collection using a handheld Accument AP74 (Fisher Scientific, Nepean, 

Ontario, Canada). Turbidity and pH were measured in the lab using a Lamotte handheld 

Turbidity Meter 2020e (Cole Parmer, Vernon Hills, IL) and Accument AB15 pH meter 

(Fisher Scientific), respectively. Chlorophyll-a was determined according to the ISO 

10260 protocol. Briefly, 250 mL of River water was filtered through a 0.45 µm GF/F 

filter (Whatman, Florham Park, NJ). The filter was then added to a 50 mL falcon tube 

containing 20 mL of 90 % ethanol, heated to 75 °C, and the sample resuspended by gently 
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Figure 3.1. Map of southwestern Alberta showing river sampling sites along the Oldman 

River (O1-O3), Willow Creek (W1), and Little Bow River (L1). Wastewater outflows for 

the Town of Fort MacLeod, City of Lethbridge, Town of Picture Butte, and Town of 

Coaldale are marked with asterisks from left to right, respectively. (Source: Alberta 

Environment and Sustainable Resource Development.) 
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mixing the tube by inversion. The tubes were then cooled to room temperature and the 

filter removed with forceps. Large particulates were pelleted such that they did not 

interfere with the assay by centrifuging at 6 000 x g for 5 min. Following centrifugation, 1 

mL of supernatant was transferred to a disposable cuvette and the OD665 and OD750 

measured in relation to 90 % ethanol (blank). In a separate tube, 5 mL of supernatant was 

acidified by the addition of 5 µL of 3 M HCl and then the OD665 and OD750 were 

measured by spectrophotometry and chlorophyll-a calculated as per ISO 10260 

guidelines. River flow rates were obtained from the Alberta Environment and Sustainable 

Resource Development (ESRD) website 

(http://www.environment.alberta.ca/apps/basins/default.aspx) for Willow Creek at ESRD 

site 05AB046 (Highway 811 bridge), for the Oldman River at ESRD site 05AD007 (near 

Lethbridge),  and for the Little Bow River at ESRD site 05AC023 (near the confluence of 

the Little Bow and Oldman River) at each sampling time. Total precipitation data for the 

week leading up to each sampling time was calculated from data obtained from ESRD 

weather data collection sites located at Fort McLeod (05AB813), Lethbridge (05AG806) 

and Barnwell (05AG801). 

 

Water sample processing for C. jejuni isolation 

River water (250 mL) was filtered through a 0.45 µm GF/F pre-filter (Whatman) 

followed by a 0.22 µm Iso-Grid final filter (Neogen Corp., Lansing, MI) under vacuum 

using a six-place filtration manifold (Advantec MFS Inc., Dublin, CA) fitted with an Iso-

Grid filtration unit (Neogen Corp.). The two filters per sample were then combined in a 

50 mL Falcon tube with 20 mL 1 X phosphate buffered saline (PBS) (137 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4; pH 7.4), and vortexed to detach material  
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from the filter. Filters were subsequently removed and the suspension centrifuged at 14 

900 x g for 15 min at 4°C. The top ≈ 17 mL of supernatant was discarded and pellets were 

re-suspended in the remaining 3 mL of PBS. 

 

Specialized isolation methods and PCR-based identification of C. jejuni 

C. jejuni was isolated using a variety of specialized culture-based methods 

including direct plating and enrichment. For direct plating (KS), 25 µL of the filtered 

suspension from each sampling site and time was spread on Karmali agar plates 

containing selective supplement SR167 (Oxoid Ltd., Nepean, ON) in duplicate and 

incubated at 37 °C in a microaerobic environment (5 % O2, 30 % H2, 10 % CO2 and N2 

balance). Bolton enrichment (BE) involved adding 150 µL of the filtered suspension from 

each sampling site and time to 2 mL of Bolton broth (Oxoid Ltd.) containing Bolton 

supplement (Oxoid Ltd.) in a 10 mL test tube. The tubes were then incubated in a 

microaerobic atmosphere generated by CampyPacs (BBL Microbiology Systems, 

Cockeysville, MD) at 175 rpm using a ramped protocol consisting of 30 °C for 3 h, 37 °C 

for 2 h, and 40 °C for 24 h. Following the enrichment period, 10 µL from each tube was 

streaked onto Karmali agar plates containing selective supplement and incubated 

microaerobically at 37 °C for 48 h. For Arcobacter selective isolation broth enrichment 

(ASBE), 100 µL of the filtered suspension from each sampling site and time was 

inoculated into a test tube containing 2 mL of Arcobacter selective isolation broth (Houf 

et al., 2001; Van Driessche et al., 2003) in duplicate and incubated at 30 and 37 °C. At 24 

h and 48 h (ASBE), 10 µL of the enrichment broth was streak plated onto Columbia agar 

supplemented with 5 % sheep blood (CSB) which was then incubated microaerobically 

for an additional 6 days at the corresponding temperature to the enrichment culture; 
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cultures were examined at 24 h intervals. One hundred µL from each site and time was 

added to 2 mL of JM broth (Johnson and Murano, 1999). The cultures  were then 

incubated at 30 °C and 37 °C microaerobically, and processed at 24 and 48 h by streaking 

10 µL onto JM agar; the JM plate was then incubated under the same conditions as the 

originating tubes. Cultures were examined for growth at 48 h and 6 days. Membrane 

filtration (MF) was accomplished by spreading 200 µL of the suspension on a 0.45 µm 

filter (Neogen Corp.) previously placed on a CSB plate. The medium and filter were then 

incubated microaerobically at 37 °C for 1 h. After the 1 h incubation, filters were 

carefully removed and cultures were incubated microaerobically at 37 °C for 5 days; 

cultures were examined at 24 h intervals. 

Unless otherwise indicated, incubations were performed in air tight culture jars 

under microaerobic conditions (5 % O2, 30 % H2, 10 % CO2 and N2 balance). Cells from 

presumptive C. jejuni positive colonies were examined microscopically for physical 

characteristics (size, shape, motility) typical of campylobacteria. Cells of presumptive 

campylobacteria were then streaked onto CSB and incubated microaerobically for 48 to 

72 h. Isolates were stored in Columbia broth with 30 % glycerol at -80 °C.  In an attempt 

to minimize the collection of clones, a maximum of two discrete colonies of a single 

morphology indicative of campylobacteria for a given sampling site and time were 

glycerol stocked. 
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Table 3.1. Primers for the identification of C. jejuni isolates and quantitative detection of 

C. jejuni by qPCR from river water including an internal amplification control (IAC) 

Primer Sequence (5'-3') Source 

MDmapA1Upper CTATTTTATTTTTGAGTGCTTGTG (Denis et al., 2001) 
MDmapA2Lower GCTTTATTTGCCATTTGTTTTATTA (Denis et al., 2001) 
CjhipOF AAATAGGAAAAACAGGCGTTGT Inglis et al., unpublished 
CjhipOR TATCATTAGCCTGTGCAAGACC Inglis et al., unpublished 
DapO-1f ACGACACAACCTGTCGCAAGGG Inglis et al., unpublished 
DapO-1r ATGCCATATCCTGTAGCTGT Inglis et al., unpublished 
IAC_F GGTATGCTAGCCCCGCTTAGGGT This study 
IAC_R TGCTCCAGAAAAGATGTCCAGCGG This study 
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Colony PCR of presumptive Campylobacter isolates 

 All presumptive C. jejuni isolates were screened using a C. jejuni specific primer 

set targeting the mapA gene (Table 3.1) (Denis et al., 2001). A small colony of freshly 

growing cells was suspended in 100 µL of sterile 1/10 TE buffer (10 mM Tris-Cl, 1mM 

EDTA, pH 8.0) of which 2 µL was used as template. PCR was performed in 20 µL 

reactions including 1 X Qiagen PCR buffer, 0.2 mM dNTPs, 0.5 µM of each primer, 0.1 

µL (5 U/ µL) Hotstar taq polymerase (Qiagen Inc., Mississauga, ON), 2 µg bovine serum 

albumin (BSA), 2 mM MgCl2 and 2 µL template. Thermal cycling included a pre-

treatment at 95 °C for 15 min for enzyme activation followed by 35 cycles of 30 s at 95 

°C, 1.5 min at 58 °C, and 1 min at 72 °C, and  a final extension step for 10 min at 72 °C. 

PCR products were then resolved using the QIAxcel capillary electrophoresis system. As 

it was later confirmed that the mapA primer set amplified some C. coli and Arcobacter 

butzleri, mapA positive isolates were later screened for the hipO gene using PCR primers 

CjhipOF and CjhipOR (Table 3.1) (Inglis et al., unpublished). Isolates positive for both 

PCR reactions were identified as C. jejuni.  

 

Real-time Quantitative PCR (qPCR) 

Development of internal amplification control (IAC). To prevent false negative 

results (e.g. due to the presence of PCR inhibitors or failed DNA extraction), a synthetic 

IAC was designed. The IAC target was based on a 247 bp region unique to Pyrococcus 

yayanosii CH1, a hyperthermophilic, obligate piezophile recently isolated from a 

hydrothermal vent in the Pacific Ocean (Jun et al., 2011). Pyrococcus yayanosii CH1 was 

selected as surface waters are inhospitable to this organism and the natural habitat is 

located deep in the ocean and thus there should be no potential for a background signal. 
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Primers were designed using the primer3 add on in Geneious 5.3 (Drummond et al., 2010) 

and the 247 bp target was synthesized and cloned into the pIDTSMART-AMP plasmid 

(Integrated DNA Technologies Inc., Coraville, IA). Prior to extracting DNA from 

processed river water samples, 5 µL of IAC stock containing 2 х 105 IAC copies per µL 

was added to each sample. In the event no C. jejuni was detected by qPCR and the IAC 

did not amplify from the same sample, it would be attributed to PCR inhibition rather than 

a true negative result. 

 

DNA extraction and quantitation of C. jejuni and the IAC. DNA was extracted 

using the PowerLyzer PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) 

according to manufacturer’s protocol with the exception that the Qiagen TissueLyser LT 

was used for homogenization. Quantification of C. jejuni was performed using qPCR with 

the DapO-1f and DapO-1r primers (Table 3.1) in 20 µL reaction volumes containing 2 X 

Quantitect SYBR Green PCR master mix (Qiagen Inc.), 0.5 µM of each primer, 2 µg BSA 

and 2 µL template. Thermal cycling included a pre-heating step at 95 °C for 15 min 

followed by 94 °C for 15 s, 55 °C for 30 s and 72 °C for 30 s. Following amplification 

steps, a melting curve was generated by heating the reaction from 55 °C to 95 °C and 

measuring the fluorescence at 0.5 °C increments. A standard curve was prepared based on 

10-fold serial dilutions of C. jejuni ATCC 33560 genomic DNA. The total amount of C. 

jejuni DNA present in the sample was determined with the knowledge that the DapO 

primers target the nucleic acid sequence of a predicted protein, Cjprotein3 which is a 

single copy gene. qPCR for the IAC target was performed in a separate reaction with the 

IAC_F and IAC_R primer set using the same master mix as stated above. The thermal 

cycling was identical with the exception that an annealing temperature of 64 °C was used.  
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Statistical analysis 

 Physicochemical properties and C. jejuni densities determined by qPCR for each 

sampling site were tested for normality using the UNIVARIATE procedure in SAS (SAS 

Institute Inc.; Cary, NC, USA). Normality of each parameter was assessed by descriptive 

statistics (mean, mode, skewness and kurtosis) as well as the Shapiro-Wilk test for 

normality. As the data was not normally distributed, bivariate non-parametric (Spearman) 

correlation coefficients were calculated using the CORR procedure in SAS (SAS Institute 

Inc.). 

 

3.3 RESULTS  

Culture-based isolation of C. jejuni from river water sites 

 A total of 1099 potential C. jejuni were isolated, based on colony morphology and 

microscopy, over the 1-year study period. Of the collected isolates, 137 (12.5 %) were 

mapA positive. Fifty-seven of the 137 mapA positive isolates were hipO positive and 

deemed to be C. jejuni (5.2 % of total isolates). Nearly all (93.0 %) of the C. jejuni 

isolates were recovered from the Oldman river sampling sites, O1 (25 isolates) and O2 

(28 isolates), both located downstream of the Fort McLeod and Lethbridge wastewater 

treatment outflows, respectively. One C. jejuni isolate was recovered from each O3 and 

L1, and no C. jejuni was isolated from site W1 (Table 3.2). The ASBE and KS isolation 

methods outperformed the other isolation methods as they yielded the greatest number of 

isolates (21 and 20, respectively); these methods were followed by BO37 with 11, MF with 

three, BO30 and JM37 each with one and JM 30 with 0 C. jejuni isolates (Table 3.2). The 

majority of confirmed C. jejuni isolates (51 out of 57 isolates) were collected between 

December 17, 2008 and March 11, 2009 (Figure 3.2). 
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Culture-independent detection and quantification of C. jejuni by qPCR 

  Quantitative PCR results for C. jejuni using the novel DapO primer set showed a 

sporadic occurrence of C. jejuni in river water throughout the sampling period for all sites 

tested in southwestern Alberta (Figure 3.3). At many of the sampling times, no C. jejuni 

was detected; then at adjacent times high copy numbers (≈1x102-5x104 per 100 mL) were 

present. There was also no apparent seasonal trend at any of the sampling sites (Figure 

3.3). The greatest amount of C. jejuni estimated at each site for a given sampling time was 

8.3x103, 2.9x103, 1.9x104, 1.2x103, and 4.7x104 cells per 100 mL corresponding to sites 

W1, O1, O2, O3 and L1. However, none of the observed maxima for C. jejuni copy 

number predicted by qPCR at each sampling site corresponded to the same sampling time 

(September 17, 2008, July 23, 2008, March 11, 2009, April 22, 2009, and September 3, 

2008 for sites W1, O1, O2, O3 and L2, respectively) (Figure 3.3). The IAC was detected 

in all samples (data not shown) and thus samples in which no C. jejuni was detected by 

qPCR were considered legitimate negatives. 

