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ABSTRACT 

The successful approach for decreasing breast cancer fatalities depends upon reliable 

diagnostic screening and optimal treatment modalities. Ionizing radiation is widely used 

for both screening and therapeutic procedures.  

The main aim of this study was to analyze the effect of low (diagnostic) and high 

(treatment) doses of ionizing radiation on healthy breast cells, breast cancer cells, and 

cancer cells resistant to common drug therapies. The results presented here show that 

ionizing radiation initiates immune and apoptotic response in normal cells, and causes 

epigenetic alterations that may lead to genomic instability. In addition, our results 

demonstrate differential dose response to radiation in MCF-7 cells, and decreased 

sensitivity to radiation in tamoxifen-resistant MCF-7 cells. 

Our results may serve as foundation for the future analysis of the mechanisms of 

radiation responses of mammary gland tissues, and as an additional step for future 

analysis of effectiveness of combination therapy.  
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CHAPTER 1: GENERAL INTRODUCTION 

BREAST CANCER 

Breast cancer originates within breast cells that start to behave abnormally. It is 

generally accepted that the initiation of breast cancer is a result of uncontrolled cellular 

proliferation and aberrant apoptosis (programmed cell death) due to genetic alterations 

that involve the activation of proto-oncogenes and the inactivation of tumor suppressor 

genes (Black 1994; Russo, Hu et al. 2000). Breast cancer ranks highly in all countries, 

but in  North America and Europe its incidence is twice as high as that in Asian countries 

(Saika and Sobue 2013). According to DeSantis and colleagues, one in eight women in 

the United States will develop breast cancer in her lifetime (DeSantis, Ma et al. 2014). 

The Canadian Cancer Society recognizes breast cancer as the most common cancer and 

the second leading cause of death among Canadian women. It is estimated that in 2014, 

approximately 24,400 Canadian women will be diagnosed with breast cancer, and around 

5,000 women will die from breast cancer; on average, 67 women will be diagnosed with 

breast cancer every day, and 14 women will die from it every day (www.cancer.ca).  

Genetic alterations that lead to breast cancer can be either inherited as germline 

mutations (5-10 %) or acquired as somatic mutations. Inherited mutations in BRCA1 and 

BRCA2 genes (normally they prevent uncontrolled growth) define breast cancer 

susceptibility and contribute to hereditary breast cancer (Balmana, Diez et al. 2011). 

Similarly, other genetic risk factors associated with breast cancer are: mutations in the 

DNA repair gene, ATM (Ahmed and Rahman 2006), the tumor suppressor gene, p53 

(Gasco, Shami et al. 2002), the cell growth regulator, PTEN (Gonzalez-Angulo, Ferrer-
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Lozano et al. 2011), the human epidermal growth factor HER2 (Cooke, Reeves et al. 

2001), etc. Somatic mutations result from exposure to environmental carcinogens of 

physical (ionizing radiation), chemical (nitrosoureas, polycyclic hydrocarbons) and 

biological (viruses) nature (Russo, Hu et al. 2000). Multiple studies on rodents reveal 

many common chemicals that cause mammary tumors, a variety of hormone disruptors 

that target the estrogen receptor and promote cellular proliferation, and various toxic 

elements that affect lactation and breast cancer predisposition; all of these agents are 

widespread in air, water, consumer products, and human tissues (Brody, Kripke et al. 

2014).  

Breast cancer is a hormone-dependent disease. The ovarian hormones estrogen 

and progesterone contribute to all stages of breast cancer (Bernstein and Ross 1993; Pike, 

Spicer et al. 1993). The risk of breast cancer has been traditionally linked to estrogen 

exposure due to the fact that breast cancers often express the estrogen receptors. There 

are at least three mechanisms of estrogen carcinogenicity: (a) the receptor-mediated 

hormonal activity which stimulates cellular proliferation; (b) the cytochrome P450-

mediated metabolic activation that causes genotoxic damage and the increased mutation 

rates; and (c) the accumulation of genomic lesions and compromised DNA repair due to 

estrogen-induced tumorigenesis (Russo, Hu et al. 2000).  

Despite the high incidence of breast cancer, breast cancer mortality has been 

declining in the majority of developed countries due to better education, widespread 

screening programs and more effective treatment methods (Guarneri and Conte 2004). 

The effective screening programs allow for the detection of the disease at early stages 
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when chances of successful therapy are higher. The early detection followed by effective 

therapy prevents cancer cells from spreading (metastasizing) and reduces death rates. In 

the “Breast cancer guide to diagnosis and treatment”, the authors describe the following 

types of breast cancer diagnosis: a high quality mammogram (low-dose x-ray of the 

breast when both breasts are compressed between two panels and examined top-down 

and side-to-side), breast ultrasound (a test that uses sound waves to examine a limited 

area of breast and shows whether a lump is a fluid-filled cyst or a solid lump), breast MRI 

(the use of strong magnetic field to create detailed images of part of the body), and breast 

biopsy (taking samples of an abnormal lump with a core needle biopsy under x-ray 

guidance). At the time of diagnosis, cancer cells should be screened for the presence of 

two proteins (hormone receptors for estrogen/progesterone and HER2) that are important 

for the selection of medical treatment (Laronga, Hayes et al. 2014). The curability of 

breast cancer is largely dependent on the effectiveness of therapy strategies (Guarneri and 

Conte 2004). Early- stage cancer (stages I, II) is removed surgically by mastectomy 

(breast removal) or lumpectomy (breast-conserving surgery). Adjuvant systemic therapy 

(body-wide) is recommended for stage II breast cancers and during metastases 

formations, and it involves chemotherapy (for hormone receptor-negative invasive breast 

cancers), endocrine therapy (anti-estrogen treatment for receptor-positive breast cancers), 

and molecularly targeted therapy (for HER2-positive breast cancer) (Laronga, Hayes et 

al. 2014). Many novel targeted therapies are under exploration, especially for triple-

negative breast cancer, an aggressive disease that affects the young population and for 

which effective therapy is not yet available (Schmadeka, Harmon et al. 2014). 
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Radiation therapy is used after breast-conserving surgery, mastectomy, in 

combination with chemotherapy, and to treat cancers that have spread to other parts of 

the body. The effect of radiation on cancer development and cancer treatment as well as 

the problems of radioresistance are discussed further on.  

IONIZING RADIATION: NATURE, SOURCES, AND USES 

Background information 

Radiation, whether harmful or beneficial, has a profound effect on human life. 

The effects of radiation exposure are usually limited to the source of radiation, its type, a 

dose received, duration of exposure (time) and radiation sensitivity of body organs. When 

living amongst all types of radiation, it becomes necessary to understand what radiation 

is, and how it interacts with matter. Radiation consists of particles or waves that have 

enough energy to travel through and interact with matter. Radiation that has enough 

energy to change the chemical structure of atoms and molecules and has the ability to 

ionize atoms and molecules of matter is widely known as ionizing radiation which, in 

contrast to non-ionizing radiation, is considered to be bioactive and therefore more 

harmful (Gerner, Meyn et al. 1974; Wrixon, Barraclough et al. 2004). The spectrum of 

ionizing radiation includes alpha and beta particles, neutrons and cosmic protons, while 

the electromagnetic spectrum includes gamma-rays, X-rays and ultraviolet light. The 

ultraviolet spectrum is in the range of non-ionizing radiation, it causes damage by either 

breaking or altering chemical bonds. α and β particles can directly interact with the outer 

electrons via the coulomb electric force by knocking the electrons out of the atoms and 

producing an ion and a free electron (Wrixon, Barraclough et al. 2004).  



5 

 

When a DNA molecule is directly hit by ionizing radiation, the DNA replication 

process is prevented, which affects cell division and cell survival. Considering that the 

area in a cell occupied by DNA is very small, it is fair to believe that most of the 

radiation interacts with water which makes up most of the volume in the cell. Energy 

absorption by water breaks molecular bonds creating free radicals: H
+
 (proton) and 

OH
.
(hydroxyl radical) (Goldman 1982). Through a series of reactions, toxic H

2
O

2
 

(hydrogen peroxide) is formed which can subsequently damage DNA. This mechanism is 

an example of an indirect effect of radiation on a cell (Freeman and Crapo 1982; 

Hutchinson 1985). Certainly, cells are able to recognize and repair DNA damage caused 

by ionizing radiation. The inability to detect or cope with the damage leads to cell death 

and consequently to tissue and organ failure. DNA lesions caused by low-energy 

radiation may be passed on to subsequent cell divisions in the form of mutations, thus 

contributing to cancer formation. 

The level of DNA packaging varies amongst different cell types. Obviously, the 

densely packaged and protected DNA would be less susceptible to ionizing radiation, and 

so would be a cell. In general, radiation sensitivity is proportional to the rate of cell 

division and inversely proportional to the level of cell differentiation. As a result, living 

cells and the organs that they build are classified according to their radiation sensitivity. 

The most sensitive to radiation are blood-forming cells and lymphocytes that are 

constantly regenerating. Gastrointestinal, reproductive and skin cells are less sensitive. 

The highly differentiated muscle and nerve cells are the least sensitive. It is necessary to 

emphasize that the developing embryo is also very sensitive to radiation, especially 

during early development stages. Similarly, the fast- growing tumor cells are very, if not 
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the most, sensitive to ionizing radiation. This feature of cancer cells has made ionizing 

radiation one of the most powerful tools in a fight against solid tumors.  

Sources of ionizing radiation 

Ionizing radiation has always been around us, and people are constantly exposed 

to its various sources. Natural sources make the greatest contribution to an average 

effective dose, and among such sources radon and radon decay products are the largest 

contributors (Hall 1989). The other natural sources are cosmic radiation, terrestrial 

sources (rocks and soil), and internal radiation that occurs in a human body. Amongst 

man-made sources of radiation, medical exposure contributes the largest dose. 

Occupational radiation exposure includes nuclear fuel cycles, while consumer products 

include smoking cigarettes, using phosphate fertilizers, watching color television, using 

smoke detectors, and using natural gas for cooking, etc. (Hall 1989). Contributions from 

nuclear power and consumer products (excluding tobacco) are minor . There is no 

difference in radiation effects between natural and man-made sources of radiation. But 

there can be no denying that natural radiation has always existed and will always exist, 

while man-made radiation sources are being continuously added to the background 

radiation that we receive naturally. This causes a great concern for the society and urges 

people to make proper lifestyle choices. 

An immediate effect of ionizing radiation is cell death which can be observed 

after doses of several grays. The late effects are due to DNA damage to cells that manage 

to survive after radiation: if it is a germ cell, the mutation may be expressed in the next 

generation, whereas if it is a somatic cell, the mutation may lead to cancer development. 
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Another type of radiation-induced biological effects is bystander effects. 

Bystander effects are expressed by cells whose nuclei have not been directly exposed to 

radiation. When significant doses accumulate out-of-field due to photon scattering, they 

impact cellular response in these regions, and such response includes DNA damage, 

chromosomal instability, mutations, and apoptosis (Marin, Martin et al. 2015).  

Ionizing radiation in diagnostic and therapeutic medicine 

Since W. C. Roentgen discovered that X-rays can penetrate soft tissues and bones 

to different degrees, the use of X-rays for determining broken bones or cancers became a 

ubiquitous procedure throughout the world. The use of ionizing radiation such as X-rays 

in diagnostic radiology is represented by multiple chest examinations (fluoroscopy, 

mammography), determining blood-vessel structure (angiography), whole-body 

examination (CT), and all sorts of X-ray tests on multiple organs (bones, teeth, etc.). 

Radiation can also be swallowed or inhaled during nuclear medical exams. Radionuclides 

are distributed to the organs where they emit gamma rays which are subsequently caught 

by gamma cameras, thus showing the structure of tissues and organs (Wrixon, 

Barraclough et al. 2004). Radiation doses used in diagnostic imaging procedures are 

usually low, although the collective dose could be much higher. Therefore, such exposure 

should be kept at as low as possible level, and unnecessary procedures should be avoided. 

High doses of ionizing radiation are used in therapy for treatment of malignant diseases. 

High dose “ablative” radiation therapy approach has shown conciderable clinical promise 

despite initial concerns about excessive tissue complications (Murray, McBride et al. 

2014). Radiation therapy is the use of ionizing radiation to destroy cancer cells; it has 
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been practiced in cancer therapy for more than hundred years (Camphausen and 

Lawrence 2008). Radiotherapy has become a recognized treatment modality for cancer 

patients. Radiotherapy works by damaging DNA of cells (Cuzick 2005). There are two 

types of radiation therapy applied in cancer treatment: external and internal radiotherapy. 

External beam radiation is the most common radiation therapy given after surgery. In this 

technique, a special X-ray machine delivers a beam of high-energy radiation to the area 

of cancer. Internal radiation or brachytherapy is a less common form of radiation 

treatment. During brachytherapy, small pieces of radioactive material called seeds are 

placed at the tumor site, and they emit radiation into the surrounding tissue (Wrixon, 

Barraclough et al. 2004). 

As the use of medical radiation increases, so does the public concern about 

potential health risks, and many studies address the issues and controversies of low dose 

radiation (Morgan and Bair 2013). It is important to mention that low doses are defined 

as those ones that are less than 100 mSv, and low dose rates are those below 0.1 mSv 

min
-1 

(Mullenders, Atkinson et al. 2009). Diagnostic uses of radiation become more 

prominent when some CT (computerized tomography) scans deliver up to 100 mSv, thus 

putting the risk/benefit ratio under question, especially for asymptomatic patients 

(Brenner and Hall 2007). Ionizing radiation is considered a non-threshold carcinogen. 

The Linear-No-Threshold (LNT) model, states that there is no dose level below which 

radiation exposure is safe, and there is a finite probability that even the lowest possible 

dose may be responsible for cancer initiation (Mullenders, Atkinson et al. 2009). The 

LNT model is regularly challenged by hormesis or the hormetic effect theory according 

to which exposure of cells to low doses of radiation may make them less susceptible to 
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later high dose exposure and may have health benefits (Calabrese and Baldwin 2003; 

Feinendegen 2005; Mullenders, Atkinson et al. 2009). If the hormetic theory is indeed 

correct, then the conventional LNT model may create an unnecessary concern and 

unjustified avoidance of diagnostic and screening procedures. Therefore, the current 

understanding of the effects of low dose radiation is unclear and is divided between 

overprotective (LNT) and under protective (hormesis) views (Fig. 1.1). For instance, 

thirty-four of the thirty-six studies searched on PubMed and Cochrane Library databases 

by Oh and Koea showed a positive association between medical imaging radiation and an 

increased risk of cancer (Oh and Koea 2013). The potential increase of a child’s lifetime 

risk of malignancy from CT scans was reported to be known by many pediatric 

physicians (Boutis, Fischer et al. 2014).  

Significant dose-response relationships were found with breast cancer risk in 

patients with tuberculosis who received fluoroscopy frequently (Boice, Preston et al. 

1991; Howe and McLaughlin 1996). On the other hand, there is experimental evidence 

that low-level exposures to ionizing radiation modulate anti-tumor activity  by 

stimulating immune mechanisms mediated by natural killer (NK) cells (Nowosielska, 

Wrembel-Wargocka et al. 2005). 
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Figure 1.1. Possible relationships between radiation dose and cancer risk. 

Epidemiological data provide direct measurements down to 100 mSv (the solid black 

line). Below this level, a linear non-threshold projection is often made (the dashed black 

line); however, some responses may indicate that this approach is either underprotective 

(the green dashed line) or overprotective (the red dashed line). Adopted with permission 

from Mullenders et al., 2009 (Mullenders, Atkinson et al. 2009). 

 

RADIORESISTANCE 

The role of radiotherapy in breast cancer treatment is profound; it is used for 

treatment of very-good-prognosis invasive tumors as well as for in situ breast cancers 

(Cuzick 2005). However, patients often develop recurrences of breast cancer due to 

radioresistance, and at least half of such patients will have invasive cancer with a high 

risk of metastasis and death (Frykberg and Bland 1994; Boyages, Delaney et al. 1999). 

Each type of cancer has different radiosensitivity, and breast cancers are ranked as 

ranging from moderately radiosensitive to radioresistant, therefore they require higher 
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doses of radiation (45-60 Gy) to achieve a radical cure than other cancer types. The total 

dose is divided into 1.8-2 Gy fractions per day for several weeks (Tutt and Yarnold 

2006). Undifferentiated breast cancer cells usually reproduce faster and have a lower 

capacity to repair sub-lethal damage caused by radiation in comparison to healthy 

differentiated cells. The main limitation of radiotherapy is that cancer cells of solid 

tumors become deficient in oxygen after radiation treatment. Such tumors outgrow their 

blood supply causing hypoxia (Harrison, Chadha et al. 2002). The presence of oxygen is 

crucial for radiation to form DNA-damaging free radicals, and therefore under hypoxic 

conditions, cancer cells can be 2 to 3 times more resistant. It has been shown that normal 

mammary epithelial stem cells contain a lower concentration of reactive oxygen species 

(ROS) than their more mature progeny cells. Cancers originating in these stem cells 

develop less DNA damage after irradiation, and they have an increased expression of free 

radical scavenging systems in comparison to cancers developed from more mature cells 

(Diehn, Cho et al. 2009). The mechanisms of radioresistance are not clearly elucidated, 

but more studies have appeared that contribute to understanding of radioresistance. For 

instance, the activation of Akt and Wnt/β-catenin signaling pathways within tumor 

initiating cells has been shown to play a critical role in radiation resistance (Zhang, 

Atkinson et al. 2010). Radioresistance can also be promoted by preferential activation of 

the DNA damage response (Bao, Wu et al. 2006). Apoptosis resistance of MCF-7 breast 

adenocarcinoma cells to ionizing radiation has been shown to be caused by the lack of 

caspase-3 that is essential for the fully functional caspase pathway (Essmann, Engels et 

al. 2004). According to Jameel and colleagues, there are various extranuclear and 

intranuclear factors implicated in radioresistance of breast cancer (Jameel, Rao et al. 
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2004). The following table discusses these factors and their role in mediating radiation 

response.  

Table 1.1. Factors implicated to influence radiation response of a breast cancer cell.  

 Factors implicated in radioresistance References 

Extranuclear Insulin-like growth factor-1 receptor (IGF-IR) 

– a tyrosine kinase that regulates cell growth, 

transformation and apoptosis.  Its expression is 

elevated in ER-positive breast cancers and linked 

to increased radioresistance and cancer relapse. 

 

 

The phosphatidylinositol 3-kinase (PI-3K) 

pathway –regulates cell progression, proliferation, 

and inhibits apoptosis. The serine/threonine 

protein kinase PKB initiates S phase and G2-M 

transition of cell cycle. PI-3K/PKB activity 

contributes to radioresistance of human breast 

cancer cells, and the inhibition of the pathway 

radiosensitizes breast cancer cells. 

 

Epidermal growth factor (EGF) – controls cell 

growth and proliferation. It has been shown to 

promote radioresistance of MCF-7 cells by 

increasing the fraction of S-phase cells and 

glutathione levels.  

 

Human epidermal growth factor receptor 

(HER) – plays a role in mammalian growth and 

development. Its overexpression is widely 

correlated with resistance to radiotherapy. HER 

inhibitors induce apoptosis and cell cycle arrest 

after radiation. Trastuzumab, an antibody against 

HER2, sensitizes breast cells to radiotherapy. 

 

Vascular endothelial growth factor (VEGF) – is 

a mediator of endothelial cell proliferation, 

survival and angiogenesis. It is upregulated under 

hypoxic conditions and is believed to contribute to 

radioresistance. 

(Turner, Haffty et 

al. 1997; 

Bartucci, Morelli 

et al. 2001; 

Peretz, Jensen et 

al. 2001). 

 

(Liang, Jin et al. 

2003; Shtivelman 

2003). 

 

 

 

 

 

 

(Wollman, 

Yahalom et al. 

1994). 

 

 

 

(Earp, Calvo et al. 

2003; Liang, Lu 

et al. 2003; Sartor 

2003). 

 

 

 

 

(Gupta, 

Jaskowiak et al. 

2002; Manders, 

Sweep et al. 

2003; 

Wachsberger, 

Burd et al. 2003). 
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Intranuclear P53 mutations – associated with pure prognosis 

and chemo/radioresistance due to absence of p53-

dependant apoptosis, loss of control over cell cycle 

and DNA repair. 

 

BRCA1 and BRCA2 genes - responsible for 80-

90% of hereditary breast cancers. Tumor 

suppressor genes play a role in DNA repair. Wild-

type BRCA2 induces homologous recombination 

and increases radioresistance. The mutated 

BRCA1 sensitizes cancer cells to ionizing 

radiation. 

 

HER2/neu–the proto-oncogene that codes for 

HER2 protein, plays a role in cell survival and 

proliferation after ionizing radiation by initiating 

signal transduction pathways. It is overexpressed 

in 30% of breast cancers. 

 

Telomeres – functional elements of eukaryotic 

chromosomes, play a role in cellular response to 

DNA damage. Telomere length has been proposed 

to be used as a marker of radiosensitivity. 

 

(Marchetti, 

Cannita et al. 

2003). 

 

 

(Abbott, 

Thompson et al. 

1999; Xia, 

Taghian et al. 

2001; Thull and 

Vogel 2004).  

 

 

(Lear-Kaul, Yoon 

et al. 2003; Liang, 

Lu et al. 2003; 

Sartor 2003). 

 

 

(McIlrath, 

Bouffler et al. 

2001). 

 

Radiotherapy is often combined with other types of treatment such as chemo- and 

hormonal therapy. There is evidence that chemoresistant cells acquire radioresistance and 

re-grow after irradiation. MCF-7 breast cancer cells resistant to paclitaxel and docetaxel 

have been shown to be radioresistant to γ-radiation, while cells of doxorubicin-resistant 

breast cancer MCF-7 and human fibrosarcoma HT1080/DR4 show resistance to X-ray 

radiation (Miller, Hill et al. 1992; Kars, Iseri et al. 2009; Luzhna, Golubov et al. 2013). 

Cell lines with acquired resistance to melphalan and cisplatin were shown to have  

increased levels of glutathione and to be cross-resistant to radiation (Ozols, Masuda et al. 

1988). Similarly, multidrug resistant human leukemia cells were reported to have an 

increased capacity to repair radiation-induced DNA damage (Shimm, Olson et al. 1988). 
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MCF-7 cells resistant to the most common hormonal therapy drug (tamoxifen) were also 

reported to be more resistant to ionizing radiation than their sensitive counterparts 

(Wazer, Tercilla et al. 1989; Paulsen, Strickert et al. 1996). Multi-drug resistance 

involves a myriad of mechanisms, such as an increased DNA repair capacity, resistance 

to apoptosis, an increased capacity of the glutathione pathway (detoxifies reactive oxygen 

species), and its replicative adaptation to high levels of DNA damage. Such mechanisms 

are thought to predispose cancer cells to radiation resistance (Luzhna, Golubov et al. 

2013).   

Many studies focus on improving the beneficial effects of radiotherapy through 

molecular targets. Amongst the possible strategies to improve clinical outcome of 

radiotherapy are transduction signaling pathways alterations, growth factor receptor 

blockages, DNA damage enhancement, apoptosis stimulation (Feofanova, Geraldo et al. 

2014). 

THE EFFECTS OF IONIZING RADIATION ON THE GENOME, CELL 

SURVIVAL, AND CELL TRANSFORMATION 

Radiation-induced DNA damage and DNA repair 

The cytotoxic effect of ionizing radiation relies on the ability to damage DNA. 

Radiation induces a variety of DNA lesions, such as damage to nucleotide bases, cross-

linking, DNA single- and double-strand breaks (Little 2000). DNA damage by ionizing 

radiation arises from two processes: direct and indirect effects. The direct effects result 

from the direct ionization of DNA, while the indirect effects are due to water ionization 
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and  production of the hydroxyl radical (HO·) which then interacts either with 2’-

deoxyribose by H-abstraction or with nucleobases by addition to an unsaturated bond 

(Close, Nelson et al. 2013).The most common forms of radiation-induced damage that 

are difficult to repair are double-strand breaks (DSBs) in DNA. About 40 DNA double-

strand breaks are induced in a cell for each 1 Gy (Kanaar, Hoeijmakers et al. 1998; Rich, 

Allen et al. 2000). There are several features that make DSBs difficult to repair. When 

both strands of DNA are broken, the broken ends can dissociate and interact with breaks 

at other sites that might lead to translocations and deletions. The ends of breaks have 

sustained damage to bases that need to be replaced. In a single-strand break, such bases 

can be easily replaced using the opposite complementary strand as a template, while in 

DSB, such a template is unavailable (Tutt and Yarnold 2006). 

The response to radiation-induced DNA damage includes recognizing DSBs and 

further recruiting of a highly regulated signal transduction cascade that regulates changes 

in cell cycle progression and chromatin modifications around sites of DNA DSBs. 

Unrepaired DSBs could lead to apoptosis (Rich, Allen et al. 2000). Therefore, the 

recognition of DSB is a sensitive and rapid mechanism. Some data suggest that the 

sensing mechanisms may distinguish between DNA damage that could be repaired and 

those which require a wider response such as cell cycle checkpoint activation (Bradbury 

and Jackson 2003). The checkpoint pathways are broadly divided into damage sensing, 

signal transduction, and effector components (Fig. 1.2). The initial sensing molecules are 

unknown, but the main model of DNA damage response suggests the recruitment of 

proteins of the PI3-kinase-like family to the damaged sites and phosphorylation of 

histones around DSBs. The second phase includes signal transducers which recruit repair 
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proteins to the site of damage, and the third phase directly targets components of cell 

cycle machinery (Tutt and Yarnold 2006). Upon radiation exposure, the specific DNA 

damage sensors, such as MRN complex (MRE11-RAD50-NBS1), transmit a signal to 

transducers, such as ATM, and then to CHK1, CHK2. ATM (ataxia telangiectasia) kinase 

is activated and promotes phosphorylation of H2AX, and transduction of the signal to 

effector agents (p53, BRCA1, BRCA2) that are involved in the global DNA damage 

response (DDR) including DNA repair, apoptosis and cell cycle arrest. Mutations in 

ATM confer an increased cancer susceptibility to affected individuals (Taylor and Byrd 

2005). There are two main DSB repair mechanisms: homologous recombination (HR) 

and non-homologous end-joining (NHEJ) (Fig. 1.2). Homologous recombination (HR) 

involves RAD51-dependent processing of DSBs to single-stranded DNA structures 

followed by DNA strand invasion. HR occurs without a loss of genetic information. In 

NHEJ, the Ku70/Ku80 dimer recruits repair proteins that join two broken ends together, 

therefore, NHEJ does not restore any information that is lost during DSB formation 

(Mullenders, Atkinson et al. 2009). 
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Figure 1.2. DNA damage response signaling. Adopted with permission from 

Mullenders et al., 2009 (Mullenders, Atkinson et al. 2009). 

 

Radiation-induced apoptosis and senescence 

Cells unable to repair radiation-induced damage undergo cell death (apoptosis) 

and/or stress-induced senescence (Fig. 1.2). The apoptotic pathway is known to be 

initiated through p53. Mutations in p53 are frequently associated with reduced 

radiosensitivity (Chiarugi, Magnelli et al. 1998). P53 influences the levels of pro-

apoptotic Bax and anti-apoptotic Bcl-2 proteins. Pro-apoptotic factors induce a reduction 

in mitochondrial membrane potential, alterations in membrane permeability, and a release 

of cytochrome c. Cytochrome c binds to apoptotic protein activating factor (APAF) that 

activates the family of proteolytic caspases, such as caspase 9 and 3. Caspases cause 

genome degradation into nucleosomal fragments and cell death (Gewirtz 2000).  



18 

 

Many cells enter a state of permanent cell-cycle arrest instead of apoptosis upon 

ionizing radiation and various other DNA-damaging stressors. Senescent cells are not 

able to divide and form colonies. Stress-induced senescence (SIPS) is also mediated 

through an ATM-p53-p21 mechanism. Cells in SIPS contain high levels of γH2AX foci 

which represent irrepairable DSBs. P53 induces p21 levels and cell-cycle arrest. The key 

protein in cell-cycle arrest during SIPS is Rb. Unphosphorylated Rb negatively regulates 

the transcription factor E2F which is necessary for cell-cycle progression, and initiates 

senescence (Vavrova and Rezacova 2011). Cells enter an irreversible G1 arrest which 

isolates the potentially mutated cells from the population of normal cells.   

Radiation-induced mutations and carcinogenesis 

Misrepaired DSBs are the principle lesions for the induction of gene mutations 

and chromosomal aberrations (Ward 1995). The mutagenic potential of radiation 

predisposes cells to the initiation of carcinogenesis. Radiation induces both point 

mutations and deletions, but deletions predominate, which differs the radiation-induced 

mutation spectrum from the spontaneous mutation spectrum where point mutations are 

more common. The predominant mutational changes are large-scale events that involve 

the loss of heterozygosity (LOH). LOH is mainly a result of deletion or recombination 

processes and can extend on the chromosome to affect other loci and many other genes. 

