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I. INTRODUCTION

The Generalized Uncertainty Principle (henceforth abbreviated to GUP) is an outcome of modifications/corrections1 to
the conventional Heisenberg algebra satisfied by the two canonically conjugate observables: position x and momentum
p. According to String Theory, the conventional Heisenberg algebra gains an extra term which is quadratic in
momentum p, in the Planck regime. In [2], the authors used the following modified Heisenberg algebra consistent
with String Theory

[x̂, p̂] = i~
(

1 + βp2
)

. (1)

Black Hole physics, and Doubly Special Relativity (DSR) propose a correction in the Planck regime with the extra
term to be linear in momentum p. In [3, 4], the authors considered modifications to the conventional Heisenberg
algebra, which includes both linear and quadratic terms in momentum, namely

[x̂, p̂] = i~[δij − α(pδij +
pipj
p

) + α2(p2δij + 3pipj)] . (2)

Utilizing the following uncertainty relationship satisfied by any two operators Â and B̂

∆Â∆B̂ ≥ 1

2

∥

∥

∥

〈[

Â, B̂
]〉∥

∥

∥ (3)

where ∆Â and ∆B̂ stand for the standard deviations of the corresponding operators, a GUP between position x and
momentum p is obtained

∆x∆p ≥ ~

2

[

1− 2α 〈p〉+ 4α2
〈

p2
〉]

(4)

where lpl ≈ 10−35 m is the Planck length, α = α0 lpl/~ is the GUP parameter, and it is normally assumed that α0 = 1.
In [3, 4], the authors suggested an upper bound on α0 by stating that its value cannot exceed 1017 which is precisely
the electroweak length scale. This prediction comes about due to the fact that if α0 were to be any larger, such an
intermediate length scale would have been observed. Now, it is easy to verify the fact that the above two equations,
i.e. Eqs.(2) and (4), predict a minimal measurable length ∆xmin and a maximum measurable momentum ∆pmax

∆xmin ∝ α0lpl (5)

∆pmax ∝ Mplc

α0
(6)

where Mpl is the Planck Mass. It can be shown that the following representations of the position and momentum
operators satisfy the modified Heisenberg algebra given by Eqn.(2)

x̂i = x̂0i (7)

p̂i = p̂0i
(

1− αp̂0 + 2α2p̂20
)

(8)

with x̂0i and p̂0j satisfying the ordinary canonical commutation relations [x̂0i, p̂0j ] = i~δij . Here, p̂0 can be interpreted
as being the total momentum of a particle at low energies and having the standard representation, namely, in one
dimension,

p̂0 = −i~ d

dx
. (9)

1 Predicted by various quantum gravity theories (for a recent review see [1], and references there in).
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Now, considering any non-relativistic Hamiltonian of the form

Ĥ =
p̂2

2m
+ V (r) (10)

we see that, due to Eq.(8), i.e., the GUP-modified momentum operator, every Hamiltonian of the form of Eq.(10)
obtains higher order terms in α and p̂0. A simple substitution of the new momentum operator into Eq.(10) yields

Ĥ =
p̂20
2m

− α

m
p̂30 +

5α2

2m
p̂40 −

2α3

m
p̂50 +

2α4

m
p̂60 + V (r) . (11)

The aim of this work is to investigate the self-adjointness of the GUP-modified momentum and Hamiltonian operators,
characterized by the powers of α up to O(α2). In section II, we briefly present some mathematical tools which will be
used in next sections. In section III, we show in which domains the GUP-modified momentum operator is self-adjoint,
in which domains it is not self-adjoint, and in which domains it has infinitely many self-adjoint extensions. We follow
this analysis when the GUP-modified momentum operator has a linear term in the GUP parameter α, when it has
a quadratic term in α, and when both terms, i.e., the linear and the quadratic in α, are present. In section IV, we
perform the same analysis as presented in section III for the case of the Hamiltonian operator. Finally, in section V,
we present our results.

II. MATHEMATICAL PRELIMINARIES

In this section, we briefly present all necessary definitions, theorems, and lemmas concerning linear operators [5–8].

Definition 1. Let V a normed vector space. A linear mapping Â : V → V is called a linear operator in H. The
subspace of elements x ∈ H for which Âx is defined is termed as the domain of Â and is denoted as DÂ. The range

of Â is the set of all elements y ∈ V such that y = Âx holds, and is denoted as RÂ.

At this point, it should be stressed that from now onwards we use the words linear operator and operator

interchangeably.

Definition 2. Let V be a normed vector space. Any linear mapping of V into V itself is called a bounded operator
if the ‖Â‖ <∞. The norm of an operator is defined as follows:

‖Â‖ = sup
x∈D

Â
‖x‖6=0

‖Âx‖
‖x‖ . (12)

The above simply implies that we can always find a positive real constant, say M, such that ‖Âx‖ ≤ M‖x‖. In the
case when no such constant exists, we term the operator to be unbounded.

In this section, we focus more on the properties of unbounded operators since most of the operators encountered in
Physics such as the momentum and the Hamiltonian are unbounded operators.

