
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2012

Two novel ensemble approaches for

improving classification of neural networks

Zaamout, Khobaib M

Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2012

http://hdl.handle.net/10133/3241

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185287236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TWO NOVEL ENSEMBLE APPROACHES FOR IMPROVING
CLASSIFICATION OF NEURAL NETWORKS

KHOBAIB M. ZAAMOUT
Bachelor of Science, University of Lethbridge, Lethbridge, Alberta, 2010

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Khobaib Zaamout, 2012

To my parents and my wife, may God bless them.

iii

Abstract

The task of pattern recognition is one of the most recurrent tasks that we encounter in

our lives. Therefore, there has been a significant interest of automating this task for many

decades. Many techniques have been developed to this end, such as neural networks. Neu-

ral networks are excellent pattern classifiers with very robust means of learning and a rela-

tively high classification power. Naturally, there has been an increasing interest in further

improving neural networks’ classification for complex problems. Many methods have been

proposed.

In this thesis, we propose two novel ensemble approaches to further improving neu-

ral networks’ classification power, namely paralleling neural networks and chaining neural

networks. The first seeks to improve a neural network’s classification by combining the

outputs of a set of neural networks together via another neural network. The second im-

proves a neural network’s accuracy by feeding the outputs of a neural network into another

and continually doing so in a chaining fashion until the error is reduced sufficiently. The

effectiveness of both approaches has been demonstrated through a series of experiments.

iv

Acknowledgments

First and foremost, I would like to thank Dr. John Zhang for his support and guidance.

This thesis could not have been written without him. He not only served as my supervisor

but also encouraged and challenged me throughout my M.Sc. program accepting nothing

less than my best efforts. Many thanks to my committee members Dr. Yllias Chali and Dr.

Gongbing Shan for helping me in directing my work and for reading my thesis and giving

me feedbacks.

I would like to thank Mr. Ben Burnett for setting up Condor (High Throughput Com-

puting) and providing me with tremendous help and information that allowed me to make

use of it. Without condor, it would have taken me months to finish my experiments. I also

would like to thank Mr. Shah Mostafa Khaled for the help he provided to me throughout

my degree. His patience in reading and correcting my scribbles as well as lending me his

ear for any problem I encountered has given me much encouragement. I also would like to

thank my brother Sa’ad Zaamout for his support on the home front, cooking, cleaning, and

attending to me without a complaint. For that I will always be in debt.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Intelligence . 1
1.2 Artificial Intelligence . 2
1.3 Pattern Recognition . 3

1.3.1 Linearly Separable Problems . 5
1.3.2 Nonlinearly Separable Problems 7

1.4 Artificial Neural Networks . 9
1.4.1 Basics . 9
1.4.2 Different Types of Neural Networks 13

1.5 Our Contributions . 14
1.6 Thesis Outline . 15

2 Background 16
2.1 The History of Neural Networks . 16
2.2 Learning in Neural Networks . 18
2.3 Back-propagation Neural Networks . 21

2.3.1 Basics . 21
2.3.2 Learning . 23

2.4 Advantages of Neural Networks . 25
2.5 Disadvantages of Neural Networks . 26
2.6 Structure Estimation . 27
2.7 Improving Classification in Neural Networks 27

2.7.1 Preprocessing . 28
2.7.2 Model Manipulation . 30
2.7.3 Ensemble and Modularity . 31

vi

3 Data Preparation 35
3.1 The Datasets . 35

3.1.1 Agassiz - Tomato Yield Dataset 35
3.1.2 Synthetic Dataset . 36
3.1.3 Steel Plates Faults Dataset . 37
3.1.4 Restaurant Reviews Dataset . 38

3.2 Preparation . 38
3.2.1 Correlation-based Feature Selection 39
3.2.2 Principal Component Analysis . 40
3.2.3 ReliefF . 41

4 Paralleling Neural Network Ensemble 43
4.1 Approach Formulation . 43
4.2 Experiment Setup . 44
4.3 Results . 47
4.4 Analysis and Discussions . 51
4.5 Summary . 54

5 Chaining Neural Network Ensemble 55
5.1 Approach Formulation . 56
5.2 Experiment Setup . 58
5.3 Results . 59
5.4 Analysis and Discussions . 59

5.4.1 DAGA Analysis . 60
5.4.2 DSPF Analysis . 63
5.4.3 DRER Analysis . 66
5.4.4 DSY N Analysis . 66

5.5 Summary . 67

6 Conclusion 70
6.1 Our Contributions . 70

6.1.1 Paralleling Neural Network Ensemble 71
6.1.2 Chaining Neural Network Ensemble 71

6.2 Future Work . 72

Bibliography 73

vii

List of Tables

1.1 The inputs and outputs of the logical AND. 5
1.2 Outputs of the linear form for the logical AND problem. 7
1.3 The inputs and outputs of the logical XOR. 7

3.1 Summary of datasets. 36
3.2 DSPF instances distribution over class values. 37

4.1 Results summary (MAE (epoch, learning rate, momentum)). 46

5.1 DAGA chaining results. 61
5.2 DSPF chaining results. 63
5.3 DRER chaining results. 66
5.4 DSY N chaining results. 67
5.5 Summary of errors from typical, SLCs, and MLCs networks’ error after

training. 68

viii

List of Figures

1.1 Logical AND is linearly separable. 6
1.2 Logical XOR is nonlinearly separable. 8
1.3 A single neuron or perceptron. 10
1.4 General structure of a neural network. 11
1.5 The XOR neural network structure. 12

2.1 The sigmoid function. 22
2.2 An ensemble architecture. 32
2.3 Modular neural architecture. 34

4.1 The pure paralleling approach vs. enhanced paralleling approach. 45
4.2 Classification on DAGA’s subsets using typical neural networks vs. pure

paralleling approach. 47
4.3 Classification on DAGA’s subsets using enhanced paralleling approaches vs.

pure paralleling approach. 48
4.4 Classification on DSPF ’s subsets using typical neural networks vs. pure

paralleling approach. 48
4.5 Classification on DSPF ’s subsets using enhanced paralleling approaches vs.

pure paralleling approach. 49
4.6 Classification on DSY N’s subsets using typical neural networks vs. pure

paralleling approach. 49
4.7 Classification on DSY N’s subsets using enhanced paralleling approaches vs.

pure paralleling approach. 50
4.8 Classification on DRER’s subsets using typical neural networks vs. pure

paralleling approach. 50
4.9 Classification on DRER’s subsets using enhanced paralleling approaches vs.

pure paralleling approach. 51

5.1 Single-Link Chaining. 57
5.2 Multi-Link Chaining. 57
5.3 Classification on DAGA and its derived subsets PCA, CFS and ReliefF using

SLC. 60
5.4 Classification on DAGA and its derived subsets PCA, CFS and ReliefF using

MLC. 61
5.5 Error response to epoch in DAGA SLC networks vs. regular neural networks. 62
5.6 Error response to epoch in DAGA MLC networks vs. regular neural networks. 62
5.7 Error response to epoch in DSPF SLC networks vs. regular neural networks. 64
5.8 Error response to epoch in DSPF MLC networks vs. regular neural networks. 64
5.9 Error response to epoch in DRER SLC networks vs. regular neural networks. 65
5.10 Error response to epoch in DRER MLC networks vs. regular neural networks. 65
5.11 Error response to epoch in DSY N SLC networks vs. regular neural networks. 67

ix

5.12 Error response to epoch in DSY N MLC networks vs. regular neural networks. 69

x

Chapter 1

Introduction

Undeniably computers have transformed our lives. With computers, we possess the power

to perform millions of computations in fractions of a second. The processing power and the

consistency of such power make it possible to execute an enormous number of instructions

with minimal errors, a task that is typically detested by humans. Some may wonder if such

a tremendous ability of computers would constitute something we call intelligence.

1.1 Intelligence

Intelligence is defined by Merriam-Webster as “the ability to learn or understand or to

deal with new or trying situations” [1]. This definition, of course, does not encompass

the entire concept of intelligence since some animals, such as monkeys, dolphins, parrots,

etc., are able to learn, understand and reason in new situations but they are viewed as less

intelligent than humans. However, we shall consider this definition as a framework of the

measurement of intelligence. In other words, an intelligent agent would be capable of:

1. learning: the ability to encode and utilize new knowledge toward a general target.

2. understanding: the ability to make necessary adjustments in behavior in accordance

to the meaning implied in the knowledge.

Dealing with a new situation calls for having the ability to learn ideas and be able to

understand and predict the outcomes of different situations. This ability allows forecast-

ing and decision making. By this framework, computers are not intelligent agents since

they lack learning and understanding. Therefore, computers lack decision making capa-

bilities and are incapable of adjusting to new situations or new information. Therefore,

1

given the computational power of computers and the consistency of this power, the chal-

lenge becomes how we could formulate a given problem in such a way that all it requires

is straightforward calculations to reach the desired outcome. Artificial intelligence is con-

cerned with exactly this [50].

1.2 Artificial Intelligence

Many people have attempted defining artificial intelligence. The majority of the definitions

consider intelligent agents to be those that think like humans and act like humans [50].

Evidently, all these definitions are human-centric. This is quite natural since our ultimate

example of intelligence is the human being. The field of artificial intelligence is concerned

with the development of intelligent agents capable of learning, understanding and therefore,

making decisions and predictions [50].

Of course, the task in artificial intelligence is not always to develop intelligent agents.

Rather, in most cases it is to formulate a problem in a manner that makes attaining a solution

a matter of processing. Scientifically speaking, it is to recognize a pattern of solutions

and then reformulate the problem in terms of the pattern. For example, a map navigation

problem can be formulated as a search problem as follows: present the map as a matrix

with passable and non-passable squares and specify an initial location in the matrix and a

destination location. Then, the solution can be achieved by employing a search algorithm,

such as breadth-first graph search algorithm [50].

Artificial intelligence has many subareas that deal with different types of problems or

deal with a problem from different viewpoints. For example, logical artificial intelligence

deals with representing knowledge of an environment in which an agent is supposed to act

[40]. It creates the basis of the agent’s world such that it will be able to make decisions

and infer behaviors. Search artificial intelligence deals with formulating a problem in such

2

a manner that the solution can be achieved using a search technique just as in the map

navigation problem described above.

Due to our limitations to understand, formulate, and model very complex problems,

not all problems can be formulated and solved deterministically. With some problems

we have no intuition regarding underlying relationships among various variables involved.

Therefore, we have to be able to find solutions, or approximate solutions, while operating

under uncertainty.

Consider a situation where we need to find relationships among various variables of

a problem in order to formalize them. The problem can be translated to finding patterns

among large number of variables. For example, the analysis of weather data can yield

information on some relationship between rain and humidity, which then allows us to draw

conclusions on the weather type. Therefore, we will be able to make classifications on the

weather types, given the humidity, or predict the humidity level for a day, given the type of

weather. This task essentially acquires knowledge by learning from data.

In the above example, data are any logical, numerical, or textual variables that can

be processed in order to derive knowledge regarding the relationship between rain and

humidity. Information in this example is the patterns, associations, or relationships among

all the variables which can be understood and thus provide knowledge. The underlying

field behind this learning and understanding is called pattern recognition.

1.3 Pattern Recognition

The task of pattern recognition is perhaps one of the most important and recurrent tasks that

we encounter in our daily activities. Unlike computers, humans have the ability to perform

many complex pattern recognition tasks effortlessly. For example, consider a task of text

reading without expression or understanding. A person with qualifications of a third grader

3

can perform this task with utmost flawlessness. This task is purely a pattern recognition

task. The reading process we undergo consists of vaguely two stages. Firstly, one has to

be able to recognize various shapes in a given text as alphabets and properly name them.

Secondly, the person must be able to recognize the different groups of these alphabets as

words and pronounce these words in a manner that is comprehended by others. Perhaps the

task of recognizing printed alphabetical shapes is not a very difficult task for a computer.

A simple template matching technique would succeed. But if we vary the problem slightly,

by using hand written text rather than printed one, then the template matching technique

would fail easily.

As humans, we have this “given” talent of being able to see patterns that are nearly im-

possible to formulate. The task of pattern recognition is loosely defined by Fukunaga [21]

as the task of determining to which category or class a given input instance belongs. In

other words, it is the task of assigning a class label to a given input instance or generally

being able to differentiate an instance from others by assigning a unique class to it.

Pattern recognition consists of two stages: feature extraction and classification [9].

Feature extraction is the task of providing measurements on a given input pattern. These

measurements constitute properties of an input pattern that define the framework of its

classification. In other words, these measurements are variables that define a problem

domain. Feature extraction is an important task in pattern recognition. Without reliable

features, the task of classification is impossible.

Classification is the task of mapping the features to specific predefined classes [12].

When examining the relationship between inputs and classes, we see that there are two

different types of relationships that require different tools to handle them. In the next two

sections, we shall consider two examples that demonstrate these different types.

4

Table 1.1: The inputs and outputs of the logical AND.
x y x∧ y
1 1 1
1 0 0
0 1 0
0 0 0

1.3.1 Linearly Separable Problems

Consider the logical AND problem. In this problem the task is to determine the class of the

output of the function f (x,y) = c, given all the possible combinations of the values of the

variables (i.e., features) x and y, as shown in Table 1.1.

The features or variables of this problem are x and y. Each of the variables, including

the output, can be either zero or one. The relationship between the input variables and the

classes (i.e., outputs) is determined to be linear. That is, this problem is linearly separa-

ble. The reason is that the relationship can be modeled using a general linear form, as in

Equation 1.1. We can rearrange this equation and change it to Equation 1.2.