 

Physicochemical properties of water samples and statistical analyses 

 Large rainfall events, high flow rates and high turbidity were observed in the 

spring (Figures 3.5-3.6). There was little change in pH throughout the study period with 

measurements between 7.57 and 8.65. Dissolved oxygen ranged from 8.01 to 12.5 mg/L, 

and chlorophyll-a ranged from 0 to 24.9 mg/m3 (data not shown). As not all parameters 

were normally distributed, non-parametric Spearman rank correlation coefficients were 

calculated to examine the relationship between the occurrence of C. jejuni (estimated by  
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Table 3.2. Culture based isolation of C. jejuni from river water sampling sites. Sites are: 
Oldman River downstream of Fort McLeod (O1); Oldman River downstream of 

Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little Bow River 
near the confluence with the Oldman River (L1); and Willow Creek north of Fort McLeod 

(W1). See Figure 3.1 for additional information on the sites. 
 
 

Sample site 

Isolation method 

KS ASBE BO37 BO30 JM37 MF Total 

Willow Creek (W1) 0 0 0 0 0 0 0 
Oldman River (O1) 8 10 4 0 1 2 25 
Oldman River (O2) 11 10  5 1 0 1 28 
Oldman River (O3) 1 0 2 0 0 0 3 
Little Bow River (L1) 0 1 0 0 0 0 1 
Total 20 21 11 1 1 3 57 
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Figure 3.2. Temporal isolation of C. jejuni for each culture-based isolation method.  
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Figure 3.3. Estimation of C. jejuni cell densities (Log10 cells per 100 mL) in river water 
by  qPCR. Sites are: Oldman River downstream of Fort McLeod (O1); Oldman River 
downstream of Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); 
Little Bow River near the confluence with the Oldman River (L1); and Willow Creek 

north of Fort McLeod (W1). See Figure 3.1 for additional information on the sites. 
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Figure 3.4. Representative flow rate in m3/s (filled circles) and total precipitation in mm 
(unfilled squares) for Willow Creek (W1) (top) and Oldman River (O1) (bottom) over the 

study period.  
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Figure 3.5. Representative flow rate in m3/s (filled circles) and precipitation in mm 
(unfilled squares) for sites O2 and O3 (top) and site L1 (bottom) over the study period. 

Sites are: Oldman River downstream of Fort McLeod (O1); Oldman River downstream of 
Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little Bow River 

near the confluence with the Oldman River (L1); and Willow Creek north of Fort McLeod 
(W1). See Figure 3.1 for additional information on the sites. 



39 
 

 
 

Figure 3.6. Turbidity (NTU) at each of the water sampling sites over the study period. 
Sites are: Oldman River downstream of Fort McLeod (O1); Oldman River downstream of 

Lethbridge (O2); Oldman River under the Highway 845 bridge (O3); Little Bow River 
near the confluence with the Oldman River (L1); and Willow Creek north of Fort McLeod 

(W1). See Figure 3.1 for additional information on the sites. 
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qPCR) and the various physicochemical properties recorded during the study period 

(Table 3.3). Spearman rank correlation coefficients indicate that there was no correlation 

between C. jejuni concentration and any of the physicochemical parameters measured 

with the exception of water temperature which was positively correlated (p = 0.011) with 

water temperature at Oldman River site O3. 

 

3.4 DISCUSSION 

 Campylobacteriosis is the most common cause of enteric disease in Alberta 

(Alberta Health; http://www.health.alberta.ca/documents/Guidelines-Campylobacteriosis-

2011.pdf)  and provincial rates of disease are highest in the CHR (Alberta Health; 

http://www.health.alberta.ca/documents/Notifiable-Diseases-Report-2004.pdf); yet at 

present, the source of C. jejuni isolates infecting humans in this region is uncertain. Water 

has been observed to play an important role in the transmission of C. jejuni in outbreak 

scenarios (Clark et al., 2003) and is also associated with sporadic infection (Taylor et al., 

1983). For molecular epidemiological investigations to be effective, the organism of 

interest must first be isolated from both infected individuals and the environmental source 

of the infectious agent. This is of particular importance for pathogens such as C. jejuni, 

which is considered a generalist as it colonizes and/or infects a broad range of hosts 

(Gripp et al., 2011).  Our laboratory has acquired a large collection of C. jejuni isolates 

from inhabitants of the CHR and molecular typing efforts are underway. However, at 

present, a substantial gap exists in the isolate collections of environmental C. jejuni from 

the CHR. Consequently, this hinders the ability of researchers to attribute molecular 

signatures from clinical C. jejuni isolates to environmental sources.  
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The isolation of C. jejuni from water is challenging as not only is there a large 

amount of background including fecal coliforms (Hyland et al., 2003) and native 

waterborne bacteria; but also a number of bacterial species closely related to C. jejuni, 

such as Arcobacter spp., Helicobacter spp. and other Campylobacter spp. that grow under 

similar conditions. C. jejuni is also present at low concentrations, thus requiring filtration 

or centrifugation to concentrate water samples. To facilitate the recovery of injured cells 

from the environment, many enrichment methods have been developed. The widely 

adopted Bolton broth contains animal blood to offset toxic effects induced by oxygen 

exposure (Bolton et al., 1984), to which sub-lethally injured C. jejuni cells are particularly 

vulnerable (Humphrey, 1988). Temperature also plays an important role on the recovery 

of injured C. jejuni, Humphrey and Muscat (1989) demonstrated that incubation at 37 °C 

rather than 43 °C or a combination of the two temperatures enhances the recovery sub-

lethally injured C. jejuni from water samples as opposed to incubation at 43 °C alone 

(Humphrey and Muscat, 1989). It is also important to use multiple enrichment methods as 

different enrichment methods have been shown to bias the recovery of C. jejuni subtypes 

(Williams et al., 2012). 

Despite the use of appropriate incubation temperatures and a variety of complex 

growth media, C. jejuni was seldom isolated from river water in the CHR. The KS and 

ASBE methods performed best at isolating C. jejuni from the river water. Of the 

confirmed C. jejuni isolates, the majority (93%) were from samples collected between 

December 17, 2008 and March 11, 2009 from sites downstream of the Fort McLeod 

(n=25) and Lethbridge (n=28) waste water outflows. This seasonal trend is consistent with 

observations from other culture-based studies worldwide including studies of Morecambe 

Bay and the river Lune in England, where the amount of sunlight per day showed a 
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negative correlation with Campylobacter numbers (Jones, 2001). While it is tempting to 

attribute the isolates downstream of waste water outflows to human waste, there were no 

isolations in the spring and autumn to accompany spikes observed in isolation of C. jejuni 

from humans within the study area (Inglis et al., unpublished data). Furthermore, at the 

time of sample collection, the Lethbridge waste water treatment facility irradiated all 

effluent prior to discharge while the Fort McLeod waste water treatment facility did not; 

yet C. jejuni was isolated from both sites. Increased grazing pressure from protists during 

the warmer months may have contributed to the reduced abundance of C. jejuni. 

However, it is not known how C. jejuni responds to grazing in aquatic ecosystems. It may 

follow that the VBNC state also protects from grazing by modification of surface 

structures, as a result, protists may preferentially ingest active C. jejuni rather than cells in 

the VBNC state. 

The use of molecular-based detection methods for bacterial pathogens has 

received increased attention in recent years due to the ease of use and ability to detect low 

concentrations of the target DNA molecule. The data also suggests that at times 

throughout the study period, C. jejuni contamination of river water within the CHR is 

extremely high in comparison to other studies using similar techniques. For example, a 

recent study conducted in river water in southern Ontario estimated 103 C. jejuni, C. coli 

and C. lari cells per 100 mL, although PCR inhibition was not addressed and this number 

is an estimate for the three organisms combined (Van Dyke et al., 2010). Consequently, 

the true concentration of C. jejuni may be even higher. Van Dyke et al. (2012) utilized 

PCR primers targeting the 16S rRNA gene, which is usually restricted to metagenomic 

studies as the 16S rRNA gene is present in all bacteria yet is variable enough to allow for 

species delineation in most cases. Targeting the 16S rRNA gene is likely why they were 
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unable to differentiate between the three Campylobacter spp. and highlights the need for 

primers capable of discerning C. jejuni from closely related species. The DapO qPCR 

primer set developed in the present study was validated against a panel of 

Campylobacteria and revealed 100 % specificity for C. jejuni. With the exception of 

water temperature at Oldman River site O1, Spearman correlation coefficients yielded no 

correlation between the abundance of C. jejuni and any of the physicochemical 

parameters included in the study. This is not entirely unexpected, as C. jejuni does not 

replicate outside warm-blooded hosts; however, a previous study investigating fecal 

coliforms in this region observed the highest fecal coliform counts following heavy 

rainfall events and thus suggesting the contribution of surface run-off to spikes in water 

contamination (Hyland et al., 2003). In the present study, qPCR suggests a sporadic 

presence and abundance of C. jejuni which may be the result of a diverse group of source 

inputs (waterfowl, agricultural runoff, waste water) in southern Alberta. It is also possible 

that C. jejuni is not uniformly distributed in the water and thus collecting a small sample 

from one location in the water column may result in more variance between samples.  

Ethidium monoazide (EMA) and propidium monoazide (PMA) have previously 

been used to limit PCR amplification to DNA present in cells with intact membranes and 

thus considered live. It was not used in the present study as low concentrations of C. 

jejuni were expected based on previous studies and monoazide treatment has been 

previously shown to penetrate a proportion of living bacterial cells (Nocker et al., 2006) 

including C. jejuni (Flekna et al., 2007). The inability to isolate C. jejuni at times when it 

was present according to qPCR considered together with the observation that there was no 

conspicuous change in quantitative enumeration during times of increased isolations 

suggests the presence of VBNC cells. It is unlikely the molecular signatures for C. jejuni 
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originated from free DNA as (1) the water samples were filtered through a 0.22 µM filter 

which would not retain free DNA and (2) it is inconsistent with current data indicating 

entrance into the VBNC state (Baffone et al., 2006). Evidence for resuscitation of VBNC 

C. jejuni by passaging through a vertebrate host (Jones et al., 1991) and inoculation into 

embryonated eggs (Cappelier et al., 1999) has been observed, however, enrichment 

techniques are insufficient at recovering VBNC cells. The VBNC state in bacteria is 

widely considered to be a survival strategy activated when exposed to environmental 

stresses or nutrient limitation (Oliver, 2010). The microbial scout hypothesis suggests that 

VBNC cells serve as scouts by “waking up” in a stochastic manner, independent of 

environmental cues (Buerger et al., 2012). The waking up of the scout allows it to survey 

the environment and if unable to replicate, only the scout perishes rather than the entire 

cell population. Conversely, if nutrients are present then the scout is able to replicate and 

potentially induce nearby cells to exit dormancy. The hypotheses above coupled with the 

observation that C. jejuni remains culturable for longer periods of time in microcosm 

water held when at low temperatures (Thomas et al., 2002), may in part explain why the 

majority of C. jejuni isolated were during the winter months. Although advanced culture-

based techniques were utilized, in the event C. jejuni enters a VBNC state when it enters 

river water it would not be recovered. 

In conclusion, the culture-based and culture independent detection methods used 

in this study increased current knowledge of the distribution of C. jejuni in river waters in 

southwestern Alberta. The combined data suggests the presence of VBNC cells and 

physicochemical properties of river water had no influence on the abundance of C. jejuni. 

Isolates collected during this study may be used in the future for epidemiological studies.  
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CHAPTER 4 

Seasonal diversity of planktonic protists in southwestern Alberta rivers over a  

one year period revealed by T-RFLP and 18S rDNA clone libraries
1
 

ABSTRACT 

 The temporal dynamics of planktonic protists in river water has received limited 

attention despite their ecological significance and recent studies linking phagotrophic 

protists to the persistence of human pathogenic bacteria. Using molecular-based 

techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic 

protists in southwestern Alberta rivers (Oldman River Basin) over a one year period. 

Nonmetric multidimensional scaling analysis of terminal restriction fragment length 

polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that 

corresponded to season, rather than geographical location. Community structures were 

examined using clone library analysis; HaeIII restriction profiles of 18S rDNA amplicons 

were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger 

sequencing of the V1-V3 region of the 18S rDNA clone libraries from the spring, 

summer, fall and winter supported the T-RFLP results, and showed marked seasonal 

differences in protistan community structure. The spring library was dominated by 

Chloroplastidae (29.8 %), Centrohelida (28.1 %), and Alveolata (25.5 %) while the 

summer and fall libraries primarily contained fungal clones (83.0 % and 88.0 %, 

respectively). Alveolata (35.6 %), Euglenozoa (24.4 %), Chloroplastida (15.6 %), and 

                                                 
 

1 A version of this chapter was published as: Thomas M.C., Selinger L.B., Inglis G.D. (2012). Seasonal 
diversity of planktonic protists in Southwestern Alberta Rivers over a 1-year period as revealed by terminal 
restriction fragment length polymorphism and 18S rRNA gene library analyses. Applied and Environmental 

Microbiology, 78(16):5653-5660. 
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Fungi (15.6 %) dominated the winter library. These data demonstrate that planktonic 

protists, including protozoa, are abundant in river water in southwestern Alberta, and 

conspicuous seasonal shifts occur in community structure. 