Example 1. Consider the differential operator d
dx to be defined on the space of all differentiable functions on some

interval [a, b] ⊂ R, which is a subspace of L2([a, b]). Suppose we consider a sequence of functions fn(x) = sin(nx), n
= 1,2,3,. . . , defined on [−π, π]. Then

‖fn‖ =

√

∫ π

−π

(sinnx)
2
dx =

√
π <∞ (13)

and

‖ d
dx
fn‖ =

√

∫ π

−π

(n cosnx)
2
dx = n

√
π . (14)

From the above we see that, there is no real constant that can set an upper bound on ‖ d
dxfn‖, hence we see that the

differential operator is unbounded.
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Since the GUP-modified momentum and Hamiltonian operators are differential operators, we will completely work with
unbounded operators and for this reason the following definitions and theorems concern only unbounded operators.

Definition 3. Let H be a normed vector space. Let Â be an operator such that DÂ ∈ H. Then Â is said to be densely

defined if DÂ is dense in H, i.e ∀ψ ∈ H, ∃ ∈ DÂ a sequence φn which in norm converges to ψ

Definition 4. An operator Â : H → H, with domain DÂ ∈ H, is said to be closed if its graph Γ(Â)

Γ(Â) =
{

(x, y) |x ∈ DÂ, y = Âx
}

(15)

is closed in the normed space H xH.

For an unbounded operator, one can define the corresponding adjoint operator in the following way:

Definition 5. The adjoint, Â† of an unbounded operator Â defined in a Hilbert space, is defined as

∀x ∈ DÂ, ∀y ∈ DÂ†

〈

y|Âx
〉

=
〈

Â†y|x
〉

. (16)

Since, we only deal with dense domains, we will consider only densely defined unbounded operators.

Theorem 1. If Â is a densely defined operator, then its adjoint Â† is closed

Definition 6.

1. Let Â be an operator defined in the Hilbert space, H. The Â is called Hermitian or symmetric if, ∀x, y ∈ DÂ,

〈

y|Âx
〉

=
〈

Ây|x
〉

. (17)

2. An operator Â defined in a Hilbert space H is said to be self-adjoint if it is densely defined over its domain
and in form, Â = Â†.

Note. The equality Â = Â†, apart from the equality in form of the two operators, also implies that the respective
domains of the operators should also coincide, i.e., DÂ = DÂ† .

In the case of bounded operators, one need not concern with the equality of domains because, the domain of a
densely defined bounded operator can always be extended to the entire vector space. Therefore, a bounded Hermitian
operator is also self-ajdoint. However in the unbounded case, the situation is a little bit more subtle, since the
operator being symmetric doesn’t imply self-adjointness. We now describe the von Neumann’s Theorem which is an
indispensable tool in the analysis of self-adjointness of operators.

Note. From now onwards we consider only unbounded operators.

Definition 7. Let Â be a symmetric operator. Let

K+ = ker(i− Â†) (18)

K− = ker(i+ Â†) (19)

where K+ and K− are called deficiency subspaces of Â and their dimensions, i.e., n+ = dim [K+] and n− = dim [K−]
are referred to as the deficiency indices of Â.

Note. The deficiency indices of Â can be any positive integer and even infinite.

Definition 8. Let Â be an operator in a Hilbert space, H. We say B̂ is an extension of Â if the following conditions

hold
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• D(Â) ⊂ D(B̂)

• Âφ = B̂φ, ∀φ ∈ D(Â)

i.e. Â ⊂ B̂.

Given an operator Â in a Hilbert space and say B̂ is a closed symmetric extension of the same, then the following are
true

• For φ ∈ D(B̂†)

(ψ, B̂†φ) = (B̂ψ, φ) = (Âψ, φ) (20)

for all ψ ∈ D(Â). Thus, from the above we see that φ ∈ D(Â) and B̂†φ = Â†φ so

Â ⊂ B̂ ⊂ B̂† ⊂ Â†. (21)

von Neumann’s Theorem

Theorem 2. Let Â be a closed symmetric operator with deficiency indices n+ and n−. Then,

• Â is self-adjoint if and only if (n+, n−) = (0, 0).

• Â has self-adjoint extensions if and only if n+ = n−. These extensions are parametrized by an n xn unitary

matrix.

• If n+ 6= n−, the Â has no self-adjoint extensions.

III. GUP-MODIFIED MOMENTUM

In this section we will apply von Neumann’s theorem to the GUP-modified momentum operator [9]. For this reason,
we first have to determine the functions ψ±(x) which satisfy the equation

p̂ψ+(x) = ±i~
d
ψ±(x) (22)

where d is a positive constant introduced for dimensional reasons and which is homogeneous to some length.
For the case of the total momentum of a particle at low energies and employing the standard representation, Eq.(22)
becomes

− i~
dψ+(x)

dx
= ±i~

d
ψ±(x) . (23)

It is easily seen that a solution to the above equation reads

ψ±(x) = C± exp
[

∓x
d

]

. (24)

Over different domains, the deficiency indices and the self-adjointness of the momentum operator are described as
follows:

• D(p̂0) = L2(R) : (n+, n−) = (0, 0) and thus the operator is self-adjoint.

• D(p̂0) = L2[0,∞) : (n+, n−) = (1, 0) and thus the operator is not self-adjoint.