Ax+By+C = 0 (1.1)

−(A/B)x−C/B = y (1.2)

The problem then becomes finding the proper ratio between A and B such that for all

the inputs x and y there is a line that is perpendicular to the weight vector (A,B) that divides

the output into two sets of distinct classes, as demonstrated in Figure 1.1. The three solid

dots in the figure represent the elements of one class and the other empty dot represents the

only element of the other class. In other words, the correct values for A and B must allow

the equation to produce values larger than zero for the inputs of one class and smaller than

5

.
x

y

(0,1)

classification lineweig
ht

ve
cto

r (
0.7

5,0
.75

)

.

.
(0,0)

(1,1)

(1,0)

Figure 1.1: Logical AND is linearly separable.

or equal to zero for the inputs of the other class. We can examine the classification line for

the logical AND problem using the values A = 0.75, B = 0.75 and C =−0.75, as is shown

in Table 1.2. From this table we can clearly see a defining point in the outputs. All the

instances of one class have been scored values less than or equal to zero while the instance

of the other class have been scored a value larger than zero.

When dealing with linearly separable pattern recognition problems, many techniques

can be employed. In the case of classification, multivariate linear regression [24], k-nearest

neighbors [24], or decision trees [24], to name a few, can be used. Multivariate linear egres-

sion is also known as multiple linear regression. It is the technique we used in classifying

the logical AND problem shown before. It attempts to find a dividing line between the

classes of a problem by adjusting the weight vector. The k-nearest neighbors is a technique

that classifies each record in a dataset based on k similar instances’ classes in the dataset.

The new instance will belong to the same class that the k similar instances belong to. The

similarity is established by many ways, for instance, the Euclidean distance or Manhattan

distance [24]. A decision tree is a tree-like structure that performs regression and classifi-

cation. Given an input, the tree returns a decision. The tree is typically geared towards a

specific target decision. In the case of pattern recognition, the decision would be whether a

given input belongs to a specific class or not.

6

Table 1.2: Outputs of the linear form for the logical AND problem.
x y Ax+By+C
1 1 0.75
1 0 0
0 1 0
0 0 -0.75

Table 1.3: The inputs and outputs of the logical XOR.
x y x⊕ y
1 1 1
1 0 0
0 1 0
0 0 1

1.3.2 Nonlinearly Separable Problems

Now, let us consider another example that is similar to the first in terms of the input vari-

ables but substantially different in terms of the classification.

In this problem, similar to the previous one, the task is to determine the class of the

output of f (x,y) = c, given all the possible combinations of the values of the variables x

and y, as shown in Table 1.3.

The relationship between the input variables and the classes (i.e., outputs) is determined

to be nonlinear. The reason is that it cannot be modeled using a general linear form, as in

Equation 1.1. That is, this problem is nonlinearly separable. Finding the proper ratio

between A and B such that, for all the inputs x and y, there is a line perpendicular to the

vector (A,B) that divides the output into two sets of distinct groups, is impossible, as shown

in Figure 1.2.

From this Figure, the impossibility of finding a straight line to divide the two sets is

evident. In other words, it is not possible to find values for A and B that allows the equation

to produce values larger than zero for the inputs of one class and smaller than or equal to

zero for the inputs of the other class. Therefore, a linear classifier will not be able to solve

7

.

.

x

y

(1,0)(0,0)

(0,1) (1,1)

Class #1Class #2

Figure 1.2: Logical XOR is nonlinearly separable.

this problem and a nonlinear approach is needed.

When the relationship between the inputs and the output classes is nonlinear (non-

linearly separable) then the task becomes more difficult. Moreover, it is not always the

case that all the variables can be captured and the captured variables are not always well

measured. For example, consider a real-world problem of predicting the weather in an

upcoming day, given some variables, such as the past days’ temperatures, humidity, pres-

sure, etc. This problem is not well-defined since we do not know if the given variables

are sufficient for predicting the weather. Furthermore, it is very common to have missing

values, glitches, or noise in each of the variables, due to, for instance, sensor malfunctions

or interference. In such cases, a model that is error tolerant, robust, and capable of learning

is required.

For such tasks, many models present themselves, such as Bayesian networks. Bayesian

networks are graph-like probabilistic models that provide the probabilities of a given input

belonging to a specific class given previous data [24]. They learn posterior probabilities

of events, or patterns, directly from the data such that they can make generalizations on

them. This approach is well-known for its robust learning and fault-tolerance since they

depend on general trends of data and the underlying distributions rather than specific values.

Furthermore, it allows for incorporating prior knowledge and assumptions of a problem

8

domain by encoding them as distributions or relations into the learning process. However,

this approach suffers from over simplification of problems since the distributions learned

or encoded by experts can overfit the data and therefore can make nonrealistic predictions.

Also, Bayesian networks have no robust means to estimate its structure, although some

methods have been proposed. Therefore, they require a great deal of expertise and trial-

and-error tests. Moreover, Bayesian networks require large amount of data in order to

properly estimate the conditional probabilities.

Another model presents itself in dealing with the same situation. Neural networks are

nonlinear predictive models that learn through training, as shall be seen in the following

section.

1.4 Artificial Neural Networks

Artificial neural networks, also named neural networks, connectionist models, parallel dis-

tributed processing models, perceptron, adaline, learning matrix, or neuromorphic systems,

are mathematical models based on our present understanding of biological nervous sys-

tems. Though the name strongly suggests that they are an imitation of the biological neural

networks, the fact is that neural networks are a simplification of the biological model in

that they only imitate the structure of the biological model through a collection of simple

computational units interlinked by a system of connections.

1.4.1 Basics

A neural network consists of intricately interconnected components called neurons. The

neurons are simple computational elements. The task of each neuron is to sum up the

values of all other neurons connected to it. If the summation value exceeds some pre-

9

.

.

.

.

x1

w2

3w

w

w5

w4

1
w

n

x2

3x

x4

x5

nx

ixiwΣ

0w

y

Figure 1.3: A single neuron or perceptron.

set threshold value, the neuron produces a value; otherwise, it produces another value. A

single-unit neuron, named perceptron, as graphically illustrated in Figure 1.3 and mathe-

matically defined in Equation 1.3, resembles multiple linear regression model in which the

expected response y is related to the inputs X = (x1,x2, ...,xn). Neural networks consist of

many neurons that resemble multiple linear regression models and thus each neuron acts

as a tuning filter for a particular pattern in the data. This fact shows that neural networks

simultaneously explore many hypotheses on different patterns in a given problem.

y = f (w0 +
N

∑
i=1

wixi) (1.3)

As shown in Equation 1.3, a neuron sums N weighted inputs and a bias and then passes

the result of its summation through some nonlinear thresholding function, such as hard

limiters, sigmoid function, tanh function, etc. Therefore, the produced value of a neuron

becomes nonlinear. Moreover, the fact that the neuron produces different values depending

on the threshold limit contributes to the nonlinearity of the outcome. Of course, there are

more complex neurons which perform operations other than summation, such as temporal

integration, but their use is limited to special cases.

Figure 1.4 shows a complete example of a neural network. The basic structure of a

10

...
...

...

Input Layer

...

. . . .

. . . .

. . . .

Hidden Layers Output Layer

Figure 1.4: General structure of a neural network.

neural network consists of an input layer which contains the input nodes that represent and

take in values of problem domain variables. Each of the input nodes connects to all neurons

in the next layer via weighted links. The neurons of this layer are called hidden neurons

and the layer is accordingly named hidden layer. A neural network can have many hidden

layers with various numbers of hidden neurons. The number of hidden layers and neurons

is typically decided based on a trial-and-error process such that the chosen number makes

the network perform the best classification while keeping the computations feasible. The

neurons of each hidden layer are connected to all neurons from the proceeding layer via

weighted links. The final layer in a neural network is called the output layer. This layer

determines the class for each input instance.

The logical XOR problem we described previously, for example, can be solved using a

simple multilayer neural network, such as the one shown in Figure 1.5. With a threshold

value of zero (0) for the neurons of the hidden layer, this network will yield the value

zero (0) for instances of one class (where x and y are equal) and the value one (1) for the

instances of the other class (where x and y are not equal).

11

Output LayerHidden Layer

1

1

−1

−1

1

1

Input Layer

x

y

Σ

Σ

Σ

Figure 1.5: The XOR neural network structure.

Neural networks provide a great degree of robustness and fault tolerance. Their robust-

ness is due to the training process via feedback loops which, together with nonlinearities of

the neurons, make them very adaptive to changes and therefore can handle complicated dy-

namic real-world problems. The fault tolerance of neural networks is due to the relatively

large number of hidden neurons. Since each of them is strongly connected to all neurons

or input nodes, damage to a few nodes, neurons, or links will not significantly impair the

overall performance [38].

Most neural network learning algorithms adapt connections’ weights to improve per-

formance based on the error of classification. Adaptation or learning is a major advantage

of neural networks. The ability to adapt and continue learning is essential in problems,

such as hand writing recognition or speech recognition where new inputs are continuously

encountered. Moreover, since neural networks are non-parametric models, they make no

assumptions regarding underlying distributions and learn directly from data. This property,

combined with the adaptation capability, provides a high degree of robustness which allows

for accommodating variabilities in inputs [38].

There are many types of neural networks developed with intriguing capabilities. In the

following section, we present a few of them that we find to be interesting.

12

1.4.2 Different Types of Neural Networks

Feedforward Neural Networks

This type of neural networks is the simplest and most commonly used. It is the first network

that learns and has an accommodating structure. In this network, inputs propagate strictly

in one direction. That is, through the input nodes, the input gets weighted, summed, and

projected by some thresholding function in the hidden neurons of the hidden layer(s), if

any exist. The results are then further weighted, summed and projected onto the output

layer. Feedforward neural networks contain no cycles in their structure and are typically

constructed from two different types of neurons, binary and continuous. Binary neurons use

hard limiters as their thresholding functions, i.e., they output either zero or one. Continuous

neurons use a continuous function, such as sigmoid, tanh, or radial basis functions [38, 16,

34, 36, 60, 63].

Feedforward networks use back-propagation of delta errors as the means of learning.

That is, the training data consists of pairs of an input and a target. With this approach an

input is presented to the network and the output is compared with the target. If they differ,

the weights of the network are altered slightly to reduce the error in the future output. This

is repeated as necessary until the network produces the desired output.

Recurrent Neural Networks

Recurrent neural networks are bi-directional feed networks. Their basic structure was cre-

ated in the 1980s. The network consists of a number of neurons connected to each other via

directed links. The neurons transport information backward through the network as well as

forward. This way, the network can memorize the previous states of the hidden layers with

13

each input presented [45].

Cascading Neural Networks

Cascade correlation is a neural network architecture and a supervised learning algorithm

developed by Scott Fahlman and Christian Lebiere [18]. Instead of just adjusting the

weights in a network of fixed topology, cascade correlation begins with a minimal network,

and then automatically trains and adds new hidden neurons one by one, creating a multi-

layer structure. Once a new hidden neuron has been added to the network, its input-side

weights are frozen. This unit then becomes a permanent feature-detector in the network,

available for producing outputs or for creating other more complex feature detectors.

The cascade correlation architecture has several advantages over other learning algo-

rithms. The network learns very quickly and can determine the size and topology of its

network structure. Moreover, it retains the structure it has built even if the training set

changes, and requires no back-propagation of errors through the connections of the net-

work.

1.5 Our Contributions

Our contributions in this thesis target improving the classification of neural networks. We

propose two novel ensemble techniques, paralleling neural network ensemble and chaining

neural network ensemble.

The paralleling ensemble technique uses a neural network to combine the predictions

of a collection of neural networks with the intention to improve the classification. Detailed

explanations and discussions can be found in Chapter 4. The chaining ensemble technique

aims at improving classification by feeding the predictions of one neural network into an-

14

other and repeatedly doing so such that each newly produced network will contain the

predictions of all or some previous networks. This technique is shown to be very effective

and is discussed in detail in Chapter 5.

1.6 Thesis Outline

This thesis consists of six chapters. In Chapter 2 we will give a brief history of neural

networks followed by an overview of back-propagation neural networks and their learning.

Moreover, we will discuss some of their advantages and disadvantages and overview some

of the structure estimation techniques available. In Chapter 3 we will describe the datasets

we used to validate our approaches. Information such as the sources of the datasets, how the

data was gathered, attribute descriptions, and some descriptive statistics will be provided in

this chapter. In Chapter 4 we will describe our paralleling ensemble approach and narrate

the process we undertook for performing our experiments as well as discuss in detail our

experiments results. In Chapter 5 we will describe our chaining ensemble approach, detail

the process we undertook, and discuss experiment results. Chapter 6 concludes the thesis

with some remarks on our future work.

15

Chapter 2

Background

2.1 The History of Neural Networks

The study of the human brain and its cognitive process dates back thousands of years. How-

ever, it was not until the last two centuries that formulations and scientific explanations of

the internal works of the human brain have been given. The main questions that needed

to be addressed were those of learning, information representation and storage, and infor-

mation recall. In 1873, Bain [7] recognized that the human brain consists of intricately

connected components called neurons, each of which connects to others via synapses. He

theorized that the memory in the brain is formed as a reaction to a stimulus from an envi-

ronment. He further theorized that the memory consists of a set of nerve currents weaker

than that produced by the causing stimulus. Moreover, he suggested that the ability to

recall a specific memory requires that an association first be made with another memory,

sensation, or motor action via some kind of neural growth. These two ideas gave birth to

the first threshold neural structure and laid the basis to what came to be known as Bain’s

adaptive rule [7, 43].