 

4.1 INTRODUCTION 

 Protists play an integral role in aquatic ecosystems. They are responsible for 

primary production, mobilizing trace nutrients, and controlling bacterial populations yet 

they remain understudied. They form a complex group of organisms spanning all 

eukaryotic kingdoms and vary substantially in size, shape, and motility. These 

characteristics were once relied upon exclusively by taxonomists for classification, 

however, the complexity of protistan morphology demands years of study and experience 

for accurate taxonomic placement. Furthermore, morphological-based identification is 

time consuming and not always accurate. Recent studies have shown that organisms that 

were once considered to be of single morphospecies have highly variable 18S rRNA gene 

sequences and represent many distinct species (Kim et al., 2004). Conversely, protists 

possessing distinctly different morphologies (i.e. considered to be different 

morphospecies) have been shown to possess identical 18S rDNA sequences (Logares et 

al., 2007). As a result, protistologists now rely on molecular-based methods, such as: 

terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel 

electrophoresis (DGGE), and 18S rRNA gene libraries to study the community structure 

of these organisms. 

 The majority of protistan studies conducted to date have focused on protists in 

oceanic ecosystems (Diez et al., 2001b; Edgcomb et al., 2011; Edgcomb et al., 2002; 

Emilio O. Casamayor et al., 2002; Li et al., 2011; Not et al., 2009), as they produce 
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upwards of half of the world’s oxygen and are the basis of aquatic food webs. Freshwater 

systems (Kiss et al., 2009) and water distribution systems (Valster et al., 2009) are 

attracting more attention as of late, due in part to experimental evidence linking 

freshwater protists with the protection of human pathogens (King et al., 1988). 

Phagotrophic protists (i.e. protozoans), such as Acanthamoeba spp., have been shown to 

play a role in the persistence of human pathogens, including Campylobacter jejuni 

(Axelsson-Olsson et al., 2005; Snelling et al., 2008; Snelling et al., 2005), Legionella 

pneumophila (Abu Kwaik et al., 1998; King et al., 1988), Mycobacterium avium 

subspecies paratuberculosis (Gardner et al., 2011), and Vibrio cholerae (Abd et al., 2009; 

Sandström et al., 2010), and thus may play a role in transmission of infectious cells to 

humans. This presents a significant risk for public health as Acanthamoeba cells are 

highly resistant to UV irradiation and oxidative treatments, and they may survive water 

treatment processes (King et al., 1988). To date, limited research has examined protists in 

freshwater ecosystems (Carrias et al., 1996; Creer, 2010; Kiss et al., 2009; Kopylov and 

Kosolapov, 2011; Nolte et al., 2010; Ribblett et al., 2005; Shi et al.). Given the potential 

importance of protists in freshwater ecosystems to public health, it is of the utmost 

importance that we achieve a better understanding of planktonic protistan diversity. 

 According to the Public Health Agency of Canada’s Notifiable Diseases On-Line 

(http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/index-eng.php) and Alberta Health`s 

2004 Notifiable Diseases Report (http://www.health.alberta.ca/documents/Notifiable-

Diseases-Report-2004.pdf), southwestern Alberta has substantially higher rates of 

campylobacteriosis than the Canadian and Provincial averages (Inglis et al., 2011); 

however, reasons for the high rates of campylobacteriosis in this region remain enigmatic. 

Waterborne transmission of C. jejuni has been suggested to be an important factor in the 
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epidemiology of sporadic campylobacteriosis. Recent laboratory studies showing 

prolonged persistence of C. jejuni in the presence of freshwater protozoans suggest a 

possible link to waterborne transmission (Axelsson-Olsson et al., 2005; Snelling et al., 

2005). Consequently, there is a need for studies investigating the diversity of protists in 

freshwater systems.  

 We hypothesized that rich protistan communities exist in river water in 

southwestern Alberta and community structures will differ among sampling sites, and 

between seasons. The following objectives were constructed to test this hypothesis: (i) to 

longitudinally study freshwater protistan diversity in river water in southwestern Alberta 

(Oldman River Basin) over a one year period, and (ii) identify protists in this region 

which may be contributing to the environmental persistence of human pathogens.  

 

4.2 MATERIALS AND METHODS 

Ethidium monoazide validation 

(i) Culture of protists. Acanthamoeba polyphaga, Tetrahymena pyriformis, 

Chlamydomonas moewusii and Euglena gracilis were selected for ethidium monoazide 

(EMA) validation. Acanthamoeba polyphaga was cultured in PYG growth medium at 30 

°C and 100 rpm for 1 week and then for an additional week in fresh growth medium. 

Tetrahymena pyriformis was grown in PPG growth medium (Culture Collection of Algae 

and Protozoa, Oban, Scotland) for 48 h at 28 °C. Chlamydomonas moewusii and E. 

gracilis were grown for 1 week in Ward’s basic culture medium (Wards Scientific, 

Rochester, NY) and a modified salts growth medium (Russell et al., 2004) with exposure 

to a south-east facing window. Cells were washed once by centrifuging at 1000 x g for 10 

min followed by re-suspension of the cells in 1 X PBS. Cell concentrations were 
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estimated using a haemocytometer, and viability was verified with trypan blue staining. 

Cultures were adjusted to a final concentration of 5 x 104 cells per mL, and were divided 

into four 200 µL samples in 2 mL tubes for each protist.  

(ii) EMA treatment. For each protist, two arbitrarily-selected samples were incubated 

at 100 °C for 20 min (heat-treated), and the remaining two samples were maintained at 4 

°C for 20 min (non-heat-treated). Ethidium monoazide (EMA) is a photo-reactive cross-

linker that binds irreversibly to free DNA thereby inhibiting PCR amplification (Rudi et 

al., 2005), and EMA (3 µL; Molecular Probes) was added to one heat-treated and one 

non-heat-treated sample (final concentration of 100 µg mL-1). Following the addition of 

EMA, samples were placed on ice in the dark for 5 min, and tubes (lids open) were then 

exposed to light emitted from a 500 W halogen light bulb for two 1-min intervals; the 

light source was situated 10 cm from the top of the tubes and samples were vortexed 

between light exposures. All samples were then stored at -20 °C until subsequent 

processing. 

(iii) DNA extraction and PCR amplification. DNA was extracted using the DNeasy 

Blood and Tissue kit (Qiagen Inc.) according to the manufacturer’s instructions with the 

exception that the final elution volume was reduced to 50 µL. PCR was performed using 5 

µL of extracted DNA. The PCR primers, Euk1A (5’-CTGGTTGATCCTGCCAG-3’) and 

Euk516R (5’-ACCAGACTTGCCCTCC-3’) were used; these primers amplify variable 

regions V1 to V3 of the 18S rRNA gene that corresponds to positions 4 to 563 of the 

Saccharomyces cerevisiae (Accession AY251630) 18S rRNA gene. PCR conditions were 

as described by Diez et al. (Diez et al., 2001a). PCR products were resolved by capillary 

electrophoresis using the MED250 protocol on a QIAxcel capillary system (Qiagen Inc.). 
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River water sample collection and processing 

 Samples were collected from the same sites as mentioned in Chapter 3, but at 4-

week intervals, commencing May 7, 2008 through to May 13, 2009. At each site, samples 

of approximately 800-900 mL were obtained using 1 L Nalgene bottles attached to the 

end of a sampling pole; water was collected at a depth of ≈20 to 30 cm in the flowing 

portion of the river. Samples were stored on ice and processed within 6 h of collection. 

Samples (250 mL) were filtered through a 0.45 µm GF/F pre-filter (Whatman) followed 

by a 0.2 µm Iso-Grid final filter (Neogen Corp.) under vacuum using a six-place filtration 

manifold (Advantec MFS Inc.) fitted with an Iso-Grid filtration unit (Neogen Corp.). The 

two filters per sample were combined in a 50 mL Falcon tube with 20 mL PBS (0.1 M pH 

7.2), and mixed vigorously to detach cells. Filters were subsequently removed, and the 

suspension was then centrifuged at 14 900 x g for 10 min at 4 °C. The top 17 mL of the 

supernatant was discarded, and pellets were re-suspended in the remaining 3 mL of PBS. 

Two hundred µL aliquots were dispensed into each of two 2-mL tubes, and EMA was 

added to samples as described above. Following EMA treatment, samples were stored at -

20 °C until subsequent processing. 

 

DNA extraction and quantification 

 DNA was extracted from samples using the QIAamp DNA Stool Mini Kit (Qiagen 

Inc.) according to manufacturer’s protocol with the exception that the lysate volume 

transferred was doubled to maximize DNA yield; subsequent reagent volumes for DNA 

precipitation and washing were also doubled. DNA extractions were quantified using the 

Nanodrop ND-3300 fluorimeter (Thermo Scientific) with Hoecsht dsDNA labeling (Life 

Technologies, Carlsbad, USA) using Calf thymus dsDNA as a quantification standard.  
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PCR conditions for T-RFLP community profiling 

 PCR was performed using 5 ng of DNA or 5 µL for samples in which the DNA 

concentration was less than 1 ng/µL. The PCR primers used were FAM-Euk1A and 

Euk516R. To repair single stranded fragments following PCR which may result in 

pseudo-T-RFs (Egert and Friedrich, 2003; Egert and Friedrich, 2005), samples were 

incubated with Klenow polymerase (New England Biolabs, Ipswich, MA, USA) 

according to the manufacturer’s protocol. Post Klenow-treatment, samples were digested 

with HaeIII and HhaI (Invitrogen) according to the manufacturer’s specifications prior to 

ethanol precipitation and separation by capillary electrophoresis on an ABI-3130 Genetic 

Analyzer in two independent runs (Applied Biosystems, Foster City, USA). 

 

Analysis of T-RFLP community profiles 

 T-RFLP data quality was manually inspected in Genemapper (Applied 

Biosystems) and was subsequently imported into T-REX (Culman et al., 2009). T-REX 

was used to standardized total peak height across samples (i.e. to compensate for small 

differences in the amount of digested DNA resolved per sample), and to filter ‘noise’ 

according to the method described by Abdo et al. (Abdo et al., 2006); three standard 

deviations were used as the threshold for discriminating between noise and true peaks. 

Profiles were aligned using a clustering threshold of 0.5 (Smith et al., 2005). Peaks not 

present in replicate T-RFLP profiles were removed from subsequent analyses. Non-

transposed (T-RFs as columns, samples as rows), and transposed (samples as rows, T-RFs 

as columns) presence-absence data matrices were exported from T-REX for generation of 

a four-way Venn diagram using a custom Excel macro (Microsoft Inc., Redmond, WA, 

USA) and for use in BioNumerics (Applied Maths, St-Martin-Latem, Belgium), 
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respectively. BioNumerics was used to generate a distance matrix using the Bray-Curtis 

distance measure which formed the basis for the group significance test (Costa et al., 

2009), and three dimensional Non-metric Multidimensional Scaling (NMS) analysis was 

conducted using the MDS procedure in SAS (SAS Institute Inc.). NMS is an ordination 

technique which arranges individual data points (in this case, T-RFLP profiles) in three 

dimensional space based on similarity or dissimilarity; data points which cluster together 

are more alike than those further apart. 

 

Emulsion PCR and clone library construction 

 Sampling periods throughout the year were categorized as spring (March 21-June 

20), summer (June 21-September 21), fall (September 22-December 21), and winter 

(December 22-March 20) based on the dates for equinoxes (March 20 and September 21) 

and solstices (June 20 and December 21) as per the US Naval Observatory 

(http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earth-seasons).  

 Community DNA from representative sampling times for the spring (late April), 

summer (late August), fall (mid October), and winter (late December), based on clustering 

of T-RFLP profiles with NMS, were pooled and amplified with the primers Euk1A and 

Euk516r in an oil-in-water emulsion, as per the EMBL-90 protocol described by Williams 

(Williams et al., 2006). Emulsion PCR was performed to reduce PCR biases, such as the 

tendency to form 1:1 product to template ratios due to heteroduplex formation and 

underrepresentation of sequences, which have mismatches between primer and template 

sequences (Bru et al., 2008; Polz and Cavanaugh, 1998). Following amplification, the 

emulsion was broken by two extractions with diethyl ether, followed by one extraction 

with ethyl acetate and two additional extractions with diethyl ether.  
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 PCR products were purified using the Qiagen PCR purification kit (Qiagen Inc.) 

and subsequently ligated into the pGEM-T Easy vector (Promega) at a 3:1 vector:insert 

ratio. Chemical transformation of Escherichia coli JM109 (Promega) was performed 

according to the manufacturer’s protocol. Blue-white screening was used to differentiate 

colonies with inserts from those without; white colonies were picked into 96-well plates 

containing LB medium supplemented with 4 % glycerol and 100 µg mL-1 ampicillin using 

the QPIX robot (Genetix, San Jose, USA) prior to screening. Approximately 500 clones 

from each library were pre-screened by HaeIII restriction digest of M13F (5`-

GTAAAACGACGGCCAG-3`), M13R (5`-CAGGAAACAGCTATGAC-3`) PCR 

amplified products. Digested fragments were sized using the QIAxcel capillary system. 

Clones matching the restriction profile of prevalent solanaceous plants (≈80-90 % of the 

clones) were excluded from further analyses.  

 

Clone library sequencing and analysis  

 Sequencing was performed by a single pass with the M13F primer on an ABI-

3130 Genetic Analyzer (Applied Biosystems). Sequences were imported into Geneious 

v5.1 (Drummond et al., 2010), trimmed manually and screened for chimeras using 

Bellerophon (Huber et al., 2004). Putative chimeras were then examined on an individual 

basis in Pintail (Ashelford et al., 2005) with S. cerevisiae (Accession AY251630) used as 

the reference. Sequences were aligned with the SINA alignment service using the SILVA 

SSU release 106 database (Pruesse et al., 2007), imported into Geneious and manually 

curated. Alignments were then exported and OTUs determined using the MOTHUR 

software package (Schloss et al., 2009) with a 1 % sequence divergence cut-off (Bailly et 
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al., 2007; Valster et al., 2009). The 18S rDNA sequence data were deposited in the 

GenBank database under the accession numbers JX068881 to JX069077. 