The majority of such large-scale changes arise as a consequence of DSBs. The 

inactivation of tumor suppressor genes by LOH rather than the activation of oncogenes is 

considered to be the main event of carcinogenesis initiation (Little 2000). For instance, 

LOH of Rb tumor suppressor gene resulted in the induction of secondary cancers upon 
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radiotherapy in retinoblastoma patients (Wong, Boice et al. 1997). P53 mutations also 

occur in radiation-induced cancer transformation, however, LOH at this gene may not be 

the initiating event (Bouffler, Kemp et al. 1995). Overall, there are no specific unique 

genetic alterations in radiation-induced tumors. There are multiple pathways with a 

variety of mutated tumor suppressor genes and oncogenes involved in cancer 

transformation, but they are non-specific. One of the early events in radiation-induced 

carcinogenesis is a loss of G1 checkpoint control. Cells with extensive DNA damage 

progress through cell cycle and continue proliferating rather than become senescent or 

apoptotic. The loss of the G1 checkpoint is often a result of the loss of p53 function 

(Hartwell and Kastan 1994; Murnane 1995).  

The initiation of carcinogenesis is generally associated with mutation. When 

DNA repair is ineffective or cells are not able to eliminate unrepaired and misrepaired 

DNAs, an increased risk of carcinogenesis arises. The key phase in carcinogenesis is the 

promotion phase during which the initiated cells acquire new properties, such as 

resistance to hypoxia, a release of angiogenic factors, immortalization, etc. (Tubiana 

2009). Usually, another common mutation or an epigenetic event in at least one cell from 

the clone of initiated cells gives rise to a subclone of precancerous cells. There is a 

somewhat Darwinian competition between subclones for a more rapid growth. Dominant 

subclones acquire new genomic and/or epigenetic events that give rise to new subclones 

with even a more rapid growth and higher autonomy. Gradually, precancerous cells 

proliferate regularly without any stimulation and enter the third phase of carcinogenesis, 

which is progression. The cells acquire the capacity to invade surrounding tissues and 

metastasize (Tubiana 2009).   
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RADIATION AND EPIGENETICS 

A role of epigenetics in response to ionizing radiation was drawn out of studies on 

radiation-induced chromosomal instability in irradiated cells and its transduction to the 

progeny of irradiated cells and moreover, to the cells adjacent to or distant from 

radiation-targeted cells. A series of alpha particle radiation experiments has shown the 

induction of sister chromatid exchanges (SCE) in targeted and bystander cells (Nagasawa 

and Little 1992; Deshpande, Goodwin et al. 1996; Lehnert, Goodwin et al. 1997). 

Chromosomal aberrations in the progeny of irradiated bone marrow stem cells have 

allowed the authors to propose a possible radiation-induced genomic instability (RIGI) 

(Kadhim, Macdonald et al. 1992). Subsequent work by Morgan’s group described factors 

of genomic instability induced by ionizing radiation (Moran, Holmes et al. 1996; 

Morgan, Corcoran et al. 1998; Morgan 2003; Morgan 2003). Today, RIGI and radiation-

induced carcinogenesis cannot be studied without taking epigenetics into consideration. 

The initial understanding of epigenetics proposed by Waddington reflects a model 

of gene interactions with the surroundings. Depending on a gene and its surroundings, 

such interactions produce a specific phenotype. Nowadays, epigenetics is rather defined 

as a memory of stable changes in gene expression without changes in gene sequence that 

can be passed on to progeny (Jiang, Langley et al. 2008). Such memory explains 

differences between genetically identical cells in a multicellular organism. Cells in 

different tissues selectively choose genes for expression. The ability of cells to change 

gene expression without altering the gene sequence not only allows for maintaining tissue 

identity, but also provides a possibility for  adaptation to the changing environment 
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should such changes occur (Jirtle and Skinner 2007). Because transcription requires 

chromatin proteins to modify chromatin structure and transcription factors, the objective 

of epigenetics is to find how the genetic code in DNA sequence and the way DNA is 

packaged together control gene expression (Bock and Lengauer 2008). Epigenetic 

regulation includes at least four outlined mechanisms: DNA methylation, histone 

modifications, chromatin remodeling and non-coding RNA expression (Gibney and 

Nolan 2010).  

DNA methylation 

DNA methylation was discovered first; it is the most extensively studied. It is the 

only epigenetic mechanism that directly targets DNA. A methyl group replaces a 

hydrogen atom at the cytosine base of DNA, creating a new covalent bond. Such 

modification happens predominantly in cytosine-phosphate-guanine (CpG)-dinucleotides 

(Bird 2009). However, non-CpG methylation has also been observed (Woodcock, 

Crowther et al. 1987). The addition of a methyl group does not affect the transcription of 

cytosine, but it alters chromatin in a way that lowers the binding capacity of transcription 

factors to DNA (Weber and Schubeler 2007).  Methyl-CpG-binding proteins (MBPs) 

recruit transcriptional suppressors to modify chromatin (Fujita, Watanabe et al. 2003; 

Kondo, Gu et al. 2005). The enzymes conducting DNA methylation are DNA 

methyltransferases: DNMT1, DNMT2, DNMT3a and DNMT3b. DNMT1 can maintain a 

DNA methylation pattern by reading and faithfully copying it from the old DNA strand to 

a newly synthesized strand during replication (Bestor 2005). DNMT3a and b target the 

unmethylated CpG sites for de novo methylation in embryonic stem cells and cancer cells 
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(Okano, Bell et al. 1999).  The highest expression of DNMT3a and b is found in 

embryonic cells, stem cells and germ line. Such methylation activity is important for the 

establishment of parental imprints (Kato, Kaneda et al. 2007). The role of DNA 

methylation is critical for normal development, proliferation and genome stability. The 

distribution of CpG-dinucleotides is not random in the genome. Most of the CpG sites are 

clustered in the promoter regions of genes, creating  so-called CpG islands (Bird 2009).  

DNA methylation controls gene expression that is important for tissue specificity 

(Nagase and Ghosh 2008). Usually, the promoters of tumor suppressor genes are 

hypomethylated, which allows their expression for the normal functioning of a cell 

(Herman and Baylin 2003); whereas oncogenes and some repeat elements are silenced 

through hypermethylation, thus maintaining  genomic integrity (Huang, Fan et al. 2004). 

Reanimated transposons can lead to translocations, gene disruption and chromosomal 

instability (Bestor 2005). Methylation that causes genomic imprinting allows suppression 

one of  parental alleles and establishment of heterozygous expression (Feinberg and 

Vogelstein 1983).  X-chromosome inactivation is also a result of hypermethylation (Reik 

and Lewis 2005).   

Profound changes in DNA methylation are often associated with cancers. In fact, 

some cancer cells exhibit global genomic DNA hypomethylation that induces oncogene 

expression (Wolff, Byun et al. 2010) and is associated with chromosomal instability 

(Gaudet, Hodgson et al. 2003). In parallel with global genomic hypomethylation, local 

hypermethylation at the gene promoters of tumor suppressor genes has been observed 

(Rhee, Bachman et al. 2002). The main tumor suppressor genes that are usually 

hypermethylated in sporadic tumors are: cyclin-dependent kinase inhibitor 2A (p16), 
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retinoblastoma (RB1), breast cancer 1 (BRCA1), von Hippel-Lindau (VHL), MLH1 and 

adenomatous polyposis coli (APC) (Aypar, Morgan et al. 2011). Transposon-mediated 

tumorigenesis has been found to be associated with a loss of methylation in repeat 

elements (Hedges and Deininger 2007). Methylated cytosine is prone to spontaneous 

deamination to thymine, which can result in the induction of point mutations (Ketterling, 

Vielhaber et al. 1994).  

Ionizing radiation can alter DNA methylation. Hamster and human cells 

experienced global hypomethylation after gamma-ray irradiation (Kalinich, Catravas et 

al. 1989). Exposure to X-rays led to profound DNA hypomethylation in the liver but not 

the spleen and brain of mice (Tawa, Kimura et al. 1998). In rodents, radiation exposure 

led to dose-dependent and sex- and tissue-specific global genome hypomethylation. 

When C57/BI mice were irradiated with X-rays in the dose range of 0.5-5 Gy, a dose-

dependent loss of global methylation was detected in the spleen of male and the liver and 

spleen of female mice (Pogribny, Raiche et al. 2004). Similar results were found in the 

thymus of mice exposed to fractionated whole-body X-ray exposure. Global 

hypomethylation in the thymus was coupled with decreased levels of DNMT1, DNMT3a 

and b, methyl-CpG-binding protein 2 (MeCP2), and methyl-CpG-binding domain protein 

2 (MBD2) (Pogribny, Koturbash et al. 2005). Similar molecular changes were found in 

irradiated mammary tissue of rats and  caused genomic instability (Loree, Koturbash et 

al. 2006). Modulation of global DNA hypomethylation in MCF-7/DOX cells with 

methylation agent SAM sensitized  cells to radiation-induced apoptosis (Luzhna and 

Kovalchuk 2010). Besides global DNA hypomethylation, irradiation causes promoter 

hypermethylation in tumor suppressor genes. An example of this is methylation in the 
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promoter of p16 tumor suppressor after low-dose x-ray exposure (Kovalchuk, Burke et al. 

2004). Increased DNA methylation was also observed at repeat elements SAT2 and 

MLT1A in the progeny of irradiated human keratinocytes, and the correlation with RIGI 

was described (Kaup, Grandjean et al. 2006).  

In summary, ionizing radiation causes DNA methylation changes similar to those 

found in early stages of carcinogenesis. Such changes are: global DNA hypomethylation, 

specific promoter hypermethylation, and hypermethylation of CpG-dinucleotides in 

repeat elements of the genome. Because altered DNA methylation was linked to RIGI, it 

is hypothesized that epigenetically-induced RIGI is a middle link between radiation and 

cancer (Ilnytskyy and Kovalchuk 2011).  

Histone modifications 

DNA in eukaryotes is not naked; it is combined with histone proteins into 

chromatin. The relaxed chromatin state facilitates numerous biological processes such as 

replication, transcription and repair. The condensation of chromatin can become an 

obstacle for these processes. Dynamic changes in chromatin structure provide for 

balanced cellular activities such as proliferation, cell cycle progression, apoptosis, etc. 

Uncontrolled chromatin remodeling can result in dysregulated gene expression and 

cancer initiation. The unit of chromatin, nucleosome, consists of 4 histones: H2A, H2B, 

H3 and H4. DNA is wrapped around histones, and a linker histone H1 stabilizes the 

octamer structure (Ma, Liu et al. 2010). The amino-terminal tails of core histones (25-40 

residues) are not wrapped around DNA but extend into the surrounding space and 

therefore can be targeted by specific histone modifiers. The main histone modification 
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events known to date are: methylation, acetylation, phosphorylation and ubiquitination. 

Histone modifications do not cause changes in the DNA sequence, but they change the 

chromatin state and alter gene expression (Ma, Liu et al. 2010). Histone tails are rich in 

lysine amino acid residues that provide a positive charge to histones. Positively charged 

histones interact with negatively charged DNA, and a tight connection between DNA and 

histones is achieved. The acetylation of lysines in the histone tails lowers the positive 

charge, thus leading to the relaxed chromatine state. An opposite event, deacetylation, 

represses gene expression (Jenuwein and Allis 2001). Frequently targeted histones are H3 

and H4 at positions 9, 14, 18, 23 and 5, 8, 12, 16, respectively (Roth, Denu et al. 2001). 

The acetylation/deacetylation switches are provided through the action of histone 

acetyltransferases (HAT) and histone deacetylases (HDAC) (Verdone, Agricola et al. 

2006).  

Methylation events in lysine residues cause various chromatin states. Thus, 

methylation of lysines 4 and 79 of H3 always correlates with gene expression, while 

methylation of H4 at position 20 and H3 at positions 9 and 27 causes transcriptional 

repression (van Leeuwen and van Steensel 2005). There can be mono-, di-, or tri-

methylation of histones H3 and H4 (Bannister, Zegerman et al. 2001). DNA methylation 

can affect histone modifications. In tumors, a massive loss of trimethylation was 

observed at lysine 20 of H4 (Tryndyak, Kovalchuk et al. 2006). Another important form 

of histone modification is histone phosphorylation that mainly happens at serine residues 

of histones H2 and H3. Phosphorylation events happen at Ser 139 of H2AX during DNA 

damage (Rogakou, Pilch et al. 1998). Histone ubiquitination is not well understood yet, 

but it is known to mark proteins for degradation (Swerdlow, Schuster et al. 1990). 
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Ubiquitination of H2A and H2B was reported to cause damage checkpoint response. H2B 

ubiquitination was found to be coupled with methylation of lysines 4 and 79 in histone 

H3, suggesting a possible role in the activation of other histone modification events 

(Briggs, Xiao et al. 2002).  

Radiation exposure causes the decreased methylation of H4, which results in the 

relaxed chromatin state and possibly leads to genomic instability (Pogribny, Koturbash et 

al. 2005). Fractionated whole-body X-ray irradiation causes a decrease in trimethylation 

of Lysine 20 of H4 together with global hypomethylation (Bostelman, Keller et al. 2007). 

Less condensed chromatin is more sensitive to radiation and the formation of double-

strand breaks. Phosphorylation of H2AX targets the repair machinery to the sites of 

DSBs. 40 minutes post irradiation, these changes are replaced by deacetylation of H4 

lysine 5 and increased dimethylation of H3 lysine 9 and a more condensed chromatin 

state (Falk, Lukasova et al. 2008). DNA breaks recruit heterochromatin protein 1(HP1) to 

H3K9me and promote chromatin changes that initiate a DNA damage response. Histone 

H2AX phosphorylation happens after the formation of radiation-induced DSBs, and 

gamma-H2AX is a well-recognised biomarker of DSBs (Kuo and Yang 2008). 

Ultraviolet radiation has been shown to cause ubiquitination of H2A (Bergink, Salomons 

et al. 2006). Main alterations in chromatin structure following ionizing radiation are: 

histone modifications, the incorporation of histone variants into nucleosomes, and ATP-

dependent chromatin remodeling (Vaquero, Loyola et al. 2003). 
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MicroRNAs 

MicroRNAs (miRNAs) were first discovered and identified in Caenorhabditis 

elegans as post-transcriptional gene silencing modulators (Lee et al., 1993). Today, they 

are known to regulate gene silencing in mammals, fish, frogs, insects, worms, flowers 

and viruses. Approximately 2% - 3% of the human genome encode for microRNAs 

(Alvarez-Garcia and Miska, 2005). MicroRNAs are important for cellular proliferation, 

apoptosis, differentiation, tissue and organ development. It is now well known that 

aberrant expression of microRNAs is associated with cancer development and 

progression. The first evidence about the involvement of microRNAs in cancer came 

from chronic lymphocytic leukemia (CLL), which is the most common adult leukemia. 

Two miRNAs, miR-15 and miR-16 were deleted or down-regulated in CLL (Calin et al., 

2002). 

The use of microarray technologies for the analysis of miRNAs helps rapidly 

identify  miRNAs that are either up- or down-regulated in different types of human 

cancer, including prostate, breast, ovarian, colorectal, kidney, bladder and cervical. The 

term microRNome is often used in analogy to the genome and transcriptome to describe a 

set of miRNAs produced by specific tissues (Cummins et al., 2006). Similarly to genes 

that encode mRNA, genes coding for miRNAs are classified as oncogenes (oncomirs) 

and tumor suppressors based on their expression levels and mRNA targets (Esquela-

Kerscher and Slack, 2009). Therefore, if to define the functions of miRNAs in a 

simplified way, then we can say that oncomirs target tumor suppressor mRNAs, and 

miRNAs with tumor suppressor functions target oncoproteins. The fact that one miRNA 
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can cause silencing of multiple genes and any gene can be down-regulated by several 

different miRNAs allowed to assume the possible use of miRNAs for cancer 

identification and prediction. 

Although biogenesis of miRNA was elucidated only a few years ago, it has 

already been well studied and understood. MiRNA genes are encoded in cellular DNA 

and transcribed by RNA polymerase II into large RNA precursors called pri-miRNAs 

(500 - 3000 bases) that are 5’ 7-methylguanosine-capped and polyadenylated (Liu, Fortin 

et al. 2008). In the nucleus, pri-miRNAs are microprocessed by Drosha and Pasha (also 

known as DiGeorge-syndrome critical region protein 8 - DGCR8). Both are 

endonucleases (double-stranded RNA-binding proteins) of the RNAse III family. The 

products of Drosha and Pasha are ~ 70-nucleotide pre-miRNAs fold into stem-loop 

structures, with a 3’ overhang of 2 nt (Lee, Feinbaum et al. 1993; Landthaler, Yalcin et 

al. 2004). Pre-miRNAs are exported from the nucleus to the cytoplasm by RAN GTP-

dependent exportin 5 of the karyopherin nucleocytoplasmic transport factor. In the 

cytoplasm, pre-miRNAs undergo further processing by another RNaseIII endonuclease 

called Dicer (Lee, Jeon et al. 2002). Dicer excises a miRNA duplex from a pre-miRNA 

hairpin, creating a double-stranded RNA approximately 22 nucleotides in length. Such 

miRNA duplex can incorporate into and form a RNA-induced silencing complex (RISC). 

Dicer along with the trans-activation response RNA-binding protein (TRBP), protein 

activator of interferon-induced protein kinase (PACT), the nuclease Tudor-SN and the 

Argonaute protein (AGO) contribute to the formation of RISC (Kim, Han et al. 2009). In 

the RISC complex, the miRNA duplex is unwound by specific helicases to form a single-

stranded mature miRNA that is capable of negatively regulating its target mRNAs. The 
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second strand miRNA is degraded. In humans, there are four known AGO proteins (AGO 

1, 2, 3, 4). AGO 2 is a catalytic component of RISC that belongs to the RNase H family 

and is often referred to as a slicer. AGO 2 has been shown to interact with the elF4E 

factor that binds to m7G cap sites and repress the translation of mRNAs (Kiriakidou, Tan 

et al. 2007). There are at least three known ways of negative regulation of target genes by 

miRNAs, depending on the target itself and its degree of complementarity to miRNA 

(Esquela-Kerscher and Slack 2006). 

 MiRNAs with nearly perfect complementarity to a mRNA sequence induce the 

RNA-mediated interference (RNAi) pathway. miRISC binds within the open reading 

frame (ORF), and its specific ribonucleases, mainly Argonaute 2, cause cleavage of 

mRNA, resulting in mRNA degradation. This mechanism is believed to be predominant 

in plants, but it has also been proven to happen in mammals. However, most animal 

mRNAs are thought to be down-regulated rather than cleaved. By this mechanism, 

miRNAs bind to imperfect complementary sequences within the 3’ untranslated regions 

(UTRs) of target mRNAs and repress mRNA gene expression (Stark, Brennecke et al. 

2005). In such a way protein levels are reduced, but the levels of mRNAs remain stable. 

There are two types of translational repression. During post-initiation translational 

repression, the target mRNA is repressed in polysomes, and protein synthesis is blocked. 

Pre-initiation repression involves the sequestration of target mRNA into distinct sites, 

such as processing bodies (P-bodies) in the cytoplasm, away from the translational 

machinery: the initiation step of translation is blocked, and protein synthesis is never 

started. The RISC complex is known to bind the active chromatin sites in yeast and 

plants, causing histone methylation and transcriptional inactivation. 
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MiRNA expression varies in different tumors, and genes coding for miRNAs can 

function as both tumor suppressors and oncogenes. The reduction or deletion of miRNAs 

that function as tumor suppressors leads to cancer development. Such reduction can occur 

because of defects at any stage of miRNA biogenesis, and it promotes the overexpression 

of miRNA target oncoproteins. The amplification or overexpression of miRNAs with 

oncogenic functions would also result in tumor formation. Inappropriate amounts of such 

miRNAs can be produced at the wrong time and in wrong tissues, leading to the 

inhibition of target tumor suppressor proteins (Esquela-Kerscher and Slack 2006). 

Changes in miRNA expression as a response to ionizing radiation were detected 

in several cells and tissues (Czochor and Glazer 2014; Mao, Liu et al. 2014). The first 

evidence about radiation influence on miRNA came from Drosofila studies (Jaklevic, 

Uyetake et al. 2008). The bantam miRNA was up-regulated after the irradiation of fly 

larvae. Bantam miRNA was shown to down-regulate the pro-apoptotic gene hid by 

binding to the 3’-UTR of the gene transcript. This led to a decrease in apoptosis and 

larvae survival (Jaklevic, Uyetake et al. 2008). The effect of radiation on miRNA seems 

to vary according to radiation dose, the time after exposure and cell type. Thus, 2.5 Gy of 

X-rays caused the up-regulation of miR-34a and the down-regulation of miR-7 in 

hematopoietic tissues (Ilnytskyy, Zemp et al. 2008), whereas 2.5 Gy of γ-rays caused 

little changes in miRNA expression in lymphoblasts (Marsit, Eddy et al. 2006). The 

targets for miR-34a are oncogenes myc, notch1, e2f3 and cyclin D1, and miR-7 targets a 

regulator of DNA methylation, the lymphoid-specific helicase (LSH). An acute response 

(6h after exposure) to 0.5 Gy X-ray and 0.1 Gy per day for 5 days involved changes in 

miRNome of skin tissues, but all the changes disappeared past a 6h time point (Ilnytskyy, 
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Koturbash et al. 2009). The sex-specific deregulation of miRNAs 34a and 7 was shown in 

spleen and thymus tissues of whole-body irradiated mice (Ilnytskyy, Zemp et al. 2008). 

Similar results were detected in murine brains. Tissue-, time- and sex-specific radiation-

induced changes in microRNome were shown in the hippocampus, cerebellum and 

frontal cortex of irradiated mice (Koturbash, Zemp et al. 2011). Radiation-induced DNA 

damage in murine testes results in a significant increase of miR-709 which targets the 

Brother of the Regulator of Imprinted Sites (BORIS). BORIS is an important regulator of 

DNA methylation and imprinting, and its decrease prevents a massive erasure of DNA 

methylation (Tamminga, Kathiria et al. 2008). Real-time PCR analysis of microRNA 

expression in irradiated cells has shown an increase in let-7 that targets the oncogene 

cMyc (Chaudhry 2009). In response to high and low doses of γ-radiation, significant 

changes in miRNome were observed in human B lymphoblastic (IM9) cells. All targets 

were involved in apoptosis, cell cycle and DNA damage/repair processes. Low dose (0.5 

Gy) irradiated cells have shown a decrease in onco-miRNAs - miR-20 and 21, while high 

doses (10 Gy) cause the up-regulation of miR-197 which can stimulate carcinogenesis 

(Cha, Shin et al. 2009). It has been hypothesised that low doses of irradiation suppress 

carcinogenesis, while high doses can promote it, and these effects will be miRNA-

mediated. The up-regulation of miR-24 in the irradiated and terminally differentiated 

blood cells, directly targets γ-H2AX that is needed at the sites of DSBs. This has led to 

the suggestion about a connection between radiation, chromatin structure and miRNAs. 

The miRNA-mediated response to ionizing radiation is very similar to one caused by 

oxidative radical exposure. miRNAs of the let-7 family were similarly regulated after 

both ionizing radiation and peroxide. This means that it is very possible that the 
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radiation-induced oxidative stress is the cause of miRNome response after radiation 

exposure (Simone, Soule et al. 2009).  

All these studies show that radiation exposure affects the expression of miRNAs 

through initiating of DNA damage, oxidative stress and DNA repair that alter cell cycle, 

apoptosis and might play a role in the initiation of genomic instability and cancer 

development. 

In sum, from the existing literature we have learned that: 

 Ionizing radiation is ubiquitously used in medical diagnostic and treatment 

procedures, and although its role in cancer identification and treatment is 

profoundly beneficial, a controversy exists about causing unnecessary 

harm to overexposed individuals.  

 Ionizing radiation may cause severe damage to the DNA molecule, and the 

cellular response to radiation varies from efficient DNA repair processes 

to cell death or senescence as well as to the propagation of mutations and 

cancer initiation. The type of radiation response underlies the risk/benefit 

outcome of low dose medical manipulation and the effectiveness of high 

dose radiotherapy.  

 There is a controversy between the LNT model of low-dose radiation 

effect according to which any radiation dose is unsafe and the hormesis 

theory stating that the initial low dose radiation could offer protection and 

promote cellular adaptation to subsequent higher doses.  
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 Radioresistance is a multifactorial characteristic of cancer cells that is 

often a result of drug resistance. The data on radiation responses of 

chemoresistant and especially hormone therapy-resistant tumors are scarce 

and contradictory. Some studies suggest that a combination of chemo-

/hormone therapy with radiation therapy is significantly beneficial, 

whereas others present evidence that such combination may cause no 

effect on drug-resistant cancer cells. 

 Cell response to radiation depends on genetic and epigenetic mechanisms 

that promote gene expression alterations, thus proper investigation of 

radiation-induced gene expression changes requires both genetics and 

epigenetics to be considered.  

OBJECTIVES AND HYPOTHESIS 

The main goal of the current thesis is to investigate the role of genetic and epigenetic 

effectors in dose-dependent radiation responses of normal breast cells, breast cancer cells, 

and hormone therapy-resistant breast cancer cells. 

Guiding Hypothesis: 

Based on evidence from the literature and our preliminary studies, we hypothesize that 

genome and epigenome dysregulation in the mammary gland upon ionizing radiation 

may be involved in the initiation of breast carcinogenesis, and such IR effects are dose 

and energy level dependent. Moreover, we predict that breast cancer cells are more 

sensitive to medium and high doses of ionizing radiation rather than low doses and that 
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breast cancer cells resistant to common hormonal therapy drugs are much more resistant 

to radiation exposure than their drug-sensitive analogues.  

The following experiments were conducted to achieve the goal and test the proposed 

hypotheses: 

Experiments 1 and 2 (Chapters 2 and 3): To analyze gene expression changes and 

epigenetic dysregulation in the mammary gland exposed to low, medium, and high doses 

of X-rays in combination with low and high radiation energy levels.  

Experiment 3 (Chapter 4): To analyze the molecular mechanisms of radiation 

resistance in breast adenocarcinoma cells resistant to hormonal drugs, tamoxifen and 

faslodex.  

Experiment 4 (Chapter 5): To analyze the mechanisms of radiation response of breast 

adenocarcinoma cells to low, medium, and high doses of X-rays. 
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CHAPTER 2: LOW DOSE IRRADIATION PROFOUNDLY AFFECTS 

TRANSCRIPTOME AND MicroRNAme IN RAT MAMMARY GLAND TISSUE: 

POSSIBLE MECHANISMS FOR ADAPTIVE RESPONSE 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 has been accepted for publication in its entirety: 

Luzhna L. and Kovalchuk O. Low dose irradiation profoundly affects transcriptome and 

microRNAme in rat mammary gland tissue: possible mechanisms for adaptive response. 

Oncoscience. 
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ABSTRACT 

Ionizing radiation has been successfully used in medical tests and treatment 

therapies for a variety of medical conditions. However, patients and health-care workers 

are greatly concerned about overexposure to medical ionizing radiation and possible 

cancer induction due to frequent mammographies and/or CT scans. Diagnostic imaging 

involves the use of low doses of ionizing radiation, and its potential carcinogenic role 

creates a cancer risk concern for exposed individuals. In this study, the effects of X-ray 

exposure of different doses on the gene expression patterns and the micro-RNA 

expression patterns in normal breast tissue were investigated in rats. Our results revealed 

the activation of immune response pathways upon low dose of radiation exposure. Low 

dose of radiation has led to the activation of the following pathways: natural killer 

mediated cytotoxicity pathway, antigen processing and presentation pathways, 

chemokine signaling, and T- and B-cell receptor signaling pathways. Both high and low 

doses of radiation led to miRNA expression alterations. Increased expression of miR-34a 

may be linked to cell cycle arrest and apoptosis. Up-regulation of miR-34a was correlated 

with down-regulation of its target E2F3 and up-regulation of p53. This data suggests that 

ionizing radiation at specific high and low doses leads to cell cycle arrest and a possible 

initiation of apoptosis. 
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INTRODUCTION 

Ionizing radiation is a powerful tool in medical diagnostics and the most 

successful cancer treatment after surgery. The major difference in the use of ionizing 

radiation between diagnostic procedures and radiation therapy is the applied radiation 

dose. High doses of radiation possess cytotoxic properties required to kill tumor cells 

(Camphausen and Lawrence 2008). Diagnostic imaging, on the other hand, involves the 

use of low doses of ionizing radiation to gather the necessary information about a disease 

without harmful side effects (Brenner and Hall 2007). However, a potential carcinogenic 

role of ionizing radiation creates a cancer risk concern for exposed individuals. The 

biological effects of low doses and dose rates of radiation on normal tissues have been 

the subject of intense research and discussion (Schuler, Parris et al. 2011). According to 

the Linear-Non-Threshold (LNT) model, low-dose and low-dose-rate exposure results in 

a similar cancer risk as high-dose exposure (Mullenders, Atkinson et al. 2009). On the 

other hand, the LNT model is frequently challenged by the hormetic effect theory 

according to which low doses of radiation may make the exposed cells less susceptible to 

later high-dose exposure and may have health benefits (Calabrese and Baldwin 2003).  