• D(p̂0) = L2([0, L]) : (n+, n−) = (1, 1) and thus the operator has infinitely many self-adjoint extensions
parametrized by a U(1) group.
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For future convenience, we will make all variables dimensionless. For this reason, using the quantity α~ which is the
physical length scale introduced in GUP, we define a new dimensionless parameter ρ as follows

ρ =
x

α~
. (25)

Therefore, the momentum operator p̂0 expressed in terms of the new variable ρ now reads

p̂0 = −i~ d

dx
= − i

α

d

dρ
. (26)

A. Momentum operator with linear term in α

Let us now consider as momentum operator in Eq.(22), the GUP-modified momentum operator which is linear in α,
namely

p̂ = p̂0 − αp̂20. (27)

First we write Eq.(22) for the function ψ+ and we get

(

p̂† − i

α

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

d2

dρ2
− i

d

dρ
− i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

λ2 − iλ− i = 0 (28)

and so its roots are of the form

λ1+ =
1

4

√

−2 + 2
√
17 + i

(

1

2
+

1

4

√

2 + 2
√
17

)

= 0.6248105340+ 1.300242590 i (29)

λ2+ = −1

4

√

−2 + 2
√
17 + i

(

1

2
− 1

4

√

2 + 2
√
17

)

= −0.6248105340− 0.3002425902 i . (30)

Therefore, we obtain two linearly independent solutions for ψ+

ψ1
+(ρ) ∝ exp [(0.6248105340+ 1.300242590 i)ρ] (31)

ψ2
+(ρ) ∝ exp [(−0.6248105340− 0.3002425902 i)ρ] . (32)

Furthermore, over the different domains the deficiency index n+ of the GUP-modified momentum operator which is
linear in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
+(x) and ψ2

+(x), is square integrable. So these functions do not
belong to this space and thus n+ = 0.
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• D(p̂) = L2(0,∞)

In this domain, only ψ2
+(x) has finite norm. So this is the only solution from the set which is square integrable

and thus n+ = 1.

• D(p̂) = L2([a, b])

Over the finite interval both solutions, i.e., ψ1
+(x) and ψ

2
+(x), are square integrable. So these functions belong

to this space and thus n+ = 2.

Second we write Eq.(22) for the function ψ− and we get

(

p̂† +
i

α

)

ψ−(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

d2

dρ2
− i

d

dρ
+ i

)

ψ−(ρ) = 0 .

The characteristic equation of the above differential equation is

λ2 − iλ+ i = 0 (33)

and so its roots are of the form

λ1− =
1

4
,

√

−2 + 2
√
17 + i

(

1

2
− 1

4

√

2 + 2
√
17

)

= 0.6248105340− 0.3002425902 i

λ2− = −1

4

√

−2 + 2
√
17 + i

(

1

2
+

1

4

√

2 + 2
√
17

)

= −0.6248105340+ 1.300242590 i .

Therefore, we obtain two linearly independent solutions for ψ−

ψ1
−(ρ) ∝ exp [(0.6248105340− 0.3002425902 i)ρ] (34)

ψ2
−(ρ) ∝ exp [(−0.6248105340+ 1.300242590 i)ρ] . (35)

Furthermore, over the different domains the deficiency index n− of the GUP-modified momentum operator which is
linear in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
−(x) and ψ2

−(x), is square integrable. So these functions do not
belong to this space and thus n− = 0.

• D(p̂) = L2(0,∞)

In this domain, only ψ2
−(x) has finite norm. So this is the only solution from the set which is square integrable

and thus n− = 1.

• D(p̂) = L2([a, b])

Over the finite interval both solutions, i.e., ψ1
+(x) and ψ

2
+(x), are square integrable. So these functions belong

to this space and thus n+ = 2.

Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified momentum operator which is
linear in α is described as follows :

• D(p̂) = L2(−∞,∞) : (n+, n−) = (0, 0) and thus the momentum operator is self-adjoint.

• D(p̂) = L2(0,∞) : (n+, n−) = (1, 1) and thus the momentum operator has infinitely many self-adjoint extensions.

• D(p̂) = L2([a, b]) : (n+, n−) = (2, 2) and thus the momentum operator has infinitely many self-adjoint extensions.
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B. Momentum Operator with quadratic term in α

We now consider as momentum operator in Eq.(22), the GUP-modified momentum operator which is quadratic in α,
namely

p̂ = p̂0 + 2α2p̂3

and we adopt the analysis of the previous subsection in order to study the self-adjointness of this GUP-modified
momentum operator.
First we write Eq.(22) for the function ψ+ and we get

(

p̂† − i

α

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2
d3

dρ3
− d

dρ
− 1

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

2µ3 − µ− 1 = 0 (36)

and so its roots are of the form

µ1
+ = 1 (37)

µ2
+ = −1

2
− 1

2
i (38)

µ3
+ = −1

2
+

1

2
i . (39)

Therefore, we obtain three linearly independent solutions for ψ+

ψ1
+(ρ) ∝ exp (ρ) (40)

ψ2
+(ρ) ∝ exp

[(

−1

2
− 1

2
i

)

ρ

]

(41)

ψ3
+(ρ) ∝ exp

[(

−1

2
+

1

2
i

)

ρ

]

. (42)

Furthermore, over the different domains the deficiency index n+ of the GUP-modified momentum operator which is
in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
+(x), ψ

2
+(x), and ψ

3
+, is square integrable. So these functions do

not belong to this space and thus n+ = 0.

• D(p̂) = L2(0,∞)

In this domain, only ψ2
+(x) and ψ3

+ have finite norm. So there are only two solutions from the set which are
square integrable and thus n+ = 2.