 The degree in which microbial communities differed based on 18S rDNA 

sequence was assessed using the Unifrac P-test (Hamady et al., 2010). All 198 18S rDNA 

protistan sequences from river water, along with Giardia lamblia (ATCC 50803) as the 

outgroup, were aligned within the SILVA database and imported into MOTHUR to 

remove common gaps prior to tree building in Geneious. A rooted phylogenetic tree was 

constructed from the trimmed alignment using the Neighbor joining method and the 

Tamura-Nei distance metric. The Newick formatted tree was then analyzed using Unifrac 

(Hamady et al., 2010). Chao1 and ACE species richness estimates were performed using 

MOTHUR (Schloss et al., 2009). 

 

4.3 RESULTS 

Ethidium monoazide validation 

   A substantial reduction in PCR amplicon band intensity (ranging from a weak 

product to no detectable product) was observed for samples heated at 100 °C for 20 min 

and exposed to EMA for all protists tested (Figure 4.1). Unheated samples treated with 

EMA yielded PCR products slightly less intense than no-EMA samples indicating 

minimal penetration of live cells. 

 

T-RFLP community profiles 

 T-RFLP profiles targeting the 18S rRNA gene were determined for 70 river water 

samples from the Oldman watershed of southwestern Alberta. Considerable variability in 

the number of T-RFs was observed among samples and T-RF numbers ranged from 17 to 
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112 T-RFs (Figure 4.2). The total number of unique T-RFs detected throughout the study 

was 331. The greatest number of T-RFs for any given season were detected during the 

spring (253 T-RFs), and winter (236 T-RFs) (Figure 4.3). Protistan diversity was reduced 

in the summer and fall, and 127 and 107 T-RFs were observed, respectively. The T-RFLP 

fingerprints had high heterogeneity with a Beta diversity of 6.59, as determined with T-

REX. NMS analysis of T-RFLP profiles revealed a pattern of seasonal relatedness 

independent of sample location; the three-dimensional plot exhibited a stress of 14 (Figure 

4.4). The group significance test supported the clustering of samples into distinct groups 

by season (P ≤ 0.05); however, there was higher variation in the spring-summer, spring- 

winter, and fall-summer comparisons (Table 4.1). T-RFs exclusive to spring, summer, 

fall, and winter sampling periods were 59, 8, 6, and 46, respectively (Figure 4.3). A total 

of 59 T-RFs were common to all four seasons. 
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Figure 4.1. QIAxcel capillary electrophoresis of 18S rDNA PCR amplified samples of 

Acanthamoeba polyphaga (lanes 1-4), Tetrahymena pyriformis (lanes 5-8), 

Chlamydomonas moewusii (lanes 9-12), and Euglena gracilis (lanes 13-16). EMA-treated 

samples are presented in odd numbered lanes, and non-EMA-treated samples are 

presented in even numbered lanes. The first two lanes for each protist are cells that were 

not heat-treated, whereas the second two lanes per protist are cells that were heat treated. 

The markers on the left side of the image correspond to fragment size (bp). 
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Figure 4.2. Number of terminal restriction fragments over a one year sampling period 

(May of 2008 to May of 2009). Vertical bars associated with means represent the standard 

deviation across the five sample sites. Means denoted with a single asterisk differ (P ≤ 

0.05) from means indicated by a double asterisk. 
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Figure 4.3. Four-way Venn diagram of unique terminal restriction fragments detected in 

river water by season. 
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Figure 4.4. Non-metric multidimensional scaling plots of T-RFLP community profiles 

from river water (stress = 14) with ellipses A-D encompassing 90 % of respective markers 

by season; markers that appear close together are more similar than distant markers. 
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Table 4.1. A pairwise significance matrix of protist T-RFLP community profiles of 

seasonally partitioned data. Values indicated with an asterisk are significantly different (P 

≤ 0.05). 

 

  Spring Summer Fall Winter 

Spring - 0.391 < 0.001* 0.131 
Summer < 0.001* - < 0.001* < 0.001* 

Fall 0.017* 0.125 - < 0.001* 
Winter < 0.001* < 0.001* < 0.001* - 
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Figure 4.5. Distribution of 18S rDNA clones (%) at the first rank taxonomic level (Adl et 

al., 2005) by season. 
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Clone libraries 

 Eighty five operational taxanomic units (OTUs) from 198 18S rDNA sequences 

were observed in river water. The spring library was dominated by Centrohelid, 

Stramenopiles, and Chloroplastida clones (≈29, 20, and 20 %, respectively) (Figure 4.5). 

Summer and fall libraries were dominated by Saccharomycetes, primarily Candida spp. 

(Figure 4.5), which accounted for 83 % and 88 % of the clones, respectively. Alveolata 

(33 %), Euglenozoa (23 %), Chloroplastida (14 %) and fungal (14 %) clones were most 

common in the winter library. ACE predicted 94, 29, 131, and 79 OTUs for the spring, 

summer, fall, and winter libraries respectively while Chao1 predicted 87, 15, 97, and 37 

(Table 4.2). The Unifrac p-test confirmed differences between seasonal clone libraries (p 

< 0.001). 
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Table 4.2. Summary of 18S rDNA clone libraries including ACE and Chao1  

non-parametric richness estimates. 

 

Library Clones OTUs 
ACE Chao1 
Mean Lower Upper Mean Lower Upper 

Spring 61 29 94 51 217 87 48 208 
Summer 46 8 29 10 274 15 9 50 
Fall 58 32 131 65 332 97 55 219 
Winter 47 21 79 52 130 37 25 79 
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4.4 DISCUSSION 

 The temporal dynamics of protistan community structure associated with 

freshwater systems, particularly rivers, have yet to benefit from the explosion of 

molecular-based investigations into microbial ecology and biogeography. Such studies 

have mostly focused on Eubacteria and Archaea, using 16S rDNA sequences as a target, 

and to a lesser extent, oceanic picoeukaryotes (i.e. protists ≤ 0.2 µm in size) targeting 18S 

rDNA sequences. Using T-RFLP and clone library analysis, we observed conspicuous 

temporal shifts in protistan community structure in southwestern Alberta rivers. 

 NMS analysis of T-RFLP profiles revealed high similarity between sampling sites 

over time as samples clustered according to time (season) rather than location. This 

occurred despite the fact that sampling sites were located in areas subject to differing 

natural (i.e. organic matter, embankment) and anthropic (i.e. up/downstream from waste 

water treatment plant effluent, proximity to highways, agricultural runoff, and urban vs. 

rural sites) factors. Anthropoic factors, in particular, have been shown to have pronounced 

effects on microbial planktonic communities in freshwater systems (Frost, 2001). The 

stress of the ordination was 14, which indicates that the ordination is satisfactory and is a 

good representation of the T-RFLP data (McCune and Grace, 2003). 

 There are currently two predominant models of protistan biogeography: the 

moderate endemicity model (Foissner, 1999, 2008) and the ubiquity model (Tauxe et al., 

1988). The ubiquity model proposes that protists are cosmopolites and can be found 

anywhere in which their niche requirements are met, whereas the moderate endemicity 

model postulates that while the majority of protists are cosmopolites, a significant amount 

(roughly one third) exhibit a limited biogeographical range (Foissner, 2008). Despite the 

high variance in T-RF richness between sampling sites at any given time, the collective 
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seasonality of T-RFLP community profiles suggests that a stable core group of protists 

exists in river water in southwestern Alberta. As such, our results for protists in river 

water are consistent with the moderate endemicity model. Similarly, Nolte et al. (2010) 

observed seasonality in the distribution of protists in Lake Fuschlsee (Salzhammergut, 

Austria) (Not et al., 2009); they observed that changes in community structure were not 

merely quantitative but also qualitative as taxa observed in one month would drop below 

the detection threshold the following month.  

 T-RFLP proved to be instrumental in providing a snapshot of the 18S rDNA 

community and assisted in the selection of sites for Sanger sequencing in the current 

study. Due to the costs associated with sequencing clone libraries, it was not logistically 

possible to process all 70 samples in this manner. In previous studies using T-RFLP of 

16S rDNA communities, T-RFs were identified via in silico restriction digests of 

sequences from known databases (Adiba et al., 2010). However, recent evidence suggests 

that this is not a robust analysis method due to differential migration of T-RFs with 

variable pyrimidine content and inaccurate sizing resulting from differential migration of 

the LIZ labeled size standard and FAM labeled PCR products (Kaplan and Kitts, 2003). 

Furthermore, multiple taxa may occupy a single T-RF. As these biases are consistent 

between samples and replicate runs, T-RFLP remains a valid method for community 

profiling. Given that the identification of T-RFs based on in silico analyses of sequence 

databases is not reliable, we selected sites for Sanger sequencing based on the similarities 

and differences in T-RFLP profiles, rather than specific protistan assemblages inferred 

from T-RFs. 

 The study of protists in freshwater systems, especially rivers, poses the added 

challenge that terrestrial and aquatic plant matter and microeukaryotes are present in high 
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numbers and there are no PCR primers capable of excluding them while retaining the 

ability to amplify a broad array of protists. We observed that all 18S rDNA libraries 

generated in the current study were dominated by clones later identified as a solanaceous 

plant, perhaps that of a common agricultural weed in the study area (Blackshaw, 1991). 

As plants have been shown to have between 500 and 40,000 copies of the 18S rRNA gene 

per diploid cell (Zia et al., 2003), a single contaminating cell could severely hinder the 

detection of protists. Our sample processing regime may have benefitted from a pre-

filtration step; however, it is uncertain if this would have impacted the recovery of large 

or attached protists. 

 In our study, we used EMA to prevent PCR amplification of non-viable protists. 

EMA has been used extensively in studies involving prokaryotes (Rudi et al., 2005), 

however, to our knowledge this is the first study regarding the ecology of protists to use 

EMA for the differentiation of live from dead cells. Previous uses of EMA involving 

eukaryotic cells includes distinguishing viable from dead cells using flow cytometry 

(O'Brien and Bolton, 1995) and removing contaminating eukaryotic DNA from yeast 

extract (Rawsthorne and Phister, 2009). EMA has been documented to penetrate some 

bacterial species with intact cell membranes (Pearson et al., 2000) which could result in 

the underestimation of diversity; however, prior to this study it was unclear if this occurs 

with protists. Our results indicate that while there may be some penetration of live cells, 

EMA is suitable for reducing DNA from dead cells in the study of protistan diversity. In 

some ecosystems, such as human fecal samples, a large proportion of microbial cells are 

not viable and community analyses in the absence of EMA may result in a dramatic 

overestimation of community richness and even inaccurate conclusions. For example, 
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concluding no change in community composition of all organisms when there may be a 

marked shift in viable organisms (Olsen et al., 2001).  

 There was a significant disparity between the T-RFLP and clone library analyses 

in measured community richness. For example, 331 unique T-RFs were observed 

compared to only 89 OTUs. Furthermore, richness estimates based on Chao1 and ACE 

suggest additional taxa are present. This could be due to the use of Sanger sequencing 

which often fails to fully illuminate the rare biosphere due to throughput constraints. In 

contrast, alternatives such as second generation sequencing platforms (i.e., 454 

pyrosequencing) are prone to sequencing errors, which results in the overestimation of the 

rare biosphere (Fortunato et al., 2011). Sanger libraries offered unmatched accuracy, and 

at the time of this study, Sanger read lengths more than double that of 454 pyrosequencing 

(Mardis, 2008); the limited pyrosequencing read lengths restrict taxonomic assignment of 

protists (Amaral-Zettler et al., 2009). To compensate for the relatively small number of 

clones we could logistically sequence, we prescreened clones based on HaeIII restriction 

profiles to avoid sequencing clones belonging to the solanaceous plants. This allowed us 

to screen close to 2,000 clones. A similar method was utilized by Diez et al. (2001) to 

study the genetic diversity of protists in oceanic water, except the restriction digest 

profiles were used to group clones to maximize OTU discovery via Sanger sequencing 

libraries. 

 Heterophrys sp., the dominant Centrohelid detected in the spring (14 clones) and 

winter (one clone) libraries, are a group of phagotrophic protists (Cavalier-Smith and von 

der Heyden, 2007) and thus may affect the persistence of enteric bacteria in rivers. The 

spring is a particularly interesting time for studies regarding the fate of enteric bacteria 

due to the large amount of agricultural runoff (i.e. animal fecal matter) which has been 
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associated with increases in coliform bacteria (Gannon and Busse, 1989) and spikes in 

enteric disease (Pebody et al., 1997). Phagotropic protists such as Acanthamoeba spp., 

Hartmanella spp., Naegleria spp., and Tetrahymena spp. have been linked with the 

environmental persistence of a wide array of pathogenic bacteria (Brown and Barker, 

1999). Legionella pneumophila, for example, escapes the phagosome into the cytoplasm 

and is able to replicate within the protozoan host (Molmeret et al., 2004). While the 

protists mentioned above were not detected in the present study, this may be due to the 

common association of amoeboid protists with biofilms (Huws et al., 2005). Nonetheless, 

studies targeting Heterophrys sp. in relation to the persistence of enteric pathogens in 

river water are warranted. 

 Centrohelids and Chloroplastidae dominated river water during the spring, 

representing 28.1% and 29.8% of clones, respectively. A dramatic decline in both was 

noted for the summer and fall libraries which were dominated by Fungi, specifically 

Candida spp., a genus containing the ubiquitous human pathogens C. ablicans and C. 

tropicalis (Brinkman et al., 2003). Kopylov and Kosolapov (2011) also reported a 

reduction in heterotrophic protists in early summer in the Ob river of West Siberia which 

corresponded with increased levels of heterotrophic bacteria. Photosynthetic protists (i.e. 