Microarray technology for gene expression analysis may provide a better 

understanding of biological effects of low doses of ionizing radiation. The radiation 

response at the gene expression level can help reveal the mechanisms of cellular response 

and identify key genes responsible for specific endpoints (Kruse, te Poele et al. 2004). 

There are only a few published in vivo studies focusing on gene expression analysis in 

tissues exposed to low doses of ionizing radiation. A clear distinction between high and 

low doses of gamma radiation has been shown in the liver tissue of mice (Uehara, Ito et 
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al. 2010). Similar effects of low and high doses of radiation have been found in the 

thymus tissue of mice, with 2421 and 608 genes being affected after high and low doses, 

respectively (Shin, Lee et al. 2011). A different response has been shown for internal 

low-dose radiation from 
131

I. The response of transcripts has been found to be 

independent of a dose but rather tissue dependent (Schuler, Parris et al. 2011). Overall, 

there is no clear evidence of an exact mechanism of radiation response at the gene 

expression level, especially in in vivo models. Some reasons might be tedious animal 

handling, the heterogeneity of the absorbed dose, and a mixture of cell types within a 

tissue.  

Gene expression is strongly regulated by epigenetic modifications, including 

negative regulation of protein synthesis by microRNAs. Ionizing radiation causes 

alterations in miRNA expression and subsequently, in protein levels of key regulators of 

the cell cycle. For instance, 2.5 Gy of X-rays caused upregulation of miR-34a and 

downregulation of miR-7 in hematopoietic tissues (Ilnytskyy, Zemp et al. 2008). Targets 

for miR-34a are oncogenes myc, notch1, e2f3, and cyclinD1; miR-7 targets a regulator of 

DNA methylation, a lymphoid-specific helicase (LSH). The differential expression of 

miRNAs in response to different doses of gamma radiation was observed previously in 

human B lymphoblastic (IM9) cells. Low-dose (0.5 Gy) irradiated cells showed a 

decrease in onco-miRNAs - miR-20 and 21, while high-dose irradiation (10 Gy) caused 

upregulation of miR-197 that can stimulate carcinogenesis (Cha, Shin et al. 2009). It was 

hypothesized that low doses of radiation suppressed carcinogenesis, while high doses 

could promote it, and these effects would be miRNA-mediated. 
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The aim of this study was to investigate the effects of different doses of X-ray 

exposure on gene expression patterns and micro-RNA expression patterns in normal rat 

breast tissues. 

MATERIALS AND METHODS 

Animal models and irradiation conditions  

Six-week-old intact female Long-Evans rats were obtained from Charles River 

(Wilmington, MA). The animals were housed two per cage in a temperature-controlled 

(24 °C) room in a 12-hour light-dark cycle and given ad libitum access to water and an 

NIH-31 pelleted diet. Six rats were randomly assigned to one of the following X-ray 

radiation treatment groups: 80kVp/0.1 Gy, 80kVp/1 Gy, 80kVp/2.5 Gy, 30kVp/0.1 Gy, 

and sham treated controls. Each group of animals was humanely sacrificed 6, 96 hours, 

and 4, 12, and 24 weeks after radiation treatment. The paired caudal inguinal mammary 

glands were excised. Tissue was frozen immediately in liquid nitrogen and stored at -

80°C for subsequent analyses. 

RNA isolation 

Total RNA was isolated using the Illustra RNAspin Mini kit (GE Healthcare Life 

Sciences, Buckinghamshire, UK). Approximately 50–70 mg of mammary gland tissue 

was processed following the manufacturer's instructions. The samples were eluted in 

Ultrapure DNase/RNase-free distilled water provided in the kit. RNA samples were 

quantified by ultraviolet spectroscopy (NanoDrop, Wilmington, DE) and were further 

assessed for RNA integrity (RIN) on the Aglient 2100 Bioanalyzer (Santa Clara, CA) 
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using the RNA Nano-chip Kit. RNA samples with RIN values of seven or better were 

followed through to analysis. 

Whole-genome gene expression profiling 

Library preparation 

For this study, cRNA was created using the Ambion Illumina TotalPrep RNA 

Amplification Kit (Applied Biosystems, Carlsbad, CA), with an input of 500 ng of total 

RNA per sample. Briefly, oligo-dT primers were used to synthesize first-strand cDNA 

containing a phage T7 promoter sequence. The single-stranded cDNA was converted into 

a double-stranded DNA template via DNA polymerase. RNase H acted simultaneously to 

degrade RNA, and cDNA samples were purified in filter cartridges to remove excess 

RNA, primers, enzymes, and salts. The recovered cDNA was subjected to in vitro 

transcription using biotinylated UTPs. This step created the labeled and amplified cRNA. 

A final purification step removed unincorporated NTPs, salts, inorganic phosphates, and 

enzymes to prepare samples for hybridization.  

Hybridization and detection 

The Illumina's direct hybridization assay kit was used to process samples 

according to the manufacturer's protocol (Illumina, San Diego, CA). Briefly, 750 ng from 

each cRNA sample was hybridized to the Illumina Rat-Ref-12 Whole Genome 

Expression BeadChip arrays overnight. Afterward, a10-minute incubation with the 

supplied wash buffer at 55 C preceded a 5-minute room-temperature wash. The arrays 

were incubated in 100% ethanol for 10 minutes. A second room temperature wash for 
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two minutes with gentle shaking completed this high stringency wash step. The arrays 

were blocked with buffer for 10 minutes and washed before a 10-minute probing with 

steptavidin-Cy3 (1:1000). After a five-minute wash at room temperature, BeadChips 

were dried and imaged. Six controls were also built into the Whole-Genome Gene 

Expression Direct Hybridization Assay system to cover the aspects of array experiments. 

These included controls for a biological specimen (14 probes for housekeeping controls), 

three controls for hybridization (six probes for Cy3-labeled hybridization, four probes for 

low stringency hybridization, one probe for high stringency hybridization), signal 

generation (two probes for biotin control) and ~800 probes for negative controls on an 

eight-sample BeadChip. The arrays were scanned on the iScan platform (Illumina), and 

the data were normalized and scrutinized using Illumina BeadStudio software. 

BeadChip statistical analysis and data processing 

The false discovery rate (FDR) was controlled by the Benjamini-Hochberg 

method. The Illumina Custom Model took FDR into account and was used to analyze the 

data. Differential gene expression (at least a 0.5-fold change) from sham-treated animals 

was determined to be statistically significant if the p-value after the adjustment with the 

Benjamini-Hochberg method was less than 0.05. The values were transformed to show a 

log2 scale. 

Lists of regulated transcripts were put into the web-based DAVID Bioinformatics 

Resources 6.7 (NIAID/NIH) Functional Annotation Tool (Huang da, Sherman et al. 

2009; Huang da, Sherman et al. 2009). This program was used to group genes into 

functionally relevant categories and pathways for further analysis of the association of 
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genetic profiles with breast cancer susceptibility. The minimum number of genes in each 

altered pathway was set to three. The pathways were deemed significantly altered if at 

least 80% of the genes were shifting the pathway in the same direction (Kars, Iseri et al. 

2009). 

Real-time polymerase chain reaction (qRT-PCR) 

Quantitative real-time PCR was performed to confirm the Whole-Genome Gene 

Expression results for the regulation and direction (either up or down) of the selected 

genes. Four genes (Cathepsin K, Lipocalin 2, Phospholipase 2, and Tetraspanin 1) were 

selected from the gene list of significantly differentially expressed transcripts that 

represented a preliminary review of the acquired gene expression data. β-Actin was used 

as a reference gene. All reactions were performed using cDNA synthesized from 500 ng 

of RNA sample using the Bio-Rad iScript Select cDNA Synthesis Kit (Bio-Rad 

Laboratories, Hercules, CA). The samples were stored at -20 C for long-term storage and 

at 4 C until they were used for subsequent qRT-PCR reactions. 

The primers were designed using the NCBI database and PrimerQuest 

(Integrated DNA Technologies, Inc., Coralville, IA). The primers were as follows: CTSK 

forward primer 5'-ATG TGC AGC AGA ATG GAG GCA TTG-3' and reverse primer 5'-

TGC TCT CTT CAG GGC TTT CTC GTT-3'; LCN2 forward primer 5' -ACA ACG TCA 

CTT CCA TCC TCG TCA- 3' and reverse primer 5' -TGG CAA ACT GGT CGT AGT 

CAG TGT- 3'; PLA2G2A forward primer 5' -CAT GGC CTT TGG CTC AAT TCA 

GGT- 3' and reverse primer 5' -ACA GTC ATG AGT CAC ACA GCA CCA- 3'; TSPAN 

forward primer 5' -TTG TCA ACG TGG GCT ACT TCC TCA- 3' and reverse primer 5' -
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AGC ACA CAC TTG TTC TCG GAG TGA- 3'; and beta-Actin reference gene forward 

primer 5'-CCT CTG AAC CCT AAG GCC AA-3' and reverse primer 5'-AGC CTG GAT 

GGC TAC GTA CA-3'. Reactions were prepared using 1 L of diluted cDNA, 10 

pmol/ L of each forward and reverse primer and Ssofast EvaGreen Supermix (Bio-Rad 

Laboratories, Hercules, CA) according to the manufacturer's instructions. Samples were 

prepared in triplicate and were run on the Bio-Rad C1000 Thermal Cycler equipped with 

the CFX96 Real-Time System. The qRT-PCR protocol consisted of denaturation at 95 C 

for two minutes; 43 cycles of denaturation (95 C, five seconds) and annealing/extension 

(55 C, five seconds); and the final extension at 65 C for five seconds. For every set of 

primers, annealing temperature optimization, melting curve analysis, and gel analysis of 

amplicon were performed. To evaluate PCR efficiency, the standard curve was 

established using series of cDNA dilutions. The data were captured and organized by the 

Bio-Rad CFX Manager 2.1 software (Bio-Rad Laboratories, Hercules, CA). 

The quantification data from the Bio-Rad CFX Manager software were analyzed 

in Microsoft Excel using the Pfaffl method (Pfaffl 2001). The graphs showing fold 

change from the sham group were created showing transcript regulation directions (up- or 

down regulation). 

miRNA microarray expression analysis 

Total RNA from mammary gland frozen tissues was isolated using Trizol reagent 

(Invitrogen, Burlington, ON) according to the manufacturer's instructions. One ug of the 

total extracted RNA represented as two repeats per experimental group was sent to LC 

Sciences (Austin, TX) for miRNA microarray analysis.  
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Western immunoblotting 

For protein isolation, 30–50 mg of mammary gland tissue were washed in PBS, 

lysed, and sonicated in 0.25 mL of 1% sodium dodecyl sulfate (SDS) containing protein 

inhibitors. The lysates were cleared using centrifugation. The protein content was 

determined using the Bradford protein determination assay (BioRad, Hercules, CA). 

Equal amounts of lysate protein were subsequently run on 10–12% SDS-polyacrylamide 

gels and transferred to PVDF membranes (GE Healthcare, Baied'Urfé, Québec).  

Western immunoblotting was conducted using the well-established protocols 

(Ertel, Verghese et al. 2006; Tryndyak, Kovalchuk et al. 2006). The membranes were 

incubated with antibodies against mouse anti-TP53, rabbit anti-transgelin, rabbit anti-

E2F3 (1:100 dilution, Santa Cruz Biotechnology, Inc., Santa Cruz, CA ), and mouse anti-

Actin (1:1000 dilution, Abcam Inc., Cambridge, MA). Antibody binding was revealed 

through the incubation with horseradish peroxidase-conjugated secondary antibodies (GE 

Healthcare, Piscataway, NJ) and the ECL Plus immunoblotting detection system (GE 

Healthcare, Piscataway, NJ). Chemiluminescence was detected using BioMax MR films 

(Eastman Kodak, New Haven, CT). The unaltered PVDF membranes were stained with 

Coomassie Blue (BioRad, Hercules, CA) to prove equal protein loading. Signals were 

quantified using NIH ImageJ 1.63 software and normalized to loading controls. The 

images are representative of two independent immunoblots. The results are presented as 

mean ± S.E.M. The statistical analyses were conducted using the student's t-test. P-values 

less than 0.05 were considered significant. 
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RESULTS 

The effects of low, intermediate, and high doses of radiation on whole-genome gene 

expression in the mammary gland 

Isolated RNA from the mammary gland was used for gene expression profiling. A 

drastic difference in the radiation-induced gene expression changes was discovered 

between the doses/energy levels applied. Ninety-six hours after radiation, only high 

energy level/low doses of X-ray exposure (80kVp/0.1 Gy) led to significant alterations in 

the expression level of 567 genes (Table 2.1). Other doses did not affect gene expression, 

and only a few genes were altered. Interestingly, the alterations noticed at an early time 

point disappeared by 24 weeks, while a slight (51 genes) delay in gene expression 

alterations was noticed for the high level/high doses (80kVp/2.5 Gy) of radiation (Table 

2.1). Most of the altered genes were unique in their experimental groups, and there were 

not many genes common to all the treatment groups (Fig. 2.1).  

Further, we evaluated 567 genes that changed their expression level 96 hours after 

80kVp/0.1 Gy of X-rays: 295 genes were upregulated, and 272 genes were 

downregulated. With the help of the DAVID functional annotation array analysis tools, 

we were able to identify and group the evaluated genes according to their function and 

possible role in certain pathways. Subsequently, genes with a similar or identical function 

were grouped together; and based on their expression changes, the role of certain 

pathways in radiation response was evaluated (Table 2.2). Most of the changed genes 

contributed to certain immunological pathways (Table 2.2). Some examples of such 

elevated pathways are as follows: antigen processing and presentation (16 genes altered), 
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B- and T-cell receptor signaling (13 and 15 genes, respectively), chemokine signaling (14 

genes), Fc gamma R-mediated phagocytosis (11 genes), natural killer cell-mediated 

cytotoxicity (18 genes), etc. Upregulation of immunological pathways reveals the 

activation of immune defense against possible damage caused by either ionizing radiation 

or other forms of potential stressors. The visual representation of one of such pathways 

(natural killer cell-mediated cytotoxicity) is presented in Figure 2.2. Most downregulated 

genes contributed to metabolic pathways: citrate cycle (8 genes), fatty acid metabolism (6 

genes), glutathione metabolism (7 genes), pyruvate and tryptophan metabolism (7 and 6 

genes, respectively) (Table 2.2). The number of altered genes in the 24-week/80kVp/2.5 

Gy group was too small to group in pathways; therefore, we analyzed singular genes of 

interest.  

The validity of gene expression profiling was confirmed by qRT-PCR for genes 

with the most change and the greatest radiation response in both the 96 hours/80kVp/0.1 

Gy and 24 weeks/80kVp/2.5 Gy groups. Therefore, the primary targets for qRT-PCR 

were cathepsin K (CTSK), lipocalin 2 (LCN2), phospholipase 2 (Pla2G2), and 

tetraspanin 1 (TSPAN1) (Fig. 2.3). Cathepsin K, a lysosomal cysteine proteinase that was 

known to be overexpressed in breast cancers, was significantly elevated at 4 and 24 

weeks after high-dose radiation (80kVp/2.5 Gy). Lipocalin 2, an oncogene that may 

function as a growth factor, was also upregulated at 24 weeks after the highest dose of X-

rays. Both phospholipase 2 and tetraspanin 1 play a role in cell growth, signaling and 

motility. Similarly to the gene expression analysis, qRT-PCR showed that these genes 

were downregulated in most experimental groups at 24 weeks after radiation exposure 

(Fig. 2.3).  
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miRNA expression in the irradiated mammary gland 

miRNAs regulate gene expression epigenetically; therefore, we proceeded to 

analyze the role of miRNAs in response to low, intermediate, and high doses of radiation 

in mammary gland tissue at 96 hours after treatment. miRNAs involve the epigenetic 

control of gene expression regulation through the RNA interference pathway. miRNAs 

negatively affect the levels of their target transcripts and proteins encoded by these 

transcripts. In this way, miRNAs contribute to gene silencing, and changes in miRNA 

expression are common in cancers and in response to radiation.  

Interestingly, we identified the alterations in miRNA expression after high 

dose/energy level (80 kVp/2.5 Gy) and low dose/low energy level (30kVp/0.1 Gy) 

radiation (Table 2.3). Upregulation of miR-34a has been found to be common for both 

doses, and the expression level has been increased 1.55- and 1.08-fold after 80 kVp/2.5 

Gy and 30 kVp/0.1 Gy, respectively. MiR-34a directly inhibits the expression of 

transcription factor E2F3 that is necessary for cell progression through the cell cycle and 

the expression of transgelin, an actin cross-linking protein, which may contribute to  

replicative senescence. The MiR-34 family is known to be activated by the p53-

dependant pathway in response to DNA damage.  

Tp53, E2F3, and transgelin expression in the irradiated mammary gland  

The elevated expression of miR-34a was interesting to us, and we decided to 

proceed with identifying protein levels of its targets E2F3 and transgelin as well as p53, 

the key protein in DNA damage response. Western analysis was performed for tissues 
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exposed to 80 kVp/2.5 Gy and 30kVp/0.1 Gy radiation, at 96 hours and 24 weeks after 

exposure. The level of Tp53 was shown to be significantly elevated at 24 weeks after 

low-dose exposure (Fig. 2.4). The increased levels of the phosphorylated p53 protein 

stimulate radiation response and DNA damage repair. 

The level of E2F3 protein was shown to be decreased in response to both 

80kVp/2.5 Gy and 30kVp/0.1 Gy radiation treatments at the early time point (96 hours) 

(Fig. 2.4). The downregulation of E2F3 is known to stimulate G1 arrest, senescence, 

and/or apoptosis. There were no significant differences in the expression of transgelin in 

the irradiated tissues in comparison to non-irradiated controls (Fig. 2.4).  

DISCUSSION 

Ionizing radiation has been successfully used in medical tests and treatment 

modalities for a variety of medical conditions, including breast cancer screening and 

therapy. Nevertheless, a strong concern about overexposure to medical ionizing radiation 

and possible cancer induction due to continuous mammography procedures and/or CT 

scans exists amongst patients and individuals who provide patient care (Mullenders, 

Atkinson et al. 2009). The  concern raised is based on the ability of low doses of ionizing 

radiation used for diagnostic procedures to cause DNA damage that is not extensive 

enough to induce cell death, but may result in mutations, genomic rearrangements and 

cancer initiation (Ward 1995). Ionizing radiation is considered to be a non-threshold 

carcinogen. The Linear-No-Threshold (LNT) model states that there is no dose level 

below which radiation exposure is safe, and there is a finite probability that even the 

lowest possible dose may be responsible for cancer initiation (Mullenders, Atkinson et al. 
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2009). It is evident that choosing the right dose of radiation as well as the amount of 

radiation used during screening and therapy is vital for any medical procedure to 

minimize any potential risk of harm. Overall, the data on the response of healthy 

mammary tissues to low versus high doses and energy levels of radiation are scarce and 

indeed need more experimental evidence.  

In the present study, the immediate (96 hours) and prolonged (24 weeks) 

radiation-induced changes in mammary gland gene expression were investigated and 

compared between different radiation doses and energy levels. Unexpectedly, the large-

scale gene expression alterations were only noticed after the application of high 

energy/low dose (80kVp/0.1 Gy) X-rays at 96 hours after treatment (Table 2.1). Neither 

high-dose nor low-dose exposures combined with low-energy radiation caused significant 

modifications in gene expression at the transcription level. The altered genes mainly 

constituted the immunological pathways that were shown to be activated upon radiation 

(Table 2.2). Radiation is generally considered to be an immunosuppressive agent that 

kills radiosensitive cells, and this makes radiotherapy one of the most successful cancer 

therapies. However, under certain circumstances, especially exposure to low-dose 

radiation may enhance immunity. Our study has shown an increase in antigen processing 

and presentation, a process by which antigen-presenting cells digest foreign proteins and 

display antigenic peptide fragments on MHC molecules for the recognition by T cells 

during infections and abnormal cell growth. Among the genes that were upregulated and 

contribute to this pathway were the following: CD74 (the major histocompatibility 

complex class two that plays a role in MHCII antigen processing), CD8a (involved in T 

cell-mediated killing by identifying cytotoxic T cells that interact with MHC class I), 
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Ifi30 (the interferon gamma inducible protein that facilitates MHC class I and II 

recognition of antigens containing disulfide bonds), and other genes with similar 

functions. A similar effect of radiation on antigen presentation by MHC class I was 

reported previously in murine colon adenocarcinoma cells (Reits, Hodge et al. 2006). 

Similarly, non-cytotoxic effects of ionizing radiation on MHC class I antigen presentation 

were demonstrated in bone marrow-derived dendritic cells (Liao, Wang et al. 2004). The 

modulation of antigen presentation pathways provides protective anti-tumor immunity to 

the irradiated cells and tissues. Eighteen genes constituting the natural killer (NK) cell-

mediated cytotoxicity pathway were also upregulated (Table 2.2, Fig. 2.2). NK cells play 

a role in immune surveillance for cancer by providing anticancer immunity to cells 

(Schmitt, Ghazi et al. 2008). The activated genes were CD247 (it plays a role in signal 

transduction upon antigen triggering), Icam 1 and 2 (they are ligands for leukocyte 

adhesion), Lat (a linker for T activation), among others. The enhancement of NK cell-

mediated cytotoxicity after radiation in combination with HDAC inhibitor was recently 

reported in lung cancer cells (Son, Keum et al. 2014). B- and T-cell receptor signaling 

pathways were also upregulated upon low dose/high energy radiation (Table 2.2). Both 

pathways stimulate immune response to cancer initiation and are the prime targets for the 

treatment of many malignancies. Various chemoattractants for blood monocytes and 

memory T-helper cells as well as chemokine receptor genes were activated; this 

activation upregulated the chemokine signaling pathway (Table 2.2). Similar CXC 

chemokines were shown to be upregulated by  low doses of ionizing radiation in normal 

human fibroblasts (Fujimori, Okayasu et al. 2005). The upregulation of the phagocytosis 

pathway was due to an increased expression of 11 genes. Phagocytosis activation has 
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been known to be induced after radiation exposure as a consequence of recognition and 

clearance of radiation-induced apoptotic cells. Such inflammatory-type response to 

radiation exhibits the bystander effect of radiation rather than the direct effect of radiation 

(Lorimore, Coates et al. 2001). Overall, the activation of immune response pathways 

upon radiation exposure may indicate anti-tumor protection and eradication of damaged 

cells. Similar effects of internal low-dose irradiation on gene expression and activation of 

immune response in normal tissues in mice were reported previously (Schuler, Parris et 

al. 2011). Interestingly, immune response was the only common biological process 

affected by irradiation in all tissues studied (the liver, lung, spleen, kidney medulla, and 

kidney cortex), while alterations in other biological processes were tissue-specific 

(Schuler, Parris et al. 2011).  

Radiation response has also shown metabolic changes, mainly downregulation of 

citrate cycle, pyruvate, and fatty acid metabolism pathways (Table 2.2). A metabolic 

response to radiotherapy is very important. A progressive decrease in glucose metabolism 

in cancer has been shown to be useful for the prediction of a radiotherapy response 

(Giovacchini, Picchio et al. 2009). Metabolic properties of pre-cancerous and cancer cells 

depend on glycolisis, increased rate of fatty acids synthesis, and increased rates of 

glutamine metabolism. These properties often result in therapeutic resistance (Zhao, 

Butler et al. 2013). Our results on gene expression have demonstrated  radiation-induced 

metabolic inhibition that may lead to cell death rather than cancer initiation. 

Gene expression analysis was confirmed by qRT-PCR for four genes with the 

highest changes in gene expression. Tetraspanin 1 RNA expression was proved to be 
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decreased upon exposure to ionizing radiation (Fig. 2.3). This protein mediates signal 

transduction events that play a role in the regulation of cell development, activation, 

growth, and motility. Phospholipase 2 was down-regulated at the early and late time 

points, and was thought to participate in the regulation of phospholipid metabolism in 

biomembranes, including eicosanoid biosynthesis. Phospholipases are ubiquitously 

expressed and have diverse biological functions, including role in inflammation, cell 

growth, signaling and death, and the maintenance of membrane phospholipids. 

Interestingly, both gene expression and qRT-PCR analyses have shown an increased 

expression of lipocalin 2 and cathepsin K 24 weeks after being exposed to the highest 

dose (80kVp/2.5 Gy). Both proteins are known to be oncogenes and are ubiquitously 

expressed in breast cancers. It is important to note that high expression of these genes 

was not accompanied by the upregulation of particular pathways to which these genes 

belong.  

It is well accepted that gene expression is strongly regulated by epigenetic factors 

(Jaenisch and Bird 2003). A number of studies have indicated substantial alterations of 

epigenetic elements, including changes in DNA methylation, histone modification, and 

short RNA patterns as a result of radiation exposure (Aypar, Morgan et al. 2011). 

Radiation-induced changes in miRNA expression usually lead to changes in the synthesis 

of proteins involved in the main cellular biological pathways. As per Table 2.3, the 

validated targets of misregulated miRNAs fall in cell cycle and apoptosis categories 

(Table 2.3). Interestingly, a low radiation dose causes similar miRNA expression changes 

to the highest dose. The increased expression of miR-34a may be linked to cell cycle 

arrest and apoptosis. The ectopic expression of miR-34 genes is known to cause a G1 
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phase arrest (Tarasov, Jung et al. 2007). Furthermore, the high expression of miR-34a has 

been shown to induce apoptosis (Raver-Shapira, Marciano et al. 2007). The main targets 

of miR-34a are E2F3 transcription factor, transgelin, and possibly CDK4/6, cyclin E2, c-

myc (Hermeking 2010). Bommer et al. showed that Bcl-2 was targeted by miR-34a 

(Bommer, Gerin et al. 2007). Interestingly, several reports have shown that the miR-34 

family is a direct target of p53, and its activation induces apoptosis and cell cycle arrest 

(Bommer, Gerin et al. 2007; Corney, Flesken-Nikitin et al. 2007). In addition, the 

activation of miR34-a by p53 feeds back to p53, and such positive feedback leads to 

further activation of p53 (Hermeking 2010). We further decided to conduct Western blot 

analysis to identify protein levels of E2F3 and transgelin that are targets miR-34a. The 

expression level of E2F3 protein was indeed downregulated at 96 hours after radiation 

treatment with both low and high doses (Fig. 2.4). E2F3 binds specifically to RB1 and is 

involved in the control of cell cycle progression from G1 to S phase. Low levels of E2F3 

lead to cell cycle arrest in response to DNA damages that result from ionizing radiation. 

We did not notice any significant changes in the protein level of transgelin. However, an 

elevated level of p53 protein was detected after exposure to a low dose of ionizing 

radiation. Such correlation between upregulated miR-34a, the downregulation of its target 

E2F3, and the upregulation of p53 allows us to suggest that ionizing radiation at specific 

high and low doses leads to cell cycle arrest and a possible initiation of apoptosis. The 

induction of cell cycle arrest and promotion of apoptosis when the damage is too severe 

to be repaired are considered to be important for tumor suppression (Vousden and Lane 

2007). In his report, Hermeking described the role of p53 as a mediator of tumor 

suppression through the activation of miR-34 family members (Fig. 2.5).  



54 

 

Overall, both post radiation gene expression and miRNA expression analyses 

have demonstrated an increased immunological response and cell cycle response directed 

to prevent cancer initiation. However, these characteristics were not detected for every 

dose applied. Further investigation of the cellular response may shed more light on the 

correlation between differential radiation doses and their effects on apoptosis/cancer.  
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Table 2.1 Gene expression profiling in mammary gland tissue exposed to low and 

high doses of ionizing radiation. The number of significantly changed genes in the rat 

mammary gland upon low energy level/low dose (30kVp/0.1 Gy), high energy level/low 

dose (80kVp/0.1 Gy), high energy level/medium dose (80kVp/1 Gy) and high energy 

level/high dose (80 kVp/2.5 Gy) of radiation in comparison to their corresponding un-

irradiated controls at 96 hours and 24 weeks time points, as identified by  gene expression 

profiling analysis.  