In 1890, an American psychologist James [29] restated Bain’s adaptive rule and at-

tributed all thoughts and motor actions to the flow of neural electrical currents named en-

grams. James proposed that the flow of electrical current is directional. That is, the current

flows from charge-saturated regions to regions lacking electrical charge. He proposed that

the intensities of thoughts and actions are in direct relation to the current flow rate [29, 43].

James’s proposal defines learning as adapting or forming new paths between neurons that

are repeatedly active together [55]. Although his work contains no mathematical formu-

lation of learning, it strongly resembles a key local neural learning mechanism, such as

16

Hebbian learning which will be discussed later in this chapter.

It was not until 1938, when electronics and computers had become available, that the

first attempt was made to model human thinking process. Rashevsky [43] devised an elec-

tronic circuit similar in structure to that in Figure 1.5, showing how a binary logic XOR

operation could be implemented using addition and subtraction operations. In 1943, a

neuro-physiologist Warren McCulloch and a mathematician Walter Pitts formulated the

McCulloch-Pitts Theory of Formal Neural Networks [26], which was implemented using

simple electric circuits. Their implementation came to be the first known artificial neural

network. However, their proposed network lacked learning and adaptation. In 1949, Don-

ald Hebb [26] laid the basis of the concept of neural learning by describing how neural

connections can be strengthened or weakened each time they were used. His work became

the essence of Hebbian learning.

In 1958, Frank Rosenblatt developed the perceptron [47], as shown in Figure 1.3. The

perceptron was the first learning and adaptable artificial neural network that employs super-

vised learning to learn its weights. The robust and adaptive nature of this model answered

significant questions, such as in which form information is stored and how stored informa-

tion influences recognition, etc.

The perceptron is the simplest form of a neural network since it is only capable of

classifying linearly separable patterns which is a major downfall. Its structure consists of

input nodes, a single output neuron, adjustable weights, and a bias. Rosenblatt proved that

the perceptron learning algorithm converges when training samples are sampled from two

linearly separable classes [6]. The perceptron ignited research into neural networks and

ushered in a new age for artificial intelligence [9, 43].

In the 1970’s Self-Organizing Maps (SOM) were developed by Teuvo Kohonen [35]. In-

spired by the studies of the visual cortex region in the brain, SOM are unsupervised neural

networks that learn to map a set of artificial neuron inputs to outputs in lower dimensional

17

space. That is, SOM reduce the dimensionality of the input data while performing unsu-

pervised training and classification. In other words, they provide a way of transforming

multidimensional data to data in much lower dimensionality. This reduction of dimen-

sionality employed by SOM is in essence a data compression technique known as vector

quantization [9, 43].

In 1982, Hopfield [9, 43] introduced a new type of neural networks that became known

as the Hopfield model. The structure of this model is similar to the one of a perceptron

but is different in that it has bi-directional connections between neurons. Moreover, the

network has no special input nodes and the neurons are fully connected and symmetrically

weighted. That is, the weight of a connection from one neuron to another is the same in

both directions. Hopfield networks learn using a Hebbian-variation rule which maintains

the locality of Hebbian learning rule, i.e., connections between neurons become stronger

or weaker depending on their associations, but differs from the Hebbian rule in that the

network changes its connections’ weights in a manner such that fewer paths will be active.

In 1986, back-propagation networks were introduced by a number of researchers. These

networks are excellent classifiers and are applicable to large number of problems. We use

this type of networks throughout our work. In Section 2.3, we shall discuss them in more

detail. In the following section, we shall discuss key learning techniques used in neural

networks.

2.2 Learning in Neural Networks

Learning in the context of neural networks is defined by [26] as a process by which the

free parameters of a neural network are adapted through a process of stimulation by the

environment in which the network is embedded. The type of learning is determined by a

manner in which the parameter changes take place. In other words, the learning process of

18

a neural network is determined by a manner in which the tuning features of the network

are to be changed. The tuning features are weights, threshold values, etc. The stimuli that

actuate the tuning process differ and are determined by the environment. In some cases,

delta error in prediction is used while in others spatial distance is used. The differences in

the stimuli and in the manner the tuning features are changed determine the type of learning

we are performing.

There are three main categories of learning, supervised learning, unsupervised learn-

ing, and hybrid learning [28]. Supervised learning is also known as learning with a teacher.

In this type of learning, a neural network is presented with input patterns along with their

corresponding expected outputs. When the network’s output is not equal to the expected

output, the difference is used as the actuator of change of the weights of the network. Un-

supervised learning, as the name suggests, does not require the target value or expected

output. The network learns the underlying structure in the data and becomes able to orga-

nize the patterns. Hybrid learning uses both the supervised and the unsupervised techniques

on different patterns such that the weights of some parts of the patterns are determined with

the supervised learning while the others are determined using the unsupervised learning.

Sometimes both techniques are applied to all the patterns. A brief overview of the most

common and effective methods of neural learning is presented below.

As mentioned above, neural networks have a large number of learning mechanisms,

such as Hebbian learning, memory-based learning, competitive learning, boltzmann learn-

ing, etc. Hebbian learning is a supervised local learning technique that is derived from

a theoretical neural learning mechanism proposed by Donald Hebb in 1949. The locality

of learning means that changes to any given connections’ weights are only related to the

two neurons connected through it. Some criticism toward Hebbian learning is in that the

Hebbian weights tend to grow exponentially [9, 26].

Memory-based learning is a group of learning algorithms that depend on memorizing

19

the training data and performing classification explicitly on the stored instances. In this

type of learning, the past training instances are stored in memory and then recalled when

classification of a new input is required. There are many algorithms under memory-based

learning. For example, nearest neighbor is a memory-based learning algorithm that defines

the locality of a new instance as the nearest instance to it, and therefore the class of the new

instance is the one of its nearest. On the other hand, k-nearest neighbors algorithm defines

the locality as the closest k instances to the new instance where k is an integer greater than

zero. According to this algorithm, the class of a new instance becomes the one of the

majority of its neighbors [26].

Competitive learning is a learning rule based on the idea of “winner takes all“. In this

type of learning weights are adjusted such that only one neuron in a layer at a specific

iteration can fire at a time. Competitive learning is useful for classification of categorical-

class data and is especially useful for discovering statistically significant features [26]. The

mechanism of allowing one neuron to output at a time forces neurons to become feature

detectors specialized on different classes of input patterns. The winner neuron learns by

removing some of the weights of all its inactive inputs and distributing that weight equally

amongst the active inputs. No learning occurs for the other neurons.

Boltzmann Learning is developed by Geoffrey Hinton and Terry Sejnowski [3]. Boltz-

mann learning is a statistical stochastic learning algorithm that introduces a new neural

structure [26]. Neural networks built around this rule are named Boltzmann machines.

These are undirected graphical models that are symmetrically connected with neuron-like

units that make stochastic decisions about whether to be on or off. They provide a pow-

erful tool for representing a dependency structure among random variables. The learning

process is governed by an energy function in which the learning task attempts to minimize

[26, 3].

The learning strategy used in back-propagation is, abstractly speaking, learning from

20

mistakes. Similar to the perceptron network, the error of a network is determined by the

difference between the network’s prediction and the actual class value. The error is then

propagated backwards to contribute to the weight adjustment for each connection in the

network in each layer. Since our work uses this learning mechanism, it is discussed more

below [9].

2.3 Back-propagation Neural Networks

2.3.1 Basics

Back-propagation networks are multi-layered networks that use back-propagation learn-

ing. Back-propagation learning is a supervised learning that is an extension of the Widrow-

Hoff delta rule to multiple layers proposed in 1986 [26]. The name of this learning mech-

anism stems from the way that the error of a network under training propagates backwards

to adjust the connections’ weights. The networks built around this learning technique are

very robust, error tolerant, and adaptable.

The power of back-propagation neural networks is rooted in their structure and learning

mechanism. The basic structure is shown in Figure 1.4. It consists of as few layers as three

or as many layers as a computer can handle. The same can be said about neurons. The basic

neuron of the network is similar to a perceptron and is shown in Figure 1.3. The typical

structure of a back-propagation neural network consists of three layers, an input layer, at

least one hidden layer, and an output layer.

Figure 1.4 shows a template of neural networks. The input layer contains the input

nodes that represent and take in the values of the variables of a problem domain. Each

input node connects to all the neurons in the next layer via weighted connections. Input

nodes are the representation of an environment in which the network is trying to learn. The

21

0.75 10.50.250−0.25−0.5−0.75−1

0

1

0.75

0.25

0.5

Figure 2.1: The sigmoid function.

neurons of the hidden layer(s) are named hidden neurons. A neural network can have many

hidden layers with various numbers of hidden neurons. The number of hidden layers and

neurons is determined using many techniques as will be discussed in Section 2.6. Each

neuron in a hidden layer is connected to all neurons in the proceeding layer via weighted

connections.

The final layer in a back-propagation neural network is named the output layer. This

layer contains a number of output neurons. These neurons determine the class for each

input instance. The output neurons, as well as the hidden neurons, are more intricate than

the input nodes, as demonstrated in Figure 1.3. They are computational units which sum

up the weighted inputs and project them into some thresholding function. The value of

the thresholding function gets weighted and propagated to the next layer, given that the

summation value exceeds the threshold limit, as formulated in Equation 1.3. The most

common thresholding function used in back-propagation neural networks is the sigmoid

function formulated in Equation 2.1 and illustrated in Figure 2.1.

f (x) =
1

1+ e−x (2.1)

The sigmoid function is a type of logistic functions, also named thresholding or transfer

22

function, that resembles an “S” shape and produces values within the range [0, 1]. The

reason of popularity of the sigmoid function is due to the fact that it is differentiable which

eases the weight adjustment process [50].

2.3.2 Learning

Back-propagation learning, also named delta rule, error-correction, or widrow-hoff, is a

form of supervised learning that trains a given network based on expected outputs. That is,

the network is trained on making predictions by repeatedly adjusting its weights such that

its predicted output matches the expected output or comes subjectively as close as possible.

This process can be formalized as follows. For a given untrained network, the weights

w of the connections are initially assigned through some mechanism, such as random as-

signment or constant value assignment. The back-propagation learning algorithm adjusts

the weights of the untrained network with each training iteration i in proportion to the error

of the prediction e(i) produced by the network (i.e., the difference between the network’s

output y(i) and the actual desired output d(i) associated with the specific iteration e(i)), as

in Equation 2.2 [9, 26, 28].

e(i) = d(i)− y(i) (2.2)

Equation 2.2 constitutes the stimulus that triggers the weights’ adjustment process. In

order to make the weights’ adjustment proportional to the error, we need to define a cost

function based on the error produced at each training iteration i. This cost function must

not exhibit the same oscillation behavior of the error function e(i). Otherwise, this would

make automating the error reduction a much more difficult task. The learning algorithm

observes and attempts to reduce the values produced by a cost function defined based on

23

the error of Equation 2.2. This cost function is defined in Equation 2.3.

ε(i) =
1
2

e2(i) (2.3)

The task of learning becomes an optimization task of minimizing the cost function ε(n)

and thus can be solved using some methods, such as Gradient Descent. The mechanism

by which the weights are adjusted is the merit of the learning. In this learning mechanism,

the adjustment for each connection’s weight wk j, connecting neurons k and j, for a specific

training iteration i is defined in Equation 2.4:

∆wk j(i) = ηε
‘(i)x j(i)+β(wk j(i−1)−wk j(i−2))

∆wk j(i) = ηek(i)x j(i)+β(wk j(i−1)−wk j(i−2)) (2.4)

where η is the learning rate. Learning rate is a neural network’s control or tuning param-

eter. It is used by some learning algorithms to control the amount of weights that need to

be adjusted. Typically, the value of the learning rate ranges between [0, 1]. A high learn-

ing rate causes the network to make radical changes to the weights, making the previously

learned weights almost overruled at each iteration. This may cause the network to diverse.

On the other hand, a low learning rate allows for small weight changes, which causes the

network to take longer to converge. Another control parameter is momentum, denoted as

β. It is a term associated with each connection that varies within range [0, 1]. Its main pur-

pose is to help reduce the oscillation of the weight changes and to prevent the system from

converging to a local minima or saddle point. Therefore, it helps the objective function to

converge faster and ultimately speeds up the learning process. Setting a momentum too

high can create a risk of missing the minimum while a momentum that is too low cannot

24

reliably avoid local minima [53].

Now that we have determined the weight adjustment value ∆w j, we can formulate the

update value for a specific weight at the next iteration w j(i+1), as shown in Equation 2.5.

wk j(i+1) = wk j(i)+∆wk j(i) (2.5)

2.4 Advantages of Neural Networks

Neural networks’ advantages are due to their components, such as the thresholding func-

tions, their structures, and learning mechanisms. They are excellent classifiers as they are

able to classify both linearly and nonlinearly separable problems. This is due to the non-

linear transformation they perform on the learned data which allows them to fit linearly

separable problems as well as more complex nonlinearly separable problems [57].

Many learning algorithms and neural structures have emerged, giving neural networks a

selection of methods to improve performance. Neural networks are also error tolerant. This

is largely due to the relatively large number of neurons they contain. Errors in the form of

missing data, noise or glitches get averaged out over the entire network. This effectively

reduces their impact to minimal. Neural networks are also very robust in that for given a

dataset, neural networks can adjust themselves to fit the given data automatically via some

learning algorithm [26].