Chloroplastidae) face increased competition from Cyanobacteria which bloom during the 

increased temperatures that accompany the summer months as they enter their 

temperature optima (Jöhnk et al., 2008). Cyanobacteria are also smaller in size, thus 

providing advantages over the larger Chloroplastidae such as a lower sinking rate (Walsby 

and Holland, 2006) and more efficient nutrient acquisition due to the lower diffusion 

boundary layer, which is a result of having a higher surface area to volume ratio (Ploug et 

al., 1999). Salmanian et al. (2012) suggest Candida spp. play a role in the environmental 
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persistence of Helicobacter pylori (Schloss et al., 2009), which was once considered part 

of the Campylobacter genus and is associated with gastric ulcers in humans (Pernthaler, 

2005). They found bacterium-like bodies (BLBs) present in vacuoles of Candida spp. 

isolated from foods that were confirmed viable through live/dead staining. Furthermore, 

Candida spp. containing BLBs were PCR positive for the H. pylori ureAB gene in 9 out 

of 15 cases (González et al., 1990). 

 In conclusion, we observed through the use of T-RFLP and clone library analysis 

that protists were common in river water in southwestern Alberta and seasonal succession 

trends were consistent with the moderate endemicity model. The majority of T-RFs were 

in the spring and winter which were dominated by Alveolata, Centrohelida, and 

Chloroplastidae (spring) and Alveolata, Euglenozoa, Chloroplastida, and Fungi (winter). 

Summer and fall were dominated by saccharomycetous fungi. Our study also illustrates 

some of the complications researchers face in studying protists using the 18S rRNA gene 

as a target. 
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CHAPTER 5 

Interactions between the model protozoan,  

Acanthamoeba polyphaga and C. jejuni 

ABSTRACT 

 Campylobacter jejuni is the leading cause of enteritis worldwide yet the degree 

and mechanisms by which C. jejuni persists in the environment are poorly understood. 

This study examined the interaction between C. jejuni and the model freshwater 

protozoan Acanthamoeba polyphaga, and specifically whether prolonged survival is 

common to a panel C. jejuni clinical isolates and if C. jejuni invades and exhibits 

cytoxicity toward A. polyphaga. Clinical C. jejuni isolates from southwestern Alberta as 

well as C. jejuni 81-176 knockout mutants deficient in the production of cytolethal 

distending toxin (CDT), a functional flagellar apparatus (FlaAFlaB), and quorum 

signalling (LuxS) were utilized to further elucidate interactions between these two 

organisms. All C. jejuni strains tested survived longer in co-culture with A. polyphaga 

than in PYG growth medium or A. polyphaga growth by-products. C. jejuni exhibited a 

cytotoxic effect toward A. polyphaga irrespective of the knockout strains tested and entry 

is dependent on a functional flagellar export aparatus. Culture-based methods including 

enrichment failed to recover C. jejuni following encystment and excystment of A. 

polyphaga, and the data presented suggests C. jejuni invades A. polyphaga in a manner 

consistent with the trigger method. Collectively, these results support the hypothesis that 

protozoans play a role in the persistence of C. jejuni in the environment.  
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5.1 INTRODUCTION 

The degree and mechanisms by which C. jejuni persists in the environment are 

poorly understood at present. Following clearance from an infected host, it is generally 

believed that C. jejuni must be transferred directly to a subsequent host (i.e. fecal-oral 

transmission) or else endure harsh environmental conditions (i.e. sub-optimal 

temperatures, predation and osmotic stress) while awaiting ingestion by a suitable host. 

Recent research suggests that protozoans (phagotrophic protists) such as A. polyphaga and 

T. pyriformis may play a role in the environmental persistence (Snelling et al., 2005) and 

subsequent infection of vertebrate hosts by C. jejuni (Snelling et al., 2008). However, it is 

currently not known how widespread this feature is among clinical isolates and research is 

required to elucidate specifics of this interaction, including the mechanism of entry into 

protozoa, whether C. jejuni can survive encystment, and the role of cell-cell signalling 

molecules and toxins. 

 Bacterial invasion of living cells (i.e. inducing phagocytosis in cells that are not 

phagocytic under normal conditions) is currently believed to occur via one of two 

mechanisms; the trigger and zipper mechanisms (Cossart and Sansonetti, 2004). The 

trigger mechanism involves the injection of bacterial effector proteins into the host cell 

cytosol via type III or type IV secretion systems which triggers rearrangement of the host 

cell cytoskeleton thereby facilitating invasion (Alonso, 2004). The zipper method occurs 

in three stages starting with contact and adherence between bacterial proteins on the outer 

membrane (termed adhesins and invasins) and receptors on the target cell leading to 

receptor clustering. This leads to actin polymerization and membrane extension forming a 

phagocytic cup. Lastly, the phagocytic cup is closed by actin depolymerisation engulfing 

the bacterium (Cossart and Sansonetti, 2004).  
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The exact mechanism by which C. jejuni invades mammalian cells remains a 

mystery and even less is known about the invasion of protozoans. In mammalian cells, 

invasion by C. jejuni exhibits characteristics common to both the trigger and zipper 

methods (Ó Cróinín and Backert, 2012). During the invasion process, C. jejuni binds to 

the target cell membrane via adhesins including CadF, CapA, FlpA, JlpA, MOMP and 

PEP1 (Eucker and Konkel, 2012; Flanagan et al., 2009), a feature common to the zipper 

method. Consistent with the trigger mechanism, C. jejuni injects effectors proteins into 

the host cell including CiaC, which is required for maximum invasion (Neal-McKinney 

and Konkel, 2012). Of particular importance to this process is the flagellar export 

apparatus, which is required for secreting type three secretion system effectors (T3SSEs) 

into the target cell (Konkel et al., 2004; Young et al., 2007). Lastly, C. jejuni invades the 

target cell by a process dependent on rearrangement of microtubules and association with 

dynein (Hu and Kopecko, 1999). 

Cytolethal distending toxin (CDT) is part of the cyclomodulin family of bacterial 

effectors that modulate the eukaryotic cell cycle. CDT functions as a cycle inhibiting 

factor (CIF) that arrests the host cell cycle between the G2 and M phases by inducing 

breaks in host cell DNA (Pérès et al., 1997) (Pickett et al., 1996). Present in many enteric 

pathogens, CDT is thought to play a role in C. jejuni pathogenesis by enabling C. jejuni to 

avoid early detection by the host immune system via cell cycle arrest (Hassane et al., 

2003).  

Quorum sensing, a population dependent cell-cell signalling system is another 

characteristic of C. jejuni that has been demonstrated to play a role in the colonization of 

the chicken gastrointestinal tract, cellular motility and adherence (Quinones et al., 2009). 

The gene responsible, an orthologue of LuxS, is required for autoinducer-2 (AI-2) activity 
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in C. jejuni. AI-2 is a signalling molecule in both gram negative and gram positive 

bacteria and it has been shown to affect expression of an array of genes including those 

required for virulence (He et al., 2008; Vendeville et al., 2005).  

 The protozoan A. polyphaga has been shown to play an important role in the 

environmental survival and transmission of human pathogens (eg. Legionella 

pneumophila) (Cirillo et al., 1994). Experimentation by Axelsson-Olssen et al. (2005) 

demonstrated that a C. jejuni isolated from a human patient survived longer when co-

cultured with A. polyphaga than in culture medium alone and also suggests the co-culture 

may be able to resuscitate viable but non-culturable bacteria. Snelling et al. (2006) later 

showed C. jejuni internalized by A. castellani were able to colonize broilers. Combined, 

these studies suggest that protozoans play a role in the epidemiology of C. jejuni. 

However, little is known with respect to mechanisms. It is believed that protozoans played 

a role in the evolution of current pathogens by serving as an “evolutionary crib” (Greub et 

al., 2004) and better understanding these interactions may improve our understanding of 

their pathogenesis in higher eukaryotes. The features of C. jejuni described above, 

including the flagellar export apparatus, CDT and LuxS production have not been 

investigated in the interplay between C. jejuni and protozoans. Furthermore, limited work 

has focused on C. jejuni isolates of clinical origin. Thus, the following objectives were 

established: (1) examine the survival of clinical C. jejuni isolates from southwestern 

Alberta in the presence of A. polyphaga; (2) determine the role of the flagellar apparatus, 

cytolethal distending toxin, and quorum sensing on invasiveness of C. jejuni and the 

cytotoxicity in A. polyphaga, and (3) determine if C. jejuni is capable of surviving 

encystment by A. polyphaga. 
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5.2 MATERIALS AND METHODS 

Microorganisms and growth conditions 

Clinical C. jejuni isolates (CHR 19, CHR 38, CHR 46, CHR 58, CHR 88 and CHR 

96) from inhabitants of southwestern Alberta previously shown to be highly invasive 

(Kalischuk et al., 2007), two isolates (K5E1, K4E12) recovered from a human infected 

with C. jejuni NCTC 11168, C. jejuni 81-176, C. jejuni 81-176 ∆CDT (Kalischuk et al., 

2007), C. jejuni 81-176 ∆FlaAFlaB (Kalischuk et al., 2007), and C. jejuni 81-176 ∆LuxS 

(Quinones et al., 2009) were streaked onto Columbia agar (Oxoid Ltd.) supplemented 

with 5 % sheep’s blood (CSB) and incubated for 48 h under microaerobic conditions (5 % 

O2, 30 % H2, 10 % CO2 and N2 balance)  at 37 °C. C. jejuni was streaked onto fresh CSB 

and cultures were incubated overnight (≈ 16 h) microaerobically at 37 °C. C. jejuni 

biomass was scraped off the medium surface and suspended in 1 X PBS.  The optical 

density was measured spectrophotometrically and adjusted to an OD600 of 1; this 

corresponded to a concentration of ≈ 1x109 viable cells mL-1. C. jejuni cell concentrations 

were confirmed by dilution plating. A. polyphaga CCAP 1501/3G was obtained from the 

Culture Collection of Algae and Protozoa (CCAP) (Oban, Scotland) and cultured in 

peptone–yeast-glucose broth (PYG medium) (Axelsson-Olsson et al., 2005) at 30 °C and 

100 rpm for 1 week, and then for an additional 1 week in fresh PYG medium to obtain a 

concentration of ~ 1 x 105 cells mL-1. Cultures were centrifuged at 1 000 x g for 10 min, 

resuspended in fresh PYG medium and final cell concentrations confirmed using a 

haemocytometer. 
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Mutant verification 

 Mutants C. jejuni 81-176 ∆CDT and C. jejuni 81-176 ∆FlaAFlaB were spread on 

Karmali agar with 30 µg mL-1 kanamycin to confirm they retained the kanamycin cassette 

used previously for transformation (Kalischuk et al., 2007). The validity of the C. jejuni 

81-176 ∆LuxS mutant was confirmed by PCR using the primers Uplux3 (5’-

TCTACTATAGGGATATCAAATTGTGAA-3’) and Downlux1 (5’-

CCTATTTTAGAAGCAATTTCTCTTA-3’) targeting regions flanking the LuxS gene. 

The LuxS mutant has an insertion of ~ 800 bp containing a chloramphenicol resistance 

cassette. PCR reactions contained 250 µM dNTPs, 0.5 µM of each primer, 1 unit of 

HotStar Taq polymerase (Qiagen Inc.), 1 X reaction buffer, and 2.5 mM MgCl2. PCR 

thermocycling conditions included incubation at 95 °C for 15 min, followed by 35 cycles 

of 94 °C for 30 s, 49 °C for 30 s, and 72 °C for 90 s, and a final extension step at 72 °C 

for 10 min. Amplicons were resolved by capillary electrophoresis using the QIAxcel 

platform (Qiagen Inc.).  

 

Co-culture experiment with C. jejuni 81-176 and clinical isolates from southwestern 

Alberta 

 The survival of C. jejuni 81-176 and clinical isolates from diarrheic individuals 

living in southwestern Alberta were incubated in the presence of A. polyphaga, A. 

polyphaga growth by-products, or PYG growth medium alone (Figure 5.2). The 

experimental design was modeled after a previously published report (Axelsson-Olsson et 

al., 2005). A. polyphaga cultures were prepared as described previously. A. polyphaga 

growth by-products were prepared by filtering the supernatant of 1 week-old cultures 

through a 0.2 µm filter. A. polyphaga cultures were seeded into 12 well plates at a final 
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concentration of 1 x 105 CFU/mL and incubated at 37 °C to allow amoebae to attach to 

the surfaces of individual wells. Additional control conditions included wells with PYG as 

well as well with PYG innoculated with A. polyphaga. Sample wells were then challenged 

at an MOI of 100:1 (C. jejuni: A. polyphaga), incubated at 25 °C under aerobic conditions 

and processed every 24 h for 6 days by spreading 50 µL of the co-culture on CSB plates 

(Oxoid Ltd.), and incubating the cultures microaerobically for 48 h at 37 °C. A. polyphaga 

in PYG, by-products, and PYG controls were included in separate wells. Sample wells in 

which viable C. jejuni was detected in at least two of the three replicates were considered 

positive. 

 

Intracellular survival of C. jejuni 81-176 wild type and mutant strains 

One mL of A. polyphaga culture was added to individual wells of a 12 well plate 

and incubated aerobically for 1 h at 37 °C to facilitate attachment of amoebae to the well 

bottom. Following incubation, PYG was carefully aspirated and 900 µL of fresh PYG 

added to each well. Wells receiving C. jejuni 81-176, C. jejuni 81-176 ∆CDT, C. jejuni 

81-176 ∆FlaAFlaB or C. jejuni 81-176 ∆LuxS were inoculated with 100 µL of a cell 

suspension containing 1 x 108 CFU mL-1 in PBS, corresponding to an MOI of 100:1. 