 

 

Treatment 

Group 

96 hours 24 weeks 

Total 

number 

of genes 

changed 

Number 

of up-

regulated 

genes 

Number 

of down-

regulated 

genes 

Total 

number 

of genes 

changed 

Number 

of up-

regulated 

genes 

Number 

of down-

regulated 

genes 

30 kVp/0.1 Gy 14 8 6 22 8 14 
80 kVp/0.1 Gy 567 295 272 37 10 27 
80 kVp/1 Gy 3 3 0 20 7 13 
80 kVp/2.5 Gy 32 13 19 51 28 23 
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Figure 2.1 Differentially expressed genes commonly shared between treatment 

groups. The Venn diagram groups the common altered genes between experimental 

groups. 
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Table 2.2 Significantly altered KEGG pathways in mammary gland upon 96h of 

80kVp/0.1 Gy in comparison to the corresponding untreated controls. In this table, 

the pathway significance (%) is defined as the ratio of gene alterations that similarly 

affect a certain pathway (either up- or down-regulate) to the total number of altered genes 

in the pathway. “+” – the pathway is up-regulated; “-” – the pathway is down-regulated. 

N/S – non-significant. 

 

 

Pathways 

 

Pathway Significance, 

% (total number of 

genes) 
 

Antigen processing and presentation  + 93.8%  (16)  

B cell receptor signaling  + 100% (13)  

Cell adhesion molecules (CAM)  + N/S (20)  

Chemokine signaling  + 100% (14)  

Citrate cycle (TCA)  - 100% (8)  

Cytosolic DNA-sensing pathway  + 100% (6)  

ECM-receptor interaction  - 88.9% (9)  

Fatty acid metabolism  - 100% (6)  

Fc epsilon RI signaling  + 100% (10)  

Fc gamma R-mediated phagocytosis  + 100% (11)  

Glutathione metabolism  - 85.7% (7)  

Graft-vs-host disease  + 100% (7)  

Hematopoietic cell lineage  + N/S (9)  

Intestinal immune network for IgA production + 100% (6)  

Leukocyte transendothelial migration  + 89.5% (19)  

Lysosome  + N/S (13)  

Natural killer cell mediated cytotoxicity  + 100% (18)  

PPAR signaling  - 100% (10)  

Primary immunodeficiency  + 100% (8)  

Pyruvate metabolism  - 100% (7)  

T cell receptor signaling  + 100% (15)  

Tryptophan metabolism  - 83.3 % (6)  
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Figure 2.2 The natural killer cell mediated cytotoxicity pathway. Red stars represent 

genes that were up-regulated. 
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Figure 2.3 Altered levels of gene transcripts of cathepsin K, lipocalin 2, 

phospholipase 2, and tetraspanin 1, as detected by RT-PCR. Data are shown as fold 

changes to respective controls. Each treatment group was compared to its corresponding 

control; B-actin was used as a reference gene (calculated by Pfaffl). P-values (in a table 

below the graphs) were calculated by student’s t-test. 
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Table 2.3 Radiation-induced microRNA expression changes in rat mammary gland. 

Relative miR expression values are represented in folds in the irradiated cells in 

comparison to non-irradiated control cells as analyzed by miRNA microarray. 

Significance of differences was analyzed by the Student’s t-test. 

 

Treatment Group MiRNA changed Log2 (G/CT) Validated targets 

80 kVp/0.1 Gy 2 Low fold change - 

80 kVp/1 Gy Low signals - - 

80 kVp/2.5 Gy miR-34a 

miR-29c 

miR-20b-5p 

miR-204 

1.55 

-1.02 

-1.65 

-1.39 

E2F3, Tagln, INHBB 

Tpm1 

- 

- 

 

30 kVp/0.1 Gy miR-34a 

miR-20b-5p 

miR-98 

miR-127 

1.08 

-1.55 

-1.16 

2.08 

E2F3, Tagln, INHBB 

- 

- 

- 
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A. 

 

B. 

96h          24w               96h              24w              96h              24w   

CT           80kVp/2.5Gy                  30kVp/0.1Gy

Tp53→

Actin→

E2F3→

Actin→

Tagln→

Actin→

96h          24w              96h             24w             96h              24w   

CT           80kVp/2.5Gy                  30kVp/0.1Gy

96h          24w              96h             24w              96h               24w   

CT           80kVp/2.5Gy                  30kVp/0.1Gy

 

Figure 2.4 Tp53, E2F3, and transgelin protein levels in rat mammary gland upon 

whole body irradiation. (A) Protein levels relative to those of control non-irradiated 

animals are shown as Mean ± StEr. (B) Representative blots from two independent 

experiments. * - p<0.05, student’s t-test. 
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Figure 2.5 The miR-34 family as mediator of tumor suppression by p53. Adapted 

with permission from Hermeking, 2010 (Hermeking 2010). 
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Main findings described in chapter 2:  

1. Radiation exposure leads to early (96 hours) changes in gene expression. Most 

profound effect has been shown for the 80 kVp/0.1 Gy dose exposure. 

2. Most genetic changes have shown an immunological pathway response to 

radiation. But certain oncogenes were activated 24 weeks after highest dose of 

radiation. 

3. MiRNA profile has been profoundly changed after lowest 30 kVp/0.1 Gy and 

highest 80 kVp/2.5 Gy doses of X-ray. The alterations affected cell cycle and 

apoptosis processes. 
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CHAPTER 3: MOBILIZATION OF LINE-1 IN IRRADIATED MAMMARY 

GLAND TISSUE MAY POTENTIALLY CONTRIBUTE TO LOW DOSE 

RADIATION-INDUCED GENOMIC INSTABILITY 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 has been submitted in its entirety: 

Luzhna L., Ilnytskyy Y., and Kovalchuk O. Mobilization of Line-1 in irradiated 

mammary gland tissue may potentially contribute to low dose radiation-induced genomic 

instability. Genes and Cancer (in review) 
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ABSTRACT 

It is known that cellular stresses such as ionizing radiation activate LINE-1 (long 

interspersed nuclear element type 1, L1), but the molecular mechanisms of LINE-1 

activation have not been fully elucidated. There is a possibility that DNA methylation 

changes induced by genotoxic stresses might contribute to LINE-1 activation in 

mammalian cells. L1 insertions usually cause major genomic rearrangements, such as 

deletions, transductions,  intrachromosomal homologous recombination between L1s, and  

generation of pseudogenes, which could lead to genomic instability. The purpose of this 

study was to evaluate the effects of low and high doses of ionizing radiation on the DNA 

methylation status of LINE-1 transposable elements in rat mammary glands. Here we 

describe radiation-induced hypomethylation and activation of LINE-1 ORF1 in rat 

mammary gland tissues. We show that radiation exposure has also led to the translation 

of the LINE-1 element, whereby the 148 kDa LINE-1 protein level was increased 96 

hours after treatment with a low dose and low energy level radiation and remained 

elevated for 24 weeks after treatment. The mobilization of LINE-1 in irradiated tissue 

may potentially contribute to genomic instability. The observed activation of mobile 

elements in response to radiation exposure is consistently discussed as a plausible 

mechanism of cancer etiology and development. 
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INTRODUCTION 

LINE-1 (long interspersed nuclear element type 1, L1) belongs to the family of 

non-long terminal repeat retrotransposons. With over 500, 000 copies, L1 comprises 17-

18 % of the human genome and is capable of its own expansion and also mobilization of 

other non-L1 elements that may dramatically shape the genome (Lander, Linton et al. 

2001; Ergun, Buschmann et al. 2004). It is well known that most of the L1 elements are 

mutated, rearranged, and/or truncated (at the 5’ end) and therefore, are not capable of 

further retrotransposition. Nevertheless, a small subset (80-100) of the full-length L1 

elements is active, functional and potentially capable of self-expansion (Brouha, Schustak 

et al. 2003; Belgnaoui, Gosden et al. 2006). A retrotransposition-competent L1 element 

(RC-L1) is 6-7 kb in length and consists of 5’-untranslated region (5’-UTR) with its 

internal CpG-rich promoter, two non-overlapping open reading frames (1kb ORF1 and 

3.8 kb ORF2) separated by a 63bp intergenic spacer, and a 206nt 3’-UTR terminator  

with a poly(A) tail (Goodier, Zhang et al. 2007). The internal or “minimal promoter” is 

generally believed to be the most important region for successful transcription of L1. 

However, in their study Alexandrova and colleagues have shown that the promoter 

strength is mostly dependant on the 390-526 bp region within the human L1 5’-UTR. 

Deletion of this fragment resulted in the significant decrease of promoter activity 

(Alexandrova, Olovnikov et al. 2012). In the same study the authors proposed a model in 

which an internal enhancer region (390-526) of L1 5’-UTR is responsible for recruitment 

of the transcription initiation complex and might serve as a basis for enhanceosome 

formation. This internal enhancer overlaps with the region of L1 5’-UTR that drives 

transcription in opposite direction suggesting the existence of bidirectional transcription 
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of L1(Alexandrova, Olovnikov et al. 2012). ORF1 encodes a 40 kDa (p40) protein with 

the RNA-binding activity, while ORF2 encodes a 150 kDa protein with N-terminal 

endonuclease and C-terminal reverse transcriptase enzymatic activities (Ostertag and 

Kazazian 2001). ORF1 proteins (ORF1p) are predominantly cytoplasmic and form large 

ribonucleoprotein (RNP) complexes with L1 RNA and DNA (Hohjoh and Singer 1996). 

ORF1p is reported to possess chaperone activity and possibly be significant in reverse 

transcription reaction (Moran, Holmes et al. 1996). The function of ORF2p in 

retrotransposition is much well-determined, as the endonuclease nicks the target DNA 

strand exposing a 3’-hydroxyl group that primes reverse transcription of L1 RNA by 

reverse transcriptase. Such  mechanism of retrotransposon replication is termed as target-

site-primed reverse transcription (TPRT) (Luan and Eickbush 1995).  

L1 insertions usually cause major genomic rearrangements such as deletions, 

transductions, intrachromosomal homologous recombination between L1s, and the 

generation of pseudogenes that can lead to genomic instability (Gilbert, Lutz-Prigge et al. 

2002; Symer, Connelly et al. 2002). L1 transcription and integration into the genome 

leads to recombination events that harvest chimeric retrotranscripts or pseudogenes that 

consist of the fused DNA copies of various RNAs. One study reported at least 81 of such 

chimeric pseudogenes which were classified in nine families (Buzdin, Gogvadze et al. 

2003). Later it was confirmed that chimeric retrotranscripts are generally composed of 

the copies of transcripts of mRNAs, ribosomal RNAs, or snRNAs fused to the 3’ site of 

L1and of 5’ sites derived from nucleolar RNAs (Buzdin, Gogvadze et al. 2007). Most of 

RC-L1s are strongly methylated (Hata and Sakaki 1997) or silenced by the RNA 

interfering pathway (Soifer, Zaragoza et al. 2005), but the loss of methylation or silencing 
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can activate LINE-1, and such activity was shown to be linked to several diseases 

including cancers. 

Several studies provide solid evidence that the insertion of LINE-1 into structural 

genes may play a role in the origin and/or progression of cancers. L1 retrotransposons 

were previously detected in significant amounts in breast cancer: in 7 out of 8 malignant 

cell lines and in 9 of 12 primary infiltrating ductal carcinomas (Bratthauer, Cardiff et al. 

1994). Line-1 retrotransposons and ORF1p were also isolated and characterized in rat 

chloroleukemia cells (Kirilyuk, Tolstonog et al. 2008). Some of the early studies have 

shown L1 expression and ORF1p in human germ cell cancers (teratocarcinoma and 

choriocarcinoma cell lines) (Leibold, Swergold et al. 1990). A  recent study demonstrated 

the up-regulation of LINE-1 together with another retrotransposon, SINE B1, at a very 

early stage of murine mammary tumorigenesis. Moreover, they reported that these 

retrotransposons were rapidly amplified during cancer progression (Gualtieri, Andreola et 

al. 2013). Similarly, LINE-1 quantification in sera of breast cancer patients was shown to 

be useful for detecting early-stage breast cancer, and the copy number was correlated 

with tumor size (Sunami, Vu et al. 2008). The insertion of a LINE-1 element into the c-

Myc gene and the APC gene was shown in primary breast cancer and colorectal cancer, 

respectively (Morse, Rotherg et al. 1988; Miki, Nishisho et al. 1992).  

Epigenetic alterations are well known to cause gene expression changes and affect 

genome stability. The loss of DNA methylation is usually associated with gene 

activation, while hypermethylation silences genes. Both events are associated with a 

cancer phenotype. Not surprisingly, the evidence of aberrant DNA methylation in LINE-
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1 retroelements exists and correlates with the activity of transposons. CpG-rich L1 

promoter hypomethylation leads to the activation of ORF1 sense transcription in chronic 

myeloid leukemia (CML) and is associated with a poorer prognosis for the cytogenic 

response to interferon and imatinib (Roman-Gomez, Jimenez-Velasco et al. 2005). 

Furthermore, a decrease in methylation levels of L1 has been shown to be associated with 

breast cancer risk in a dose-dependent manner (Deroo, Bolick et al. 2013). Similarly, the 

hypomethylation-induced activation of L1 has been reported in testicular tumor, prostate 

and hepatocellular carcinomas, and chronic lymphocytic leukemia (Bratthauer and 

Fanning 1992; Dante, Dante-Paire et al. 1992; Santourlidis, Florl et al. 1999; Lin, Hsieh 

et al. 2001).   

Genomic instability that results from genetic and/or epigenetic changes and leads 

to carcinogenesis, is often associated with environmental factors. One example is 

radiation-induced genomic instability (RIGI). The cytotoxic effect of ionizing radiation 

relies on the ability to damage DNA. Radiation induces a variety of DNA lesions 

including damage to nucleotide bases, cross-linking, DNA single- and double-strand 

breaks (Little, 2000). Ionizing radiation can also alter DNA methylation. In rodents, 

radiation exposure was shown to cause dose-dependent and sex- and tissue-specific 

global genome hypomethylation. When C57/BI mice were irradiated with X-rays in the 

dose range of 0.5-5 Gy, a dose-dependent loss of global methylation was detected in male 

spleen and female liver and spleen (Pogribny et al. 2004). Radiation-induced global 

hypomethylation in mice was correlated with a lower expression of both maintenance and 

de novo methyltransferases (Raiche et al. 2004). Similar results were found in the thymus 

of mice exposed to fractionated whole-body X-ray exposure. Global hypomethylation in 
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the thymus was coupled with decreased levels of DNMT1, DNMT3a and b, methyl CpG 

binding protein 2(MeCP2) and methyl CpG binding domain protein 2 (MBD2) (Pogribny 

et al. 2005). DNA hypomethylation in mouse bone marrow was linked to radiation-

induced leukemia (Giotopoulos et al. 2006). Similar molecular changes were found in the 

irradiated rat mammary tissues and were pronounced to cause genomic instability (Loree 

et al. 2006). When modulating global DNA hypomethylation in MCF-7/DOX cells with 

methylation agent SAM, cells were sensitized to radiation-induced apoptosis (Luzhna and 

Kovalchuk 2010). Ionizing radiation is also known to contribute to the mobilization of 

transposable elements. Retrotransposition of L1 was shown to be increased up to 4-fold 

in cultured cells subjected to gamma irradiation. The frequency of such retrotransposition 

was proportional to the level of phosphorylated H2AX foci (Farkash, Kao et al. 2006). 

Similarly, gamma irradiation induced a moderate increase in the Ty 1 element in S. 

cerevisiae (Sacerdot, Mercier et al. 2005). L1 retrotransposition events were shown to 

regulate gene expression after 5 Gy of X-ray exposure in EA.hy926 LINE-1 cell clones 

(Banaz-Yasar, Gedik et al. 2012). 

All the evidence of the radiation-induced DNA methylation changes and LINE-1 

retrotransposition  suggests a possible effect of ionizing radiation on methylation status 

and/or activation of L1. Here, we describe the radiation-induced hypomethylation and 

activation of LINE-1 ORF1 in the rat mammary gland. The mobilization of LINE-1 in the 

irradiated tissues potentially contributes to genomic instability and cancer initiation.  

MATERIALS AND METHODS 

Animal models and irradiation conditions  



71 

 

Six-week-old intact female Long-Evans rats were obtained from Charles River 

(Wilmington, MA). The animals were housed two per cage in a temperature-controlled 

(24 °C) room in a 12-hour light-dark cycle and given ad libitum access to water and an 

NIH-31 pelleted diet. Six rats were randomly assigned to one of the following X-ray 

radiation treatment groups: 80kVp/0.1 Gy, 80kVp/1 Gy, 80kVp/2.5 Gy, 30kVp/0.1 Gy, 

and sham treated controls. Each group of animals was humanely sacrificed 6, 96 hours, 

and 4, 12 and 24 weeks after radiation treatment. The paired caudal inguinal mammary 

glands were excised. Tissue was frozen immediately in liquid nitrogen and stored at -

80°C for subsequent analyses. 

Analysis of LINE-1 ORF1 methylation status by the COBRA assay 

The combined bisulfite restriction analysis (COBRA) assay consisted of bisulfate 

modification of genomic DNA, the subsequent polymerase chain reaction (PCR) 

amplification and digestion of PCR product with specific restriction endonucleases 

(Xiong and Laird 1997; Koturbash, Boyko et al. 2007). Genomic DNA was extracted 

using QiagenDNAeasy kit (Qiagen, Mississauga, Ontario, Canada) according to the 

manufacturer’s protocol. Bisulfite conversion of genomic DNA was performed using EZ 

DNA Methylation-Gold Kit (Zymo Research, Irvine, CA) according to the 

manufacturer’s protocol. Further, the bisulfite-modified DNA was PCR amplified with 

primers corresponding to the regulatory region of rat LINE-1 ORF1 sequence (Tryndyak, 

Kovalchuk et al. 2007). The sense primer was 5’-TTT GGT GAG TTT GGG ATA- 3’ 

and the anti-sense primer was 5’-CTC AAA AAT ACC CAC CTA AC- 3’. PCR products 

were digested with RsaI and BstUI restriction endonucleases (New England Biolabs, 
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Beverly, MA) separated on 3% high resolution agarose gels (Sigma, St Louis, MO) and 

stained with ethidium bromide. The banding pattern analysis and the estimation of the 

ratio of intensities in digestion products and undigested bands were performed using both 

AlphaView SA 3.2.2. EXE and NIH ImageJ 1.63 Softwares.  

Before conducting the above-mentioned assay, a methylation standard was made 

to check the untested primers. Briefly, fully methylated and unmethylated DNA was 

obtained and mixed creating a methylation gradient: 0%, 5%, 10%, 25%, 50%, 75% and 

100% methylation. To obtain fully methylated DNA, genomic DNA was treated with 

SAM and SssI methylase (NEB, Ipswich, MA). The non-methylated DNA was obtained 

by amplifying genomic DNA using the WGA amplification kit (Sigma St Louis, MO) 

according to the manufacturer’s protocol. The COBRA assay was conducted on 

methylation gradient as described above.  

RNA isolation and quantitative real-time polymerase chain reaction (qRT-PCR) 

Total RNA was isolated using the Illustra RNAspin mini kit (GE Healthcare Life 

Sciences, Buckinghamshire, UK). Approximately 50–70 mg of mammary gland tissue 

was processed following the manufacturer’s instructions. Samples were eluted in 

Ultrapure DNase/RNase-free distilled water provided in the kit. RNA samples were 

quantified by ultraviolet spectroscopy (NanoDrop, Wilmington, DE). 

Quantitative real-time PCR was performed to detect the expression level of LINE-

1 ORF1 transcript. β-Actin was used as a reference gene. All reactions were performed 

using cDNA synthesized from 500 ng of RNA sample using the Bio-Rad iScript Select 
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cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). Samples were stored at -20 

C for long-term storage and at 4 C until used for the subsequent qRT-PCR reactions. 

Primers were designed using the NCBI database and PrimerQuest (Integrated 

DNA Technologies, Inc., Coralville, IA). Primers were as follows: LINE-1 ORF1 forward 

primer 5’-AAG AAA CAC CTC CCG TCA CA-3’ and reverse primer 5’-CCT CCT 

TAT GTT GGG CTT TAC C-3’; beta-Actin reference gene forward primer 5’-CCT CTG 

AAC CCT AAG GCC AA-3’ and reverse primer 5’-AGC CTG GAT GGC TAC GTA 

CA-3’. Reactions were prepared using 1 L of diluted cDNA, 10 pmol/ L of each 

forward and reverse primer and SsoFast EvaGreen Supermix (Bio-Rad Laboratories, 

Hercules, CA) according to the manufacturer’s instructions. Samples were prepared in 

triplicate and were run on the Bio-Rad C1000 Thermal Cycler equipped with the CFX96 

Real-Time System. The qRT-PCR protocol consisted of denaturation at 95 C for 2 min; 

forty-three cycles of denaturation (95 C, 5 sec) and annealing/extension (55 C, 5 sec); 

and the final extension at 65 C for 5 sec. For every set of primers, annealing temperature 

optimization, melting curve analysis and gel analysis of amplicon were performed. To 

evaluate PCR efficiency, the standard curve was established using series of cDNA 

dilutions. The data were captured and organized by the Bio-Rad CFX Manager 2.1 

software (Bio-Rad Laboratories, Hercules, CA). 

Quantification data from the Bio-Rad CFX Manager software were analyzed in 

Microsoft Excel using the Pfaffl method (Pfaffl 2001). Graphs showing a fold change 

from the sham group were created showing transcript regulation directions (up- or down-

regulation). 
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Western immunoblotting 

For protein isolation, 30-50 mg of mammary gland tissue were washed in PBS, 

lysed, and sonicated in 0.25 mL of 1% sodium dodecyl sulphate (SDS) containing protein 

inhibitors. The lysates were cleared using centrifugation. The protein content was 

determined using the Bradford protein determination assay (BioRad, Hercules, CA). 

Equal amounts of lysate protein were subsequently run on 10-12% SDS-polyacrylamide 

gels and transferred to PVDF membranes (GE Healthcare, Baied’Urfé, Québec).  

Western immunoblotting was conducted using well-established protocols (Ertel, 

Verghese et al. 2006; Tryndyak, Kovalchuk et al. 2006). The membranes were incubated 

with antibodies against rabbit anti-Line-1 and mouse anti-c-Myc (1:100 dilution, Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA). Antibody binding was revealed through the 

incubation with horseradish peroxidase-conjugated secondary antibodies (GE Healthcare, 

Piscataway, NJ) and the ECL Plus immunoblotting detection system (GE Healthcare, 

Piscataway, NJ). Chemiluminescence was detected using BioMax MR films (Eastman 

Kodak, New Haven, CT). The unaltered PVDF membranes were stained with Coomassie 

Blue (BioRad, Hercules, CA) to prove equal protein loading. Signals were quantified 

using NIH ImageJ 1.63 software and normalized to loading controls. Images are 

representative of two independent immunoblots. The results are presented as mean ± 

S.E.M. Statistical analyses were conducted using the student’s t-test and p-values less 

than 0.05 were considered significant. 
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RESULTS 

The purpose of this study was to evaluate the effect of low and high doses of 

ionizing radiation on DNA methylation status of the LINE-1 transposable element in the 

rat mammary gland. The animals received a whole body exposure of different 

combinations of radiation energy levels and doses: low energy levels and low doses of X-

rays (30kVp, 0.1 Gy), high energy levels and low doses (80kVp, 0.1 Gy), high energy 

levels and intermediate doses (80kVp, 1 Gy), and high energy levels and high doses 

(80kVp and 2.5 Gy). We examined the role of DNA methylation in the activation of 

LINE-1 transposon following radiation exposure. An increased expression of 

retroelements may lead to genomic instability and cancer initiation in the breast tissue 

that is often exposed to radiation for diagnostic and therapeutic procedures.  

DNA methylation levels of LINE-1 ORF1 in the irradiated mammary gland 

Methylation status of the LINE-1 regulatory region was determined by the 

COBRA assay (Koturbash, Boyko et al. 2007). This method is based on bisulfite 

modification of DNA - treatment of genomic DNA with bisulfite that converts 

unmethylated cytosines into uracils, while the methylated cytosines remain unchanged. 

The subsequent polymerase chain reaction (PCR) with primers corresponding to the 

regulatory region of rat LINE-1 results in the 163-nt fragment (Fig. 3.1, 3.2A). This 

fragment contains two sequences that are recognized by two endonucleases, BstUI and 

RsaI. BstUI digestion occurs at the recognition sequence CGCG only if both cytosines 

are methylated and thus protected from bisulfite conversion. Complete cleavage (in the 

case of complete methylation) results in two bands of 80 and 83 nt in length. 
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Unmethylated DNA (converted) would resist cleavage and contribute to the163-nt band 

(Fig. 3.1, 3.2A). An RsaI recognition site, GTAC, can be formed from the GGCACG 

sequence when non-CpG cytosine is unmethylated (therefore, converted), while CpG 

cytosine is methylated. Non-CpG cytosine methylation is very rare, and the RsaI 

recognition site is influenced mainly by the methylation status of CpG cytosine. Cleavage 

of the 163-nt fragment generates 48- and 115-nt bands, while the loss of CpG cytosine 

methylation prevents the cleavage and contributes to the 163-nt band (Fig. 3.1, 3.2A).  

In order to ensure the validity of the assay and check the untested primers, a DNA 

methylation gradient and a methylation standard were prepared (0 - 100 % methylation), 

and PCR products were digested by BstUI and RsaI enzymes. Figure 1 represents the 

methylation standard curves and the sizes of digested fragments. Both BstUI and RsaI 

restriction reactions show methylation-dependent digestion: if unmethylated (0 % 

methylation), it resulted only in the 163-nt bands, whereas an increase in methylation led 

to the appearance of the 80/83-nt (for BstUI) and 48-nt (for RsaI) fragments (Fig. 3.1). 

The intensity of the 163-nt bands gradually decreased with an increase in DNA 

methylation. According to the methylation standard, the method is plausible and valuable 

in determining methylation levels of LINE-1 before and post radiation treatment. 

The COBRA assay revealed hypomethylation of  BstUI recognition sequences 96 

hours after radiation treatment (Fig. 3.2). A significantly lower cleavage of PCR products 

digested by BstUI enzyme was observed in the case of intermediate and high doses at a 

high energy level (80kVp, 1 Gy and 80kVp, 2.5 Gy) and low doses at a low energy level 

(30kVp, 0.1 Gy). Hypomethylation was also observed at low doses with high energy 
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exposure (80kVp, 0.1 Gy) at 6-hour time point, but it did not persist with time. Although, 

such hypomethylation did not persist for longer than 4 weeks, it was indicative of 

immediate short-term LINE-1 reactivation which may contribute to genomic 

rearrangements and instability. Cytosine methylation at the RsaI site was not significant, 

and therefore data are not shown.  

LINE-1 ORF1 gene expression in the irradiated mammary gland  

The RT-PCR analysis was conducted in order to test a hypothesis that the loss of 

DNA methylation may be correlated with the expression level of LINE-1. The expression 

of LINE-1 ORF1 in the irradiated mammary gland tissue was shown to be increased 

compared to controls (Fig. 3.3). Interestingly, initially (at 6 hours after exposure), the 

transcription level of ORF1 in the irradiated tissues was decreased in comparison to 

controls. Starting at 96 hours, the expression level returned back to the control point and 

was significantly elevated in the 30kVp/ 0.1 Gy treatment group. The high expression 

level of ORF1 was noticed 12 and 24 weeks after exposure in the 80kVp/ 1 and 2.5 Gy 

and 30kVp/ 0.1 Gy treatment groups (Fig. 3.3). These data suggest that the short-term 

hypomethylation of LINE-1 could possibly lead to a later more prolonged increase in 

LINE-1 ORF1 gene expression.  

LINE-1 and c-myc protein levels in the irradiated mammary gland 

Having seen a pronounced and persistent LINE-1 gene expression, we proceeded 

with the detection of LINE-1 protein. A LINE-1 protein is an RNA-binding protein that 

has a high affinity to LINE-1 RNA, possesses endonuclease and reverse transcriptase 

activities, and forms ribonucleoprotein required for LINE-1 retrotransposition (Mathias, 
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Scott et al. 1991; Feng, Moran et al. 1996; Martin 2006; Goodier, Zhang et al. 2007).We 

noted that the levels of LINE-1  protein were statistically significantly up-regulated 96 

hours, 4 and 24 weeks after treatment with 30kVp and 0.1 Gy of X-ray and 24 weeks 

after treatment with 80kVp and 2.5 Gy of X-ray (Fig. 3.4). Such protein up-regulation is 

in agreement with RT-PCR results for the corresponding radiation doses and time points. 