The true power of neural networks is demonstrated when they are applied to complex

multivariate nonlinear problems. Neural networks require no prior assumptions or knowl-

edge regarding the underlying relationships between variables of a given problem, since

they learn directly from the data in a robust manner.

Neural networks express many statistical techniques, i.e., regression models from sim-

ple linear regression to projection pursuit regression, nonparametric regression, general-

25

ized additive models, logistic regression, Fisher’s linear discriminant function, classifica-

tion trees, etc. [16]. This furthered interest in neural networks in the fields of data analysis.

Although neural networks are effective, there are still many ways to improve their

classification accuracy. Many techniques, such as the input preprocessing, modular ap-

proach [39] and the ensemble technique [25, 44, 64], etc., can be used toward this end.

These techniques will be discussed in Chapter 2.7.

2.5 Disadvantages of Neural Networks

A major disadvantage of neural networks is in the difficulty to interpret the meaning of

its structure. That is, given a trained network, it is difficult to derive meanings from the

weights of the network to understand the underlying relationships between the inputs and

the outputs. Although the network is excellent at detecting significant features and rela-

tionships, it is difficult to understand them [57].

Neural networks require a large number of training instances to be able to generalize

well on a given problem. Moreover, they require knowing, prior to training the network,

what features of the data are more indicative to the class since neural networks do not learn

such information. Attribute selection and preprocessing, such as normalization, discretiza-

tion, etc., are often required [57], as to be discussed shortly in Chapter 3. Moreover, it

is difficult to determine the best neural network structure and learning time for a given

problem domain. Although many techniques are presented to deal with this problem, no

state-of-the-art algorithm is able to determine the best neural structure.

26

2.6 Structure Estimation

The numbers of hidden layers and neurons are typically decided based on a trial-and-error

process such that the chosen number makes the network perform the best classification

while keeping the computation feasible. Some techniques have been proposed to estimate

the structure of neural networks. They fall into two broad categories: constructive algo-

rithms and pruning algorithms [56].

Constructive algorithms start with an initially small network and iteratively add new

hidden neurons and their weights until a desired error is achieved [46]. Some of these

algorithms that demonstrated good potential include tower algorithm and its derivative

pyramid algorithm [22], upstart algorithm [20], cascade-correlation learning architecture

[18] and its extension perceptron cascade algorithm [13], and tailing algorithm [41].

On the other hand, pruning algorithms start by an initially large network and train it

until a desired error is achieved. Then the algorithm eliminates neurons that are no longer

in use [46]. Pruning algorithms can be categorized into two categories: sensitivity methods

and penalty-term methods.

The sensitivity methods provide a measure on the sensitivity of the error function of

a given network [46]. Some examples are skeletonization [42], shadow arrays [31], and

optimal brain damage [17]. The penalty-term methods operate by rewarding or penalizing

the network through some terms for choosing efficient solutions [46]. Some penalty-term

algorithms are cost function penalty [15] and error function modification [30].

2.7 Improving Classification in Neural Networks

While neural networks are effective in many application domains, there are still continuing

efforts to improve their classification accuracy and general performance. There are three

27

areas in which neural network models can be improved. Since the classification task is a

process relying on inputs, classification model, and output utilization and boosting, it is

in these parts that work can be done to enhance the accuracy and efficiency of the task of

classification.

Inputs or features are variables of a problem domain. They differ in their descriptiveness

of a target class. Models are any type of classifiers which can be tuned via some control

properties of the models themselves. Output utilization and boosting are manipulations of

the results of a model such that the output is enhanced. The general categories of these

tasks are preprocessing, model manipulation, and ensembles and similar techniques.

Preprocessing is a general term for any operation performed on the input data prior to

feeding it to the classifier. Since neural networks do not select or rank attributes based

on their benefit for classifying the class, like in logistic regression for instance [57], pre-

processing is sometimes needed. Model manipulation is the changes or adaptations per-

formed on the structure of a given model such that it improves its classification. In back-

propagation neural networks, the parameters, such as learning rate, momentum, number

of hidden layers and neurons, and choice of thresholding function, are all aspects of the

structure of the network in which improvements can be made. Ensemble and modularity

are techniques developed to utilize the outputs of a number of neural networks in order to

arrive at better classification.

2.7.1 Preprocessing

Preprocessing means to perform some work on the raw data in order to enhance or extract

specific features to improve accuracy of classification [51]. In our work, we make use of

two main preprocessing methods, namely, data normalization and cleaning, and attribute

selection.

28

Data normalization refers to the task of reducing a variable’s range to a predetermined

range, typically [0, 1]. The need for data normalization comes of the use of thresholding

function. The sigmoid function, for example, requires the data to be normalized to [0, 1].

Sola and Sevilla [54] have demonstrated that normalization has reduced network training

iteration and final error.

Data cleaning is a general term that targets many problems, such as Fourier transfor-

mation and low-pass filters for signal noise removals, discretization and modulation for

binning continuous signals, etc. However, in our case, we use it to refer to outlier removal

process. This task is concerned with removing contradictions from the training data. Rosin

et al. [48] have shown that removing outliers helps reduce overfitting. They demonstrate

the impact of outliers removal on neural network learning by applying a k-nearest neigh-

bors filter to the input data.

Attribute selection, feature selection, dimensionality reduction, etc. are preprocessing

techniques that select a subset of features from a given data set such that the selected subset

will increase classification accuracy while reducing dimensionality and complexity of the

data. This technique is commonly used in machine learning. Typically, attribute selection

methods are performed to target specific characteristics in the data, such as correlation

between attributes and classes, distinguish-ability of the instances, etc.

There are many methods that can be applied to perform this task. Each method avail-

able has its advantages and disadvantages. In order to select a suitable method, one must

have a good understanding of the nature of the input data and the classifier that will be used.

For the purpose of our work we employ Correlation-based Feature Selection (CFS), Reli-

efF, and Principal Component Analysis (PCA), which will be discussed later in Chapter 3.

These methods are used to target the following characteristics in our data:

1. Correlation among attributes (excluding class). We employ PCA to reduce the di-

29

mensionality of the data and derive new attributes that are completely independent

of each other, so called orthogonal attributes.

2. Dissimilarity of an attribute’s values belonging to different classes and the similarity

of these values belonging to the same class. ReliefF aims for this purpose. Ideally,

an attribute will have a set of values belonging to each class category and the sets for

different classes do not intersect.

3. Correlation between attributes and class. CFS selects a subset of attributes that are

most correlated with the class and least correlated with each other. Also using ReliefF

could exclude the attributes that are highly correlated among different classes.

There are no guarantees that the produced subset is the optimal one. If such a subset is

needed, one has to perform a comprehensive search of the problem domain attributes such

that all possible subsets are evaluated using standardized neural network and thus the best

subset chosen would most certainly be the one that produces the lowest error. However,

this method is not computationally feasible.

2.7.2 Model Manipulation

Model manipulation refers to tuning the various control properties of a neural network, such

as learning rate, momentum, the target function, the learning rule, the number of hidden

layers and neurons. We have discussed the different learning rules, the different structures,

and the different control properties of neural networks in Section 2.2. In this section we

overview few methods for improving neural network efficiency and prediction power.

A significant amount of literature has discussed the benefits of dynamic learning rate on

the learning performance of back-propagation neural networks. When examining a given

network’s error in response to learning iterations, it becomes evident that the error has a

30

trend where it increases, decreases, fluctuates, or is a combination of them. In a situation

where the error of two consecutive iterations is increasing or decreasing, it would more

efficient to increase the learning rate since the weights of the network need to be changed in

one direction. In other situations, the error would be fluctuating and therefore the learning

rate needs to be reduced such that the weight changes are not radical. This means that a

fixed learning rate is inefficient and that the network must be able to decide when to learn

faster or slower based on the error produced. A number of techniques have been suggested

for tackling this problem [19, 49, 61].

The thresholding function used in neural networks is another area where improvement

can be made. As mentioned previously, the sigmoid function is a very common function in

back-propagation networks. However, it suffers from the problem of getting stuck in local

minima. One solution to this problem is in the concept of momentum, which was discussed

previously. Another solution is in using Radial Basis Function (RBF) [9, 60, 10, 11].

2.7.3 Ensemble and Modularity

Ensemble

The ensemble techniques [25, 44, 64] have been proposed as a mechanism to improve

classification power. They aim at combining the outputs of different classifiers members,

denoted CR, trained on the same task, through some gating function to increase the overall

classification accuracy [58, 50]. Some of the combining mechanisms are, plurality, where

the correct classification is the one that was agreed upon by the largest number of ensemble

members, majority voting, where the correct classification is the one voted on by more

than half of the ensemble members, etc. [25]. The ensemble members may be trained

using different subsets of a given data set, using different classification techniques, or using

31

1

2

3 function

CR

CR

n

CR

CR

Gating Decision

Figure 2.2: An ensemble architecture.

the same technique but varying parameters, structures, or learning mechanisms. All the

ensemble networks, however, are trained to predict the same target class, as illustrated in

Figure 2.2.

Neural networks can be used as ensemble members since they could be varied in many

ways. Those trained on the same dataset can still perform differently due to facts, such

as the randomization of training and testing sets, different initial weight values, etc. This

means that each network could result in different classifications and errors. Therefore,

a decision combining technique that is able to detect the correct classifications from a

collection of individual neural networks could avoid the different errors and produce even

more accurate classifications. Therefore, the collective decision of the ensemble is less

likely to produce errors than any single neural network does, if their outputs are handled

correctly.

Typically, the creation of a neural network requires a trial-and-error process involving

the network’s structure, e.g., input attributes, the number of hidden layers, the number of

hidden neurons in hidden layers, etc. and the network’s logical properties, e.g., neurons’

thresholds, weights, learning rate, learning iterations, etc., to arrive at one that performs the

best in terms of classification accuracy. Since the varying neural networks will make errors

on different areas of the input space [25], it is intuitively obvious that a good combining

32

technique would yield more accurate classifications.

Modular

The modular approach is concerned mainly with breaking down a problem into smaller sub

problems, in which separate networks (experts) will be trained and their outputs are then

combined [39, 58, 8, 52]. This approach differs from the ensemble in that the networks

are trained on different targets. For example, each network could be trained to predict a

different class or is trained on different data, etc.

The modular approach is dependent on two main aspects: the gating function and the

division of data. The gating function is the function that determines the correct output

from the outcomes of the expert networks. Many gating functions, such as majority voting

and plurality, can be used. The division of data is an essential part. Given a data set, the

experts will be built and trained on disjoint sets of the dataset. One example would be in the

case of movie classification. A modular approach to this problem would have a number of

expert models each trained on a separate aspect of the movie, such as audio, subtitles text,

graphics, etc., as shown in Figure 2.3. Another example is that of [5]. For a given dataset

with k classes, a modular approach to classifying this dataset is by dividing the set into

k 2-class problems such that for each subset, the classification becomes whether a given

instance in that subset belongs to a class or not.

In our work, we will present two novel ensemble approaches that are shown to be

very effective in further increasing neural networks’ classification accuracy. Moreover, we

present a new mechanism of neural chaining in which is also demonstrated to be effective

at improving accuracy.

33

NN1

Gating
Function

Inputs

NN

NNn

NN2

3

other inputs

text inputs

graphic inputs

audio inputs

Decision

Figure 2.3: Modular neural architecture.

34

Chapter 3

Data Preparation

Four datasets were used to perform the validation experiments of our proposed approaches,

as to be presented in Chapters 4 and 5: Agassiz Tomato Yield, Synthetic, Steel Plates Faults,

and Restaurants Reviews. Their summaries are shown in Table 3.1.

3.1 The Datasets

3.1.1 Agassiz - Tomato Yield Dataset

The first set, Agassiz, is denoted as DAGA. This dataset was obtained from Dr. David

Ehret, Pacific Agri-Food Research Centre. The data in the set were collected from four

independent greenhouse compartments with a growing area of 65 m2 each. A subset of 12

plants was used to measure growth and yield for each compartment. The growth of all 12

plants is averaged and recorded.

CropAssist, an agriculture application [27], was used to collect the data routinely at

one minute time interval. DAGA is a record of the growth and yield of greenhouse tomato

plants under controlled temperature, light, humidity, and feed conditions. The data consists

of 17 input variables and a single continuous class variable, as shown in Table 3.1. Each

measured variable is either averaged or summed over a one-week interval.

The input variables consist of seven (7) temperature-related variables (minimum tem-

perature, maximum temperature, average temperature during day, average temperature dur-

ing night, average temperature over 24 hours period, growing degree day GDD, and accu-

mulated GDD), three (3) humidity-related variables (Average humidity during day, night,

and over 24 hours period), four (4) light-related variables (average light during day, night

35

Table 3.1: Summary of datasets.
Dataset Name # Attributes # Instances Class Type (#) Missing Values? Data Characteristics

DAGA 17 72 Real No Time Series-Real

DSPF 27 1941 Categorical(7) No Integer-Continuous

DSY N 17 7280 Real No Times Series-Real

DRER 21 405 Categorical(2) Yes Integer

and over 24 hours period as well as the added light), one (1) growth variable which is a

measure of the growth of all above-ground tomato plant, including stems, leaves, and fruit

in centimeter, one (1) water use variable which is the amount of water retained in the plant

in milliliter, and one (1) harvest variable which is the total weight of all harvested tomatoes

in a specific day in kilogram.