• D(p̂) = L2([a, b])

Over the finite interval both solutions, i.e., ψ1
+(x), ψ

2
+(x), and ψ3

+, are square integrable. So these functions
belong to this space and thus n+ = 3.
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Second we write Eq.(22) for the function ψ− and we get

(

p̂† +
i

α

)

ψ−(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2
d3

dρ3
− d

dρ
+ 1

)

ψ−(ρ) = 0 .

The characteristic equation of the above differential equation is

2µ3 − µ+ 1 = 0 (43)

and so its roots are of the form

µ1
− = −1 (44)

µ2
− =

1

2
− 1

2
i (45)

µ3
− =

1

2
+

1

2
i . (46)

Therefore, we obtain three linearly independent solutions for ψ−

ψ1
−(x) ∝ exp (−ρ) (47)

ψ2
−(x) ∝ exp

[(

1

2
− 1

2
i

)

ρ

]

(48)

ψ3
−(x) ∝ exp

[(

1

2
+

1

2
i

)

ρ

]

. (49)

Furthermore, over the different domains the deficiency index n− of the GUP-modified momentum operator which is
quadratic in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
−(x), ψ

2
−(x), and ψ

3
−(x), is square integrable. So these functions

do not belong to this space and thus n− = 0.

• D(p̂) = L2(0,∞)

In this domain, only ψ1
−(x) has finite norm. So this is the only solution from the set which is square integrable

and thus n− = 1.

• D(p̂) = L2([a, b])

Over the finite interval all three solutions, i.e., ψ1
−(x), ψ

2
−(x), and ψ

3
−, are square integrable. So these functions

belong to this space and thus n+ = 3.

Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified momentum operator which is
quadratic in α is described as follows :

• D(p̂) = L2(−∞,∞) : (n+, n−) = (0, 0) and thus the momentum operator is self-adjoint.

• D(p̂) = L2(0,∞) : (n+, n−) = (2, 1) and thus the momentum operator is not self-adjoint.

• D(p̂) = L2([a, b]) : (n+, n−) = (3, 3) and thus the momentum operator has infinitely many self-adjoint extensions.
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C. Momentum operator with linear and quadratic terms in α

We now consider as momentum operator in Eq.(22), the GUP-modified momentum operator which has linear and
quadratic terms in α, namely

p̂ = p̂0 − αp̂20 + 2α2p̂30 . (50)

First we write Eq.(22) for the function ψ+ and we get

(

p̂† − i

α

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2i
d3

dρ3
+

d2

dρ2
− i

d

dρ
− i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

2iν3 + ν2 − iν − i = 0 (51)

and so its roots are of the form

ν1+ =
1

6

3

√

54 + 8 i+ 3
√
303 + 96 i+

5

6

1
3

√

54 + 8 i+ 3
√
303 + 96 i

+
i

6
(52)

= 0.9676154706+ 0.1976442834 i

ν2+ = − 1

12

3

√

54 + 8 i+ 3
√
303 + 96 i− 5

12

1
3

√

54 + 8 i+ 3
√
303 + 96 i

+
1

6
i (53)

+
1

2
i
√
3

(

1

6

3

√

54 + 8 i+ 3
√
303 + 96 i− 5

6

1
3

√

54 + 8 i+ 3
√
303 + 96 i

i

)

(54)

= −0.5258014144+ 0.6865159449 i

ν3+ = − 1

12

3

√

54 + 8 i+ 3
√
303 + 96 i− 5

12

1
3

√

54 + 8 i+ 3
√
303 + 96 i

+
1

6
i (55)

−1

2
i
√
3

(

1

6

3

√

54 + 8 i+ 3
√
303 + 96 i− 5

6

1
3

√

54 + 8 i+ 3
√
303 + 96 i

i

)

(56)

= −0.4418140560− 0.3841602281 i .

Therefore, we obtain three linearly independent solutions for ψ+

ψ1
+(ρ) ∝ = exp [(0.9676154706+ 0.1976442834 i)ρ] (57)

ψ2
+(ρ) ∝ = exp [(−0.5258014144+ 0.6865159449 i)ρ] (58)

ψ3
+(ρ) ∝ = exp [(−0.4418140560− 0.3841602281 i)ρ] (59)

Furthermore, over the different domains the deficiency index n+ of the GUP-modified momentum operator with linear
and quadratic terms in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
+(x), ψ

2
+(x), and ψ

3
+, is square integrable. So these functions do

not belong to this space and thus n+ = 0.
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• D(p̂) = L2(0,∞)

In this domain, only ψ2
+(x) and ψ3

+ have finite norm. So there are only two solutions from the set which are
square integrable and thus n+ = 2.

• D(p̂) = L2([a, b])

Over the finite interval all three solutions, i.e., ψ1
+(x), ψ

2
+(x), and ψ

3
+, are square integrable. So these functions

belong to this space and thus n+ = 3.