Several studies demonstrated that hypomethylation-induced LINE-1 retrotransposition 

could activate certain oncogenes such as c-MYC (Morse, Rotherg et al. 1988). We found 

that c-MYC protein expression was elevated 96 hours and 24 weeks after treatment with 

30kVp and 0.1 Gy of X-ray and 24 weeks after treatment with 80kVp and 2.5 Gy of X-

ray (Fig. 3.4). The elevated c-MYC protein level in the rat mammary gland tissue has 

resulted from radiation exposure and is possibly linked to LINE-1 hypomethylation and 

reactivation.  

DISCUSSION 

A wide source of ionizing radiation exposure is delivered by medical diagnostic 

and therapeutic procedures (Cuzick 2005). Damage to DNA imposed by low and 

intermediate doses of ionizing radiation may initiate neoplastic development in a healthy 

mammary gland. The most critical types of damage caused by ionizing radiation are 

double-strand breaks (DSBs) in the DNA helix that can either force a damaged cell to 

programmed cell death (apoptosis) or can be repaired (Little 2000). However, if repair 

mechanisms fail, cancer induction can start. There is a wide spectrum of mechanisms of 

radiation-induced cancer initiation. The activation of mobile elements in response to 

radiation exposure is consistently discussed as a plausible mechanism of cancer etiology 
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and development. For instance, it has been shown that gamma radiation and 

chemotherapeutic drugs are associated with the induction of SINE expression (Hagan and 

Rudin 2002). Because of their mutagenic activity, transposons pose a threat to genome 

integrity (Kidwell and Lisch 2000). LINE-1 expression is associated with DSB formation 

through L1-encoded endonuclease activity and may be a source of genotoxic stress in 

irradiated cells (Farkash, Kao et al. 2006; Wallace, Belancio et al. 2010). 

Extrachromosomal accumulation of L1 DNA was reported in HIV-1 infected primary 

CD4(+) cells, while an increased retrotransposition of L1 was shown for HIV-1 infected 

Jurkat cells which could lead to HIV-1-induced genomic instability (Jones, Song et al. 

2013). Line-1 endonuclease creates DSBs allowing new Line-1 copies to integrate into 

DNA (Belgnaoui, Gosden et al. 2006). Using tagged RC-L1 clones in cultured cells, it 

has been shown that approximately 10 % of LINE-1 insertions cause vast genomic 

deletions and chromosomal rearrangements that are a source of genomic instability 

(Gilbert, Lutz-Prigge et al. 2002; Symer, Connelly et al. 2002). Although it has been 

known that cellular stresses such as ionizing radiation activate LINE-1, the molecular 

mechanisms of LINE-1 activation are not fully elucidated. There is a possibility that 

DNA methylation changes induced by genotoxic stresses might contribute to LINE-1 

activation in mammalian cells. Stribinskis and Ramos discussed that the epigenetic 

dysregulation of retroelements in the BaP-treated cells may contribute to carcinogen-

induced mutations and genomic instability (Stribinskis and Ramos 2006). Similarly, 

hypomethylation of LINE-1 has been reported in many cancers, and it has been suggested 

to promote genomic instability and facilitate tumor progression (Kazazian and Goodier 

2002; Roman-Gomez, Jimenez-Velasco et al. 2005).  
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Evidence presented in this report suggests that exposure to genotoxic ionizing 

radiation may involve the epigenetic activation of LINE-1 mobile elements in mammary 

tissue. The results of this study show the loss of CpG methylation in promoter region of 

LINE-1 in the rat mammary gland exposed to radiation. Interestingly, it was an early 

response (96 hours) to both high energy levels and intermediate-high doses and to low-

energy levels and low doses. The methylation status of LINE-1 promoter returned to the 

control level and was not observed 12 and 24 weeks after treatment (Fig. 3.2). Several 

adaptive possibilities, such as changes in methyl group metabolism and the inactivation 

of DNA methyltransferases, could return the methylation status to its original level. 

Nevertheless, short-term hypomethylation was associated with a long-term reactivation of 

LINE-1. According to the qRT-PCR analysis, the high elevation of LINE-1 ORF1 gene 

expression was observed and persisted for 12 and 24 weeks, regardless the fact that the 

methylation level of LINE-1 was restored at these time points (Fig. 3.3). Such a 

phenomenon is interesting on its own, but it is difficult to explain at the moment without 

further investigation. Considering that LINE-1 retrotransposon activation may lead to its 

migration and insertion into the genome, we assume that one or few copies could be 

inserted in a very active genome region and remain unmethylated there retaining a very 

high copying potential. To prove this suggestion, a further analysis of copying ability of 

LINE-1 has to be performed.  

Radiation exposure has also led to the translation of LINE-1 element. The level of 

a 148- kDa LINE-1 protein was increased at 96 hours after treatment with low-energy-

level and low dose radiation and remained high at 24 weeks after treatment (Fig. 3.4). 

Meanwhile, a significant elevation of LINE-1 protein was also detected at 24 weeks after 
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treatment with high energy/high dose radiation. The LINE-1 protein possesses an 

endonuclease and reverse transcriptase activities (Mathias, Scott et al. 1991; Feng, Moran 

et al. 1996). The ORF1 and ORF2 proteins associate with their encoding transcript, form 

a retrotransposition unit that allows for the retrotransposition and integration of LINE-1 

into the genome (Belgnaoui, Gosden et al. 2006). The observed radiation-induced 

activation of LINE-1 protein may contribute to further insertion and activation of the 

LINE-1 element. The active Line-1 element can and does insert into genes (very often 

into proto-oncogenes) thus, changing their expression. Roman-Gomez and colleagues 

have demonstrated that epigenetic changes in the LINE-1 promoter alter the expression of 

c-MET oncogene that is highly expressed in CML patients (Roman-Gomez, Jimenez-

Velasco et al. 2005). c-MYC activation that depends on LINE-1 insertion has been 

reported in breast cancer (Morse, Rotherg et al. 1988). Our results show an increased 

level of c-MYC protein in rat mammary tissue after radiation exposure (Fig. 3.4). As in 

the LINE-1 protein, it is the highest and lowest doses of radiation that cause c-MYC 

protein synthesis.  

In conclusion, our results present the evidence that ionizing radiation decreases 

CpG methylation in the LINE-1 promoter following the up-regulation of LINE-1 RNA 

levels and increases the synthesis of LINE-1 protein. There was no specific radiation 

dose-dependent response.  Both low and high doses/energy levels had a similar effect on 

LINE-1 activation. Such LINE-1 activation may be related to the activation of the c-

MYC oncogene. These findings suggest that mammary tissue exposed to genotoxic 

radiation may develop genomic instability due to the epigenetic activation of mobile 

elements and initiate cancer development.  
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Figure 3.1 A. Preparation of methylation gradient for testing primers for the 

COBRA assay. Steps of preparation of methylation gradient (0% - 100% methylation) 

from mixing fully unmethylated and fully methylated DNA. B. Methylation standard 

after digestion of bisulfite treated DNA with BstUI and RsaI restriction 

endonucleases. The higher the percentage of cut 163 bp fragment by BstUI, the higher 

the methylation status of DNA. The higher the percentage of uncut 163 bp fragment, the 

lower the methylation status of DNA. 
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Figure 3.2 CpG methylation of LINE-1 promoter in the mammary gland of 

irradiated rats determined by COBRA assay. A. PCR amplification of 163 bp from 

LINE-1 promoter. B. Methylation dependent retention of pre-existing BstUI sites. 

Unmethylated CpG cytosines (highlighted) at CGCG recognition sequence can be lost by 

bisulfite conversion, resulting in uncut 163 bp fragments. Methylation at both sites allows 

cleavage, resulting in 80/83 bp bands. C. Methylation dependent retention of cytosine 

(highlighted) at GGCACG sequence forms RsaI recognition site, leading to cleavage of 

163 bp fragment into 48 and 115 bp fragments. Loss of methylation at CpG cytosine will 

prevent cleavage. D. Quantification of BSTU1 cut fragments by AlphaView, presented as 

mean values ± SD, n=4-6. * - significantly different from the respective control, p<0.05; 

** - significantly different from the respective control, p<0.01, student’s t-test. 
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Figure 3.3 Fold change in levels of Line-1 ORF1 transcript detected by qRT-PCR. 
Each treatment group was compared to its corresponding control. Β-actin was used as a 

reference gene (calculated by Pfaffl).  * - significant, p<0.001; ** - significant, p<0.01; 

*** - significant, p<0.05 (Student’s t-test).  
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Figure 3.4 LINE-1 and c-MYC levels in rat mammary gland upon whole body 

irradiation. Protein levels relative to those of control non-irradiated animals are shown 

as Mean ± SE. * - p<0.05, student’s t-test. 
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Main findings described in chapter 3  

1. X-ray exposure has caused hypomethylation of ORF1 promoter in the rat 

mammary tissue, mainly 96 hours after 30 kVp/0.1 Gy, 80 kVp/1 Gy and 80 

kVp/2.5 Gy treatments. 

2. ORF1 gene expression has increased 96 hours after 30 kVp/0.1 Gy radiation 

treatment and 12-24 weeks after 30 kVp/0.1 Gy, 80 kVp/1 Gy and 80 kVp/2.5 Gy 

treatments. 

3. Line-1 protein level has increased after 30 kVp/0.1 Gy and 80 kVp/2.5 Gy 

treatments. 

4. C-myc protein level has increased after 30 kVp/0.1 Gy and 80 kVp/2.5 Gy 

treatments. 
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CHAPTER 4: HIGH AND LOW DOSE RADIATION EFFECTS ON MAMMARY 

ADENOCARCINOMA CELLS – AN EPIGENETIC CONNECTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 has been submitted in its entirety: 

Luzhna L. and Kovalchuk O. High and low dose radiation effects on mammary 

adenocarcinoma cells – an epigenetic connection. Oncoscience (in review) 
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ABSTRACT 

The successful treatment of cancer, including breast cancer, depends largely on 

radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and 

tissues depends on the radiation dose and energy, but there is insufficient evidence 

concerning how tumor cells respond to the low and high doses of radiation that are often 

used in medical diagnostic and treatment modalities. The purpose of this study was to 

investigate radiation-induced gene expression changes in a MCF-7 breast 

adenocarcinoma cell line. Using microarray technology tools, we were able to screen the 

differential gene expressions between various radiation doses applied to MCF-7 cells. 

Here, we report the substantial alteration in the expression level of genes after high dose 

treatment. In contrast, no dramatic gene expression alterations were noticed after the 

application of low and medium doses of radiation. In response to a high radiation dose, 

MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA 

replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent 

responses were seen on the epigenetic level, tested by a microRNA expression analysis. 

MicroRNA analysis showed dose-dependent radiation-induced microRNA expression 

alterations that were associated with cell cycle arrest and cell death. An increased rate of 

apoptosis was determined by an AnnexinV assay. The results of this study showed that 

high doses of radiation affect gene expression genetically and epigenetically, leading to 

alterations in cell cycle, DNA replication, and apoptosis. 
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INTRODUCTION 

Ionizing radiation kills cells by damaging their DNA. Radiation induces a variety 

of DNA lesions, such as damage to nucleotide bases, cross-linking, and DNA single- and 

double-strand breaks (Little 2000). Radiation can damage normal cells as well as cancer 

cells and is often used in diagnostic and treatment medical procedures. Any use of 

ionizing radiation, therefore, must be carefully planned to minimize side effects and 

deliver optimal results. Diagnostic imaging procedures use low doses of radiation, 

whereas radiation therapy uses high energy radiation to shrink tumors. About half of all 

cancer patients receive radiotherapy during the course of their treatment, and all cancer 

patients are exposed to diagnostic-related radiation. Although benefits from the medical 

procedures greatly outweigh any potential low risk of harm, more evidence has been 

found to prove that harm from diagnostic X-rays is linked to an increased risk of cancer. 

This harm is correlated to the radiation dose absorbed (Linet, Slovis et al. 2012). 

Radiation dose is the amount of energy absorbed by the body in radiation 

interactions. Different types of radiation may produce different biological effects, and the 

magnitude of the effect varies according to the dose rate (Linet, Slovis et al. 2012). 

Stochastic effects of radiation, such as cancer and hereditary effects are caused by 

mutations and other permanent changes in which a cell remains viable. The probability of 

such stochastic effects increases with dose (no threshold), but the severity of the outcome 

is not related to the dose (Hall and Giaccia 2006). Nevertheless, epidemiologic studies 

continue to reveal cancer risks associated with diagnostic radiologic procedures (Linet, 

Slovis et al. 2012). Oh and Koea provide an overview of radiation-related cancer risk 
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associated with multiple computed tomographic scans required for follow up in colorectal 

patients. Of 36 studies analyzed in their review, 34 showed a positive association 

between medical imaging radiation and increased cancer risk, albeit radiation risk from 

low doses was uncertain (Oh and Koea 2013). Significant dose-response relationships 

were found for breast cancer risk for patients with tuberculosis who received fluoroscopy 

frequently (Boice, Preston et al. 1991; Howe and McLaughlin 1996). Furthermore, there 

is a statistical association between  radiation doses and types of diagnostic X-ray 

examinations and chromosome translocation frequencies (Sigurdson, Bhatti et al. 2008; 

Bhatti, Doody et al. 2010), whereby high doses of radiation are more successful in killing 

cells, whereas low doses contribute to mutational events that lead to carcinogenesis.  

Moreover, the vast majority of low dose radiation effect and radiation-induced 

cancer studies have been conducted on non-cancerous tissues. Very little is known about 

the effects of low-dose diagnostic radiation exposure in actual cancer cells and tissues. It 

is possible that low doses of radiation can contribute to the genomic instability of cancer 

cells, leading to an increase in malignancy and potentially making cancer cells resistant to 

further radiation with higher doses.  

One of the major obstacles to successful cancer management is acquired 

resistance to radiation therapy. The mechanisms of such resistance have considerable 

clinical significance but are poorly defined. The limitation of radiotherapy is that solid 

tumor cells often become deficient in oxygen after radiation exposure. Such tumors can 

outgrow their blood supply, causing hypoxia (Harrison, Chadha et al. 2002). Under 

hypoxic conditions, cancer cells can become two to three times more resistant to 
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radiation. There are several extra-nuclear factors that cause resistance to radiation. The 

levels of IGF-IR and its substrate are elevated in ER-positive breast tumors and can be 

linked to with increased radio-resistance and cancer relapse (Bartucci, Morelli et al. 

2001).  

MCF-7 breast carcinoma cells are known to be resistant to radiation-induced 

apoptosis due to the lack of caspase-3, and apoptosis which is independent of cell cycle 

control (Essmann, Engels et al. 2004). Radioresistance is also common in chemoresistant 

cancer cells. For example, MCF-7/Pac and MCF-7/Doc were found to be radioresistant to 

γ-radiation, and MCF-7/DOX cells showed increased resistance to X-rays (Kars, Iseri et 

al. 2009; Luzhna, Golubov et al. 2013). According to Zhang and colleagues, lower doses 

of ionizing radiation led to inhibition of HIF-1 (transcription factor involved in the 

process of gene related hypoxic adaptation of neoplasm), whereas high doses increased 

HIF-1α, HPSE-1, EEGF, and CD31 levels in irradiated mice (Zhang, Jiang et al. 2014).  

Because response to ionizing radiation correlates with existence of oxygen that forms 

DNA-damaging free radicals, hypoxic regions in tumor require higher radiation doses to 

obtain the same damage as normoxic regions. Certain factors, including HIF-1α, improve 

tumor adaptation to hypoxia and are involved in radioresistance (Zhang, Jiang et al. 

2014).  

Based on the information in the literature, we concluded that the effect of ionizing 

radiation on cells and tissue is dependent on radiation dose and energy, but there is not 

enough evidence on how the tumor cells respond to low and high doses of radiation, 

which are often used in medical diagnostic and treatment modalities. Therefore, the aim 
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of this study was to investigate the response of MCF-7 breast carcinoma cells to low, 

medium, and high doses of X-rays and to define any radiation-associated changes in gene 

expression and apoptosis levels.  

MATERIALS AND METHODS 

Cell line and cell culture conditions 

The MCF-7 human breast adenocarcinoma cell line was previously developed and 

described elsewhere (Chekhun, Lukyanova et al. 2007; Kovalchuk, Filkowski et al. 

2008). Cells were grown and maintained in Dulbecco's Modified Eagle's Medium 

(DMEM /F-12) with 2.5 mM L-Glutamine, without HEPES and Phenol Red (HyClone, 

Logan, UT), supplemented with 10% heat-inactivated fetal bovine serum (HyClone, 

Logan, UT), in the presence of antibiotics 100 U/mL penicillin and 100 µg/mL 

streptomycin (Sigma-Aldrich Chemical Co., St. Louis, MO), and in a 5% CO2 

atmosphere at 37ºC. Cells were harvested for analyses by trypsinization (Chekhun, 

Lukyanova et al. 2007; Kovalchuk, Filkowski et al. 2008). 

Irradiation conditions 

Cells were irradiated at 60% confluency in Dulbecco's Modified Eagle's Medium 

(DMEM). Three radiation doses (0.05, 0.5, and 5 Gy, 90 kVp, 5 mA) were applied to 

check the cellular radiation responses. Unirradiated cells served as the control. Cells were 

harvested 24 hours and 48 hours after irradiation. All the cells were tested in triplicate. 

The experiments were independently reproduced twice. 
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Whole-genome gene expression profiling 

RNA isolation 

Total RNA was isolated using the Illustra RNAspin Mini kit (GE Healthcare Life 

Sciences, Buckinghamshire, UK). Approximately 5 x 10
6
 cultured cells were processed 

following the manufacturer's instructions. Samples were eluted in Ultrapure 

DNase/RNase-free distilled water, which was provided in the kit. RNA samples were 

quantified using ultraviolet spectroscopy (NanoDrop, Wilmington, DE) and were further 

assessed for RNA integrity (RIN) on the Aglient 2100 Bioanalyzer (Santa Clara, CA) 

using the RNA Nano-chip Kit. RNA samples with RIN values of seven or better were 

used for further analysis. 

Library preparation 

cRNA was created using the Ambion Illumina TotalPrep RNA Amplification Kit 

(Applied Biosystems, Carlsbad, CA) with an input of 500 ng of total RNA per sample. 

Briefly, oligo-dT primers were used to synthesize first strand cDNA containing a phage 

T7 promoter sequence. Single-stranded cDNA was converted into a double-stranded 

DNA template via DNA polymerase. RNase H simultaneously acted to degrade the RNA. 

Samples of cDNA were purified in filter cartridges to remove excess RNA, primers, 

enzymes, and salts. The recovered cDNA was subjected to in vitro transcription using 

biotinylated UTPs. This step created, labeled, and amplified cRNA. A final purification 

step removed unincorporated NTPs, salts, inorganic phosphates, and enzymes, which 

prepared the samples for hybridization.  
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Hybridization and detection 

Illumina's direct hybridization assay kit was used to process samples according to 

the manufacturer's protocol (Illumina, San Diego, CA). Overnight, 750 ng from each 

cRNA sample was hybridized into the Illumina HumanHT-12_v4 Whole Genome 

Expression BeadChip arrays. Afterward, a 10-minute incubation with a supplied wash 

buffer at 55 C preceded a 5-minute room-temperature wash. The arrays were incubated 

in 100% ethanol for 10 minutes. A second room-temperature wash lasted two minutes 

with gentle shaking, which completed this high stringency wash step. The arrays were 

blocked with a buffer for 10 minutes and washed before a 10-minute steptavidin-Cy3 

(1:1000) probing. After a five-minute wash at room temperature, the BeadChips were 

dried and imaged. Six controls were also built into the Whole-Genome Gene Expression 

Direct Hybridization Assay system to cover aspects of the array experiments, including 

controls for the biological specimen (14 probes for housekeeping controls), three controls 

for hybridization (six probes for Cy3-labeled hybridization, four probes for low 

stringency hybridization, and one probe for high stringency hybridization), signal 

generation (two probes for biotin control), and approximately 800 probes for negative 

controls on an eight-sample BeadChip. The arrays were scanned on the iScan platform 

(Illumina), and data were normalized and scrutinized using Illumina BeadStudio 

Software. 

BeadChip statistical analysis and data processing 

The false discovery rate (FDR) was controlled using the Benjamini-Hochberg 

method. The Illumina Custom Model took the FDR into account and was used to analyze 
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the data. Differential gene expression (at least a 0.6-fold change) from control non-

radiated cells was determined to be statistically significant if the p value after the 

Benjamini-Hochberg method adjustment was lower than 0.05. The values were 

transformed to show a log2 scale. 

Lists of regulated transcripts were inserted into the web-based DAVID 

Bioinformatics Resources 6.7 (NIAID/NIH) Functional Annotation Tool (Huang da, 

Sherman et al. 2009; Huang da, Sherman et al. 2009). This program was used to group 

genes into functionally relevant categories: metabolic processes, response to 

stimulus/stress, immune response, apoptosis, and cell cycle processes.  

Quantitative real-time PCR 

Quantitative real-time PCR was performed to confirm the Whole-Genome Gene 

Expression results for the regulation direction (either up or down) of select genes. Six 

genes (aurora B, cyclin A, GADD45G, polymerases A, D, and E) were selected from the 

gene list of significantly differentially expressed transcripts, representing a preliminary 

review of the acquired gene expression data. 18SrRNA was used as a reference gene. All 

the reactions were performed using cDNA synthesized from the same RNA extraction as 

the BeadChip experiments, and 500 ng of the sample was used for the Bio-Rad iScript 

Select cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). Samples were stored 

at -20 C for long-term storage and at 4 C until they were used for subsequent qRT-PCR 

reactions. 



96 

 

 Primers were designed using the NCBI database and PrimerQuest (Integrated 

DNA Technologies, Inc, Coralville, IA). The following primers were designed: hAURKB 

forward primer (5'-TGA GGA GGA AGA CAA TGT GTG GCA-3') and reverse primer 

(5'-AGG TCT CGT TGT GTG ATG CAC TCT-3'); 18SrRNA reference gene primers 

(5'-GTC AAG TTC GAC CGT CTT CT-3' and 5'-AGC TTG CGT TGA TTA AGT CC-

3'); CCNA2 forward primer (5'-ATG AGC ATG TCA CCG TTC CTC CTT-3') and 

reverse primer (5'-TCA GCT GGC TTC TTC TGA GCT TCT-3'); hGADD45G forward 

primer (5'-TGC TGC GAG AAC GAC ATC GAC ATA-3') and reverse primer (5'-TCG 

AAA TGA GGA TGC AGT GCA GGT-3'); hPOLA1 forward primer (5'-GGC AAT 

GGC TTT GAA ACC AGA CCT-3') and reverse primer (5'-ATG CTG AAA GCC ATC 

ACG ACA AGC-3'); hPOLD1 forward primer (5'-AAC CTG TGT TAC ACC ACG CTC 

CTT-3') and reverse primer (5'-TCC GCA CTG AGG TCT TCA CAA ACT-3'); hPOLE 

forward primer (5'-AGA TTG TGC AGA TCA GCG AGA CCA-3') and reverse primer 

(5'-TTA CCT TGC GAT ACG AAG CAC CCT-3'). Reactions were prepared using 1 L 

of diluted cDNA, 10 pmol/ L of each forward and reverse primer, and Ssofast EvaGreen 

Supermix (Bio-Rad Laboratories, Hercules, CA), prepared according to the 

manufacturer's instructions. Samples were prepared in triplicate and were run on the Bio-

Rad C1000 Thermal Cycler equipped with the CFX96 Real-Time System. The qRT-PCR 

protocol consisted of denaturation at 95 C for two minutes; 43 cycles of denaturation 

(95 C, 5 seconds) and annealing/extension (55 C, 5 seconds); and a final extension at 

65 C for five seconds. For every set of primers, annealing temperature optimization, 

melting curve analysis, and a gel analysis of the amplicon were performed. To evaluate 

PCR efficiency, a standard curve was established using a series of cDNA dilutions. Data 



97 

 

was captured and organized using Bio-Rad CFX Manager 2.1 software (Bio-Rad 

Laboratories, Hercules, CA). 

qRT-PCR statistical analysis 

Quantification data from the Bio-Rad CFX Manager software was analyzed using 

the Pfaffl method in Microsoft Excel (Pfaffl 2001). Graphs showing a fold change from 

the control group were created, and transcript regulation directions (up- or 

downregulation) were matched to the Whole-Genome Gene Expression results. 

miRNA microarray expression analysis 

Total RNA from MCF-7 cells was isolated using Trizol reagent (Invitrogen, 

Burlington, ON) according to the manufacturer's instructions. One ug of total extracted 

RNA represented as two repeats per experimental group was sent to LC Sciences (Austin, 

TX) for miRNA microarray analysis.  

The Annexin V assay  

For the early detection of apoptosis, an Annexin V-FITC Apoptosis Detection Kit 

I (BD Biosciences, San Jose, CA) was used according to the manufacturer's protocol. 

Cells were grown and irradiated as previously described (Section 2.2). The analysis was 

performed 24 and 48 hours after radiation exposure. Cells were harvested, washed with 

PBS, resuspended in a 1X binding buffer, stained with Annexin V and propidium iodide 

for 15 minutes at 25 ºC in the dark, and analyzed using flow cytometry within one hour at 

the Flow Cytometry Core Facility (University of Calgary, Calgary, AB). The results were 

represented as a percentage of gated Annexin V positive cells. 
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RESULTS 

Effect of low, medium, and high doses of radiation on whole genome gene expression 

in MCF-7 cells 

Isolated RNA from MCF-7 breast adenocarcinoma cells was used for gene 

expression profiling. A drastic difference in radiation-induced gene expression changes 

was discovered between the doses applied. Only high doses of X-ray exposure led to 

dramatic alterations in gene expression, whereas low and medium doses did not affect 

gene expression. A total of 2, 10, and 777 genes were affected by the 0.05, 0.5, and 5 Gy 

of radiation, respectively (Fig. 4.1). Further, we evaluated the 777 genes that changed 

their expression level: 437 genes were upregulated and 340 genes were downregulated. 

With the help of the DAVID functional annotation array analysis tools, we were able to 

identify and group the evaluated genes according to their function and possible role in 

certain pathways. Subsequently, genes with similar or identical functions were grouped 

together and, based on their expression changes, the role of certain pathways in radiation 

response was evaluated (Table 4.1). Twenty-nine cell cycle genes and twenty-one genes 

responsible for DNA replication were downregulated (Table 4.1, Fig. 4.2). The primary 

repair processes were shut down by the decreased expression of key genes. MCF-7 cells 

lost their MMR, NER, BER, and HR due to the downregulation of the 9, 12, 8, and 6 

pathway genes, respectively (Table 4.1). These changes usually lead to cell death. 

Moreover, the genes responsible for cell death from the p53 signaling pathway were 

upregulated (Table 4.1).  
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The validity of gene expression profiling was confirmed by qRT-PCR for the 

genes with the most change and the greatest radiation response. Therefore, the primary 

targets for qRT-PCR were DNA polymerases A, D, and E, which are the key components 

in DNA replication and DNA repair pathways, and cyclin A, GADD45G, and aurora B, 

which play an important role in cell cycle and p53 signaling pathways.  

Aurora B is a protein kinase that functions through the attachment of the mitotic 

spindle to the centromere and provides equal chromosome movement and segregation 

during mitosis. The level of AURKB transcript levels gradually and significantly 

decreased in the MCF-7 cells after X-ray treatment with 0.5 and 5 Gy (Fig. 4.3). Similar 

to AURKB, cyclin A (CCNA) was downregulated in MCF-7 cells after a high dose of X-

ray exposure (Fig. 4.3). Because cyclin A binds to S phase Cdk2 and is required for the 

cell to progress through the S phase, the deficit of cyclin A may contribute to cell cycle 

arrest. GADD45G is a growth arrest and DNA-damage-inducible protein which levels are 

increased following stressful growth arrest conditions and treatment with DNA-damaging 

agents. The protein encoded with GADD45G responds to environmental stresses by 

mediating the activation of the p38/JNK pathway. Both 0.5 and 5 Gy of X-rays caused an 

increase in GADD45G transcript levels in MCF-7 cells, which is in contrast to levels in 

control cells (Fig. 4.3). All three polymerases (A, D, and E) were significantly 

downregulated in response to a 5 Gy radiation treatment, disabling the polymerization of 

deoxyribonucleotides into a DNA strand.  
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miRNA expression in irradiated MCF-7 breast adenocarcinoma cells 

In search of possible regulators of gene expression, we proceeded to analyze the 

role of miRNAs in the radiation response of MCF-7 cells. miRNAs involve epigenetic 

control of gene expression regulation through an RNA interference pathway. miRNAs 

negatively affect the levels of their target transcripts and the levels of proteins encoded by 

these transcripts. In this way, miRNAs contribute to gene silencing, and changes in 

miRNA expression are common in cancers and in response to radiation.  