3.1.2 Synthetic Dataset

The second dataset is called Synthetic dataset and is denoted as DSY N . It is a synthetic

dataset that was extrapolated from the DAGA dataset. For the purpose of our experiments,

we randomly increase or decrease each attribute’s value in DAGA by a random amount,

creating a new value from the original. This process was repeated a hundred times for

each instance in DAGA, resulting in a total of 7280 instances while maintaining the original

number of attributes, as shown in Table 3.1.

In more detail, for each variable in DAGA, the minimum value was subtracted from the

maximum value and then divided by 10, to produce a value n. Then, for each instance of

the variable, a random value between -10 and 10 is selected and multiplied by the value n

and then added to the instance of the variable to derive a synthetic data point. This process

is repeated for each variable and each instance in the dataset to derive the synthetic dataset.

It was repeated a hundred times for each instance in the original dataset, producing a total

36

Class # of

values instances

1 158

2 190

3 391

4 72

5 55

6 402

7 673

Table 3.2: DSPF instances distribution over class values.

of 7280 instances while maintaining the original number of attributes.

It should be noted that some variables adhere to certain value constraints which were

observed after having produced the synthetic data. DSY N was created to verify the efficiency

of our approach and to be used as a control dataset to demonstrate how our approaches

handle random data.

3.1.3 Steel Plates Faults Dataset

The third set is called the Steel Plates Faults dataset and is denoted as DSPF . It was ob-

tained from UCI machine learning repository1 which was donated by Semeion Research

Center of Sciences of Communication [14]. It consists of 27 independent attributes and

1941 instances. It records various aspects of steel plates, such as type of steel, thickness,

luminosity, etc., which allow predicting various faults in steel plates. The class attribute of

this dataset consists of 7 classes representing different types of faults, such as pastry, stains,

dirtiness, bumps, etc. The distribution of number of instances for each class label is very

uneven. Table 3.2 provides a summary of DSPF .

1http://archive.ics.uci.edu/ml/.

37

3.1.4 Restaurant Reviews Dataset

The fourth dataset is called Restaurant Reviews dataset and is denoted as DRER. It was

collected from a website2. It is intended to determine from customer reviews whether a

costumer will return to a reviewed restaurant or not. The data consists of 40 categorical

attributes, including a binary class and 405 instances.

The data was collected using a software program that parsed through the Restaurantica

website3. Five attributes are directly rated by customers and are accordingly named rating

variables (food quality, service quality, atmosphere quality, price range, and party size).

Variables, such as presentation, portion, consistency, variety, taste, etc. are calculated vari-

ables that were derived from the text reviews of the customers. These calculated variables

suffered a major problem of having many missing values. Therefore, many of the variables

were combined, such as presentation and portion, consistency and variety, etc. This has

solved the majority of the missing-values problem and reduced the number of attributes to

21. The logical OR was used to combine the attributes. That is, the combined value of a

number of attributes is the result of OR between all the attributes.

The distribution of number of instance for each class is uneven. Class 1 has 133 in-

stances while class 2 has 272 instances. Class 1 represents a positive intention to return to

the reviewed restaurant in the future and class 2 is the opposite.

3.2 Preparation

In order to prepare the data for experiments, we have performed data cleaning and filtering

as well as attribute selection.

For each dataset, we have applied some preprocessing filters to better prepare the data

2This dataset was gathered by Taha Azizi, from University of Lethbridge.
3http://www.restaurantica.com.

38

for the classification task. Two filters were applied: nominal to binary filter and normal-

ization and centering filter. The nominal to binary filter converts all nominal variables into

binary variables. If a nominal variable consists of k values, and if the class is also nominal,

this filter will transform the variable into k binary attributes.

Data normalization algorithms transform a given variable’s range to another given range

with minimal distortion to the data and its properties. The normalization filter we applied

normalizes all variables’ values in a given dataset, including the class, to values in the

range [-1, +1]. As mentioned previously, the need for data normalization and centering

stems from the use of sigmoid thresholding function in neural networks.

We have performed attribute selection and dimensionality reduction on our datasets

to diversify them. We employ Correlation-based Feature Selection (CFS), ReliefF, and

Principal Component Analysis (PCA), which will be discussed in the following sections.

3.2.1 Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) evaluates variable subsets rather than single

variables [23]. The intuition behind this method is that a prediction task of some target

class is more accurate if it is based on a variety of characteristics rather than a single char-

acteristic. The traits that this method utilizes are the correlation with the target class and

the inter-correlations of variables.

A selected subset of variables must be highly correlated with the target and least corre-

lated with each other. A variable that is highly correlated with a class is strongly indicative

of it, while a variable that is highly correlated with another variable is redundant. CFS uses

a heuristic for evaluating the usefulness a subset of variables. This heuristic encodes the

correlation of a subset of variables with a class label along with the level of inter-correlation

among the variables of the subset. CFS uses this heuristic to guide its search for a good

39

variable subset.

CFS selects a subset of variables based on global measures which does not take into

account locally predictive variables [23]. Applying CFS to a dataset with variables of such

predictive characteristics will certainly diminish the prediction task of this dataset.

When CFS was applied to DAGA the number of attributes was reduced from 17 to 8 and

reduced the number of attributes of DSPF from 27 to 12. Moreover, when CFS was applied

to DRER the number of attributes was reduced from 21 to 13 and when applied to DSY N the

number of attributes was reduced from 17 to 9.

3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate analysis technique that utilizes or-

thogonal transformation to transform a set of inter-correlated attributes into a new smaller

dataset of independent (i.e., orthogonal) attributes (i.e., principal components) that retain

most of the original dataset properties [2]. The principal components are defined as a linear

combination of properly weighted attributes. The first principal component accounts for the

largest amount of variance in the data while the succeeding components have progressively

less variance and are all uncorrelated with the preceding components.

The PCA process starts by creating a covariance matrix of the given data and deriv-

ing the eigenvectors and eigenvalues of this matrix. After this step, the eigenvectors are

sorted based on their corresponding eigenvalues in descending order. Then, a number of

eigenvectors are chosen such that the accumulated sum of their corresponding eigenval-

ues amounts to some predetermined percentage of the total sum. The number of principal

components is determined by the number of eigenvectors chosen. The data is then pro-

jected into eigenspace (sometimes it is said projected into PCA space) which produces

transformed non-correlated principal components.

40

When PCA was applied to DAGA the new transformed data had 17 principal components

which match the number of the attributes in the original set and when applied to DSPF the

number of principal components became 14 attributes.

Some strange results were seen when PCA was applied to DRER and DSY N . In the first,

the number of principal components became 56 as opposed to 21 attributes in the original

dataset and in the latter the number of principal components became 31 as opposed to 17 in

the original dataset. We speculate that this increase in the number of principal components

is due to the rather close covariance between the different attributes in the two datasets

which causes the produced eigenvalues to be relatively small and close in value.

3.2.3 ReliefF

ReliefF is a statistical weight-based variable selection algorithm which was inspired by

instance-based learning [4]. For a given dataset D composed of I instances, a dimensional-

ity m, and a threshold of relevance (0 ≤ τ ≤ 1), ReliefF selects variables that are relevant

to the target class [32, 33, 37]. The intuition behind this method is that a selected variable

should contain instances that are distinguishable from others of a different class while those

of the same class should have relatively close values.

The way ReliefF works is by picking a random sample composed of m triplets (a triplet

for each variable): an instance xi, its near-hit instance and near-miss instance. An in-

stance is near-hit if it belongs to the same class as xi and is in close proximity distance

to xi. An instance is near-miss if it does not belong to the same class as xi but is in close

proximity distance to xi. The distances between instances are typically determined using

p-dimensional Euclid distance. For each triplet k in a given sample xi, ReliefF updates a

weight vector that is associated with it then uses the average weight of each variable to

determined the relevance level of the variable. If the relevance level exceeds the given

41

threshold level τ, the variable is selected.

ReliefF is applicable for all types of classification problems (binary class, multiple class

[32, 33] and for continuous class [37]) and is relatively fast. It suffers from being unable

to detect and remove redundant variables. A variable is selected as long as its relevance

level is large enough. Moreover, insufficient number of training instances causes ReliefF to

make mistakes regarding the acceptable proximity distance for a certain class and therefore

may mistakenly detect near-misses and near-hits [33, 59].

When ReliefF was applied to DAGA the number of attributes was reduced from 17 to 7

and when applied to DSPF the number of attributes was reduced from 27 to 22. Also, when

ReliefF was applied to DRER the number of attributes was reduced from 21 to 13 and when

applied to DSY N the number of attributes was reduced from 17 to 4.

42

Chapter 4

Paralleling Neural Network Ensemble1

The ensemble approach is a method used to improve classification for a given task by com-

bining different classifiers via some mechanisms. This approach was discussed in Chapter

2.

The typical ensemble approach uses various heterogeneous classifiers and a probabilis-

tic gating function (i.e., a function that combines different classifiers). In this chapter, we

propose to combine structurally different homogeneous classifiers (i.e., neural networks)

via a neural network gating function, as will be shown in Section 4.1. It is possible to

create an ensemble for a specific dataset by varying the structures of the neural networks

involved in the ensemble, i.e., creating them on different parts of the dataset. It was shown

in [25, 44], among others, that the best ensemble should contain members that make their

errors on different parts of an input space.

4.1 Approach Formulation

In our approach, we propose to use a neural network, called ensemble network, to combine

a set of individual neural networks, called ensemble members, taking advantage of the

classification power of each individual network. This approach has two variations, pure

paralleling neural network ensemble, as shown in Figure 4.1 (a) and enhanced paralleling

neural network ensemble, as shown in Figure 4.1 (b).

The first variation seeks to improve the classification of neural networks by recording

the predictions of structurally differing neural networks for each instance of a given dataset

to produce a new dataset. After this, a new neural network is trained on this new dataset

1A preliminary version of this chapter is in [62].

43

in the hope of improving classification accuracy. The second variation is similar to the

first but with the addition of the attributes of the original dataset along with the predictions

from individual neural networks. Both approaches will be demonstrated and discussed in

the following sections.

In our approach, a given dataset Doriginal , that consists of a set of attributes Xoriginal and

a set of class labels Y , undergoes attribute selection, targeting specific characteristics of the

data and producing J subsets. For each of the J subsets, a neural network is constructed.

A neural network NN j is trained on the jth subset using an n-fold cross-validation process

producing a set of predictions, Pj, for instances of the subset. After attaining all predictions,

a new dataset, Densemble, is created by combining the predictions of all J neural networks.

That is, Densemble consists of Xensemble = Y ∪ j Pj. For the enhanced approach, a simple

change is made on the new dataset by combining the predictions of all J networks as well

as the attributes of the original data Xoriginal . That is, Xensemble = Y ∪Xoriginal ∪ j Pj.

The intuition behind our approach is that individual neural networks constructed us-

ing a subset of the input dataset, which shares different properties from others, represent

different views on the data from various perspectives. Therefore, combining them would

hopefully yield better classification performance. In addition, we propose to include the

original data as part of the input to the ensemble network to further enhance classifica-

tion accuracy. As will be shown in Section 4.3, such inclusion will further increase the

ensemble’s classification accuracy.

4.2 Experiment Setup

Neural networks can be varied structurally or logically. Two networks are structurally dif-

ferent when they have different number of inputs or different number of hidden layers and

neurons. Two networks are logically different when they have the same structure but use

44

1

2

3

Network
of NNs

1

2

3

Network
of NNs

NN

NN

NN

NN n

NN

NN

NN

NN n

Inputs

(a) (b)

Decision Decision

Figure 4.1: The pure paralleling approach vs. enhanced paralleling approach.

different thresholding functions, or are trained using different learning rates, momenta, etc.

As for the purpose of this chapter, we create ensemble members that are structurally differ-

ent in terms of their number of inputs. There are many ways in which the data can be varied

in order to produce structurally different neural networks, such as sampling, disjoint train-

ing sets, preprocessing, etc. [51]. In our work, we focus more on preprocessing techniques,

namely PCA, CFS, and ReliefF, as discussed in Chapter 3, to create subsets of the origi-

nal datasets that consider four different characteristics, i.e., correlation between attributes,

correlation between attributes and classes, distinguishability of an attribute’s values across

different classes, and similarity of an attribute’s values within the same class. For each of

the new subsets and the original datasets, a member network is created. A trial-and-error

process is conducted using different number of hidden layers, hidden neurons, and using

different learning rates, epochs, and momentum in order to determine the “best” network.

For the pure paralleling neural network ensemble in Figure 4.1 (a), once the set of

“best” member networks are determined, their classifications will be used as inputs, along

with the classes to be predicted, to the ensemble network. The enhanced paralleling neural

network ensemble differs in that, in addition to the inputs mentioned before, some subsets

of the original data, i.e., the ones derived from PCA, CFS, ReliefF or the entire original

dataset, will also be used as additional inputs. This situation is shown in Figure 4.1 (b).