Second we write Eq.(22) for the function ψ− and we get

(

p̂† +
i

α

)

ψ−(ρ) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2i
d3

dρ3
+

d2

dρ2
− i

d

dρ
+ i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

2iν3 + ν2 − iν + i = 0 (60)

and so its roots are of the form

ν1− =
1

6

3

√

−54 + 8 i+ 3
√
303− 96 i+

5

6

1
3

√

−54 + 8 i+ 3
√
303− 96 i

+
i

6
(61)

= 0.5258014150+ 0.6865159455 i

ν2− = − 1

12

3

√

−54 + 8 i+ 3
√
303− 96 i− 5

12

1
3

√

−54 + 8 i+ 3
√
303− 96 i

+
1

6
i (62)

+
1

2
i
√
3

(

1

6

3

√

−54 + 8 i+ 3
√
303− 96 i− 5

6

1
3

√

−54 + 8 i+ 3
√
303− 96 i

)

(63)

= 0.4418140560− 0.3841602291 i

ν3− = − 1

12

3

√

−54 + 8 i+ 3
√
303− 96 i− 5

12

1
3

√

−54 + 8 i+ 3
√
303− 96 i

+
1

6
i (64)

−1

2
i
√
3

(

1

6

3

√

−54 + 8 i+ 3
√
303− 96 i− 5

6

1
3

√

−54 + 8 i+ 3
√
303− 96 i

)

(65)

= −0.9676154710+ 0.1976442837 i .

Therefore, we obtain three linearly independent solutions for ψ+

ψ4
−(ρ) ∝ = exp [(0.5258014150+ 0.6865159455 i)ρ] (66)

ψ5
−(ρ) ∝ = exp [(0.4418140560− 0.3841602291 i)ρ] (67)

ψ6
−(ρ) ∝ = exp [(−0.9676154710+ 0.1976442837 i)ρ] (68)

Furthermore, over the different domains the deficiency index n− of the GUP-modified momentum operator with linear
and quadratic terms in α is given as follows:

• D(p̂) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ4
−(x), ψ

5
−(x), and ψ

6
−, is square integrable. So these functions do

not belong to this space and thus n− = 0.
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• D(p̂) = L2(0,∞)

In this domain, only ψ6
−(x) has finite norm. So this is the only solution from the set which is square integrable

and thus n− = 1.

• D(p̂) = L2([a, b]),

Over the finite interval all three solutions, i.e., ψ4
−(x), ψ

5
−(x), and ψ

3
−, are square integrable. So these functions

belong to this space and thus n− = 3.

Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified momentum operator which is
quadratic in α is described as follows:

• D(p̂) = L2(−∞,∞) : (n+, n−) = (0, 0) and thus the momentum operator is self-adjoint.

• D(p̂) = L2(0,∞) : (n+, n−) = (2, 1) and thus the momentum operator is not self-adjoint.

• D(p̂) = L2([a, b]) : (n+, n−) = (3, 3) and thus the momentum operator has infinitely many self-adjoint extensions.

All results produced in this section are briefly presented in Table I (all A’s, B’s, C’s, and D’s are constants).

TABLE I: Results for GUP-modified Momentum operator

(n+, n−
)

Operator ψ+(ρ) ψ
−
(ρ)

(−∞,+∞) [0,+∞) [a, b]

p̂0 A1 exp [−ρ] A2 exp [ρ] (0, 0) (1, 0) (1, 1)

B1 exp
[

λ1+ρ
]

B3 exp
[

λ1
−

ρ
]

p̂0(1− αp̂0)
B2 exp

[

λ2+ρ
]

B4 exp
[

λ2
−

ρ
]

(0, 0) (1, 1) (2, 2)

C1 exp
[

µ1
+ρ
]

C4 exp
[

µ1
−

ρ
]

p̂0 (1 + 2α2p̂20) C2 exp
[

µ2
+ρ
]

C5 exp
[

µ2
−

ρ
]

(0, 0) (2, 1) (3, 3)

C3 exp
[

µ3
+ρ
]

C6 exp
[

µ3
−

ρ
]

D1 exp
[

ν1+ρ
]

D4 exp
[

ν1
−

ρ
]

p̂0 (1− αp̂20 + 2α2p̂30) D2 exp
[

ν2+ρ
]

D5 exp
[

ν2
−

ρ
]

(0, 0) (2, 1) (3, 3)

D3 exp
[

ν3+ρ
]

D6 exp
[

ν6
−

ρ
]

IV. GUP-MODIFIED HAMILTONIAN

In this section we will apply von Neumann’s theorem to the GUP-modified Hamiltonian operator. For this reason,
we first have to determine the functions ψ±(x) [9] which satisfy the equation

Ĥψ±(x) = ±ik20ψ±(x) (69)

where k0 is a positive constant.
For the simple case of the Hamiltonian of a free particle, i.e., Ĥ = −D2, where D is the differential d/dx in the
standard representation, Eq.(69) becomes

−D2ψ±(x) = ±ik20ψ±(x) . (70)
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It is easily seen that the linearly independent solutions to the above equation are of the form

ψ±(x) = a± exp [k±x] + b± exp [−k±x] (71)

where k± = (1∓i)√
2
k0.

Over different domains, the deficiency indices and the self-adjointness of the Hamiltonian operator are described as
follows:

• D(Ĥ0) = L2(R) : (n+, n−) = (0, 0) and thus the operator is self-adjoint.

• D(Ĥ0) = L2[0,∞) : (n+, n−) = (1, 1) and thus the operator has infinitely many self-adjoint extensions
parametrized by a U(1) group.