Control wells received 100 µL PBS. Plates were incubated for 4 h at 37 °C then the 

medium aspirated, followed by the addition of 1 mL Pages Amoeba Saline (PAS; CCAP) 

buffer containing 100 µl mL-1 gentamicin sulfate (Sigma, St. Louis, MO) and incubated 

for 1 h at 37 °C to kill extracellular C. jejuni. Replicate samples were then processed 

immediately after the 1 h gentamicin sulfate treatment and at 2 h post-gentamicin 

treatment by washing wells twice with 1 X PAS buffer. Amoebae were then incubated at 

room temperature for 1 h with 1 mL of 1 X PBS buffer with 0.05 % Triton X-100 (Sigma) 



 

78 
 

to lyse the amoebae. The lysate was ten-fold serially diluted in 1 X PBS and 50 µL of 

each dilution was spread on Columbia blood agar (Oxoid Ltd.). Cultures were incubated 

at 37 °C under microaerobic conditions for 48 h prior, and CFU were enumerated at the 

dilution yielding 30 to 300 CFU per plate.  

 

Contact dependent survival assay 

 A study was conducted to determine if the persistence of C. jejuni in co-culture 

with A. polyphaga is contact dependent. Microfuge tubes containing a removable insert 

containing a 0.1 µm filter (Millipore) were used to compare the survival of C. jejuni ± 

contact with A. polyphaga in PYG. PYG broth was added to each side of the filter. 

Treatments included: C. jejuni added to one side of the filter and A. polyphaga to the 

other; C. jejuni and A. polyphaga added to the same side of the filter (top and bottom); C. 

jejuni alone (bottom); and A. polyphaga alone (top). Tubes were incubated aerobically at 

25 °C on a slight angle to facilitate fluid contact with both sides of the filter. 

 

Cytotoxicity of C. jejuni 81-176 wild type and mutant strains 

 C. jejuni strains including the wild type and mutant strains (∆CDT, ∆FlaAFlaB, 

and ∆LuxS) were each co-cultured with A. polyphaga in 12 well tissue culture plates at an 

MOI of 100:1 in the presence of PYG growth medium or PAS buffer to determine the 

effect of nutritional substrate on the cytotoxicity of C. jejuni. Control treatments included 

the respective C. jejuni strains (wild type and mutants) in (1) PYG and (2) PAS, A. 

polyphaga in (3) PYG and (4) PAS. Enumeration of live and dead A. polyphaga cells was 

determined by gently detaching A. polyphaga from the bottom of 12 well tissue culture 

plates using a cell scraper. A 360 µl sample of the cell suspension was removed and 0.4% 
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Trypan Blue (Sigma) was added to a final concentration of 0.04% v/v. After 1 min at 

room temperature, live (unstained) and dead (stained) A. polyphaga were enumerated 

using a hemocytometer.  

 

Encystment  

 C. jejuni 81-176 and A. polyphaga co-cultures were prepared at an MOI of 100:1 

and incubated for 3 h in PYG growth medium at 37 °C to facilitate invasion. The control 

treatment consisted of A. polyphaga in the absence of C. jejuni. Encystment was induced 

at 30 °C by aspirating PYG, washing twice with 1 X PAS, then adding Tris buffered 

encystment medium. The ratio of cysts to trophozoites (vegetative cells) was determined 

at 24 h intervals using an inverted microscope at 400 X magnification by averaging the 

counts for three arbitrary fields of view. At 96 h, remaining trophozoites were lysed by 

incubating cultures in 0.05 % Triton X-100 (Sigma) for 1 h at room temperature. Sample 

wells were washed once with PAS followed by the addition of PAS with 100 µg mL-1 

gentamicin sulphate to kill extracellular C. jejuni. Cysts were washed twice with PAS 

buffer, and excystment was induced by the addition of PYG and monitored by 

microscopy. After 1 week, 100 µL of each sample was spread on CSB in duplicate and 

incubated microaerobically for 48 h at 37 °C. Enrichment for C. jejuni was performed by 

adding 0.5 mL of excysted cell culture to 4.5 mL Bolton enrichment broth. Enrichment 

tubes were incubated overnight at 37 °C and 10 µL of the enrichment broth was streaked 

onto Columbia blood agar in duplicate. Cultures were incubated microaerobically for 48 h 

at 37 °C and checked for growth of C. jejuni. 
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Experimental design and statistical analysis 

 All experiments were performed in triplicate with each replicate performed at a 

separate time in a randomized complete block design. To determine if there were 

statistically significant differences among means, a one-way ANOVA was performed in 

conjunction with Tukey’s test (α = 0.05) using the PROC ANOVA procedure of SAS 

(SAS Institute Inc.). 

 

5.3 RESULTS 

Amplification of LuxS gene from C. jejuni 81-176 and C. jejuni 81-176 ∆LuxS 

 PCR targeting regions flanking the LuxS gene confirmed the presence of an insert 

of approximately 800 bp, corresponding to the chloramphenicol resistance cassette, in C. 

jejuni 81-176 ∆LuxS (lane 2) relative to C. jejuni 81-176 wild type (lane 1) (Figure 5.1). 

 

C. jejuni strains survive longer in co-culture with A. polyphaga 

All of the C. jejuni isolates tested were detected for a greater number of days when 

they were co-cultured with A. polyphaga at 25 °C then when they were incubated with A. 

polyphaga growth by-products or PYG broth alone (Figure 5.2). Survival times in co-

culture ranged from 5 to 6 days, compared to 3 to 5 days in the presence of A. polyphaga 

by-products and from 3 to 4 days in PYG medium alone. 

 

Fate of C. jejuni internalized by A. polyphaga 

 There was no difference between the number of C. jejuni 81-176, C. jejuni 81-176 

∆CDT nor C. jejuni 81-176 ∆LuxS internalized by A. polyphaga (P ≤ 0.05) (Figure 5.3). 

In contrast, conspicuously less (P < 0.05) C. jejuni 81-176 ∆FlaAFlaB was internalized 
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relative to other isolates (less than 30 colonies on the 100 plate). All internalized strains 

showed a decline (P ≤ 0.05) at the 2 h sampling time.  

 

Cytotoxicity of C. jejuni 81-176 wild type and mutant strains 

 Following 48 h of co-culture with A. polyphaga, C. jejuni 81-176, C. jejuni 81-176 

∆CDT, C. jejuni 81-176 ∆LuxS, showed no change in CFU mL-1 when incubated in the 

presence of PYG, however, a trend was observed in which C. jejuni 81-176 ∆FlaAFlaB 

increased in cell concentration (data not shown). In the absence of amoebae, only C. 

jejuni 81-176 ∆FlaAFlaB was detected in the PYG treatment while the rest were 

undetectable at 48 h. In the presence of PAS buffer, no C. jejuni strains were detected in 

wells containing amoebae nor those without amoebae after 48 h of co-culture (data not 

shown). The number of dead A. polyphaga increased (P≤0.05) when co-cultured with each 

of the C. jejuni strains tested compared to the control condition (Figure 5.4).  A. 

polyphaga alone reached a higher cell concentration than when co-cultured with all 

mutants and wild type C. jejuni, but did not significantly differ from treatment with the 

∆LuxS mutant (Figure 5.4).  

 

C. jejuni 81-176 cannot be recovered with culture-based techniques following 

encystment/excystment of A. polyphaga 

 There was no difference in the ratio of cysts to trophozoites between A. polyphaga 

co-cultured with C. jejuni 81-176 and A. polyphaga cultured alone (Figure 5.5). Following 

excystment, C. jejuni was not detected by direct plating nor enrichment.  
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Figure 5.1. Capillary electrophoresis of PCR products from: (1) C. jejuni 81-176 wild 
type; (2) C. jejuni 81-176 ∆LuxS; and (3) no template control. 
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Figure 5.2. Heat map depicting the survival of C. jejuni isolates (days) in which two out 

of three replicates were culture positive following co-culture with A. polyphaga, A. 

polyphaga growth by-products, and PYG broth. 
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Figure 5.3. Internalization of C. jejuni 81-176 wild type, ∆CDT, ∆FlaAFlaB, and ∆LuxS  

(CFU) co-cultured with A. polyphaga. Vertical bars represent standard error and 
significant differences exist between the two time periods based on Tukey’s test (α = 

0.05).  
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Figure 5.4. Live and dead A. polyphaga counts determined by trypan blue staining 
following 48 h of co-culture with C. jejuni 81-176 wild type and ∆CDT, ∆FlaAFlaB, and 
∆LuxS mutants. Vertical bars represent standard error and significant differences exist 

between groups with no common letters based on Tukey’s test (α = 0.05). 
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Figure 5.5.  Ratio of A. polyphaga cysts to trophozoites when the protozoan was co-
cultured with wild type  C. jejuni 81-176 (white squares) or cultured alone (black circles). 

Vertical bars indicate standard error. 
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5.4 DISCUSSION 

  Investigations into the interplay between pathogenic bacteria and protozoans such 

as A. polyphaga are challenging as it is difficult to distinguish between engulfment 

initiated by the phagocyte and invasion by the bacterium. Engulfment and invasion 

mechanisms have similar characteristics (i.e. cytoskeleton rearrangement) and have not 

been investigated in the interaction between C. jejuni and A. polyphaga.  

Prolonged survival of a clinical C. jejuni isolate in co-culture with Acanthamoeba 

spp. has previously been demonstrated (Axelsson-Olsson et al., 2010); however, it is 

unknown how widespread this feature is among clinical isolates. Multiple clinical isolates 

from southwestern Alberta were tested as part of the present study, all of which survived 

longer in co-culture with A. polyphaga than when co-cultured with by-products or PYG 

medium. This data also facilitated the selection of a suitable strain for exploring the 

interactions between C. jejuni and A. polyphaga in greater depth. The presence of A. 

polyphaga under nutrient rich conditions (i.e. PYG growth medium) is expected to create 

a more suitable environment for C. jejuni survival as A. polyphaga depletes oxygen 

during aerobic respiration and C. jejuni is a microaerophile (Vandamme et al., 2005). This 

was noted as all of the strains tested survived longer in the presence of A. polyphaga than 

PYG medium or by-products. Of note, the survival of C. jejuni in the presence of PYG 

medium and by-products was identical for nearly all strains. This may indicate that the 

prolonged survival is more dependent on the microaerobic environment created by A. 

polyphaga than a by-product formed by A. polyphaga that can be metabolized by C. jejuni 

as it is likely that the by-products were re-oxygenated during the removal of A. polyphaga 

by filtration. Trypan blue staining of A. polyphaga in co-culture with C. jejuni, the data 

suggests that C. jejuni imparts a cytotoxic effect on A. polyhaga as there was 1 log more 
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dead A. polyphaga when incubated in co-culture with C. jejuni. Further, this effect 

occurred irrespective of mutant status which may suggest an as yet unknown toxin or 

mechanism of action. Alternatively, there may have been competition for nutrients. C. 

jejuni cannot metabolize glucose (Vandamme et al., 2005), but there may be competition 

for other nutrients, such as those present in yeast extract or peptone. To further evaluate 

this possibility, A. polyphaga was inoculated into a modified PYG medium in which yeast 

extract and peptone were absent; however, A. polyphaga was unable to grow sufficiently 

for analysis. An alternative approach to elucidate the specifics of this interaction included 

an experiment designed to investigate whether the cytotoxic effect is contact dependent. 

Microfuge tubes containing 0.1 µm filters were inoculated with A. polyphaga and C. 

jejuni in various combinations (same side or opposite sides of the filter). However, the 

columns leaked and were not suitable for maintaining a constant volume and sterility. 

The invasion of mammalian cells by C. jejuni has been studied previously (Eucker 

and Konkel, 2012; Hu and Kopecko, 1999; Russell and Blake, 1994; Neal-McKinney and 

Konkel, 2012; Watson and Galán, 2008), yet the exact mechanism of invasion remains 

elusive. As mentioned previously, C. jejuni incorporates features of both the trigger and 

zipper methods during invasion (Ó Cróinín and Backert, 2012). In vitro studies show 

conflicting results for the role of CDT in pathogenesis, as it was not required to induce 

oncosis in enterocytes (Kalischuk et al., 2007), yet required for maximal adherence and 

invasion of the HeLa cell line (Jain et al., 2008). A previous study examining the effect of 

supernatants from cultures of CDT+ and CDT- isolates on the gastrointestinal (GI) tract of 

mice resulted in no significant pathology in the GI tract of CDT- isolates while mice fed 

supernatants from CDT+ isolates demonstrated moderate to severe pathology (Jain et al., 

2008). Considering the conflicting nature of previous reports in regards to the role of CDT 
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in pathogenesis and the potential interaction between A. polyphaga and C. jejuni in 

aquatic settings, we hypothesized that CDT may have a central role in the exploitation of 

protists. The fact that C. jejuni ∆FlaAFlaB was rarely recovered from A. polyphaga in the 

gentamicin protection assay (and when it was, it was detected at very low numbers) 

combined with the consistent recovery of C. jejuni ∆CDT, ∆LuxS and WT from A. 

polyphaga trophozoites suggests that C. jejuni invades A. polyphaga in a manner 

dependent on a functional flagellar export apparatus, which is consistent with the trigger 

method. In regards to A. polyphaga, observations suggest that non-motile C. jejuni is not 

phagocytosed by the amoebae under nutrient rich conditions. Both the wild type and 

mutant strains of C. jejuni showed a decrease in the number of bacterial cells recovered 

following exposure of A. polyphaga to gentamicin sulfate for 2 h compared to 1 h. It is 

unclear whether the decrease in cell concentration is due to killing of internalized C. 

jejuni by A. polyphaga or penetration of gentamicin. Killing by A. polpyhaga is unlikely 

as no C. jejuni ∆FlaAFlaB mutants were internalized and this would have been expected 

in the event A. polyphaga was actively feeding on the bacterium. Gentamicin protection 

assays are often limited to a few hours as gentamicin will penetrate into the cells over 

time (Hamrick et al., 2003). Recently, bacteriophages have been proposed as an 

alternative to antibiotics for protection assays (Hamrick et al., 2003), and may aid in 

future studies concerning the long-term fate of intracellular C. jejuni. 