45

Table 4.1: Results summary (MAE (epoch, learning rate, momentum)).
DAGA DSPF DSY N DRER

NNall .9037 (700, .05, .2) .0829 (750, .20, .1) 4.4498 (50, .05, .1) .0657 (100, .2, .1)

NNc f s .8481 (400, .05, .3) .0996 (750, .20, .3) 4.4416 (50, .05, .1) .0715 (50, .2, .3)

NN pca .7992 (400, .05, .1) .0943 (750, .15, .3) 4.4680 (50, .05, .1) .0866 (100, .1, .3)

NNrelie f F .8131 (750, .05, .3) .0848 (750, .15, .3) 4.4382 (200, .05, .1) .0600 (100, .2, .3)

NE .8313 (750, .05, .3) .0937 (750, .15, .3) 4.5488 (750, .05, .1) .0921 (750, .2, .3)

NEall .7171 (750, .05, .2) .0852 (550, .10, .2) 4.4479 (50, .05, .1) .0581 (400, .2, .1)

NEc f s .8493 (550, .05, .1) .0830 (700, .10, .2) 4.4408 (50, .05, .1) .0630 (150, .15, .2)

NE pca .6384 (750, .05, .1) .0850 (700, .10, .2) 4.4512 (50, .05, .1) .0689 (600, .15, .3)

NErelie f F .7022 (750, .05, .1) .0867 (700, .10, .3) 4.4336 (50, .05, .1) .0602 (750, .05, .3)

Section 4.3 will show a detailed comparative study of the performances of these neural

ensembles.

As aforementioned, in order to generate the best performing network for each of the

neural networks, a trial-and-error process is conducted to determine the structures of the

networks that reduce the error and that are the most computationally efficient. Table 4.1

shows the properties of the best performing networks for each dataset, where NN∗ is a

neural network constructed on any of the subsets, i.e., All attributes, CFS attributes, PCA

attributes, or ReliefF attributes, of a given dataset, NE is the pure paralleling neural network

ensemble, and NE∗ is the enhanced paralleling neural network ensemble that includes any

of the subsets of a given dataset, i.e., ALL, CFS, PCA, or ReliefF.

In our experiments, we have found that a structure of a single hidden layer with (the

number of classes + the number of attributes) neurons performed the best, while the learn-

ing rate, momentum, and learning iterations (epochs) were dataset specific. Therefore, a

comprehensive set of experiments were performed. A 10-fold cross validation was used to

evaluate the performance. Our proposed approach was implemented on top of Weka2. All

the experiments were run on a network of computers controlled by Condor High Through-

2http://www.cs.waikato.ac.nz/ml/weka/.

46

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

 (a)

NE
NNall

NNCFS
NNPCA

NNReliefF

Figure 4.2: Classification on DAGA’s subsets using typical neural networks vs. pure paral-
leling approach.

put Computing3.

4.3 Results

We ran our experiments using all four datasets and their subsets for both variations of our

paralleling ensemble, pure and enhanced. In our experiments, we record the errors as the

number of epochs increase. This establishes a comparison between the various networks

we explored.

Figures 4.2, 4.4, 4.6, and 4.8 demonstrate the performances of NE, i.e., without origi-

nal dataset, and the individual ensemble members’ performance as the number of epochs

increases. Figures 4.3, 4.5, 4.7, and 4.9 demonstrate the performances of NE and the en-

semble networks, NEall , NEPCA, NECFS, and NERelie f F .

In general, from Figures 4.2, 4.4, 4.6, and 4.8 we see that NE produces an average

error in comparison with the other ensemble members, while Figures 4.3, 4.5, 4.7, and 4.9

3For more information, see http://www.cs.wisc.edu/condor/.

47

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NEall

NECFS
NEPCA

NEReliefF

Figure 4.3: Classification on DAGA’s subsets using enhanced paralleling approaches vs.
pure paralleling approach.

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NNall

NNCFS
NNPCA

NNReliefF

Figure 4.4: Classification on DSPF ’s subsets using typical neural networks vs. pure paral-
leling approach.

48

 0.082

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.1

 0.102

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NEall

NECFS
NEPCA

NEReliefF

Figure 4.5: Classification on DSPF ’s subsets using enhanced paralleling approaches vs.
pure paralleling approach.

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 4.7

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NNall

NNCFS
NNPCA

NNReliefF

Figure 4.6: Classification on DSY N’s subsets using typical neural networks vs. pure paral-
leling approach.

49

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 4.7

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NEall

NECFS
NEPCA

NEReliefF

Figure 4.7: Classification on DSY N’s subsets using enhanced paralleling approaches vs.
pure paralleling approach.

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NNall

NNCFS
NNPCA

NNReliefF

Figure 4.8: Classification on DRER’s subsets using typical neural networks vs. pure paral-
leling approach.

50

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0 100 200 300 400 500 600 700 800

E
rr

or

Epochs

NE
NEall

NECFS
NEPCA

NEReliefF

Figure 4.9: Classification on DRER’s subsets using enhanced paralleling approaches vs.
pure paralleling approach.

show that all the ensemble networks with the additional dataset inputs, namely NE∗ have

outperformed NE. We will discuss this in detail in the following section.

4.4 Analysis and Discussions

In Figure 4.2 we see that NNRelie f F and NNPCA have produced the smallest errors among

the others. Figure 4.3 shows that when each of these two subsets was included as inputs

into the ensemble network, each has produced the best ensemble network.

A surprising finding is in the behavior of NNall in Figure 4.2. We can see that NNall

produce by far the largest error among the other networks. However, when inspecting Fig-

ure 4.3 we see that NEall has produced a small error almost identical to that of NERelie f F .

This could mean that choosing ensemble members based on error may not be the best way

or it could be an exceptional behavior. Further experimentation and analysis is required to

investigate this observation.

Interestingly, in Figures 4.4 and 4.5 we see the same behavior as that for NNall in DAGA.

51

In these figures, we see that NNCFS and NNPCA performed the worst but NECFS and NEPCA

performed the best in an ensemble setting. This could be due to the training parameters of

the neural networks. It may also be the case that more epochs are needed or different

learning rate or momentum values.

In Figure 4.8 we observe the same situation as for DAGA, where the best two ensem-

ble member networks NNall and NNRelie f F have performed the best, while, as shown in

Figure 4.9, it also has the same situation where they were used as inputs in NERelie f F and

NEall .

In Figure 4.6 we see that NNPCA, NNall , NNCFS, and NNRelie f F are ranked from the

lowest classification error to the highest and the same order is also shown in Figure 4.7

when they are used as inputs to the ensemble network, i.e., NEPCA, NEall , NECFS, and

NERelie f F .

When examining Figures 4.3, 4.5, 4.7, 4.9, we see that NE is inferior to at least one of

NEall , NERelie f F , NEPCA, or NECFS. This situation is especially true for the comparison

between them on the two datasets DSPF and DRER, where the performance of NE is the

worst.

We also notice that, on the DSY N dataset in Figure 4.7, all the ensemble networks per-

formed worse when the number of epochs increased. We attribute this to the randomness

we introduced when we created the dataset.

In DAGA dataset, as shown in Figure 4.3 we observe an exception in the performance

of NE. In this figure, NECFS has been slightly outperformed by NE. This observation

might be due to the limited number of instances in the dataset, as shown in Table 3.1. We

expect to collect more instances for that dataset and would like to see whether the same

observation exists.

As for the comparison between NE and the ensemble members, to our surprise, in most

of our experiments, NE resulted in an average error. However, Figure 4.8 shows that NE

52

performed the worst than all other ensemble members. This could possibly be due to the

relative small number of neural ensemble members used by NE.

In addition, when comparing NE and NE∗, it can be found that for most situations,

NE∗ need a small number of epochs for the ensemble network to converge, as evident in

Table 4.1. The results in the table show that including the original data as inputs to the

ensemble network will be computationally feasible. However, we need to investigate more

along this direction as whether this is true in general.

When exploring more in Figures 4.2 and 4.3, we can clearly see that there are interesting

observations. At the start of the training process in Figure 4.2, almost all the ensemble

members produce relatively large errors and then the errors reduce with the increase of the

number of epochs to a certain point until they fluctuate within the acceptable ranges. But

we observe that NE’s error reduces slightly with the increase of the number of epochs then

remains constant or slightly fluctuates during the majority of the training epochs.

On the other hand, as in Figure 4.3 all NE∗ show drastic error drops after some initial

epochs, a healthy trend in the training process. This situation is not observed for the in-

dividual ensemble members, as contrasted in Figure 4.2. This demonstrates that our NE∗

clearly outperform individual ensemble members in most cases in terms of errors. To be

more specific, as shown in Figure 4.3, NEPCA produces the smallest error.

In Figures 4.8 and 4.9 it becomes evident that all the networks, including NN∗ and

NE∗, are fairly accurate and the errors do not reduce during the training. Rather, NN∗

in Figure 4.8 become overfit when large numbers of epochs are used. But NE∗ do not

have this overfitting problem [50], as in Figure 4.9. Although there is some gap in the

final errors (approximately 0.036), they all exhibit the same behavior. That is, all of them

produce stable and acceptable errors with the increase of the number of epochs.

In Figure 4.8, NE performes the worst. However, this is not the case when examining

Figures 4.2, 4.6, and 4.4. While it is surprising to see this, we conjecture that it may be due

53

to the binary class labels in the dataset. This could mean that our proposed paralleling neu-

ral ensemble approach is better to handle classifications of classes with continuous values

or a large set of class labels. However, whether this is true or not in general needs more

investigation.

Furthermore, in Figure 4.9 we find that NE has the largest error amongst the ensemble

networks. This is expected, since with additional inputs we hope that the classification

accuracy of the ensemble network would be further increased.

4.5 Summary

We have proposed a novel approach that aims to improve classification by combining struc-

turally different neural networks via another neural network. This approach has two vari-

ations, namely pure paralleling neural network ensemble and enhanced paralleling neural

network ensemble. The first variation combines only the predictions of neural networks

while the second variation includes the original data or one of its subsets as well. This

approach was demonstrated to improve classification in most of the datasets with a very

few exceptions.

54

Chapter 5

Chaining Neural Network Ensemble

In this chapter, we propose our second ensemble approach, namely chaining neural network

ensemble. Chaining neural network ensemble, or neural chaining for short, attempts to

improve a neural network’s prediction by including the predictions of previously trained

network(s) into the training process of new network(s), forming a chain-like ensemble. This

approach has two variations, single-link chaining (SLC) and multi-link chaining (MLC).

The SLC approach, as shown in Figure 5.1, trains a neural network with a given dataset

and then uses the predictions of this network as input to the next network along with the

original data. Each network in the “chain” is trained on the original dataset and on the

predictions of the network that immediately precedes it. The chaining process continues

until an acceptable error is achieved. The MLC approach, as shown in Figure 5.2, is similar

to the SLC approach. They differ in that each neural network in MLC is trained on the

original dataset and on the predictions of all networks that precede it.

Both variations undergo the same two-step process, chain link selection and training. In

the first step, the process of training and appending predictions takes place using restricted

number of parameters, such as learning rates and and number of epochs. This is done such

that the computations remain feasible. However, considering the relevant small amount of

computational power we possess, restricting the parameters seems reasonable. Moreover, it

was noticed that when the parameters’ ranges were expanded, lower errors where achieved.

However, the patterns of error reductions were almost identical. After determining the

best performing number of chain link, the produced dataset was used to construct a neural

network using large ranges for the parameters. In Section 5.1, more detail will be given on

this process.

55

5.1 Approach Formulation

For a given dataset D0 that consists of a set of attributes X0 and a set of class labels Y . A

neural network NN0 is trained on D0 and validated using an n-fold cross-validation process

producing a set of predictions, P0. This network is a typical neural network trained using

D0, i.e., no network predictions used. Then, a new dataset is created by appending the

predictions P0 with X0 to produce a new dataset D1. A new neural network NN1 is trained

and evaluated on D1. The difference between SLC approach and the MLC approach occurs

after the predictions of NN1 are attained.

In the SLC approach, the predictions of NN1 replace the predictions of NN0 in D1. This

creates a new dataset D2 in which a new neural network NN2 is constructed. Repeating this

process produces a chain of neural networks, as shown in Figure 5.1. This approach in-

creases the number of attributes in the original dataset by only one, keeping computational

cost of creating a new network feasible. On the other hand, the MLC approach, shown in

Figure 5.2, appends the predictions of NN1 to D1 alongside the predictions of NN0, pro-

ducing a new dataset D2 with one more attribute than D1. The process is then repeated.

The predictions of each trained network are appended to the dataset, increasing its number

of attributes by one, along with each added set of network predictions (i.e., the number of

chain links) in the chain. This increases the number of attributes of the dataset, causing the

creation of new neural networks to become computationally expensive.

One concern arises in the SLC and MLC approaches regarding the chain links. The

concern is to determine which chain link or group of chain links is best at reducing the

overall error. It is difficult to form an intuition regarding this problem. We believe that it is

an optimization problem and requires further investigation. Therefore, we have decided to

use 20 chain links for our experiments.

The intuition behind both of our approaches is that a neural network’s predictions can

56

NN

NN

NN

1

2

n

Inputs

Figure 5.1: Single-Link Chaining.

NN1

NN2

NN3

NNn

Inputs

Figure 5.2: Multi-Link Chaining.

be used to correct the predictions of upcoming networks. Given a trained network, its pre-

dictions are highly correlated with and strongly indicative of the target classes, since the

attributes of the dataset are indicative of the target class and are used to produce these pre-

dictions. Therefore, using these predictions is expected to further improve the predictability

of the data.

In particular, the intuition behind the SLC approach is that a network in the chain may

not need the predictions of all preceding networks in order to correct its classification. A

network trained on the predictions of a previous network can produce predictions influ-

enced by that information. Therefore, it seems reasonable that the predictions of the new

network should replace that of the previous network in the dataset, thus, avoiding an un-

necessary increase in calculations. The intuition behind the MLC approach is that it may

be necessary for a network to have access to all the predictions of previous networks. This

57

way, it is left up to the training procedure to learn what it finds beneficial. These hypotheses

will be verified in the following experiments.