We identified that one, three, and six miRNAs were significantly changed after 

exposure to 0.05, 0.5, and 5 Gy of X-rays, respectively (Table 4.2). miR-106a was 

significantly downregulated in a dose-dependent manner after all three radiation doses. 

Its putative target is RB1 protein that regulates cell cycle and promotes cell cycle arrest. 

Five Gy of radiation led to downregulation of miR-17 and miR-106b, which target BIM 

and p21 apoptosis inducing factors, whereas miR-23b and miR-149, targeting NOTCH 

(cell signaling pathway) and AKT (promotes proliferation), were upregulated (Table 4.2). 

Thus, changes in miRNAs expression seem to contribute to cell cycle arrest and initiation 

of apoptosis in MCF-7 cells exposed to ionizing radiation, influencing cellular stress 

response, and this response is dose dependent.  

Radiation-induced apoptosis in MCF-7 breast adenocarcinoma cells  

IR exposure is known to induce apoptotic cell death in many irradiated cells. 

Therefore, we analyzed the levels of IR-induced apoptosis in MCF-7 cells. Early 

apoptosis is characterized by various changes in the cellular plasma membrane; the 
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primary change is the translocation of phosphatidylserine (PS) from the inner layer to the 

surface of the membrane. Annexin V possesses a high affinity to PS, and this allows for 

the early detection of apoptotic changes (Vermes, Haanen et al. 1995). Here, we analyzed 

IR-induced apoptosis using an Annexin V assay.  

Figure 4.4 shows that MCF-7 cells began to undergo early apoptosis 48 hours 

after irradiation with 5 Gy. Low and medium doses did not cause apoptosis levels 

different from the control level (Fig. 4.4). In contrast, we found a 1.81-fold increase in 

Annexin V positive cells 48 hours after exposure to the high dose. These data indicate 

that MCF-7 breast adenocarcinoma cells can withstand low and medium doses of 

ionizing radiation and only exhibit apoptotic response to high doses.  

DISCUSSION 

Successful treatment of cancer, including breast cancer, is largely dependent on 

radiation therapy and proper diagnostics. Radiation therapy is widely used in combination 

with other treatment modalities, such as surgery, chemotherapy, and hormonal therapy, 

for treatment of initial and advanced cancers (Koukourakis, Koukouraki et al. 1999; 

Chakravarthy, Nicholson et al. 2000). Choosing the appropriate radiation dose and timing 

for radiotherapy is vital for receiving the optimal result. Each type of cancer has different 

radiosensitivity (Nunez, McMillan et al. 1996). Breast cancers are ranked as moderately 

radiosensitive to radioresistant, therefore requiring higher doses of radiation (45-60 Gy) 

to achieve radical cure than many other tumor types. The total dose is divided into 1.8–2 

Gy fractions per day for several weeks (Tutt and Yarnold 2006). There is no data on the 

effect of low and medium diagnostic doses that might potentially contribute to the 
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severity of malignancy. Overall, data on the molecular mechanisms of radiation response 

to different doses of ionizing radiation on tumor cells are scarce. 

The purpose of this study was to investigate the radiation-induced gene 

expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray 

technology tools, we were able to screen the differential gene expressions between 

various doses applied to MCF-7 cells. Here, we report the substantial alteration in the 

expression level of genes after high-dose treatment. In contrast, no dramatic gene 

expression alterations were noticed after low and medium doses of radiation application. 

We believe that the ability of the cancer cells to retain their gene expression potential at a 

constant level after applying low and medium doses of DNA-damaging radiation insults 

mean that these doses of ionizing radiation neither contribute to further genomic 

instability that might result in more severe malignancies nor cause cell death. Gene 

expression profiling showed that the expression level of more than 700 genes was 

changed in the MCF-7 cell line due to 5 Gy X-rays (Fig. 4.1). MCF-7 cells exhibited the 

expected downregulation of biological pathways, such as cell cycle, DNA replication, 

DNA repair, and the activation of the p53 pathway (Table 4.1). Twenty-nine cell cycle 

regulators were downregulated, which led to cell cycle shutdown. These genes were 

encoded for cyclins (A2, B1, B2), cyclin-dependant kinases (CDK2, CDK4), cell division 

cycle proteins (CDC20, CDC25A, CDC7), E2F transcription factors (E2F2, E2F4), 

mitotic polo-like kinase PLK1, checkpoint kinase CHEK1, mini-chromosome 

maintenance complex components (MCM 2,3,4,5,6,7), and other cell cycle-associated 

proteins.  
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The upregulation of the transforming growth factor beta (TGFB) and growth 

arrest and DNA damage-inducible factors (GADD45A and GADD45G) also contributed 

to cell cycle deactivation. Obviously, cell cycle deactivation paralleled inhibited DNA 

replication. Twenty-one genes involved in replication were downregulated: DNA 

polymerases (A1, A2, D1, D2, E, E2, E3 (except for D4, which was upregulated)), 

replication factors (RFC2,3,4,5), replication protein (RPA2), mini-chromosome 

maintenance complex components (MCM 2,3,4,5,6,7), ligase 1, endonuclease FEN, and 

ribonuclease H2 (RNASEH2A) (Fig. 4.2).  

A specialized DNA damage response was initiated through the activation of the 

p53 pathway due to the overexpression of BCL2-associated X protein (BAX), damage-

specific DNA-binding protein (DDB2), sestrin1 (SESN1), and growth arrest and DNA 

damage-inducible factors (GADD45A and GADD45G). DNA repair processes were 

downregulated primarily due to the decrease in the expression of specific repair 

polymerases and replication factors. For instance, base excision repair downregulation 

was caused by a low expression of polymerases (D1, D2, E, E2, E3), uracil-DNA 

glycosylase (UNG), ligase 1 (LIG1), and endonuclease (FEN1); NER deficiency was due 

to the same polymerases and ligase 1, as well as replication factors (RFC2,3,4,5) and 

RPA2; MMR deactivation was caused by a low level of MSH6, polymerases D1 and D2, 

LIG1, RPA2, RFC2,3,4,5, and exonuclease 1 (EXO1); and decreased homologous 

recombination was caused by low expression levels of RAD54L, XRCC3, polymerases 

D1 and D2, RPA2, Bloom syndrome, RecQ helicase-like (BLM), and topoisomerase 

(TOP3A).  
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Gene expression profiling data were confirmed through the qRT-PCR analysis of 

six genes that were changed into MCF-7 cells after radiation treatment. Polymerases A, 

D, and E were involved in most of the biological processes that were affected in MCF-7 

cells after radiation exposure (Fig. 4.2, 4.3). As GADD45G, cyclin A, and aurora B are 

involved in DNA damage responses, cell cycle, and cell division, their expression levels 

were of great interest to us.  

Members of the aurora kinases family have been actively studied as mitotic 

progression targets in cancer studies. Mutations associated with aurora gene amplification 

were reported in human cancers (Cahill, Lengauer et al. 1998). Tumor development and 

progression due to aberrant chromosomal segregation and aneuploidy is a common 

outcome of the misregulation of the aurora B function (Nguyen, Makitalo et al. 2009).  

Inhibition of aurora B during the fractionated radiation treatment suppressed the 

repopulation of human cancer cells (Sak, Stuschke et al. 2012). Similarly, 5-Gy X-rays 

caused a significant downregulation of aurora B in drug-sensitive cell lines, which was 

correlated with slower mitotic progression and the suppressed repopulation of the cells. 

Cyclin A expression was also decreased, which may be associated with a lower DNA 

replication status and suppressed cell cycle progression. In addition, GADD45G, which is 

a member of growth arrest and DNA-damage inducible genes, was over-expressed after 

both 0.5 and 5 Gy of irradiation (Fig. 4.3). This indicates the existence of radiation stress 

in the cells, which can result in cell cycle arrest, senescence, and apoptosis (Liebermann, 

Tront et al. 2011).  
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Significant downregulation of polymerases A, D, and E confirms the suppression 

of DNA replication and DNA repair processes. Overall, gene expression profiling and 

qRT-PCR analysis showed a strong response in MCF-7 cells to high dose of ionizing 

radiation, allowing us to conclude that these cells were high dose radiation-sensitive. In 

contrast, cells did not respond to low and medium doses of X-rays on the gene expression 

level, which signifies that they are low-dose radioresistant.  

Similar dose-dependent response was seen on the epigenetic level tested by the 

microRNA expression analysis. Radiation-induced changes in miRNA expression usually 

lead to changes in the synthesis of proteins involved in main cellular biological pathways. 

As per Table 4.2, validated targets of misregulated miRNAs fall in cell cycle and 

apoptosis categories (Table 4.2). For instance, downregulation of miR-106a may inhibit 

cell proliferation by activation of RB1 tumor suppressor. RB1 is a transcriptional 

repressor of E2F1 and, when active, leads to cell cycle arrest. Activated transcription of 

RB1, together with p21 and p16, was shown to suppress tumor cell growth (Chano, 

Ikebuchi et al. 2010). Another study has reported that inactive RB1 pathway, a hallmark 

of cancer, is associated with accumulation of Akt oncogene (El-Naggar, Liu et al. 2009). 

As we can see from Table 4.2, Akt is a validated target of the miR-149, which was 

upregulated after 5 Gy of X-rays. Akt kinase regulates multiple biological processes such 

as proliferation, cell survival, growth, and angiogenesis; therefore, its potential 

inactivation by epigenetic miRNA mechanism might lead to cell death after high dose 

radiation treatment. Similarly, p21, a cyclin-dependent kinase inhibitor, is a target of 

miR-17 and miR-106b (Table 4.2). P21 blocks cell cycle progression in response to DNA 

damage and was shown to be activated after radiation exposure (Kim, Cho et al. 2004). 
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Another target of miR-17 is pro-apoptotic factor BIM of Bcl-2 family. BIM induces 

anoikis through a caspase-mediated pathway and is known to be activated after ionizing 

radiation exposure (Yang, Xia et al. 2006). Overall, miRNA analysis has shown dose-

dependent radiation-induced miR expression alterations that are associated with cell cycle 

arrest and cell death. An increased rate of apoptosis was determined by Annexin V assay 

(Fig. 4.4). Only a high dose (5 Gy) of radiation led to early apoptosis 48 hours after 

radiation treatment.  

The results of this study show that high doses of radiation affect gene expression 

genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and 

apoptosis. Further investigation is required to reveal exact molecular mechanisms of such 

alterations, which would enable the improvement of cancer treatment methods and 

radiosensitivity.  
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Figure 4.1 Gene expression profiling of MCF-7 breast adenocarcinoma cells. The 

Venn diagram shows the number of significantly changed genes in the MCF-7 cell line 

upon low (0.05 Gy), medium (0.5 Gy) and high (5 Gy) doses of radiation in comparison 

to their corresponding un-irradiated controls, as identified by the gene expression 

profiling analysis.  
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Table 4.1 The significantly altered KEGG pathways in MCF-7 cells after 5 Gy of X-

ray treatment in comparison to the corresponding un-treated controls. In this table, 

the pathway significance (%) is defined as the ratio of gene alterations that similarly 

affect a certain pathway (either up- or down-regulate) to the total number of altered genes 

in the pathway. “↑” – the pathway is up-regulated; “↓” – the pathway is down-regulated.  
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Figure 4.2 The KEGG DNA replication pathway. All encircled genes were down-

regulated. 
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Figure 4.3 Altered levels of gene transcripts of aurora B, cyclin A, Gad45G and 

polymerases A, D, E as detected by RT-PCR. Data are shown as fold changes to 

respective controls. Each treatment group was compared to its corresponding control; 

18SrRNA was used as a reference gene (calculated by Pfaffl). P-values (in tables below 

the graphs) were calculated by Student’s t-test. 
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Table 4.2 Radiation-induced microRNA expression changes in MCF-7 cells. Relative 

miR expression values are represented in folds in the irradiated cells in comparison to 

non-irradiated control cells as analyzed by miRNA microarray. Significance of 

differences was analyzed by the student’s t-test.  

miRNA 

changed 

Fold, 0.05 Gy Fold, 0.5 Gy Fold, 5 Gy Validated targets 

23b   0.48 Notch 

149   1.77 AKT 

17   -0.85 BIM, p21, VEGF 

106b   -0.72 p21, VEGF 

106a -0.25 -0.42 -0.93 VEGF, RB1 

20a   -0.91 VEGF 

let7a  1.14  Dicer 

let7b  0.66  CDK6 
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Figure 4.4 Radiation-induced apoptosis in MCF-7 breast adenocarcinoma cells. The 

number of cells in early apoptosis was measured using Annexin V-FITC assay for control 

cells (CT) and cells irradiated with 0.05 Gy, 0.5 Gy and 5 Gy of X-rays 24 and 48 hours 

post exposure. The results are presented as mean values ±S.E.M., n=3. * - significantly 

different from respective control, p<0.05, student’s t-test.  
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Main findings described in chapter 4:  

1. Gene expression profile has been altered in response to the high dose of radiation. 

2. Most of the gene expression changes affected cell cycle, DNA replication and 

repair and apoptosis pathways. 

3. Similar to gene expression changes, miRNA profile has been mainly altered after 

the highest dose of radiation and affected cell cycle and apoptosis processes. 

4. MCF-7 cells showed highest rate of early apoptosis 48 hours upon 5 Gy of 

radiation.  
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CHAPTER 5: ALTERED RADIATION RESPONSES OF BREAST CANCER 

CELLS RESISTANT TO HORMONAL THERAPY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 has been accepted for publication in its entirety: 

Luzhna L., Lykkesfeldt A. and Kovalchuk O. Altered radiation responses of breast cancer 

cells resistant to hormonal therapy. Oncotarget. 
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ABSTRACT 

Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as 

tamoxifen or selective ER down-regulators such as ICI 182,780) are key treatment 

regimens for hormone receptor-positive breast cancers. While these drugs are very 

effective in controlling ER-positive breast cancer, many tumors that initially respond well 

to treatment often acquire drug resistance, which is a major clinical problem. In clinical 

practice, hormonal therapy agents are commonly used in combination or sequence with 

radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor 

control and patient survival. However, tamoxifen treatment may render cancer cells less 

responsive to radiation therapy.  

Only a handful of data exist on the effects of radiation on cells resistant to 

hormonal therapy agents. These scarce data show that cells that were resistant to 

tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of 

endocrine therapy and radiation therapy cross-resistance need to be established. 

Here, we for the first time examined and compared radiation responses of MCF-7 

breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines 

derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAM
R
-1 and ICI 182,780 

resistant MCF-7/182
R
-6 cell lines. Specifically, we analyzed the radiation-induced 

changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle 

regulation. We found that the tamoxifen resistant cell line in contrast to the parental and 

ICI 182,780-resistant cell lines displayed a blunted radiation-induced decrease in the 

expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAM
R
-1 

cells were less susceptible to irradiation than MCF-7/S0.5. These data indicate that 
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tamoxifen resistant breast cancer cells have a reduced sensitivity to radiation treatment. 

The current study may therefore serve as a roadmap to the future analysis of the 

mechanisms of cross-resistance between hormonal therapy and radiation. 

 

INTRODUCTION 

Endocrine therapy is a widely accepted treatment of choice for hormone receptor-

positive breast cancers in early stages and during advanced metastasis (Moy and Goss 

2006). Women with estrogen receptor- (ER) and/or progesterone receptor-positive breast 

cancers are the best candidates for hormone therapy (Gonzalez-Malerva, Park et al. 

2011). The ERα-positive normal breast cells may produce growth factors that stimulate 

the proliferation of neighboring cells leading to breast cancer development. In contrast, 

ERβ is essential for breast tissue differentiation, and its loss is associated with breast 

carcinogenesis (Riggins, Schrecengost et al. 2007).  The selective estrogen receptor 

modulators (SERMs) such as Tamoxifen bind to the ligand-binding domain (LBD) of ER 

preventing its stimulation by estrogen, while the selective estrogen receptor down-

regulators (SERDs) such as ICI 182,780 (Fulvestrant, Faslodex) bind, block and increase 

the degradation of ER (Riggins, Schrecengost et al. 2007; Robertson 2007). Both drugs 

are currently established as effective treatment therapy with beneficial outcomes. 

Unfortunately, in the case of advanced disease, acquired resistance to both drugs 

inevitably develops, which is a major clinical problem (Hutcheson, Knowlden et al. 2003; 

Sommer, Hoffmann et al. 2003; Ring and Dowsett 2004; Nicholson, Hutcheson et al. 

2005). Drug resistance is usually accompanied with an aggressive cell behavior and 

invasiveness. The evidence exists that the main mechanism of hormone therapy 
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resistance is the deregulation of growth factor-signaling cascades. The over-expression of 

growth factors, their receptors and downstream signaling elements promotes hormone 

therapy failure (Nicholson, Hutcheson et al. 2005; Frogne, Benjaminsen et al. 2009; 

Thrane, Lykkesfeldt et al. 2013). Also, a long-term estrogen-deprived tumor cells may 

adapt to low levels of estrogen by increasing their sensitivity to it (Masamura, Santner et 

al. 1995).  Such enhanced sensitivity to estrogen may result from the activation of several 

signaling pathways such as RAS, RAF, MEK and MAPK (Song, McPherson et al. 2002; 

Martin, Farmer et al. 2003).  Moreover, it has been shown that tamoxifen- and 

fulvestrant- resistant MCF-7 cells overexpress receptors in the HER family, e.g., EGFR 

and HER2 (Hutcheson, Knowlden et al. 2003; Sommer, Hoffmann et al. 2003; 

Nicholson, Hutcheson et al. 2004; Ring and Dowsett 2004; Frogne, Benjaminsen et al. 

2009; Thrane, Lykkesfeldt et al. 2013). The overexpressed EGFR and HER2 are well 

known to recruit MAPK, AKT and PKC signaling cascades (Bonni, Brunet et al. 1999; 

Gibson, Tu et al. 1999; Campbell, Bhat-Nakshatri et al. 2001).  

The combination of hormone therapy and radiation is widely used in clinical 

practice. The application of tamoxifen and radiotherapy is believed to improve both local 

control and patient survival (Azria, Lemanski et al. 2004; Fodor 2006). Nevertheless, a 

suspicion also exists that tamoxifen may render cancer cells less responsive to 

radiotherapy by providing a protective effect against radiation. Early studies on cell 

culture have shown that tamoxifen causes an arrest of cells in the radioresistant G0/G1 

phase of the cell cycle reducing the radiosensitivity of tumor cells pretreated with 

tamoxifen (Osborne, Boldt et al. 1983; Lykkesfeldt, Larsen et al. 1984; Wazer, Tercilla et 

al. 1989; Paulsen, Strickert et al. 1996). Today, the most important clinical concern is the 
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optimal scheduling (either concurrent or sequential) of radiation and hormonal therapy 

administration (Harris, Christensen et al. 2005; Whelan and Levine 2005). Even less data 

and evidence exist on the radiation response of cells resistant to hormonal therapy, which 

we believe is important considering the high incidence of resistance to systemic therapy 

in patients with breast cancer. In their study, Paulsen and colleagues investigated the 

influence of radiation on different breast cancer cell lines including cells resistant to 

tamoxifen (MCF-7/TAM
R
-1).  The results of the study showed that the MCF-7/TAM

R
-1 

cells were more resistant to ionizing radiation than  MCF-7 and MDA-MB-231 cell lines 

(Paulsen, Strickert et al. 1996). 

In this study, we analyzed gene expression changes during radiation responses in 

MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and in the tamoxifen resistant cell line 

MCF-7/TAM
R
-1 and the ICI 182,780 resistant cell line, MCF-7/182

R
-6, derived from the 

MCF-7/S0.5 cell line. For the first time, we have shown that MCF-7/TAM
R
-1 cells have 

an elevated potential to withstand radiation-induced DNA damage and display a 

decreased sensitivity to radiation than MCF-7/S0.5 cells.   

MATERIALS AND METHODS 

 Cell lines and cell culture conditions 

The MCF-7/S0.5 (MCF-7), MCF-7/TAM
R
-1 (TAM

R
-1) and MCF-7/182

R
-6 

(182
R
-6) cell sublines were a kind gift from Anne Lykkesfeldt (Breast Cancer Group, 

Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 

Copenhagen, Denmark). Subline 0.5 derived from  MCF-7 cells was originally adapted to 
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grow on 0.5% fetal calf serum (Briand and Lykkesfeldt 1984). Tamoxifen and ICI 

182,780 (fulvestrant, Faslodex) resistant sublines were derived from MCF-7/S0.5 as 

described previously (Lykkesfeldt and Briand 1986; Lykkesfeldt, Madsen et al. 1994; 

Lykkesfeldt, Larsen et al. 1995). MCF-7/S0.5 cells were grown and maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM /F-12) with 2.5 mM L-Glutamine, 

without HEPES and Phenol Red (HyClone, Logan, UT), supplemented with 2% heat-

inactivated fetal bovine serum (HyClone, Logan, UT) and 6 ng/ml of insulin (Sigma-

Aldrich Chemical Co., St. Louis, MO) at 37 ºC in a 5% CO2 atmosphere. The MCF-

7/TAM
R
-1 and MCF-7/182

R
-6 cell lines were grown in the medium described above and 

supplemented with either 1 μM tamoxifen (Sigma-Aldrich) or 0.1 μM ICI 182,70 (Tocris 

Bioscience), respectively. Cells were harvested for analyses by trypsinization. 

Irradiation conditions 

Cells were irradiated at 80% confluency in Dulbecco's Modified Eagle Medium 

(DMEM). Two radiation doses (0.5 Gy and 5 Gy, 90 kVp, 5 mA) were applied to check 

cellular radiation responses. Unirradiated cells served as controls. Cells were harvested 

30 minutes and 24 hours after irradiation. All treatments were tested in triplicate. The 

experiments were independently reproduced twice. 

Whole-genome gene expression profiling 

RNA isolation 

Total RNA was isolated using the Illustra RNAspin mini kit (GE Healthcare Life 

Sciences, Buckinghamshire, UK). Approximately 5 x 10
6
 cultured cells were processed 
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following the manufacturer’s instructions. Samples were eluted in Ultrapure 

DNase/RNase-free distilled water provided in the kit. RNA samples were quantified 

using ultraviolet spectroscopy (NanoDrop, Wilmington, DE) and were further assessed 

for RNA integrity (RIN) on the Aglient 2100 Bioanalyzer (Santa Clara, CA) using the 

RNA Nano-chip Kit. RNA samples with RIN values of seven or higher were used for 

further analysis. 

Library preparation 

cRNA was created using the Ambion’s Illumina TotalPrep RNA Amplification 

Kit (Applied Biosystems, Carlsbad, CA) with an input of 500 ng of total RNA per 

sample. Briefly, oligo-dT primers were used to synthesize first-strand cDNA containing 

the phage T7 promoter sequence. Single-stranded cDNA was converted into a double-

stranded DNA template via DNA polymerase. Simultaneously, RNase H degraded the 

RNA. Samples of cDNA were purified in the Filter Cartridge to remove excess RNA, 

primers, enzymes, and salts. The recovered cDNA was subjected to in vitro transcription 

using biotinylated UTPs. In this step, cRNA was created, labeled, and amplified. A final 

purification step removed unincorporated NTPs, salts, inorganic phosphates and 

enzymes, thus preparing samples for hybridization.  

Hybridization and detection 

The Illumina’s direct hybridization assay kit was used to process samples 

according to the manufacturer’s protocol (Illumina, San Diego, CA). Overnight 750 ng of 

each cRNA sample were hybridized into the Illumina HumanHT-12_v4 Whole Genome 
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Expression BeadChip arrays.  A 10-minute incubation in the supplied wash buffer at 

55 C preceded a 5-minute room temperature wash. The arrays were incubated in 100% 

ethanol for 10 minutes. A second room temperature wash lasted two minutes with gentle 

shaking, thus completing this high-stringency wash.  The arrays were blocked with a 

buffer for 10 minutes and washed before a streptavidin-Cy3 (1:1000) probe for 10 

minutes.  After a five-minute wash at room temperature, the BeadChips were dried and 

imaged. Six controls were also built into the Whole-Genome Gene Expression Direct 

Hybridization Assay system to cover the aspects of array experiments, including controls 

for: the biological specimen (14 probes for housekeeping controls), three controls for 

hybridization (six probes for Cy3-labeled hybridization, four probes for low-stringency 

hybridization, and one probe for high-stringency hybridization), signal generation (two 

probes for biotin control), and approximately 800 probes for negative controls on an 

eight-sample BeadChip. The arrays were scanned on the iScan platform (Illumina), and 

the data were normalized and scrutinized using Illumina BeadStudio Software. 

BeadChip statistical analysis and data processing 

The false discovery rate (FDR) was controlled using the Benjamini-Hochberg 

method. The Illumina Custom Model took FDR into account and was used to analyze the 

data. Differential gene expression (at least a 0.5-fold change) from non-radiated cells was 

determined to be statistically significant if the p value after the adjustment using the 

Benjamini-Hochberg method was lower than 0.05. The values were transformed to show 

a log2 scale. 
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Lists of regulated transcripts were inserted into the web-based DAVID 

Bioinformatics Resources 6.7 (NIAID/NIH) Functional Annotation Tool (Huang da, 

Sherman et al. 2009; Huang da, Sherman et al. 2009). This program was used to group 

genes into functionally relevant categories: metabolic processes, responses to 

stimulus/stress, DNA repair processes, apoptosis, and cell cycle processes. The minimum 

number of genes in each altered pathway has been set to three. The pathways were 

deemed significantly altered if at least 80% of genes were shifting the pathway in the 

same direction (Ertel, Verghese et al. 2006). 

Quantitative real-time PCR 

Quantitative real-time PCR was performed to confirm the results of the Whole-

Genome Gene Expression analysis for the regulation of the direction (either up or down) 

of selected genes. Five genes (CCNA2, CCNB2 CDC20, PTTG1 and BAX) were selected 

from the gene list of significantly differentially expressed transcripts representing a 

preliminary review of the acquired gene expression data. Actin was used as a reference 

gene. All reactions were performed using cDNA synthesized from the same RNA 

extraction as the BeadChip experiments, and 500 ng of the sample was used for the Bio-

Rad iScript Select cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). The 

samples were stored at -20 C for long-term storage and at 4 C until they were used for 

the subsequent qRT-PCR reactions. 

 Primers were designed using the NCBI database and PrimerQuest (Integrated 

DNA Technologies, Inc, Coralville, IA). The following primers were designed: the 

forward primer for the ACTA2 reference gene (5’-TAG CAC CCA GCA CCA TGA 



123 

 

AGA TCA-3’) and the reverse primer (5’-GAA GCA TTT GCG GTG GAC AAT GGA-

3’); CCNA2 forward primer (5’-ATG AGC ATG TCA CCG TTC CTC CTT-3’) and the 

reverse primer (5’-TCA GCT GGC TTC TTC TGA GCT TCT-3’); CCNB forward 

primer (5’-TGC TTC CTG CTT GTC TCA GAA GGT-3’) and the reverse primer (5’-

CAT TCT TGG CCA TGT GCT GCA TGA-3’); CDC20 forward primer (5’-ATG CGC 

CAG AGG GTT ATC AGA ACA-3’) and the reverse primer (5’-CAT TTC GGA TTT 

CAG GCG CAT CCA-3’); PTTG1 forward primer (5’-AGT GGA GTG CCT CTC ATG 

ATC CTT-3’) and the reverse primer (5’-TCC AGG GTC GAC AGA ATG CTT GAA-

3’); BAX forward primer (5’-TTT CTG ACG GCA ACT TCA ACT GGG-3’) and the 

reverse primer (5’- TGT CCA GCC CAT GAT GGT TCT GAT-3’). The reactions were 

prepared using 1 L of diluted cDNA, 10 pmol/ L of each forward and reverse primer, 

and SsoFast EvaGreen Supermix (Bio-Rad Laboratories, Hercules, CA) prepared 

according to the manufacturer’s instructions. The samples were prepared in triplicate and 

were run on the Bio-Rad C1000 Thermal Cycler equipped with the CFX96 Real-Time 

System. The qRT-PCR protocol consisted of denaturation at 95 C for 2 minutes; 43 

cycles of denaturation (95 C, 5 seconds) and annealing/extension (55 C, 5 seconds); and 

a final extension at 65 C for 5 seconds. Annealing temperature optimization, melting 

curve analysis, and gel analysis of the amplicon were performed for every set of primers. 