• D(Ĥ0) = L2([0, L]): (n+, n−) = (2, 2) and thus the operator has infinitely many self-adjoint extensions
parametrized by a U(2) group.

At this point it is noteworthy that since the quantity (mα2)−1 (withm to be the mass of the particle) is a characteristic
energy scale of GUP, we will use it from now on instead of k0.

A. Hamiltonian with linear term in α

We now consider as momentum operator in Eq.(69), the GUP-modified Hamiltonian operator which is linear in α,
namely

Ĥ =
p̂20
2m

− α

m
p̂30 (72)

and we adopt the analysis of the previous section in order to study the self-adjointness of this GUP-modified Hamil-
tonian operator.
First we write Eq.(69) for the function ψ+ and we get

(

Ĥ† − i

α2m

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2i
d3

dρ3
+

d2

dρ2
+ 2i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

2i λ3 + λ2 + 2i = 0 (73)

and so its roots are of the form
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λ1+ =
1

6

3

√

−108− i+ 6
√
324 + 6 i− 1

6

1
3

√

−108− i+ 6
√
324 + 6 i

+
i

6
(74)

= −0.9722421029+ 0.1634946287 i

λ2+ = − 1

12

3

√

−108− i+ 6
√
324 + 6 i+

1

12

1
3

√

−108− i+ 6
√
324 + 6 i

+
1

6
i (75)

+
1

2
i
√
3

(

1

6

3

√

−108− i+ 6
√
324 + 6 i+

1

6

1
3

√

−108− i+ 6
√
324 + 6 i

)

(76)

= 0.4835224689+ 1.058350192 i

λ3+ = − 1

12

3

√

−108− i+ 6
√
324 + 6 i+

1

12

1
3

√

−108− i+ 6
√
324 + 6 i

+
1

6
i (77)

−1

2
i
√
3

(

1

6

3

√

−108− i+ 6
√
324 + 6 i+

1

6

1
3

√

−108− i+ 6
√
324 + 6 i

)

(78)

= 0.4887196335− 0.7218448203 i .

Therefore, we obtain three linearly independent solutions for ψ+

ψ1
+(ρ) ∝ exp [(−0.9722421029+ 0.1634946287 i)ρ] (79)

ψ2
+(ρ) ∝ exp [(0.4835224689+ 1.058350192 i)ρ] (80)

ψ3
+(ρ) ∝ exp [(0.4887196335− 0.7218448203 i)ρ] . (81)

Furthermore, over the different domains, the deficiency index n+ of the GUP-modified Hamiltonian operator which
is linear in α is given as follows:

• D(Ĥ) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
+(x), ψ

2
+(x), and ψ

3
+, is square integrable. So these functions do

not belong to this space and thus n+ = 0.

• D(Ĥ) = L2[0,∞)

In this domain, only ψ1
+(x) has finite norm. So this is the only solution from the set which is square integrable

and thus n+ = 1.

• D(Ĥ) = L2([a, b])

Over the finite interval all three solutions, i.e., ψ1
+(x), ψ

2
+(x), and ψ

3
+, are square integrable. So these functions

belong to this space and thus n+ = 3.

Second we write Eq.(22) for the function ψ− and we get

(

Ĥ† +
i

α2m

)

ψ−(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

2i
d3

dρ3
+

d2

dρ2
− 2i

)

ψ−(ρ) = 0 .

The characteristic equation of the above differential equation is

2i λ3 + λ2 − 2i = 0 (82)



15

and so its roots are of the form

λ1− =
1

6

3

√

108− i+ 6
√
324− 6 i− 1

6

1
3

√

108− i + 6
√
324− 6 i

+
i

6
(83)

= 0.9722396188+ 0.1634946804 i

λ2− = − 1

12

3

√

108− i+ 6
√
324− 6 i+

1

12

1
3

√

108− i+ 6
√
324− 6 i

+
1

6
i (84)

+
1

2
i
√
3

(

1

6

3

√

108− i+ 6
√
324− 6 i+

1

6

1
3

√

108− i+ 6
√
324− 6 i

)

(85)

= −0.4835212697+ 1.058348130 i

λ3− = − 1

12

3

√

108− i+ 6
√
324− 6 i+

1

12

1
3

√

108− i+ 6
√
324− 6 i

+
1

6
i (86)

−1

2
i
√
3

(

1

6

3

√

108− i+ 6
√
324− 6 i+

1

6

1
3

√

108− i+ 6
√
324− 6 i

)

(87)

= −0.4887183483− 0.7218428106 i . (88)

Therefore, we obtain three linearly independent solutions for ψ−

ψ1
−(ρ) ∝ exp [(0.9722396188+ 0.1634946804 i)ρ] (89)

ψ2
−(ρ) ∝ exp [(−0.4835212697+ 1.058348130 i)ρ] (90)

ψ3
−(ρ) ∝ exp [(−0.4887183483− 0.7218428106 i)ρ] . (91)

Furthermore, over the different domains the deficiency index n− of the GUP-modified Hamiltonian operator which is
linear in α is given as follows:

• D(Ĥ) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
−(x), ψ

2
−(x), and ψ

3
−(x), is square integrable. So these functions

do not belong to this space and thus n− = 0.

• D(Ĥ) = L2[0,∞)

In this domain, onlyψ2
−(x) and ψ

3
−(x) have finite norm. So thare are only two solutions from the set which are

square integrable and thus n− = 2.