5.2 Experiment Setup

As mentioned in Chapter 3, we derived from each of the four datasets: DAGA, DSPF , DSY N ,

and DRER, three more datasets that differ from the original using the methods discussed

previously in Chapter 3, i.e., CFS, PCA, and ReliefF. These methods target some specific

properties, such as inter-correlations, correlation with the target class, distinguishability

of attributes, etc. These produced datasets along with the original ones will assist us in

understanding and interpreting the performance of our chaining neural network ensemble

approach.

In our experiments, we use the same neural network structure, computing software, and

computing architecture as those in Chapter 4. For each of the new datasets and the original

dataset, two chains of neural networks are created, an SLC-style chain, denoted SLCs, and

an MLC-style chain, denoted MLCs. Due to the high computational expense of determining

the best parameters and structures for each added neural network, the structure and param-

eters determination was left to be determined automatically by Weka, thus eliminating the

need of performing parameter sweeps for chain link selection.

After the chaining process is conducted and the best number of links in the chain are

determined, a large scale training process was performed, for each chain and typical neural

network, over different number of hidden layers and hidden neurons, using different learn-

ing rates and momenta, establishing a comparison between them, as will be demonstrated

shortly.

58

5.3 Results

Figures 5.3 and 5.4 illustrate the impact of added chain links on the DAGA chain’s error.

That is, these figures give a graphical representation of the performance of each of the

chains and, therefore, serve as a guide to determine when to stop the chaining process, i.e.,

selecting the best number of chain links. Demonstrating the behavior of the chain links

selection process is not essential to our results and discussions. Therefore, the figures of

the other datasets have been omitted. After the best numbers of chain links have been

determined, the entire chain gets trained and its performance is compared against a typical

individual neural network.

Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 5.11, and 5.12 illustrate the impact of the number

epochs on the errors of SLCs, MLCs, and typical individual neural networks. These figures

show the performance of the networks after their structures have been determined.

Tables 5.1, 5.2, 5.3, and 5.4 establish a comparison between SLCs and MLCs perfor-

mance for each dataset and its subsets. It shows the chain link that has reduced error by

the most and highlights the lowest error value achieved in comparison between SLCs and

MLCs.

5.4 Analysis and Discussions

When examining Figure 5.3 of SLCs chaining results, it becomes immediately evident the

strong oscillation behavior of the chains, although an error reduction occurs. On the other

hand, MLCs chaining results in Figure 5.4 show slightly less oscillation behavior and shows

error reduction. This oscillation behavior, although unanticipated and not preferred, has no

significant impact on the chain selection since our goal from these experiments is to select

the best number of chaining links for SLCs and MLCs, regardless of computational expense.

59

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

E
rr

or

Neural Network Link #

SLCall
SLCcfs
SLCpca

SLCreliefF

Figure 5.3: Classification on DAGA and its derived subsets PCA, CFS and ReliefF using
SLC.

However, further analysis is required to understand the reasons of this observation.

5.4.1 DAGA Analysis

When inspecting Figures 5.5 and 5.6 it is easy to notice that both SLCs and MLCs signif-

icantly outperformed their corresponding typical neural networks and have done so early

in the learning process. Moreover, most of the SLCs chains and all of the MLCs chains

outperformed all typical neural networks.

It is interesting to note that the chain that reduced error the most in the chain link

selection process did not necessarily reduce error the most after training. In the case of

SLCs, for example, SLCall has reduced the largest error followed by SLCc f s, SLCpca, and

SLCrelie f F , respectively, as demonstrated in Figure 5.3 and Table 5.1. However, when cross-

referencing the performance of each of the chains with Figure 5.5, we see that SLCc f s has,

by far, reduced the largest error followed by SLCpca, SLCrelie f F , and SLCall . It is rather

interesting that the best performing chain in the chain link selection stage has performed

60

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 2 4 6 8 10 12 14 16 18 20

E
rr

or

Neural Network Link #

MLCall
MLCcfs
MLCpca

MLCreliefF

Figure 5.4: Classification on DAGA and its derived subsets PCA, CFS and ReliefF using
MLC.

Table 5.1: DAGA chaining results.
DAGA all cfs pca reliefF

SLC
Chain Link # 19 16 14 15

MAE 0.6252 0.7806 0.8611 0.8911

MLC
Chain Link # 6 6 6 20

MAE 0.6672 0.7366 0.5821 0.7611

the worst in the training process.

This situation was also evident in MLCs. The lowest error among the chains was

achieved by MLCpca followed by MLCall , MLCc f s, and MLCrelie f F , as shown in Figure

5.4. However, when each of the chains was trained, the best performing chain was MLCpca

followed by MLCc f s, MLCrelie f F , and MLCall , as shown in Figure 5.6. This could be due to

the fact that the parameters used in training these chains were not sufficient to demonstrate

the power of these networks.

When inspecting Table 5.5, we see that the MLC approach has outperformed the SLC

approach in three of the four chains, namely MLCall , MLCpca, and MLCrelie f F with con-

siderable differences while the SLC approach has outperformed the MLC approach in one

61

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
SLCall
SLCcfs
SLCpca

SLCreliefF

Figure 5.5: Error response to epoch in DAGA SLC networks vs. regular neural networks.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
MLCall
MLCcfs
MLCpca

MLCreliefF

Figure 5.6: Error response to epoch in DAGA MLC networks vs. regular neural networks.

62

Table 5.2: DSPF chaining results.
DSPF all cfs pca reliefF

SLC
Chain Link # 10 7 19 4

MAE 0.0858 0.0968 0.0913 0.0856

MLC
Chain Link # 7 4 2 5

MAE 0.0887 0.0932 0.0943 0.0843

subset, SLCc f s, with a marginal difference.

5.4.2 DSPF Analysis

Inspecting Figures 5.7 and 5.8 shows that the performance of SLCs and MLCs on this dataset

varies. In Figure 5.7 three of the four SLCs chains, i.e., SLCc f s, SLCpca, and SLCrelie f F

have slightly outperformed their corresponding typical neural network. Generally, NNall

has outperformed all SLCs chains. This evident in Figure 5.7 and Table 5.5.

Figure 5.8 shows that two MLCs chains, MLCc f s and MLCpca, have slightly outper-

formed their corresponding typical neural networks but were significantly outperformed by

NNall and slightly outperformed by NNrelie f F . NNall outperformed all MLCs chains.

From Tables 5.2 and 5.5 we see that the order of performance in SLC chain link selec-

tion stage was the same as that in the training. This was not the case in MLC since MLCall ,

MLCc f s, and MLCpca came second, third, and fourth in terms of error reduction but in the

training stage, MLCpca became second, followed by MLCall then MLCc f s.

As shown in Table 5.5 MLC performed better than SLC in MLCc f s and MLCpca and

worse than SLC in SLCall and SLCrelie f F .

63

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
SLCall
SLCcfs
SLCpca

SLCreliefF

Figure 5.7: Error response to epoch in DSPF SLC networks vs. regular neural networks.

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
MLCall
MLCcfs
MLCpca

MLCreliefF

Figure 5.8: Error response to epoch in DSPF MLC networks vs. regular neural networks.

64

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNReliefF
SLCall
SLCcfs
SLCpca

SLCreliefF

Figure 5.9: Error response to epoch in DRER SLC networks vs. regular neural networks.

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
MLCall
MLCcfs
MLCpca

MLCreliefF

Figure 5.10: Error response to epoch in DRER MLC networks vs. regular neural networks.

65

Table 5.3: DRER chaining results.
DRER all cfs pca reliefF

SLC
Chain Link # 19 2 13 16

MAE 0.0537 0.0461 0.0716 0.0367

MLC
Chain Link # 10 7 2 10

MAE 0.0562 0.0469 0.0640 0.0387

5.4.3 DRER Analysis

When inspecting Figures 5.9 and 5.10, we see that each chain in SLCs and MLCs has outper-

formed its corresponding typical neural network by considerable margins. Moreover, it is

evident that all chains have outperformed all typical neural networks except for SLCpca and

MLCpca which were outperformed slightly by NNrelie f F . Table 5.5 further solidifies these

conclusions. Moreover, the table shows that MLCs and SLCs have performed relatively sim-

ilar. MLCs has slightly outperformed SLCs in two subsets, MLCpca and MLCrelie f F while

SLCs has slightly outperformed MLCs in the other two subsets, SLCall and SLCc f s.

Interestingly, neither MLCs chains nor SLCs chains have exhibited the same behavior as

those on DAGA when it comes to the order of performance. The best performing chains in

the chain link selection step remained as the best performing chains in the training process.

It is noteworthy that NNall , NNc f s, and NNpca have demonstrated overfitting which

disappeared in SLCall and SLCpca, and reduced in SLCc f s and MLCc f s.

5.4.4 DSY N Analysis

When applying SLC to DSY N , we expected that the process would fail and produce large

errors from the start. This is because DSY N is a synthetic dataset created by randomizing

DAGA dataset. By observing Figures 5.11 and 5.12 it is easily noticed that this is exactly the

case. Generally, the error increases as the number of epochs increases. Table 5.5 shows that

66

 4.35

 4.4

 4.45

 4.5

 4.55

 4.6

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
SLCall
SLCcfs
SLCpca

SLCreliefF

Figure 5.11: Error response to epoch in DSY N SLC networks vs. regular neural networks.

Table 5.4: DSY N chaining results.
DSY N all cfs pca reliefF

SLC
Chain Link # 12 15 16 11

MAE 4.9494 4.6457 4.7848 4.4919

MLC
Chain Link # 3 2 6 12

MAE 5.0767 4.8037 4.9475 4.6738

our approaches have outperformed the typical neural network in three of the four subsets

namely, ALL, PCA and ReliefF. Table 5.4 shows that SLC have outperformed MLC in

three of the four subsets, namely SLCall , SLCc f s, and SLCpca.

5.5 Summary

In this chapter, we have proposed another new ensemble approach, namely chaining neu-

ral network ensemble, which improves classification by continually feeding predictions of

previously trained neural networks into the training process of another network, forming a

chain-like ensemble. This approach has two variations, single-link chaining and multi-link

chaining. The first variation trains a neural network on the original data of a given dataset

67

Ta
bl

e
5.

5:
Su

m
m

ar
y

of
er

ro
rs

fr
om

ty
pi

ca
l,

SL
C

s,
an

d
M

LC
s

ne
tw

or
ks

’e
rr

or
af

te
rt

ra
in

in
g.

Ty
pi

ca
l

D
AG

A
D

SP
F

D
SY

N
D

R
E

R
al

l
cf

s
pc

a
re

lie
fF

al
l

cf
s

pc
a

re
lie

fF
al

l
cf

s
pc

a
re

lie
fF

al
l

cf
s

pc
a

re
lie

fF
le

ar
ni

ng
ra

te
0.

01
5

0.
01

5
0.

01
5

0.
01

5
0.

2
0.

3
0.

2
0.

2
0.

01
5

0.
01

5
0.

01
5

0.
01

5
0.

3
0.

2
0.

01
5

0.
2

m
om

en
tu

m
0.

05
0.

1
0.

1
0.

05
0.

2
0.

3
0.

4
0.

3
0.

05
0.

05
0.

05
0.

05
0.

3
0.

4
0.

05
0.

3
ep

oc
h

25
0

17
50

40
0

25
0

15
50

17
50

17
50

17
50

50
15

0
20

0
15

0
25

50
65

0
10

0
M

A
E

0.
82

6
0.

81
5

0.
76

1
0.

78
8

0.
08

1
0.

09
6

0.
09

0
0.

08
3

4.
39

6
4.

39
2

4.
41

4
4.

39
1

0.
06

0
0.

07
1

0.
08

6
0.

06
0

SL
C

D
AG

A
D

SP
F

D
SY

N
D

R
E

R
al

l
cf

s
pc

a
re

lie
fF

al
l

cf
s

pc
a

re
lie

fF
al

l
cf

s
pc

a
re

lie
fF

al
l

cf
s

pc
a

re
lie

fF
le

ar
ni

ng
ra

te
0.

05
0.

1
0.

01
5

0.
05

0.
3

0.
2

0.
2

0.
2

0.
01

5
0.

01
5

0.
15

0.
01

5
0.

05
0.

3
0.

15
0.

3
m

om
en

tu
m

0.
4

0.
05

0.
3

0.
3

0.
3

0.
1

0.
4

0.
2

0.
05

0.
05

0.
05

0.
05

0.
05

0.
2

0.
2

0.
4

ep
oc

h
17

50
15

00
17

50
17

50
70

0
17

50
15

50
11

50
25

50
25

50
17

50
15

0
16

50
17

50
M

A
E

0.
77

1
0.

50
6

0.
71

1
0.

71
7

0.
08

4
0.

09
1

0.
08

8
0.

08
3

4.
37

4
4.

39
6

4.
37

0
4.

38
2

0.
05

0
0.

04
6

0.
06

7
0.

03
6

M
L

C
D

AG
A

D
SP

F
D

SY
N

D
R

E
R

al
l

cf
s

pc
a

re
lie

fF
al

l
cf

s
pc

a
re

lie
fF

al
l

cf
s

pc
a

re
lie

fF
al

l
cf

s
pc

a
re

lie
fF

le
ar

ni
ng

ra
te

0.
1

0.
1

0.
3

0.
1

0.
1

0.
05

0.
1

0.
3

0.
01

5
0.