To evaluate PCR efficiency, a standard curve was established using a series of cDNA 

dilutions. The data was captured and organized using Bio-Rad CFX Manager 2.1 

software (Bio-Rad Laboratories, Hercules, CA). 
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QRT-PCR statistical analysis 

The quantification data from the Bio-Rad CFX Manager software were analyzed 

using the Pfaffl method in Microsoft Excel (Watters 1999). Graphs showing a fold 

change from the untreated cells were created, and transcript regulation directions (up- or 

down-regulation) were matched to the results of the Whole-Genome Gene Expression 

analysis. 

Immunofluorescence  

For immunocytochemical analysis, cells were grown on two-well Lab-Tek 

chamber slides (Nulge Nunc International Corp., Naperville, IL) and irradiated. After 

irradiation, the cells were fixed in 4% paraformaldehyde in PBS, permeabilized with 70% 

ethanol, and washed in PBS containing 0.1% TRITON-X100. Blocking was done in 8% 

BSA in PBS. For immunocytochemical detection, the cells were incubated for two hours 

at room temperature using an anti-γH2AX (Ser 139) rabbit antibody (1:100, Cell 

Signaling Technology Inc., Danvers, MA). Afterwards, the cells were rinsed and 

incubated with a 1:500 diluted secondary antibody - goat anti-rabbit IgG Alexa Fluor 488 

(Invitrogen Molecular Probes, Eugene, OR). Cell nuclei were counterstained with 0.1 

mg/mL 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich 

Chemical Co., St. Louis, MO). The slides were mounted with an anti-fade fluorescence 

medium prepared from 1,4-diazabicyclo[2.2.2]octane (DABCO), polyvinyl alcohol and 

glycerol and analyzed using a Zeiss epifluorescent microscope. 
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The number of γH2AX foci per cell was counted in at least 200 cells from each 

cell group, as previously described (Sedelnikova and Bonner 2006). The levels of γH2AX 

were represented as the mean ± SE; P ≤ 0.05. 

The Alkaline Comet Assay 

The alkaline comet assay protocol was based on Olive and Bannath (2006) and 

Tice and Vasques (1995) at cometassay.com (Tice and Strauss 1995; Olive and Banath 

2006). The cells that were grown in cultures were trypsinised, collected in 15-ml tubes, 

and centrifuged for three min at 1000 g to form a pellet. Next, the pellet was washed 

three times with ice-cold phosphate-buffered saline (PBS) without -Ca
2+

 and -Mg
2+.

 

Finally, the cells were resuspended in their final concentration of 1000 cells per 1 µL of 

cell suspension in ice-cold PBS. The cell suspension was stored on ice during the course 

of subsequent procedures. 

Ten microliters of cell suspension were mixed with 75 ul of 1% low melting point 

(LMP) agarose pre-heated to 40 ⁰C, mixed gently through pipetting up and down, and 

applied to a fully frosted microscope slide (VWR) that was pre-coated with normal 

melting point agarose. The agarose was overlaid with a cover slip and allowed to solidify 

for two to three minutes on ice. The removal of the cover slip was followed by an 

application of 85 ul of 1% LMP agarose pre-heated to 40 ⁰C in order to form a protective 

layer on the top of the layer containing the cell suspension. The cover slip was 

repositioned, and the slides were placed on ice to allow the agarose to solidify.  

The cover slips were removed, and the slides were placed in a freshly prepared 

alkaline lysis solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM Tris base, 1% Triton, 
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and 0.1% Sodium Lauroyl Sarcosine (pH 10.0) adjusted to 4 ⁰C), left overnight at 4 ⁰C, 

and protected from light. Following the lysis step, the slides were rinsed with a freshly 

prepared electrophoresis solution (300 mM, 2mM EDTA (pH>14)). Next, the slides were 

placed in an electrophoresis tank, covered with a thin layer (1-2 mm) of electrophoresis 

buffer, and left for 30 min to permit alkaline DNA unwinding. Electrophoresis was 

performed for 25 minutes at 0.7 V/cm. Each electrophoresis included slides that belonged 

to the same experimental time-point.  

After the completion of electrophoresis, the slides were washed three times for 

five minutes in a neutralization buffer (0.4 M Tris (pH=7.5)). The slides were stained 

with SYBR gold dye (Invitrogen), the comets were viewed using a epifluorescence 

microscope (Zeiss), and the image information was collected using a Comet Assay IV 

system (Perceptive Instruments). 

The statistical analysis was performed to obtain the tail intensity data using SPSS 

software (IBM) and according to recommendations on the statistical analysis of the 

Comet assay (Bright, Aylott et al. 2011). The data was collected from three replicate cell 

culture flasks, at two slides per flask, and 50 cells were examined on each slide. The 

median of the log tail intensity from 50 cells was evaluated per each slide followed by the 

calculation of the mean of two medians from two slides derived from one cell culture 

flask. Finally, the mean values were compared between three flasks representing each 

treatment point using a one-way ANOVA. The levels of tail intensity were represented as 

mean ± SD; P ≤ 0.05.  
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The Annexin V assay  

For the early detection of apoptosis, an Annexin V-FITC Apoptosis Detection Kit 

I (BD Biosciences, San Jose, CA) was used according to the manufacturer’s protocol. 

Cells were grown and irradiated as previously described (Section 2.2). The analysis was 

performed 24 hours after exposure to radiation. Cells were harvested, washed with PBS, 

resuspended in a 1X binding buffer, stained with Annexin V and propidium iodide for 15 

min at 25 ºC in the dark, and analyzed using flow cytometry within one hour at the Flow 

Cytometry Core Facility (University of Calgary, Calgary, AB). The results were 

represented as a percentage of gated Annexin V positive cells. 

RESULTS 

The effects of radiation on whole-genome gene expression in antiestrogen-sensitive 

and antiestrogen-resistant MCF-7 cells 

The gene expression analysis was conducted for MCF-7/S0.5 and the 

antiestrogen-resistant derivatives, MCF-7/TAM
R
-1 and MCF-7/182

R
-6, with the purpose 

to evaluate and compare the radiation response between cell lines. Differential gene 

expression in the MCF-7 cell lines was found upon exposure to radiation. In fact, the 

expression level of 402, 371, and 187 genes was significantly altered due to X-ray 

exposure in MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-1, respectively (Fig. 5.1). 

Interestingly, most of the altered genes were down-regulated. Amongst 134 genes that 

were common for all three cell lines, 27 genes were up-regulated and 107 genes were 

down-regulated. The majority of gene expression changes observed in the antiestrogen 
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resistant cell lines was also seen in the parental MCF-7/S0.5, (73.6 and 73.8% of the 

genes in MCF-7/182
R
-6 and in MCF-7/TAM

R
-1, respectively). The least gene expression 

changes were found in the MCF-7/TAM
R
-1 cell line which had only half as many gene 

changes as the parental and ICI 182,780 resistant cells, and only 30 unique genes changes 

in response to radiation treatment (Fig. 5.1).  

Further, we uploaded the gene lists consisting of 402, 371 and 187 genes from the 

MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-1 lines, respectively, through the 

DAVID pathway-specific enrichment analysis in order to identify casual relationships 

between the genes and organize them into specific pathways according to their functions. 

Subsequently, the genes with similar or identical functions were grouped together and 

organized by the KEGG database into pathways. The least number of genes that could 

constitute a pathway was three; therefore, only 83 genes and the 12 pathways they belong 

to were further studied (Table 5.1). Mainly, those were the genes that play a role in cell 

cycle, DNA replication, base excision repair (BER), nucleotide excision repair (NER), 

mismatch repair (MMR), homologous recombination (HR), p53 signaling, gap junction, 

drug metabolism, purine and pyrimidine metabolism and spliceosome.  Based on each 

gene’s function and its expression trend, the roles of the above-mentioned pathways were 

evaluated and compared between cell lines (Tables 5.1 and 5.2). For this, the pathways 

were deemed significantly altered if at least 80% of the genes from the pathway were 

shifting the pathway in the same direction (Table 5.2) (Ertel, Verghese et al. 2006). For 

instance, in the MCF-7/S0.5 line, eight out of ten genes from the p53 signaling pathway 

represented in Table 5.1 were changed in a way that functionally shifted the pathway to 

overall up-regulation. These eight genes represented 80% of pathway significance in the 
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MCF-7/S0.5 line, which allowed us to conclude that the p53 signaling pathway was 

significantly up-regulated in the MCF-7/S0.5 cells upon exposure to radiation (Table 

5.2). An identical analysis approach was applied for the remaining 11 pathways in each 

cell line.  

Table 5.2 demonstrates the pathways’ specific differences between MCF-7/S0.5, 

MCF-7/182
R
-6 and MCF-7/TAM

R
-1 in response to X-ray radiation (Table 5.2). As 

expected, 5 Gy of X-ray caused cell cycle deregulation in all three MCF-7 cell lines (Fig. 

5.2). The down-regulation in the expression level of 18 genes involved in cell cycle was 

common for MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6. These genes constituted 

the components of the mitotic checkpoint CHEK, MAD2L1, BUB1 and BUB1B, E2F 

transcription factor 2, CCNA2 and CCNB2 encoding cyclins A2 and B2, cyclin-

dependant kinase CDC20, the components of the minichromosome maintenance (MCM) 

complex, protein-kinase TTK, protease ESPL11 and a regulator of chromosome stability 

PTTG1. In addition, MCF-7/S0.5 and MCF-7/182
R
-6 shared the down-regulation of 

RAD2, CDC25C, CDC7, CDK2 and a negative regulator of entry into mitosis PKMYT. 

Both antiestrogen-resistant cell lines overexpressed growth arrest and GADD45A, a 

DNA-damage-inducible factor, upon radiation treatment (Table 5.1). The second pathway 

that like the cell cycle was mostly affected by ionizing radiation in all cell lines was DNA 

replication. 20, 16 and 9 genes involved in the process of DNA replication were down-

regulated in MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-1, respectively (Table 5.2).  

Specifically, they were components of the minichromosome complex (MCM 2-7), DNA 

polymerases A, D and E, replication factors RFC 2, 3, 4, and 5, the replication protein 

RPA3 and others (Table 5.1). Moreover, the main DNA repair pathways were also 
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downregulated in MCF-7/S0.5 and MCF-7/182
R
-6 in response to 5 Gy of X-rays. Base 

excision repair, mismatch repair, and homologous recombination were down-regulated in 

MCF-7/S0.5 and MCF-7/182
R
-6; and nucleotide excision repair (NER) was significantly 

down-regulated in MCF-7/S0.5 (Tables 5.1 and 5.2). Moreover, the purine and 

pyrimidine metabolism pathways that could contribute to DNA replication and DNA 

repair by providing the necessary deoxyribonucleotides were also down-regulated in 

response to X-ray radiation. An inability of cells to ultimately replicate and repair their 

DNA leads to cell death. The P53 signaling pathway was functionally up-regulated in 

MCF-7 sensitive and antiestrogen-resistant cell lines in response to exposure to radiation 

(Table 5.2).  

The decreased expression of tubulins, the main components of microtubules, 

resulted in the overall down-regulation of the gap junction pathway in MCF-7/S0.5 and 

MCF-7/182
R
-6 cells which could contribute to the apoptotic response; the down-

regulation of spliceosome in MCF-7/182
R
-6 is translated into the absence of RNA 

processing that is necessary for protein synthesis and cell proliferation. Interestingly, an 

increase in the expression state of genes that contribute to drug metabolism was observed 

in the MCF-7/TAM
R
-1cell line after radiation treatment. These genes were: flavin- 

containing monooxygenase (FMO5), glutathione S-transferase kappa 1 (GSTK1) and 

monoamine oxidase A (MAOA) that could potentially increase drug-resistance of MCF-

7/TAM
R
-1 cells.   

Overall, although the radiation response of the three MCF-7 cell lines was similar 

in the way that all cells showed down-regulation of cell cycle, DNA replication, DNA 



131 

 

repair and activation of the apoptotic pathway, the most dramatic response was found in 

the antiestrogen sensitive MCF-7/S0.5 cell line. The cells resistant to ICI 182,780 were 

also very sensitive to radiation, while tamoxifen-resistant cells showed the least dramatic 

response. Moreover, the up-regulation of the drug metabolism pathway post-radiation 

exposure suggests a possible strengthening of drug resistance by ionizing radiation in 

MCF-7/TAM
R
-1 cells. The gene expression data have been confirmed by the qRT-PCR 

analysis on the five genes that play a role in the cell cycle and apoptosis: CCNA2 and 

CCNB2, CDC20, PTTG1 and BAX. Similarly to the gene expression data, qRT-PCR 

showed a significant down-regulation of CCNA2, CCNB2, CDC20, PTTG1 and up-

regulation of BAX  in the three MCF/7 cell lines 24 hours after radiation exposure (Fig. 

5.3).    

Radiation-induced DNA damage in MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-

1 cells 

The gene expression changes found in the three MCF-7 lines, MCF-7/S0.5, MCF-

7/182
R
-6 and MCF-7/TAM

R
-1, were accompanied with the extensive DNA damage 

caused by radiation.  Ionizing radiation (IR) is a potent DNA-damaging agent capable of 

inducing cross-linking, nucleotide base damage, and most importantly, single- and 

double-strand breaks (DSBs) which are well-known inducers of apoptosis (Little 2000; 

Huang 2003). Therefore, we analyzed and compared the levels of IR-induced DNA 

damage in MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-1 cells by detecting γH2AX 

foci, a well accepted indicator of DNA double-strand breaks (Bonner, Redon et al. 2008) 

and by the Comet assay. To better study the dynamics of the appearance of γH2AX foci 
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in MCF-7 breast cancer cells, we added another time point (30 minutes) and a lower IR 

dose (0.5 Gy) to the already existing experimental conditions.  As expected, the 

appearance of γH2AX foci in all three cell lines was dose-, and time-dependant. Both the 

intermediate (0.5 Gy) and high (5 Gy) doses of X-rays caused a significant elevation in 

the level of γH2AX foci in antiestrogen-sensitive and antiestrogen-resistant cells (Fig. 

5.4). The highest γH2AX level was observed at the 30-minute time point. Specifically, 

12.1-, 7.84-, and 6.07-fold changes compared to controls were caused by 0.5 Gy; and 

27.3-, 20.5-, and 14.8-fold changes were caused by 5 Gy of X-rays 30 minutes after 

exposure in MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6, respectively (Fig. 5.4). 

Here, it is important to note that at 30-min time point both antiestrogen-resistant cell lines 

accumulated significantly less DSBs than their sensitive MCF-7/S0.5 cell line after both 

0.5 and 5 Gy. Approximately a halfway decrease in the level of γH2AX foci was 

achieved from the 30-min to 24-h time point in all three cell lines indicating DNA repair 

and/or damage-induced apoptosis during this period. Therefore, at the 24-hour time point, 

the level of foci was different from that in the control non-radiated cells by 4.12-, 3.03-, 

and 3.11-fold for the 0.5 Gy dose and by 8.71-, 5.11-, and 8.73-fold for the 5 Gy dose of 

X-rays in MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6, respectively (Fig. 5.4). 

Interestingly, MCF-7/TAM
R
-1 cells displayed a more complete repair than other two 

lines at 24-h time point after 5 Gy. Overall, the immunofluorescent analysis showed that 

the background level of γH2AX foci was similar for the three cell lines, and the induction 

of foci by radiation had a similar trend between the MCF-7/S0.5 cell line and the two 

antiestrogen-resistant cell lines, MCF-7/TAM
R
-1 and MCF-7/182

R
-6.  Nevertheless, 
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MCF-7/S0.5 cells displayed higher level of DNA DSBs after each applied dose. MCF-

7/TAM
R
-1 cells were able to repair damages at 24-h time point.  

In the comet assay, the super coiled duplex DNA underwent unwinding and 

denaturation under strong alkaline conditions (Olive 1999). This led to the reduction of 

DNA fragment size and the expression of alkali labile sites as single-strand breaks which 

are stretched out by electrophoresis. A comet tail consisting of the broken or damaged 

DNA fragments was analyzed through the intensity in MCF-7/S0.5, MCF-7/TAM
R
-1 and 

MCF-7/182
R
-6 cells after radiation treatment (Fig. 5.5). A 5 Gy X-ray treatment led to 

significant damage in MCF-7 parental and both drug resistant cells immediately (30 min) 

after the application. These damages are believed to represent DSBs, SSBs, alkali labile 

sites, and breaks from replication events. But the persistence of damages was only 

observed in MCF-7/S0.5, and MCF-7/182
R
-6 cells at the 6- and 24-hour time points, and 

no significant damages were observed in the drug-resistant line MCF-7/TAM
R
-1 (Fig. 

5.5). Such difference could be associated with a higher potential for DNA repair in cells 

resistant to tamoxifen.   

Radiation-induced apoptosis in MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6 

cells  

IR exposure is known to induce apoptotic cell death. Therefore, we analyzed the 

levels of IR-induced apoptosis in MCF-7/S0.5 and two antiestrogen-resistant lines, MCF-

7/182
R
-6 and MCF-7/TAM

R
-1. Early apoptosis is characterized by various changes in the 

cellular plasma membrane; the primary change is the translocation of phosphatidylserine 

(PS) from the inner layer to the surface of the membrane. Annexin V possesses a high 
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affinity to PS, and this allows for the early detection of apoptotic changes (Vermes, 

Haanen et al. 1995). Here, we analyzed IR-induced apoptosis using an Annexin V assay 

for MCF-7 breast adenocarcinoma cells 24 h post radiation exposure. Interestingly, 0.5 

Gy of X-rays did not cause any significant changes in the level of early apoptosis in 

either of cell lines. In contrast, 5 Gy X-rays led to a significant apoptosis in all three cell 

lines (Fig. 5.6). The percentage of annexin V-positive cells increased from 4.96 % to 30.0 

% in MCF-7/S0.5; from 7.98% to 14.1 % in MCF-7/182
R
-6; and from 1.7 % to 6.04 % in 

MCF-7/TAM
R
-1 at 5 Gy of irradiation at 24 hours post radiation (Fig. 5.6). Overall, the 

annexin V assay showed that the antiestrogen-sensitive MCF-7/S0.5 line is more 

sensitive to radiation-induced apoptosis than the antiestrogen-resistant MCF-7/182
R
-6 

and MCF-7/TAM
R
-1 lines.  

DISCUSSION 

The effect of systemic therapy on patients with breast cancer has been widely 

debated. A variety of alternatives for breast cancer treatment are constantly expanding 

but the combination of chemotherapy, radiation therapy, surgery and hormone therapy for 

the appropriate treatment plan is still complex (Gonzalez-Angulo, Morales-Vasquez et al. 

2007). Although these therapies have proven to be beneficial, a large number of patients 

acquire resistance to treatments.  

The purpose of this study was to investigate radiation-induced gene expression 

changes in three cell lines of breast adenocarcinoma: the parental MCF-7/S0.5 and the 

antiestrogen- resistant MCF-7/TAM
R
-1 and MCF-7/182

R
-6. Using microarray technology 

tools, we were able to screen differences in gene expression in response to radiation 
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between MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6. Here, we show that these 

three cell lines respond differently to radiation at the gene expression level. Gene 

expression profiling showed that the expression level of at least 402 and 371 genes 

changed in the antiestrogen -sensitive MCF-7/S0.5 cell line and in cells resistant to ICI 

182,780, respectively, due to 5 Gy X-rays. However, in MCF-7/TAM
R
-1 cells, only 187 

genes changed (Fig. 5.1). We believe that the ability of cells to retain their gene 

expression potential at a close to constant level regardless of DNA-damaging insults may 

be due to some features acquired by antiestrogen-resistant cells and shared in other forms 

of resistance, such as radiation resistance. Interestingly, most of the changed genes were 

down-regulated in all three cell lines. Using David software, we have revealed that these 

genes belong mainly to the cell cycle, DNA replication and DNA repair pathways (Table 

5.1). The most profound down-regulation of gene expression was observed in genes 

involved in the cell cycle pathway (Table 5.2, Fig. 5.2). The reduced expression of the S 

and M cyclins, cyclin A2 and B2 (Fig. 5.3), and their cyclin-dependant kinase CDK2  

indicate cell cycle arrest in S or G2/M phases of the cell cycle (Table 5.1, Fig. 5.2). 

Moreover, the similar down-regulation of the E2F transcription factor may prevent cells 

from entering the S-phase. In addition, the lower expression of PTTG1, the TTK protein 

kinase that is usually present in rapidly proliferating cells, (Fig. 5.3) that peaks in the M 

phase, ORC3L that binds to origins of replication, CDC7, one of the regulators of the 

G1/S transition, CDC25C, an inducer of mitotic control that is necessary for cell cycle 

progression, and CDC20 (Fig. 5.3), an activator of APC and a major regulator of cell 

division, reflects cell cycle disturbance in all three cell lines.  One would expect that the 

cells were arrested at the cell cycle checkpoints, but surprisingly, most of the mitotic 



136 

 

checkpoint regulators were also down-regulated.  Among them were:  CHEK1 that 

phosphorylates the components of CDC25 for cell cycle arrest; MAD2 that interacts with 

CDC20 and is a component of the spindle-assembly checkpoint that prevents anaphase 

until chromosomes are correctly aligned, and BUB1 that is involved in cell cycle 

checkpoint enforcement (Table 5.1). These gene expression data represent the total cell-

cycle shutdown and checkpoint failure which are most probably due to extensive DNA 

damages caused by ionizing radiation. Cell cycle checkpoints usually contribute to cell 

survival allowing for DNA damage repair; and the lack of checkpoints makes cells more 

sensitive to killing by ionizing radiation (Jaklevic, Uyetake et al. 2006). 

Both the cell cycle and DNA replication pathways shared the common down-

regulation of six components of the minichromosome maintenance complex (MCMs: 2, 

3, 4, 5, 6, 7) in all three cell lines (Table 5.1, Fig. 5.2). The MCM 2-7 helicase complex is 

important for the replication fork formation and elongation during DNA replication 

(Labib, Tercero et al. 2000). In fact, it is required for the assembly of pre-replication 

complexes (pre-RCs) at replication origins at the end of mitosis and during late G1 

(Diffley 2001; Braun and Breeden 2007). It is evident that mammalian cells decrease the 

rate of ongoing DNA synthesis in response to DNA damage at the level of origin 

initiation and fork progression (Larner, Lee et al. 1994). Obviously, the inactivation of 

the MCM complex inhibits DNA replication and cell proliferation and can be the 

mechanism of cell cycle arrest. Indeed, the down-regulation of MCM2 and MCM6 was 

associated with Notch-dependant cell cycle arrest in endothelial cells and human 

fibroblasts (Noseda, Niessen et al. 2005).  
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In response to genotoxic stress such as ionizing radiation, the ATM/ATR 

checkpoint pathways are activated and target stalled replication forks. The MCM 

complex is also a target of checkpoint signaling (Cortez, Glick et al. 2004). Stalled 

replication forks must retain MCM proteins in order to resume replication. Otherwise, 

replication licensing cannot be reassembled as origins fire only once in each cell cycle 

(Diffley 2001).  The down-regulation of MCM 2-7 in MCF-7/S0.5, MCF-7/TAM
R
-1 and 

MCF-7/182
R
-6 (Table 5.1) in response to X-ray radiation indicates aberrant DNA 

replication or its absence and cell cycle arrest. In addition, reduced expression levels of 

DNA polymerases add up to the disruption of DNA replication and/or repair. Here, it is 

important to emphasize that mainly DNA polymerases from MCF-7/S0.5 and MCF-

7/182
R
-6 are inhibited, and only polymerase PolE2 is also effected in MCF-7/TAM

R
-1 

(Table 5.1). The other necessary components of the DNA replication/repair pathway 

which were down-regulated in response to ionizing radiation were: LIG1 (a ligase that 

seals nicks in double-stranded DNA during replication, recombination and repair), 

PRIM1 (a primase that synthesizes short RNA primers for Okazaki fragments during 

discontinuous replication ), FEN1 (an endonuclease that cleaves the 5'-overhanging flap 

structure that is generated by displacement synthesis when DNA polymerase encounters 

the 5'-end of a downstream Okazaki fragment), RNASEH2A (a ribonuclease that 

removes RNA primers from lagging-strand Okazaki fragments), RFC 2-5(replication 

factors that play a role of a clamp loader for loading PCNA on DNA during replication), 

and RPA3 (the replication protein that binds ssDNA and keeps it unwound for DNA 

replication or repair). Overall, 20, 16 and 9 DNA replication genes were down-regulated 

in MCF-7/S0.5, MCF-7/182
R
-6 and MCF-7/TAM

R
-1, respectively. Furthermore, the 
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detected down-regulation of purine and pyrimidine metabolism mainly in MCF-7/S0.5 

and MCF-7/182
R
-6 contributes to the decreased DNA replication/repair. The importance 

of sufficient nucleotide pools in the S phase is reflected by the G1 arrest when the pools 

are inadequate (Linke, Clarkin et al. 1996).  

Further evaluation of genes by functional relationships with pathways showed the 

similarity in the radiation response between MCF-7/S0.5 and MCF-7/182
R
-6 (Table 5.2). 

Both cell lines exhibited a lower expression of DNA repair genes following radiation 

exposure. Specifically, the down-regulation of base excision repair, nucleotide excision 

repair, mismatch repair and homologous recombination was observed. In addition to the 

previously mentioned genes (DNA polymerases, RFCs, RPAs, FEN1 and LIG1) that 

clearly participate in DNA repair, some specific repair genes were also down-regulated 

(Table 5.1). These genes were the following: uracil-DNA glycosylase (UNG that excises 

uracil residues from  DNA that can arise as a result of misincorporation of dUMP 

residues by DNA polymerase or due to the deamination of cytosine); poly(ADP-ribose) 

polymerase 2 (PARP2 that catalyzes the poly (ADP-ribosylation of a limited number of 

acceptor proteins involved in chromatin architecture and DNA metabolism) and high-

mobility group box1-like1 (HMGB1L1 that binds preferentially single-stranded DNA 

and unwinds double-stranded DNA) in BER; mutS homolog 6 (MSH6 that 

heterodimerizes with MSH2 to form MutS alpha that binds to DNA mismatches, thereby 

initiating DNA repair) in MMR; Bloom syndrome , REcQ helicase-like (BLM that 

unwinds single- and double-stranded DNA in a 3'-5' direction); RAD51 homolog C 

(RAD51C that is involved in the homologous recombination repair pathway of double-

stranded DNA breaks arising during DNA replication or induced by DNA-damaging 
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agents); RAD54-like (RAD54L that is involved in DNA repair and mitotic 

recombination) and X-ray repair complementing defective repair in Chinese hamster cells 

3 (XRCC3 that is thought to repair chromosomal fragmentation, translocations and 

deletions) in HR. Interestingly, two genes involved in NER, damage-specific DNA 

binding protein (DDB2) and xeroderma pigmentosum complementation group C (XPC) 

involved in DNA damage recognition and initiation of DNA repair were up-regulated in 

MCF-7/S0.5 and MCF-7/182
R
-6. This might mean that DNA damages are initially 

recognized, but the actual repair failed due to the lack of downstream components of the 

pathway. Such results demonstrate that radiation-induced DNA damages (especially in 

MCF-7/S0.5 and MCF-7/182
R
-6) are too great for cell survival and lead to DNA repair 

failure and possibly to cell death. In contrast, there were no significant changes in the 

expression level of DNA repair genes in MCF-7/TAM
R
-1 cells.  

The immunocytochemical staining of cells for γH2AX proved the radiation-

induced formation of DNA damages, specifically DSBs, and the initiation of DNA repair 

in all three cell lines. The induction of the DSBs was dose- and time-dependant (Fig. 5.4). 

Although many DSBs were repaired in 24 hours, the level of γH2AX never returned to 

the initial one.  At the 24-hour time point, a lot of DSBs caused by both low and high 

doses remained unrepaired in all three cell lines. Interestingly, MCF-7/TAM
R
-1 cells 

displayed significantly lower levels of 5 Gy-induced γH2AX foci at 24 hours in 

comparison to the other two cell lines that were shown to be DNA repair defective in 

gene expression analysis. 
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 Considering, that γH2AX staining only detects DSB damages in DNA, we 

performed the Comet assay to evaluate the broader types of damages. These damages are 

believed to represent DSBs, SSBs, alkali labile sites, and breaks from replication events. 

Although, all three cell lines displayed a rapid increase (30 minutes) in the levels of 

radiation-induced DNA damage, MCF-7/TAM
R
-1 cells showed no significant persistence 

of DNA damages (Fig. 5.5). 6 and 24 hours after radiation exposure, the level of DNA 

damages represented by the comet tail intensity was similar to the control level in MCF-

7/TAM
R
-1 cells. In contrast, the level of DNA damages in MCF-7/S0.5 and MCF-

7/182
R
-6 cells remained high even at 24 hours post radiation. These data suggest that 

MCF-7/TAM
R
-1 cells have a higher DNA repair activity after radiation in comparison to 

MCF-7/S0.5 and MCF-7/182
R
-6 cells. The ability to withstand and repair DNA damages 

may result in reduced sensitivity to radiation and possibly demands other types of cancer 

treatment.  