Persistence of A. polyphaga during periods of unfavourable conditions is 

facilitated by formation of a cyst. Other bacterial pathogens, including Mycobacterium 

avium and L. pneumophila have been demonstrated to survive encystment/excystment of 

A. polyphaga, after which they were recovered by direct plating (Kilvington and Price, 

1990; Steinert et al., 1998).  In the encystment/excystment assay used herein, which is 
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similar to those employed previously, C. jejuni was not recovered following direct plating 

nor enrichment suggesting C. jejuni does not survive encystment of A. polyphaga or it 

survives by entering VBNC state.  

In conclusion, the data presented here suggests that C. jejuni invades A. polyphaga 

in a manner consistent with the trigger method in which the T3SS (in this case the 

flagellar apparatus) is required for invasion. Cytolethal distending toxin and quorum 

sensing via AI-2 are not required for entry. C. jejuni does not exploit encystment of A. 

polyphaga for prolonged survival. Further studies are warranted; specifically involving 

fluorescence microscopy to determine the fate of internalized C. jejuni cells following 

engulfment by, and encystment of A. polyphaga. 
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CHAPTER 6 

Conclusions and Future Research 

At the onset of this project, little was known in regards to the seasonal distribution 

of C. jejuni and protistan community structure in river waters in southern Alberta and 

even less was understood in regards to the mechanisms by which C. jejuni persists in the 

presence of phagotrophic protists. The following hypotheses were investigated as part of 

the research reported herein: 

1. C. jejuni is present in southwestern Alberta rivers and exhibits a seasonal trend of 

abundance and persistence similar to other waterborne pathogens. 

2. A diverse community of viable protists, including phagotrophic protists are present in 

southwestern Alberta rivers and the composition of the protistan community varies 

seasonally. 

3. The ability of C. jejuni to exploit phagotrophic protists is dependent on the bacterium 

possessing a functional flagellar export apparatus, the capability to communicate in a 

density dependent manner (quorum sensing), and the ability to produce the cytolethal 

distending toxin (CDT). 

These hypotheses are interconnected; in order for protists to play a role in the 

transmission of waterborne C. jejuni to humans in southern Alberta it must be 

demonstrated that both C. jejuni and protists capable of serving as hosts for C. jejuni are 

present.  

Research findings presented in Chapter 3 demonstrate that C. jejuni is present in 

southwestern Alberta rivers throughout the year. A seasonal trend in C. jejuni abundance 

was not observed by qPCR; however, the majority of culture-based isolations were during 

the winter months. In addition, C. jejuni concentrations did not correlate with 
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physicochemical properties of water and the environment sampled. It is possible that the 

PCR-based enumeration quantified a large population of VBNC cells, capable of 

resuscitation following ingestion by a suitable host such as humans, thereby representing 

a significant public health concern.  

The exploration of protistan diversity presented in Chapter 4 revealed that 

planktonic protists, including protozoans are abundant in river water in southwestern 

Alberta, and that conspicuous seasonal shifts occur in the community structure.  The T-

RFLP data combined with clone libraries support the theory of moderate endemicity for 

planktonic protists in river water as NMS analysis clustered samples according to time 

rather than location. The spring library was dominated by Chloroplastidae (29.8 %), 

Centrohelida (28.1 %), and Alveolata (25.5 %), while the summer and fall libraries 

contained primarily fungal clones (83.0 % and 88.0 %, respectively). Alveolata (35.6 %), 

Euglenozoa (24.4 %), Chloroplastida (15.6 %), and Fungi (15.6 %) dominated the winter 

library. Sanger clone libraries suggest the genera Heterophrys of the centrohelid 

heliozoans are prevalent protozoans during the spring. These organisms are of particular 

interest because Heterophrys spp. are bacteriophagous.  

A. polyphaga was used as a model protozoan to study interactions with C. jejuni in 

Chapter 5. Isolates of clinical origin and isolated in southern Alberta from diarrheic 

humans survived longer in co-culture than in the presence of growth media or bi-products, 

suggesting that phagotrophic protists may play a role in their survival outside vertebrate 

hosts. Data indicated that C. jejuni invades A. polyphaga in a manner consistent with the 

trigger mechanism in which the T3SS is required for invasion. However, cytolethal 

distending toxin and quorum sensing via AI-2 are not required for entry. If C. jejuni 
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exploits encystment of A. polyphaga as a survival mechanism outside of vertebrate hosts, 

it is likely in a VBNC state. 

In addition to furthering our understanding of freshwater ecosystems and the 

epidemiology of C. jejuni, research findings presented herein could have implications for 

future water treatment facilities. It has previously been demonstrated that protozoan cysts 

and trophozoites are resistant to chlorination and pathogens such as L. pneumophila, 

which are able to replicate within trophozoites, have caused significant outbreaks. An 

example of which occurred during the summer of 2012 in Quebec in which 177 people 

were infected by L. pneumophila, 13 of which died. In Lethbridge, drinking water is UV 

irradiated to disinfect the water of protistan pathogens (e.g. Cryptospordium and Giardia), 

but the effect of commercial UV treatment on deactivation of pathogenic bacteria within 

protistian cells is unknown and warrants investigation. As a result, additional water 

treatment measures may be necessary. Furthermore, molecular signatures of a wide array 

of protozoans have been found in treated drinking water (Valster et al., 2009), and it is 

currently unknown if and to what degree these protozoans protect enteric pathogens 

thereby contributing to the burden of disease in humans. 

 

Future Research 

The research reported in this thesis identified a number of important future 

opportunities. Areas warranting additional research are: 

 

1. Due to the manner in which river water samples were processed, it is unlikely the 

molecular signatures detected by qPCR represented dead C. jejuni cells (those without 

intact cell membranes); however, additional studies using DNA intercalating/crosslinking 
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agents such as EMA or PMA to exclude these signals from downstream analyses would 

improve our confidence in the detection of VBNC C. jejuni by qPCR. 

 

2. Molecular epidemiological studies are required to better understand the origin of 

C. jejuni isolates infecting humans in southwestern Alberta and elsewhere. Many 

techniques have been developed for strain typing and have varying resolving power. This 

includes multilocus sequence typing (MLST), restriction fragment length polymorphism 

or short variable sequencing of the flaA gene (flaA RFLP and flaA SVR, respectively), 

pulsed field gel electrophoresis (PFGE) and comparative genomic fingerprinting (CGF); 

these methods rely on subtle changes in genomic content or composition to differentiate 

between isolates. CGF is perhaps the most robust method developed to date with the 

added benefit of being relatively inexpensive, high throughput, and requires minimal 

specialized equipment (Taboada et al., 2012). CGF relies on genes which are variably 

absent or present (VAP), most of which are located within 16 hypervariable regions of the 

C. jejuni genome (Taboada et al., 2012). Currently, the function of these VAP genes is 

unclear and it is uncertain if they play a role in adaptation to specific hosts or if strains can 

regain this genetic information. Bacterial contingency loci, or simple sequence repeats 

located within open reading frames or in promoter regions, may be an added value for 

molecular typing in combination with the above method(s). Polymerase slippage at these 

sites is responsible for mutations which in the case of SSRs in promoter regions, act as a 

switch, turning a set of genes on or off, or in the case of SSRs in open reading frames, by 

potentially altering phenotype (Moxon et al., 2006). C. jejuni isolates possessing a 

number mutations including single nucleotide polymorphisms within their genomes 

relative to the parent strain were observed during infection of a human (Inglis et al., 
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unpublished data); it is possible that these genetic changes reflects a host adaptation . 

Therefore, knowing the nature of the genetic changes associated with different hosts, we 

may be able to infer the origin of the isolate. 

 

3. Heterophrys spp. were prevalent in the protistan diversity study during the spring 

sampling time, when many pathogens are also at increased densities. As such, they are of 

interest for investigation into native species which may play a role in the persistence of 

pathogens.  Heterophrys spp. are not easily obtained as there are no type strains available 

in the Culture Collection of Algae and Protozoa (CCAP) nor the American Type Culture 

Collection (ATCC). There is also very limited genomic data in the NCBI database on the 

Heterophrys genus, making the design of genus-specific primers extremely difficult. An 

isolate of Heterophrys marinara is maintained by the Woods Hole Oceanographic 

Institution culture collection and was isolated from sea water. As such, efforts to isolate 

and study Heterophrys spp. in fresh water are worthwhile. Not only is it an organism of 

interest in the protection of bacterial pathogens, but it is highly likely that Heterophrys 

spp. in fresh water represents novel eukaryotic species. Furthermore, isolation of 

Heterophrys would allow researchers to study its role in freshwater ecosystems. 

Centrohelid heliozoans can be distinguished based on morphology as they contain a 

unique organelle, the centroplast, which contains axonemes with radially extended 

axopodia that play a role in capturing food and can be retracted rapidly (within ~20 ms) 

(Bardele, 1975). In addition, many centrohelid heliozoans have a surface layer of siliceous 

scales (Zlatogursky, 2010). 

  



 

96 
 

4. During the study of protistan diversity, a significant obstacle was encountered in 

the use of the 18S rRNA gene as a target gene. Plant clones belonging to the Solanaceae 

family of plants dominated all clone libraries, making up as much as 80-90% of 

amplicons. This required that these clones be identified and removed prior to sequencing. 

In the current study, solonaceous clones were identified by restriction digest profiles; 

however, this was time consuming and would not be suitable for next generation 

sequencing approaches which bypass the cloning step.  

An alternative approach may lie in the use of blocking primers (Vestheim and 

Jarman, 2008), which have been used in metagenomic studies to selectively inhibit the 

amplification of undesired templates, in this case, solanaceous plants. There are three 

types of blocking primers including: (1) annealing inhibiting blockers; (2) elongation 

arrest blockers; and (3) annealing inhibiting blockers. The most basic blocking primer 

design relies on small differences in sequences near annealing sites; however, this is 

problematic for universal binding sites, which are highly conserved. An alternate blocking 

primer approach includes a dual priming oligonucleotide (DPO). With a DPO, two 

primers are linked by five deoxyinosine nucleotides, which enables them to behave like 

separate primers and thus keeping a suitable Tm. The 5’ end of the DPO overlaps with the 

annealing site for the universal primer while the 3’ end overlaps with a short sequence 

specific for the undesired template (Vestheim and Jarman, 2008). The 3’ end is modified 

with 2,3-diphosphoglycerate (DPG), which prevents extension of the primer.  

This problem could also be approached at the post-amplification stage. For 

example, a restriction endonuclease that only cuts DNA of the 18S rRNA gene of 

Solanaceae plants could be used to screen this DNA. Following PCR amplification, one 

could set up a restriction digest and subsequently isolate sequences of interest (uncut 
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amplicons) via agarose gel electrophoresis and gel extraction. In terms of further sampling 

the protistan communities of southwestern Alberta rivers, next generation sequencing in 

combination with blocking primers could prove useful due to the massive increase in 

sequence data obtained and may help in the discovery of rare taxa. The deeper coverage 

provided by next generation sequencing would be useful in studying protistan diversity. 

Furthermore, as next generation sequencing is approaching the DNA read lengths 

obtained by Sanger sequencing will facilitate a better understanding of the biogeography 

of protists as deeper coverage should yield more complete community profiles. 

5. In regards to the persistence of C. jejuni in the presence of phagotrophic protists, 

additional research, including the use of microcosm water and incubation temperatures 

closer to temperatures experienced in river water are warranted. Fluorescence microscopy 

and alternative protection assays (e.g. bacteriophage protection) would provide additional 

insight into the long term fate of C. jejuni following invasion. 
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Appendix B. SPYDER, a new method for in silico design and assessment of 16S rDNA 
primers for molecular microbial ecology2 

 

ABSTRACT 

Molecular microbial ecology studies are heavily reliant on “Universal” 16S rDNA 

primers for elucidating microbial community structure and composition yet primer design 

and optimization is often overlooked. Primers which exhibit minor biases due to primer-

template mismatches can substantially alter the pool of amplicons from a community 

DNA sample resulting in inaccurate conclusions. As a result, it is important that primers 

are critically evaluated against the most comprehensive datasets available prior to 

commencing molecular microbial community studies. We present a user friendly, 

Window-based method named Spyder for the in silico design and assessment of 16S 

rDNA primers. The method utilizes the Ribosomal Database Project’s probe match 

feature coupled with a compact program (Available at 

http://people.uleth.ca/~selibl/Spyder/Spyder.html) which aligns and identifies mismatches 

between primers and templates. To demonstrate the value of Spyder, we assessed 

commonly used “Universal” and Phyla specific primers and identifed primer 

modifications that improved coverage of target organisms by 5-42% as well as removed 

excessive degeneracies. 