01
5

0.
05

0.
01

5
0.

3
0.

3
0.

3
0.

2
m

om
en

tu
m

0.
1

0.
05

0.
05

0.
2

0.
2

0.
4

0.
2

0.
2

0.
05

0.
05

0.
4

0.
05

0.
4

0.
3

0.
2

0.
3

ep
oc

h
17

50
17

50
11

50
17

50
17

50
15

50
17

50
80

0
50

15
0

50
25

10
0

15
0

45
0

17
00

M
A

E
0.

60
6

0.
50

7
0.

44
5

0.
55

2
0.

08
9

0.
09

0
0.

08
6

0.
08

4
4.

38
5

4.
40

1
4.

38
0

4.
35

0
0.

05
6

0.
04

6
0.

06
4

0.
03

4

68

 4.3

 4.35

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 4.7

 4.75

 4.8

 4.85

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or

Epochs

NNall
NNcfs
NNpca

NNreliefF
MLCall

MLCpca
MLCcfs

MLCreliefR

Figure 5.12: Error response to epoch in DSY N MLC networks vs. regular neural networks.

and the predictions of one neural network and repeats this process. The second variation

trains a neural network on the original data and the predictions of all previous networks

by appending the predictions of each new network to the dataset. Both approaches were

demonstrated, through a series of experiments, to improve classification in most of the

datasets with a very few exceptions.

69

Chapter 6

Conclusion

The task of pattern recognition is perhaps one of the most recurrent tasks that we encounter

in our lives. Therefore, there has been a significant interest of automating this task for many

decades. Many techniques have been developed to this end, such as neural networks [50].

Neural networks are mathematical models that conduct classifications with a certain

degree of confidence. They are excellent classifiers with very robust means of learning.

However, neural networks suffer from some disadvantages, such as difficulties in structure

estimation and prolonged training times. Therefore, there are still continuing efforts to

improve their efficiency and classification accuracy.

Some methods were suggested to improve the effectiveness and efficiency of neural net-

works, include ensemble and modular approaches. The ensemble approach and the modu-

lar approach are among the common methods for improving classification of classifiers. In

the ensemble approach, different classifiers (i.e. decision trees, Bayesian networks, neural

networks, regression models, etc) are trained on the same data. Then their classification

outputs of an instance are considered in a probabilistic manner. A modular neural network

is a collection of individually trained neural networks constructed on disjoint subsets of a

dataset to predict different target classes. Both approaches use a gating function to combine

the outputs of the networks in order to achieve better accuracy.

6.1 Our Contributions

The work presented in this thesis focuses on improving the classification of neural net-

works. We have proposed two novel approaches toward this end, paralleling neural net-

work ensemble and chaining neural network ensemble. The first uses a neural network to

70

combine the predictions of structurally different neural networks while the second feeds

the predictions of a neural network to another network and repeats this process.

Four datasets were used to verify our approaches, namely Agassiz tomato yield dataset,

synthetic dataset, steel plates faults dataset, and restaurant reviews dataset. For each of

these datasets, two attribute selection methods, i.e., Correlation-based Feature Selection

and ReliefF, and one dimensionality reduction method, i.e., Principal Component Analysis,

were applied. There were a total of 16 datasets and subsets with varying properties to verify

our approaches.

6.1.1 Paralleling Neural Network Ensemble

In this approach, we proposed using neural networks as a means of combining individual

neural networks, with the aim to further improve classification accuracy. Furthermore, we

suggest the inclusion of the dataset with the training of the ensemble network along with

the predictions of ensemble members.

We have done extensive experiments to show the effectiveness of our approach. We

have found that paralleling neural network ensemble, supplemented by additional inputs

from the original datasets or one of its subsets, showed promising classification perfor-

mance.

6.1.2 Chaining Neural Network Ensemble

This approach proposes using a chain of neural networks to further improve classification

accuracy. This approach has two variations, single-link chaining, and multi-link chaining.

A single-link chain consists of many neural network links. Each of these links is trained

on the original dataset and on the predictions of the neural network link that immediately

71

precedes it, except for the first neural network link which is trained on the original dataset

only. A multi-link chain is similar to the first with one restriction removed. In this variation,

a neural network is trained on the predictions of all the neural networks that precede it and

on the original dataset.

We have done extensive experiments to show the effectiveness of this approach. We

have found that this approach, with both variations, shows promising classification perfor-

mance. They have been shown to outperform each other in different cases and both have

outperformed the typical neural network in almost all cases.

6.2 Future Work

While our proposed approaches are very promising, in the future we plan to conduct more

experiments and use more varieties of datasets to further investigate their performance. It

would be also interesting to further analyze our experiment results.

In our experiments we have noted that when the errors, i.e., MAE, are included in the

training and testing process of the paralleling ensemble networks, the classification error

of the overall system dropped significantly. Whether this is true in general would be very

interesting and we want to explore this further in order to understand it better.

We also plan to provide theoretical justification as to why our approaches work or un-

der what conditions they fail. We also aim to analyze the reasons behind the oscillation

behavior in the chaining approach. This could lead us to developing a heuristic for a more

efficient mean to selecting chain links. Moreover, we will investigate a method for choos-

ing the number of chain links or for detecting a single good chain link. This will lead to

automating and speeding the chaining process.

72

Bibliography

[1] Merriam webster dictionary, dictionary and thesaurus - merriam-webster.

[2] H. Abdi and L. J. Williams. Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4):433–459, 2010.

[3] D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for boltzmann ma-
chines. Cognitive Science, 9:147–169, 1985.

[4] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. In
Machine Learning, pages 37–66, 1991.

[5] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka. Efficient classification for mul-
ticlass problems using modular neural networks. IEEE Transactions on Neural Net-
works, 6(1):117–124, 1995.

[6] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. The
1st edition, 1999.

[7] A. Bain. Mind and Body: The Theories of Their Relations. D. Appleton and company,
the 1st edition, 1873.

[8] W. Baxt. Improving the accuracy of an artificial neural network using multiple differ-
ently trained networks. Neural Computing, 4(5):772–780, 1992.

[9] R. Beale and T. Jackson. Neural Computing: an introduction. The 1st edition, 1994.

[10] M. Bianchini, P. Frasconi, and M. Gori. Learning without local minima in radial basis
function networks. IEEE Transactions on Neural Networks, 6(3):749–756, 1995.

[11] A. G. Bors and I. Pitas. Robust rbf networks, 2001.

[12] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification : A survey of
some recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

[13] N. Burgess. A constructive algorithm that converges for real-valued input patterns.
International Journal of Neural Systems, 5(1):59–66, 1994.

[14] M. Buscema and S. Terzi W. Tastle. A new meta-classifier. In North American Fuzzy
Information Processing Society, pages 1–7, 2010.

[15] Y. Chauvin. Advances in neural information processing systems. chapter A back-
propagation algorithm with optimal use of hidden units, pages 519–526. 1989.

[16] B. Cheng and D. M. Titterington. Neural networks: A review from a statistical per-
spective. Statistical Science, 9(1):2–30, 1994.

73

[17] Y. Le Cun, J. Denker, and S. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598–605, 1990.

[18] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In Ad-
vances in Neural Information Processing Systems, volume 2, pages 524–532, 1990.

[19] S. E. Fahlman. An empirical study of learning speed in back-propagation networks.
Technical report, Carnegie Mellon University, 1988.

[20] M. Frean. The upstart algorithm: A method for constructing and training feedforward
neural networks. Neural Computation, 2:198–209, 1990.

[21] K. Fukunaga. Introduction to statistical pattern recognition. Academic Press, the 2nd
edition, 1990.

[22] S. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural Net-
works, 1(2):179–191, 1990.

[23] M. A. Hall. Correlation-based feature selection for discrete and numeric class ma-
chine learning. In Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 359–366, 2000.

[24] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The 2nd edition,
2006.

[25] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[26] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, the 2nd
edition, 1998.

[27] T. Helmer, D. L. Ehret, and S. Bittman. Cropassist, an automated system for direct
measurement of greenhouse tomato growth and water use. Computers and Electronics
in Agriculture, 48(3):198–215, 2005.

[28] A. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks: A tutorial. IEEE
Computer, 29:31–44, 1996.

[29] W. James. The principles of psychology. Macmillan, the 1st edition, 1890.

[30] C. Ji, R. Snapp, and D. Psaltis. Generalizing smoothness constraints from discrete
samples. Neural Computation, 2(2):188–197, 1990.

[31] E. Karnin. A simple procedure for pruning back-propagation trained neural networks.
IEEE Transactions on Neural Networks, 1(2):239–242, 1990.

74

[32] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and a
new algorithm. In The Association for the Advancement of Artificial Intelligence and
The MIT Press, pages 129–134, 1992.

[33] K. Kira and L. A. Rendell. A practical approach to feature selection. In Proceedings
of the Ninth International Workshop on Machine Learning, pages 249–256, 1992.

[34] T. Kohonen. An introduction to neural computing. Neural Networks, 1(1):3–16, 1988.

[35] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
1990.

[36] N. Kohzadi, M. S. Boyd, I. Kaastra, B. S. Kermanshahi, and D. Scuse. Neural net-
works for forecasting: An introduction. Canadian Journal of Agricultural Economics,
43:463–474, 1995.

[37] I. Kononenko. Estimating attributes: Analysis and extensions of relief. In European
conference on machine learning, volume 784, pages 171–182, 1994.

[38] R. P. Lippmann. An introduction to computing with neural nets. IEEE Acoustics,
Speech, and Signal Processing Society Magazine, 3(4):4–22, 1987.

[39] B. Lu and M. Ito. Task decomposition and module combination based on class re-
lations: a modular neural network for pattern classification. IEEE Transactions on
Neural Networks, 10(5):1244–1256, 1999.

[40] J. Mccarthy. Logic-based artificial intelligence. chapter Concepts of Logical AI,
pages 37–56. 2000.

[41] M. Mezard and J. Nadal. Learning in feedforward layered networks : the tiling algo-
rithm. Journal of Physics A, 22(12):2191–2203, 1989.

[42] M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Advances in Neural Information Processing
Systems, volume 1, pages 107–115, 1989.

[43] D. Olmsted. Neural network history to 1960 @ONLINE, Feb 2012.
http://www.neurocomputing.org/NNHistoryTo1960.aspx.

[44] D. W. Opitz and J. W. Shavlik. Actively searching for an effective neural-network
ensemble. Connection Science, 8(3):337–353, 1996.

[45] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: a
survey. IEEE Transactions on Neural Networks, 6(5):1212–1228, 1995.

[46] R. Reed. Pruning algorithms - a survey. IEEE Transactions on Neural Networks,
4(5):740–747, 1993.

75

[47] F. Rosenblatt. The perceptron: A perceiving and recognizing automaton. Technical
Report 85-460-1, 1957.

[48] P. Rosin and F. Fierens. Improving neural network generalisation. In International
Geoscience and Remote Sensing Symposium, volume 2, pages 1255–1257, 1995.

[49] S. Roy. Factors influencing the choice of a learning rate for a backpropagation neural
network. In IEEE International Conference on Neural Networks, volume 1, pages
503–507, 1994.

[50] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. The 2nd
edition, 2003.

[51] A. J. C. Sharkey. On combining artificial neural nets. Connection Science, 8:299–313,
1996.

[52] A. J. C. Sharkey. Combining Artificial Neural Nets: Modular Approaches. Citeseer,
1997.

[53] K. Sheela and S. Deepa. Analysis of computing algorithm using momentum in neural
networks. Journal of Computing, 2, 2011.

[54] J. Sola and J. Sevilla. Importance of input data normalization for the application
of neural networks to complex industrial problems. IEEE Transactions on Nuclear
Science, 44(3):1464–1468, 1997.

[55] R. Thompson. The neurobiology of learning and memory: William james in retro-
spect. Psychological Science, 1(3):172–173, 1990.

[56] K. Tin-yau and Y. Dit-Yan. Constructive algorithms for structure learning in feed-
forward neural networks for regression problems. IEEE Transactions on Neural Net-
works, 8:630–645, 1997.

[57] J. Tu. Advantages and disadvantages of using artificial neural networks versus lo-
gistic regression for predicting medical outcomes. Journal of Clinical Epidemiology,
49(11):1225–1231, 1996.

[58] R. Valdovinos and J. Sanchez. Ensembles of multilayer perceptron and modular neu-
ral networks for fast and accurate learning. In Fifth Mexican International Conference
on Artificial Intelligence, pages 229–236, 2006.

[59] M. Robnik Šikonja and I. Kononenko. Theoretical and empirical analysis of relieff
and rrelieff. Machine Learning, 53(2):23–69, 2003.

[60] H. Yu, T. Xie, S. Paszczynski, and B. M. Wilamowski. Advantages of radial ba-
sis function networks for dynamic system design. IEEE Transactions on Industrial
Electronics, 58(12):5438–5450, 2011.

76

[61] X. Yu, G. Chen, and S. Cheng. Dynamic learning rate optimization of the backprop-
agation algorithm. IEEE Transactions on Neural Networks, 6(3):669–677, 1995.

[62] K. M. Zaamout and J. Z. Zhang. Improving classification through ensemble neural
networks. In Proceedings of 8th International Conference on Natural Computation,
2012. To appear.

[63] G. P. Zhang. Neural networks for classification: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 30(4):451–462,
2000.

[64] Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better
than all. Artificial Intelligence, 137:239–263, 2002.

77