The majority of DNA damage signaling proteins may be inactivated by caspases 

during the execution phase of apoptosis (Watters 1999). P53 is one of the main 

executioners of cellular response to ionizing radiation and apoptosis. Its levels are 

elevated in response to ionizing radiation affecting a number of downstream effector 

genes, such as Bax, p21, GADD45G and Mdm2 (Watters 1999). Radiation-induced p53 

activation causes  cell cycle arrest allowing for DNA repair and in the case of repair 

failure, p53 triggers apoptosis (Verheij and Bartelink 2000). In agreement with the above, 

p53 signaling was activated in all three cell lines in response to radiation. Up-regulated 

BAX (Table 5.1, Fig. 5.3) is known to accelerate programmed cell death by binding and 

inhibiting an apoptosis repressor Bcl-2. The activation of sestrin 1 (Table 5.1) was 
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previously shown upon genotoxic exposure, and its cytoprotective function based on 

regeneration of overoxidized peroxiredoxins was described (Budanov, Shoshani et al. 

2002). A few years ago, Budanov and Karin showed that sestrin is a target of p53 and an 

inhibitor of TOR (target of rapamycin). mTOR is a phosphatidylinositol kinase-related 

kinase that positively regulates cell growth. P53-mediated activation of sestrin upon 

genotoxic stress inhibits mTOR through the AMP-responsive protein kinase (AMPK) 

(Budanov and Karin 2008). Gene activated by p53, the ribonucleotide reductase 

(RRM2B), was up-regulated in MCF-7/S0.5 and MCF-7/ICI. RRM2B plays a role in 

DNA repair of arrested cells by supplying deoxyribonucleotides during cell cycle arrest 

in a p53-dependent manner. Although it is not clear whether this gene actually affected 

DNA repair, considering the fact that its homolog RRM2 that also provided precursors 

for DNA synthesis was down-regulated in all three cell lines). Finally, the increased 

expression of Gadd45A and TP53I3 in antiestrogen-resistant cells also indicate cell cycle 

arrest after X-ray treatment (Table 5.1).  

The gene expression data correlate with the results of the annexin V assay on 

early apoptosis. Exposure to 5 Gy of X-rays initiated apoptotic cell death in all three cell 

lines. However, the degree of apoptosis was different among the cell lines. The highest 

apoptosis level was detected in MCF-7/S0.5 cells (30%), while in cells resistant to 

tamoxifen, only 6% of the cells were undergoing apoptosis (Fig. 5.6). Such differences 

can be attributed to the radio-resistance of MCF-7/TAM
R
-1 cells.  In fact, although the 

response to X-rays (such as an increase in DNA damages and cell cycle arrest) in MCF-

7/TAM
R
-1 cells and the other two cell lines was similar, MCF-7/TAM

R
-1 cells did not 
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lose their DNA repair capacity and exhibited lower fraction of apoptotic MCF-7/TAM
R
-1 

cells compared to parental and ICI 182,780 resistant cells.   

According to the gene expression profiling and the data of pathway enrichment 

analysis, a strong down-regulation of the gap junction pathway was caused by the 

ionizing radiation in MCF-7/S0.5 and MCF-7/182
R
-6 but not in MCF-7/TAM

R
-1 (Table 

5.2). All down-regulated genes that constituted the pathway were members of 

cytoskeletal elements, tubulins alpha and beta. An altered level of expression of 

cytoskeletal elements plays a considerable role in radiation-mediated transformation. The 

differential modulation of genes encoding cytoskeletal elements upon radiation exposure 

was previously documented, where actin and tubulin mRNA accumulation was reported 

to be similar to that in transformed cells (Woloschak, Shearin-Jones et al. 1990). Cancer 

cells are characterized by a complicated ultrastructural organization. Breast cancer cells 

resistant to doxorubicin and cisplatin display an increase in the number of microtubules 

and varying widths of microfilaments (Huang da, Sherman et al. 2009). Tubulins are 

critical for cell division, which made them a target for several anti-cancer drugs. An 

elevated expression of tubulin correlates with a lack of response to chemotherapy. In fact, 

βIII-tubulin expression has been acknowledged as a predictor of the docetaxel resistance 

in metastatic prostate cancer (Sanchez, Gupta et al. 2012). Another study claimed that 

βII-tubulin is a strong predictor of outcome in patients treated with the platinum-based 

induction chemotherapy for locally advanced squamous carcinoma of the head and neck 

(Cullen, Schumaker et al. 2009). A possible explanation for such observation was based 

on the fact that tubulin binds to the voltage-dependent anion channel, VDAC, and 

regulates the permeability of the mitochondrial outer membrane. Binding of tubulin to 
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VDAC inhibits the binding of proapoptotic drugs which induce a rapid cytochrome c 

release (Cullen, Schumaker et al. 2009). In the present study, a decrease in tubulin 

expression in the MCF-7/S0.5 and MCF-7/182R-6 cell lines indicates the inability of the 

formation of a microtubular apparatus necessary for cell division, and it also supports the 

data on early apoptosis. In contrast, MCF-7/TAM
R
-1 cells did not show any expression 

changes in a single tubulin gene, which at least partly may contribute to the reduced 

sensitivity to radiation.  

In addition, three genes involved in drug metabolism were up-regulated in MCF-

7/TAM
R
-1 cells. One of these genes was glutathione S-transferase kappa 1 (GSTK), a 

radical scavenger that is involved in the metabolism of xenobiotics. It was previously found 

that GST plays an important role in the acquisition of drug resistance through the decreased 

intracellular drug accumulation and the stimulation of drug-induced DNA damage repair 

(Pfaffl 2001; Sedelnikova and Bonner 2006).  Using an in vivo mouse model, it has been 

shown that tamoxifen-resistant tumors had a statistically significant increase in GST 

activity, the increased levels of other antioxidant enzymes such as SOD, and the reduced 

glutathione levels (Schiff, Reddy et al. 2000). The authors discussed the effects of 

tamoxifen on the intracellular redox status of breast cancers, the induction of lipid 

peroxidation and the activation of antioxidant enzymes. Such oxidative changes appeared 

to be tamoxifen-specific as they were not found in ICI-resistant tumors (Schiff, Reddy et al. 

2000). In a recent study, a quantitive proteomic analysis revealed  up-regulation of GST in 

breast cancer cells during the transition to acquired tamoxifen resistance (Zhou, Zhong et 

al. 2012). Taking into consideration that ionizing radiation may also influence the redox 

status of cells, we believe that GST may be involved in the resistance of cancer cells to 
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radiation, and therefore, may be considered one of the common molecular indicators for 

chemo- and radio-resistance. The up-regulation of the drug metabolism pathway in MCF-

7/TAM
R
-1 cells after radiation treatment indicates that ionizing radiation may potentially 

decrease the sensitivity of tamoxifen resistant cells to other treatment modalities.  

This study provides the analysis of the roles of DNA repair and apoptosis in 

response to radiation,in antiestrogen-sensitive and resistant cells. The ability of 

tamoxifen-resistant cells to retain their DNA repair capacity upon radiation treatment 

allows us to suggest that DNA repair genes could possibly be considered as putative 

targets of future anti-cancer therapy. Further detailed studies are needed to determine the 

cellular and molecular processes that are altered in resistant cells that allow them to 

survive genotoxic treatments such as irradiation. 
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MCF-7/S0.5

MCF-7/182R-6MCF-7/TAMR-1

125
(17↑; 108↓)

4
(2↑; 2↓)

139
(17↑; 122↓)

134
(27↑; 107↓)

30
(24↑; 6↓)

19
(17↑; 2↓)

79
(41↑; 38↓)

Figure 5.1 Gene expression profiling of MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-

7/182
R
-6. The Venn diagram shows the number of significantly changed genes in the 

MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6 cell lines upon radiation in 

comparison to their corresponding un-irradiated controls, as identified by the gene 

expression profiling analysis. The arrows beside the numbers in brackets represent the 

direction of genes alteration (up- or down-regulation). 
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Table 5.1 The list of differentially expressed genes involved in critical biological 

pathways in MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-7/182

R
-6 cells. “+” – the gene is 

up-regulated; “-” – the gene is down-regulated.  

Gene 

symbol  

Gene name  Cell line(s) where 

the gene  

expression is 

changed  

KEGG Pathway(s)  

FEN1- flap structure-specific 

endonuclease 1 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, BER  

LIG1- ligase I, DNA, ATP-dependent MCF-7/S0.5  DNA replication, NER, BER, MMR  

MCM2- minichromosome maintenance 

complex component 2 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

MCM3- minichromosome maintenance 

complex component 3 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

MCM4- minichromosome maintenance 

complex component 4 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

MCM5- minichromosome maintenance 

complex component 5 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

MCM6- minichromosome maintenance 

complex component 6 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

MCM7- minichromosome maintenance 

complex component 7 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, Cell cycle  

POLA1- polymerase (DNA directed), 

alpha 1, catalytic subunit 

MCF-7/S0.5  DNA replication, Pyrimidine 

metabolism, Purine metabolism  

POLA2- polymerase (DNA directed), 

alpha 2 (70kD subunit) 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, Pyrimidine 

metabolism, Purine metabolism  

POLD1- polymerase (DNA directed), 

delta 1, catalytic subunit 

125kDa 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, NER, BER, 

Pyrimidine metabolism, Purine 

metabolism, MMR, HR  

POLE- polymerase (DNA directed), 

epsilon 

MCF-7/S0.5  DNA replication, NER, BER, 

Pyrimidine metabolism, Purine 

metabolism  

POLE2- polymerase (DNA directed), 

epsilon 2 (p59 subunit) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, NER, BER, 

Pyrimidine metabolism, Purine 

metabolism  

POLE4- polymerase (DNA-directed), 

epsilon 4 (p12 subunit) 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, NER, BER, 

Pyrimidine metabolism, Purine 

metabolism  

PRIM1- primase, DNA, polypeptide 1 

(49kDa) 

MCF-7/S0.5, MCF-

7/TAMR-1 

DNA replication, Pyrimidine 

metabolism, Purine metabolism  

RFC3- replication factor C (activator 

1) 3, 38kDa 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, NER, MMR  

RFC4- replication factor C (activator 

1) 4, 37kDa 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

DNA replication, NER, MMR  
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RFC5- replication factor C (activator 

1) 5, 36.5kDa 

MCF-7/S0.5, MCF-

7/182R-6  

DNA replication, NER, MMR  

RPA3- replication protein A3, 14kDa MCF-7/S0.5  DNA replication, NER, MMR, HR  

RNASEH2A- ribonuclease H2, subunit A MCF-7/S0.5, MCF-

7/182R-6  

DNA replication  

CHEK1- CHK1 checkpoint homolog (S. 

pombe) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle, p53  

E2F2- E2F transcription factor 2 MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle  

MAD2L1- MAD2 mitotic arrest deficient-

like 1 (yeast) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle  

RAD21- RAD21 homolog (S. pombe) MCF-7/S0.5, MCF-

7/182R-6  

Cell cycle  

SKP2- S-phase kinase-associated 

protein 2 (p45) 

MCF-7/S0.5  Cell cycle  

TTK- TTK protein kinase  MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Cell cycle  

BUB1- budding uninhibited by 

benzimidazoles 1 homolog 

(yeast) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Cell cycle  

BUB1B- budding uninhibited by 

benzimidazoles 1 homolog beta 

(yeast)  

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Cell cycle  

CDC20- cell division cycle 20 homolog 

(S. cerevisiae) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle  

CDC25C- cell division cycle 25 homolog 

C (S. pombe) 

MCF-7/S0.5, MCF-

7/182R-6  

Cell cycle  

CDC7- cell division cycle 7 homolog 

(S. cerevisiae) 

MCF-7/S0.5, MCF-

7/182R-6  

Cell cycle  

CCNA2- cyclin A2 MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Cell cycle  

CCNB1- cyclin B1 MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Cell cycle, p53  

CCNB2- cyclin B2 MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle, p53  

CDK2- cyclin-dependent kinase 2 MCF-7/S0.5, MCF-

7/182R-6  

Cell cycle, p53  

ESPL1- extra spindle pole bodies 

homolog 1 (S. cerevisiae) 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle  

ORC3L- origin recognition complex, 

subunit 3-like (yeast) 

MCF-7/S0.5  Cell cycle  

PTTG1- pituitary tumor-transforming 

1; pituitary tumor-

transforming 2 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Cell cycle  
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PKMYT1- protein kinase, membrane 

associated tyrosine/threonine 1 

MCF-7/S0.5, MCF-

7/182R-6  

Cell cycle  

DDB2+ damage-specific DNA binding 

protein 2, 48kDa 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

NER, P53  

XPC+ xeroderma pigmentosum, 

complementation group C 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

NER 

HMGB1L1  high-mobility group box 1-like 

1 

MCF-7/S0.5, MCF-

7/182R-6  

BER 

PARP2- poly (ADP-ribose) polymerase 

2 

MCF-7/S0.5, MCF-

7/182R-6  

BER 

UNG- uracil-DNA glycosylase  MCF-7/S0.5, MCF-

7/182R-6  

BER 

MSH6-  mutS homolog 6 (E. coli) MCF-7/S0.5, MCF-

7/182R-6  

MMR 

BLM- Bloom syndrome, RecQ 

helicase-like  

MCF-7/S0.5, MCF-

7/182R-6  

HR 

RAD51C- RAD51 homolog C (S. 

cerevisiae) 

MCF-7/S0.5  HR 

RAD54L- RAD54-like (S. cerevisiae) MCF-7/S0.5, MCF-

7/182R-6  

HR 

XRCC3- X-ray repair complementing 

defective repair in Chinese 

hamster cells 3 

MCF-7/S0.5  HR 

DUT- deoxyuridine triphosphatase  MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Pyrimidine metabolism 

RRM1- ribonucleotide reductase M1 MCF-7/S0.5  Pyrimidine metabolism, Purine 

metabolism 

RRM2B+ ribonucleotide reductase M2 B 

(TP53 inducible) 

MCF-7/S0.5, MCF-

7/182R-6  

Pyrimidine metabolism, P53 

RRM2- ribonucleotide reductase M2 

polypeptide 

MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

Pyrimidine metabolism, Purine 

metabolism, P53 

TK1- thymidine kinase 1, soluble MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

Pyrimidine metabolism 

TYMS- thymidylate synthetase  MCF-7/S0.5  Pyrimidine metabolism 

PRPS2- phosphoribosyl pyrophosphate 

synthetase 2 

MCF-7/S0.5 Purine metabolism 

BAX+ BCL2-associated X protein MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1  

P53 

SESN1+ sestrin 1 MCF-7/S0.5, MCF-

7/182R-6, MCF-7/TAMR-

1 

P53 

GTSE1- G-2 and S-phase expressed 1 MCF-7/S0.5, MCF-

7/182R-6  

P53 
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TUBA1B- hypothetical gene supported 

by AF081484; NM_006082; 

tubulin, alpha 1b 

MCF-7/S0.5, MCF-

7/182R-6  

Gap junction 

TUBA1A- tubulin, alpha 1a MCF-7/S0.5, MCF-

7/182R-6  

Gap junction 

TUBA1C- tubulin, alpha 1c MCF-7/S0.5, MCF-

7/182R-6  

Gap junction  

TUBA3D- tubulin, alpha 3d; tubulin, 

alpha 3c 

MCF-7/S0.5, MCF-

7/182R-6  

Gap junction  

TUBB2C- tubulin, beta 2C MCF-7/S0.5, MCF-

7/182R-6  

Gap junction  

TUBB6- tubulin, beta 6 MCF-7/S0.5  Gap junction 

TUBB4Q- tubulin, beta polypeptide 4, 

member Q 

MCF-7/S0.5, MCF-

7/182R-6  

Gap junction 

TUBB- tubulin, beta; similar to 

tubulin, beta 5; tubulin, beta 

pseudogene 2; tubulin, beta 

pseudogene 1 

MCF-7/S0.5, MCF-

7/182R-6  

Gap junction 

RPA2- replication protein A2, 32kDa MCF-7/182R-6  DNA replication, NER, MMR, HR 

GADD45A+ growth arrest and DNA-

damage-inducible, alpha 

MCF-7/182R-6, MCF-

7/TAMR-1  

Cell cycle, P53 

SMC3- structural maintenance of 

chromosomes 3 

MCF-7/182R-6  Cell cycle 

CCNG1+ cyclin G1 MCF-7/182R-6  P53 

CCNG2+ cyclin G2 MCF-7/182R-6  P53 

LSM4- LSM4 homolog, U6 small 

nuclear RNA associated (S. 

cerevisiae) 

MCF-7/182R-6  Spliceosome  

PRPF3- PRP3 pre-mRNA processing 

factor 3 homolog (S. 

cerevisiae) 

MCF-7/182R-6  Spliceosome  

THOC4- THO complex 4 MCF-7/182R-6  Spliceosome  

PPIH- peptidylprolyl isomerase H 

(cyclophilin H) 

MCF-7/182R-6  Spliceosome  

SFRS1- splicing factor, 

arginine/serine-rich 1 

MCF-7/182R-6  Spliceosome  

SFRS2- splicing factor, 

arginine/serine-rich 2 

MCF-7/182R-6  Spliceosome  

SFRS4- splicing factor, 

arginine/serine-rich 4 

MCF-7/182R-6  Spliceosome  
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TP53I3+ tumor protein p53 inducible 

protein 3 

MCF-7/TAMR-1  P53 

FMO5+  flavin containing 

monooxygenase 5 

MCF-7/TAMR-1  Drug metabolism 

GSTK1+  glutathione S-transferase 

kappa 1 

MCF-7/TAMR-1  Drug metabolism 

MAOA+  monoamine oxidase A MCF-7/TAMR-1  Drug metabolism 
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Table 5.2 The significantly altered KEGG pathways in MCF-7/S0.5, MCF-7/TAM
R
-

1 and MCF-7/182
R
-6 cells after X-ray treatment in comparison to the corresponding 

un-treated controls. In this table, the pathway significance (%) is defined as the ratio of 

gene alterations that similarly affect a certain pathway (either up- or down-regulate) to 

the total number of altered genes in the pathway. “+” – the pathway is up-regulated; “-” – 

the pathway is down-regulated. Numbers in brackets represent the total number of altered 

genes in the pathways. “N/S” – not significant, which could be due to either less than 

80% significance or less than 3 of the total number of genes altered in the pathway.  
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CHEK1 CHK1 checkpoint homolog (S. pombe)

E2F2 E2F transcription factor 2

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)

TTK TTK protein kinase

BUB1
budding uninhibited by benzimidazoles 1 homolog 

(yeast)

BUB1B
budding uninhibited by benzimidazoles 1 homolog 

beta (yeast)

CDC20 cell division cycle 20 homolog (S. cerevisiae)

CCNA2 cyclin A2

CCNB1 cyclin B1

CCNB2 cyclin B2

ESPL1 extra spindle pole bodies homolog 1 (S. cerevisiae)

MCM2
minichromosome maintenance complex

component 2

MCM3
minichromosome maintenance complex

component 3

MCM4
minichromosome maintenance complex

component 4

MCM5
minichromosome maintenance complex

component 5

MCM6
minichromosome maintenance complex

component 6

MCM7
minichromosome maintenance complex

component 7

PTTG1
pituitary tumor-transforming 1; pituitary tumor-

transforming 2

*

*

*

*
*

*
*
* *

*

*

* * *

Figure 5.2 The KEGG cell cycle pathway. The red stars indicate genes that were down-

regulated in all three cell lines.  

 

 

 

 



153 

 

 

 

 

Figure 5.3 Fold change in the levels of CCNA2, CCNB2, CDC20, PTTG1 and BAX 

transcripts detected by qRT-PCR. Each treatment group was compared to its 

corresponding control. Actin was used as a reference gene (calculated by Pfaffl). * - 

significant, p<0.001; ** - significant, p<0.01. (Student’s t-test).  
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Figure 5.4 Radiation-induced H2AX phosphorylation in MCF-7/S0.5, MCF-

7/TAM
R
-1 and MCF-7/182

R
-6 cells. The results are presented as an average number of 

γH2AX foci per cell ± SE, n = 200. * - significantly different from the respective control; 

p < 0.05; Magnification, × 100. Blue – DAPI, green – γH2AX. 
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Figure 5.5 Radiation-induced DNA damage in MCF-7/S0.5,  MCF-7/TAM
R
-1 and 

MCF-7/182
R
-6 cells as determined by the Alkaline Comet assay.  The graphs 

represent the percentage of DNA in the comet tails (tail intensity)  obtained by the 

Alkaline Comet assay performed on MCF-7 cells 30 minutes, 6 and 24 hours after X-ray 

irradiation. Tail intensity levels are represented as mean ± SD; * - significantly different 

from the respective control, p < 0.01; ** - significantly different from the respective 

control, p<0.05. (Student’s t-test).  Comet representative pictures of tail intensity are 

located beside the charts. 
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Figure 5.6 Radiation-induced apoptosis in MCF-7/S0.5, MCF-7/TAM
R
-1 and MCF-

7/182
R
-6 cells. The number of  cells in early apoptosis  was measured using the Annexin 

V-FITC assay for control cells (CT) and cells irradiated with 0.5 Gy and 5 Gy of X-rays. 

M1 – AnnexinV- positive cells; Viable cells - AnnexinV- and PI-negative (the lower left 

quadrants); Cells in the early apoptosis state -  AnnexinV-positive and PI-negative (the 

lower right quadrants); Cells in the late apoptosis state or already dead cells - both 

Annexin V- and PI-positive (the upper right quadrants). 
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Main findings described in chapter 5: 

1. Tamoxifen resistant cell line in contrast to parental and Faslodex resistant cell 

lines displayed significantly less radiation-induced decrease in expression of 

genes involved in DNA repair and differed by up-regulation of drug metabolic 

pathways. 

2. Tamoxifen resistant cells developed significantly less DNA damages and were 

least sensitive to radiation-induced apoptosis. 
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GENERAL DISCUSSION AND CONCLUSIONS 

The most common type of malignancy in women, breast cancer, has worldwide 

incidence that continues to rise (Ellsworth, Ellsworth et al. 2004). A positive breast 

cancer treatment outcome strongly depends on advances in early detection and an 

understanding of the molecular mechanisms of cancer response to treatment procedures.  

The role of ionizing radiation in medical diagnostics and cancer therapy has a 

long, controversial history. Radiotherapy as a treatment for breast cancer has clearly 

demonstrated reduced local relapse (Cuzick 2005). Nevertheless, numerous studies 

continue in their attempt to understand well the mechanisms involved in mediating 

radioresistance (Jameel, Rao et al. 2004). Ionizing radiation-dependent diagnostic 

screening (CT scanning, mammography) provides accurate, individualized decision 

making about the most beneficial treatment approach (Walter and Schonberg 2014). 

However, epidemiological studies provide evidence of increased cancer risk after 

prolonged exposure to low doses of ionizing radiation (Mullenders, Atkinson et al. 2009).  

The radiation response between normal and cancer cells differs and is believed to 

be dependent on the radiation dose and energy level involved (Tutt and Yarnold 2006). 

The major difference is on the ability of cells to withstand radiation-induced DNA 

damage and the subsequent effect on gene expression. On the one hand, extensive DNA 

damage naturally leads to apoptosis which eliminates genetically non-stable cells from 

the population (valuable in eradicating cancer cells during radiotherapy). On the other 

hand, cells may develop the ability to propagate damage through the cell cycle and, thus, 
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avoid cell death. Such cells give rise to cancer initiation, which is the main concern in the 

use of a low radiation dose.  

A number of studies have indicated substantial alterations of epigenetic 

mechanisms in response to ionizing radiation, including changes in DNA methylation and 

microRNA expression. DNA methylation is crucial in the regulation of gene expression 

and chromatin state and thus,  in the normal development, cell proliferation, and proper 

maintenance of genome stability in an organism (Jaenisch and Bird 2003). microRNAs 

can cause silencing of multiple genes and are important in cellular proliferation, 

apoptosis, differentiation, and tissue and organ development (Alvarez-Garcia and Miska 

2005). 

This study aims to analyze and compare the radiation responses of normal 

mammary gland tissue to various doses of ionizing radiation, as well as, the low- versus 

high- dose radiation response of MCF-7 breast adenocarcinoma cells and their 

counterparts that are resistant to tamoxifen and faslodex.   

We discovered that low and intermediate doses of ionizing radiation stimulate the 

expression of immune system-related genes and promote apoptosis-directed alterations of 

the miRNAome in normal mammary tissue. On the other hand, low doses of ionizing 

radiation may lead to epigenetic activation of mobile elements, such as transposons. We 

found that breast cancer cells are sensitive to high doses of radiation and that resistance to 

ionizing radiation may possibly be related to an acquired hormone therapy resistance.  
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The major findings of this thesis are as follows: 

1. Rat mammary gland cells activate the expression of the genes that boost the 

immune system to fight foreign cytotoxic agents in response to low and 

intermediate doses of radiation. This activation is accompanied by the altered 

regulation of specific microRNAs, such as activation of miR-34a, which may be 

responsible for radiation-induced cell death. 

2. Low doses of ionizing radiation contribute to hypomethylation and the subsequent 

activation of Line-1, a transposable mobile element. 

3. Breast adenocarcinoma MCF-7 cells differentially respond to high, medium, and 

low doses of ionizing radiation, and they show a strong apoptotic response only 

after a high dose of X-rays. 

4. Tamoxifen-resistant cells accumulate less DNA damage and are less sensitive to 

radiation-induced apoptosis than their parental cell line, MCF-7/S0.5.  

Our findings are important in the following: 

1. Selecting the optimal number of diagnostic screening procedures 

2. Selecting the appropriate modality for breast cancer treatment 

3. Predicting the development of resistance to already existing treatment methods 

4. Developing novel epigenetic therapy strategies 
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FUTURE RESEARCH PROSPECTS: 

The findings of this study only partially describe the radiation response of 

mammary gland tissue and cells. Cellular response to ionizing radiation involves a 

variety of defensive pathways that require further investigation. Moreover, the common 

mechanisms of drug- and radioresistance should be elucidated in depth. Our suggestions 

for future studies are as follows:  

1. The role of the genes that change their expression upon ionizing radiation in 

mammary gland tissue should be investigated further. Specifically, the targeted 

up- or downregulation of these genes in a breast cell culture would allow us to 

understand the role of these genes in promoting or preventing carcinogenesis. 

Identifying the molecular mechanisms of changes in gene expression and defining 

which molecular process (e.g., mutation, epigenetic alteration, and transcription 

factors) within the gene or the gene promoter is affected by ionizing radiation are 

important. 

2. The phenomenon of radiation-induced transposon activation was observed while 

studying only one (Line-1) out of many existing transposable elements. Various 

other transposons (SINEs, class II transposons) could be explored to make a 

precise conclusion about the role of mobile elements in radiation-induced 

carcinogenesis. Determining the exact promoter sites within the retrotransposon 

gene that were hypomethylated after the application of ionizing radiation is 

especially important.   
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3. In this thesis, we evaluated the response of MCF-7 cells to low, medium, and high 

doses of ionizing radiation. The MCF-7 cell line represents breast 

adenocarcinoma cells with an ER-positive tumor phenotype and low invasive 

potential. Numerous breast cancer phenotypes with strong metastatic potential 

exist. Studying the response of several other breast cancer lines to ionizing 

radiation is necessary.  

4. Drug resistance was explained with the use of only two hormonal therapy drugs 

as examples. An entire cohort of other hormonal agents and anthracyclines could 

be explored to make precise conclusions about radioresistance in breast cancer 

cells that display resistance to most common drugs used for breast cancer 

treatment. 

5. The radiation response of normal breast cells, as well as breast cancer cells, was 

shown to be mediated by microRNA expression. Short non-coding RNAs are of 

special interest in cancer biology nowadays. MicroRNAs are epigenetic regulators 

of gene expression, inhibitors of translation of a variety of proteins, and important 

contributors to radiation-induced apoptosis, tumor development, and 

chemoresistance. In the future, further investigation of the role of microRNAs and 

their putative targets in the radiation response of breast cancer cells, as well as the 

establishment of the role of microRNAs as the potential biomarkers for the 

prediction of treatment responses, would be necessary. 

Overall, the studies presented in this thesis indicate the emerging notion that 

radiation use in diagnostic imaging and radiation treatment has much more to offer 
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than just being a powerful cytotoxic agent. Nevertheless, further evidence is required 

to establish the definitive role of tumor radiation. 
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