 

 

                                                 
 

2 A version of this chapter was published as: Thomas M.C., Thomas D.K., Selinger L.B., Inglis G.D. (2011). 
SPYDER, a new method for in silico design and assessment of 16S rRNA gene primers for molecular 
microbial ecology. FEMS Microbiology Letters, 320(2):152-159. 
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INTRODUCTION 

It is estimated that over 99% of bacteria have yet to be cultured (Brooks et al., 

2007). While the application of molecular-based approaches has greatly increased our 

knowledge of microbial ecology, molecular methods are fraught with problems of their 

own (Forney et al., 2004). The current flow for culture independent microbial community 

analyses stems from the work by Pace and colleagues, who described a technique for 

amplifying 16S rRNA genes from bulk nucleic acid extractions using “Universal” 

primers. Sequences are then classified and compared using phylogenetic trees (Pace et al., 

1985). As the vast majority of molecular ecology studies targeting microorganims depend 

on polymerase chain reaction, they are subject to the associated biases. Surprisingly, this 

is often overlooked by microbial ecologists. 

The 16S rRNA gene is the gene of choice for molecular ecology studies focusing 

on prokaryotes due the fact that the gene is: (a) ubiquitous, (b) highly conserved, and (c) 

possesses enough variability to discriminate between taxa. Primers targeting the 16S 

rRNA gene for domain- or phyla-specific studies must adhere to a type of “Goldilocks” 

state; that is, not too exact in that it excludes desired species or genera, yet exact enough 

to prevent the inclusion of undesired contaminants in subsequent analyses. Initial primers 

were designed from sequence data obtained from cultured species. As a result, these 

primers are not comprehensive. None-the-less, many researchers still frequently utilize 

‘universal’ primers developed in the early 1990’s. Over the past two decades, sequence 

databases, including those containing 16S rDNA data, have expanded tremendously, and 

the large size of the databases presents a significant challenge to researchers wishing to 

design/utilize primers for bacterial ecology studies as most prokaryotic taxa within the 

databases have no or few cultured representatives. Furthermore, major bias exists towards 
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just four out of 25 phyla, namely the Actinobacteria, Bacteriodetes, Firmicutes, and 

Proteobacteria (Hugenholt, 2002). According to the SILVA SSU REF release 102 

database (Pruesse et al., 2007), these four phyla comprise nearly 86% of 16S rRNA gene 

sequences currently available. Despite this lack of representation by rare or under sampled 

phyla, sequence databases such as that used by the Ribosomal Database Project (RDP) 

(Cole et al., 2009) Probe Match program, contain in excess of 1.6 million 16S rDNA 

sequences. Databases have become so large that it is impractical to manually align and 

analyze sequences for broad-spectrum primer design. While programs like ARB (Ludwig 

et al., 2004) and PRIMROSE (Ashelford et al., 2002) have been developed with features 

to assist in the design of comprehensive primers, neither have the functionality to allow 

the user to subjectively enter degenerate bases based on alignments. Furthermore, the 

computing power required to run either program on modern databases in their entirety is 

far beyond that of the average computer. As a consequence, partial databases containing 

representative sequences are often used. Lastly, ARB is a Unix based program and thus 

presents an additional barrier for individuals that are not well versed in the use of this 

operating system.  

Concerning primer design, conserved regions are sought out for proper primer-

template annealing; however, there is no such thing as a truly ‘universal’ primer due to the 

nature of the 16S rRNA gene as mutations have been accumulating throughout 

prokaryotic evolution. As a result, mismatches between primer and template are 

inevitable. It is widely accepted that mismatches between primers and targets at the 3’ end 

of a primer can result in no amplification or greatly reduced amplification efficiency yet 

the ramifications of mismatches occurring at other locations have received little attention 

until relatively recently. Furthermore, the assumption that a PCR reaction can tolerate two 
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mismatches between primer and template is often used as a baseline for in silico analyses; 

however, amplification in a multi-template PCR reaction can differ substantially making 

this premise an oversimplification. For example, using qPCR a single mismatch occurring 

from the mid-point to the 3’ end between primer and target was shown to reduce 

amplification 1000-fold (Bru et al., 2008). As such, it is critical that primers are designed 

with care to ensure accurate profiling of community structures. A reduction in 

amplification may not be an issue when dealing with pure DNA samples originating from 

a single organism, yet it has major consequences when interpreting 16S rDNA libraries 

constructed for the purpose of community analysis. Sequence databases, such as RDP 

(Cole et al., 2009) and SILVA (Pruesse et al., 2007), have grown exponentially since their 

inception yet many primers commonly in use today have not been assessed in relation to 

the massive amount of sequence data currently available. This is due in part to the fact 

that there are few efficient means of data mining and evaluating primers against today’s 

massive databases. The purpose of this study was to design a user friendly Windows-

based program capable of quickly analyzing data gathered from the Ribosomal Database 

Project Probe Match, allowing users to identify sites in which current primers are not 

comprehensive, and to improve upon those primers.  

 

MATERIALS AND METHODS 

Program design and implementation 

The program developed (Spyder) was designed in PERL and uses the Needleman-

Wunsch algorithm (Needleman & Wunsch, 1970) via dynamic programming, a type of 

recursion that keeps track of each previous recursive step (i.e. Smart recursion). The 

similarity matrix (Table B.1) is used to generate a scoring matrix based on the alignment 
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of primer and target. The matrix is a slight modification of a generic scoring matrix for 

the four bases ‘A C T G’. The modifications take into account the possibility of 

degenerate bases, which are often encountered in sequence databases. Degeneracies were 

assigned scores (Table B.1) such that the score of the degenerate base is the summation of 

the scores for each possible combination between the degeneracy and the corresponding 

base. For example, the degenerate base “H” – could be either base “A”, “C” or “T”, 

therefore the score for “H” is the sum of scores for “A”, “C” and “T”. The scoring matrix 

is used to assign scores for all positions in every possible alignment between the primer 

and target. Each possible alignment is scored through a trace back of the scoring matrix 

and the optimal alignment (i.e. that with the highest score) selected. 

 

Primers evaluated and RDP Probe Match search parameters 

Commonly used 16S rDNA primers (Table B.2) were evaluated against sequences 

within  the RDP database (Cole et al., 2009). Primer-target regions were selected 

according to their approximate annealing position relative to Escherichia coli (Genbank 

Accession J01695) (Figure B.1). The antisense (-) strand was selected for forward 

primers, and sense (+) strand for reverse primers. Regions were selected such that they 

ensured coverage of the primer binding site while maintaining maximal coverage of the 

database, which was verified by retrospective analysis of the Spyder output (instructions 

provided as supplemental document ‘Application of Spyder to the Ribosomal Database 

Project Probe Match.doc’). 
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Table B.1. Similarity matrix for alignment algorithm showing scores assigned to matched 

and mismatched nucleotide bases including scores for degeneracies3. 

 A G C T R Y B D K M H V S W 

A 10 -1 -3 -4 9 -7 -8 5 -5 7 3 6 -4 6 

G -1 7 -5 -3 6 -8 -1 3 4 -6 -2 1 2 -4 

C -3 -5 9 0 -8 9 4 -8 -5 6 6 1 4 -3 

T -4 -3 0 8 -7 8 5 1 5 -4 4 -7 -3 4 

R 9 6 -8 -7 15 -15 -9 8 -1 1 1 5 -2 2 

Y -7 -8 9 8 -15 17 9 -7 0 2 10 -6 1 1 

B -8 -1 4 5 -9 9 8 -4 4 -4 8 -5 3 -3 

D 5 3 -8 1 8 -7 -4 9 4 -3 5 0 -5 6 

K -5 4 -5 5 -1 0 4 4 9 -10 2 -6 -1 0 

M 7 -6 6 -4 1 2 -4 -3 -10 12 9 7 0 3 

H 3 -2 6 4 1 10 8 5 2 9 13 0 4 7 

V 6 1 1 -7 5 -6 -5 0 -6 7 0 8 2 -1 

S -4 2 4 -3 -2 1 3 -5 -1 0 4 2 6 -7 

W 6 -4 -3 4 2 1 -3 6 0 3 7 -1 -7 10 

                                                 
 

3 Degeneracies listed are standard IUPAC letters where R=A or G, Y =C or T, B=C, G, or T, D=A, G, or T, 
K=G or T, M=A or C, H=A, C, or T, V=A, C, or G, S=G or C, and W=A or T. 
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Primer improvement 

The Spyder output was analyzed manually for indels and substitutions. Those 

which were abundant relative to the number of available sequences for the searched 

region were noted and necessary degeneracies or modifications completed. Updated 

primers were then re-analyzed using the RDP Probe Match service to determine the effect 

on target and non-target sequences. Modified primers were checked using OligoCalc 

(Kibbe, 2007) to ensure no decrease in primer quality (i.e. similar GC content, no self-

complementarity, hairpins, or 3’ primer-primer complementarity). 

 

RESULTS AND DISCUSSION 

The Spyder program was able to successfully process over 1,000,000 sequences in a 

matter of minutes using a relatively modest computer (Core 2 Duo processor at 2.1 GHz 

with 4 GB of RAM). Conducting such an analysis on an aligned 16S rDNA database is 

not practical due to the size of current databases, which can easily exceed 100 MB. The 

primers analyzed matched between 48 and 97% of target sequences currently available 

with zero mismatches. All primers showed improved coverage by allowing two 

mismatches in the RDP probe match search parameters; however, the increase in coverage 

was often accompanied by an increase in non-specific matches for phyla and class 

specific probes (Table B.3). The Spyder output, which consists of a text file summarizing 

the location of indels and substitutions, was used to identify locations where degeneracies 

could be introduced to compensate for common mismatches. A second analysis using 

RDP Probe Match was used to evaluate the new primer and verify that it did not 

compromise specificity (Table B.4). OligoCalc confirmed primer quality, including 

suitable GC content, and the absence of self-complementarity, hairpins, and 3’ primer-
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primer complementarity (data not shown). The most substantial improvements were for 

the primers targeting Alphaproteobacteria (Alf28f), Gammaproteobacteria (Gamma395f), 

Bacteriodetes (CFB555f), Firmicutes (Firm350f), and Archaea (A571F) primers resulting 

in 22, 42, 15, 18, and 26% increases in coverage respectively while non-specific 

mismatches remained low (0.03-2.56%) (Table B.4). 

Analysis of primers designed using ARB and Primrose (i.e. those designed by 

Muhling et al., 2008) by Spyder indicated that these primers could be improved without 

sacrificing specificity by adding targeted degeneracies (Table B.4). This may be because 

databases are more comprehensive and/or that ARB does not include a feature for 

including degeneracies in the primer design (Muhling et al., 2008). Spyder also identified 

improvements (5.9% increase) of the commonly used Eubacterial primer F27, which is 

the forward primer used along with R1492 for the Human Microbiome Project Sanger 

sequencing libraries (Turnbaugh et al., 2007). The F27 primer was also the forward 

primer of choice in the recent survey of the microbiota of the oral cavity of healthy adults 

in which over 10,000 full length 16S rDNA sequences were analyzed (Bik et al., 2010). In 

the majority of cases, Spyder determined that only the forward or reverse primer of a 

standard set could be improved. The lack of non-specific hits associated with the 

improved primer indicates that it may be beneficial to use a comprehensive universal or 

alternate primer to complete the pair in the event that the current primer pair possesses 

differential coverage. Adding degeneracies is a common method for improving primers; 

however, it is possible that too many degenerate sites will diminish the primers target 

specificity. As such, other methods to increase mismatch tolerance should also be 

considered such as using long primers (25+ bases long), increasing dNTP concentrations,
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MgCl2, and annealing time, as well as using annealing temperatures below the Tm of the 

primers (Kwok et al., 1994). PCR cycle number should also be minimized along with the 

pooling of multiple PCR products to reduce the high variation which is inherent in the 

early stages of multi-template PCR (Brooks et al., 2007). Inosine, found naturally in the 

5’ position of the tRNA anticodon, is capable of annealing to A, C, G or T and may be 

added to primers to improve binding. Although the relative binding efficiencies differ, I-C 

> I-A > I-T ≈ I-G (Martin et al., 1985), adding inosine to the 3’ termini of primers has 

been shown to improve mismatch tolerance (Ben-Dov et al., 2006). The primer Beta359f 

contained mismatches at the 3’ terminus. To reduce the detrimental effect of this 

mismatch, Spyder indicated that the last guanosine could be replaced with inosine to 

increased coverage (Table B.4). Due to the redundancy of the genetic code, primers can 

be designed such that they end at DNA positions corresponding to the 1st or 2nd bases of 

a codon, avoiding the wobble position. These results emphasize that further analyses are 

necessary following conventional primer design for molecular microbial ecology as the 

ideal primer may not always be identified. Ultimately, primer selection should be 

approached with care. Current knowledge of community structures should be used as a 

guide for primer choice and design; multiple primers, either universal or targeting specific 

groups can also be used (Muhling et al., 2008), though this strategy is accompanied by 

additional costs and analyses. Periodic reassessment of primers (e.g. using Spyder) is 

important as 16S rDNA databases are continually expanding and may contain biases 

towards primers currently in use for community analyses. Such biases are not only a 

direct result of insufficient design, but they are compounded as mismatched templates 

become less abundant as the cycle number increases (i.e. if a primer binds unfavourably to
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a sequence but permits amplification, future amplification cycles will favour the 

‘corrected’ sequence thus making it harder to detect the mismatch). This is particularly 

problematic for primer sites near the 5’and 3’ ends of the 16S rRNA gene as few studies 

perform amplifications originating from flanking regions.  

As primers are gradually improved, they will approach true discrimination 

between microorganisms. In silico design of PCR primers has been instrumental in the 

design of current 16S rDNA primers and the utility of in silico design has been validated 

in the past (Baker et al., 2003, Blackwood et al., 2005, Muhling et al., 2008). Many in 

silico PCR reactions allow two mismatches as a baseline yet this may need to be revised 

to a weighted system in which mismatches are assessed based on the type and location of 

the mismatch. The novel analysis described in this study can easily be applied as a tool to 

evaluate primers against sequences in the RDP database and will facilitate the 

identification of superior primers targeting the 16S rRNA gene. 
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