• D(Ĥ) = L2([a, b])

Over the finite interval both solutions, i.e., ψ1
−(x), ψ

2
−(x), and ψ3

−, are square integrable. So these functions
belong to this space and thus n− = 3.

Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified Hamiltonian operator which is
linear in α is described as follows :

• D(Ĥ) = L2(−∞,∞) : (n+, n−) = (0, 0). and thus the Hamiltonian operator is self-adjoint.

• D(Ĥ) = L2(0,∞) : (n+, n−) = (1, 2) and thus the Hamiltonian operator is not self-adjoint.

• D(Ĥ) = L2([a, b]) : (n+, n−) = (3, 3) and thus the Hamiltonian operator has infinitely many self-adjoint
extensions parametrized by a U(3) group.
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B. Hamiltonian with quadratic term in α

Let us now consider as momentum operator in Eq.(69), the GUP-modified Hamiltonian operator which is quadratic
in α, namely

Ĥ =
p̂20
2m

+
5α2

2m
p̂40

(92)

First we write Eq.(69) for the function ψ+ and we get

(

Ĥ† − i

α2m

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

5
d4

dρ4
− d2

dρ2
− 2 i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

5µ4 − µ2 − 2i = 0 (93)

and so its roots are of the form

µ1
+ =

1

20

√

40 + 40
√
1 + 40 i = 0.7938622795+ 0.2781709154 i

µ2
+ = − 1

20

√

40 + 40
√
1 + 40 i = −0.7938622795− 0.2781709154 i

µ3
+ =

1

20

√

40− 40
√
1 + 40 i = 0.3259261872− 0.6775441980 i

µ4
+ = − 1

20

√

40− 40
√
1 + 40 i = −0.3259261872+ 0.6775441980 i .

Therefore, we obtain four linearly independent solutions for ψ+

ψ1
+(ρ) ∝ exp [(0.7938622795+ 0.2781709154 i)ρ]

ψ2
+(ρ) ∝ exp [(−0.7938622795− 0.2781709154 i)ρ]

ψ3
+(ρ) ∝ exp [(0.3259261872− 0.6775441980 i)ρ]

ψ4
+(ρ) ∝ exp [(−0.3259261872+ 0.6775441980 i)ρ] .

Furthermore, over the different domains, the deficiency index n+ of the GUP-modified Hamiltonian operator which
is quadratic in α is given as follows:

• D(Ĥ) = L2(R)

In this domain, none of the functions, i.e., ψ1
+(x), ψ

2
+(x), ψ

3
+, and ψ

4
+, is square integrable. So these functions

do not belong to this space and thus n+ = 0.

• D(Ĥ) = L2[0,∞)

In this domain, only ψ2
+(x) and ψ4

+ have finite norm. So there are only two solutions from the set which is
square integrable and thus n+ = 2.
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• D(Ĥ) = L2([a, b])

Over the finite interval all four solutions, i.e., ψ1
+(x), ψ

2
+(x), ψ

3
+, and ψ4

+, are square integrable. So these
functions belong to this space and thus n+ = 4.

Second we write Eq.(22) for the function ψ− and we get

(

Ĥ† +
i

α2m

)

ψ−(ρ) = 0

which in terms of the dimensionless parameter ρ takes the form

(

5
d4

dρ4
− d2

dρ2
+ 2i

)

ψ−(ρ) = 0 .

The characteristic equation of the above differential equation is

5µ4 − µ2 + 2i = 0 (94)

and so its roots are of the form

µ1
− =

1

20

√

40 + 40
√
1− 40 i = 0.7938622795− 0.2781709154 i

µ2
− = − 1

20

√

40 + 40
√
1− 40 i = −0.7938622795+ 0.2781709154 i

µ3
− =

1

20

√

40− 40
√
1− 40 i = 0.3259261872+ 0.6775441980 i

µ4
− = − 1

20

√

40− 40
√
1− 40 i = −0.3259261872− 0.6775441980 i .

Therefore, we obtain four linearly independent solutions for ψ−

ψ1
−(ρ) ∝ exp [(0.7938622795− 0.2781709154 i)ρ]

ψ2
−(ρ) ∝ exp [(−0.7938622795+ 0.2781709154 i)ρ]

ψ3
−(ρ) ∝ exp [(0.3259261872+ 0.6775441980 i)ρ]

ψ4
−(ρ) ∝ exp [(−0.3259261872− 0.6775441980 i)ρ] .

Furthermore, over the different domains the deficiency index n− of the GUP-modified Hamiltonian operator which is
quadratic in α is given as follows:

• D(Ĥ) = L2(R)

In this domain, none of the functions, i.e., ψ1
−(x), ψ

2
−(x), ψ

3
−(x), and ψ4

−, is square integrable. So these
functions do not belong to this space and thus n− = 0.

• D(Ĥ) = L2[0,∞)

In this domain, only ψ2
−(x) and ψ4

− have finite norm. So there are only two solutions from the set which is
square integrable and thus n− = 2.

• D(Ĥ) = L2([a, b])

Over the finite interval all four solutions, i.e., ψ1
−(x), ψ

2
−(x), ψ

3
−, and ψ4

−, are square integrable. So these
functions belong to this space and thus n− = 4.

Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified Hamiltonian operator which is
quadratic in α is described as follows :
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• D(Ĥ) = L2(−∞,∞) : (n+, n−) = (0, 0) and thus the Hamiltonian operator is self-adjoint.

• D(Ĥ) = L2(0,∞) : (n+, n−) = (2, 2) and thus the Hamiltonian operator has infinitely many self-adjoint
extensions parametrized by a U(2) group.

• D(Ĥ) = L2([a, b]) : (n+, n−) = (4, 4) and thus the momentum operator has infinitely many self-adjoint exten-
sions parametrized by a U(4) group.

C. Hamiltonian operator with linear and quadratic terms in α

We now consider as momentum operator in Eq.(69), the GUP-modified Hamiltonian operator which has linear and
quadratic terms in α, namely

Ĥ =
p̂20
2m

− α

m
p̂30 +

5α2

2m
p̂40 . (95)

First we write Eq.(69) for the function ψ+ and we get

(

Ĥ† − i

α2m

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

5
d4

dρ4
− 2i

d3

dρ3
− d2

dρ2
− 2i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

5 ν4 − 2i ν3 − ν2 − 2i = 0 . (96)

Numerically solving the above characteristic equation, its roots are of the form

ν1+ = −0.766585832834522− 0.178090020398075 i (97)

ν2+ = −0.329812078138930+ 0.785252227529734 i (98)

ν3+ = 0.311994530947961− 0.603212912845495 i (99)

ν4+ = 0.784403380025491+ 0.396050705713836 i . (100)

Therefore, we obtain four linearly independent solutions for ψ+

ψ1
+(ρ) ∝ exp [(−0.766585832834522− 0.178090020398075 i)ρ]

ψ2
+(ρ) ∝ exp [(−0.329812078138930+ 0.785252227529734 i)ρ]

ψ3
+(ρ) ∝ exp [(0.311994530947961− 0.603212912845495 i)ρ]

ψ4
+(ρ) ∝ exp [(0.784403380025491+ 0.396050705713836 i)ρ] .

Furthermore, over the different domains, the deficiency index n+ of the GUP-modified Hamiltonian operator which
has linear and quadratic terms in α is given as follows:

• D(Ĥ) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
+(x), ψ

2
+(x), ψ

3
+, and ψ

4
+, is square integrable. So these functions

do not belong to this space and thus n+ = 0.
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• D(Ĥ) = L2[0,∞)

In this domain, only ψ1
+(x) and ψ2

+ have finite norm. So there are only two solutions from the set which are
square integrable and thus n+ = 2.

• D(Ĥ) = L2([a, b])

Over the finite interval all four solutions, i.e., ψ1
+(x), ψ

2
+(x), ψ

3
+, and ψ4

+, are square integrable. So these
functions belong to this space and thus n+ = 4.

Second we write Eq.(69) for the function ψ− and we get

(

Ĥ† +
i

α2m

)

ψ+(x) = 0

which in terms of the dimensionless parameter ρ takes the form

(

5
d4

dρ4
− 2i

d3

dρ3
− d2

dρ2
+ 2i

)

ψ+(ρ) = 0 .

The characteristic equation of the above differential equation is

5λ4 − 2i λ3 − λ2 + 2i = 0 . (101)

Numerically solving the above characteristic equation, its roots are of the form

ν1− = −0.784403380025491+ 0.396050705713836 i (102)

ν2− = −0.311994530947961− 0.603212912845495 i (103)

ν3− = 0.329812078138930+ 0.785252227529734 i (104)

ν4− = 0.766585832834522− 0.178090020398075 i . (105)

Therefore, we obtain four linearly independent solutions for ψ−

ψ1
−(ρ) ∝ exp [(−0.784403380025491+ 0.396050705713836 i)ρ]

ψ2
−(ρ) ∝ exp [(−0.311994530947961− 0.603212912845495 i)ρ]

ψ3
−(ρ) ∝ exp [(0.329812078138930+ 0.785252227529734 i)ρ]

ψ4
−(ρ) ∝ exp [(0.766585832834522− 0.178090020398075 i)ρ] .

Furthermore, over the different domains, the deficiency index n+ of the GUP-modified Hamiltonian operator which
has linear and quadratic terms in α is given as follows:

• D(Ĥ) = L2(−∞,∞)

In this domain, none of the functions, i.e., ψ1
−(x), ψ

2
−(x), ψ

3
−, and ψ

4
−, is square integrable. So these functions

do not belong to this space and thus n− = 0.

• D(Ĥ) = L2[0,∞)

In this domain, only ψ1
−(x) and ψ2

− have finite norm. So there are only two solutions from the set which are
square integrable and thus n− = 2.

• D(Ĥ) = L2([a, b])

Over the finite interval all four solutions, i.e., ψ1
−(x), ψ

2
−(x), ψ

3
−, and ψ4

−, are square integrable. So these
functions belong to this space and thus n− = 4.
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Finally, employing von Newmann’s theorem, the self-adjointness of the GUP-modified Hamiltonian operator which is
linear in α is described as follows :

• D(Ĥ) = L2(−∞,∞) : (n+, n−) = (0, 0). and thus the Hamiltonian operator is self-adjoint.

• D(Ĥ) = L2(0,∞) : (n+, n−) = (2, 2) and thus the Hamiltonian operator has infinitely many self-adjoint
extensions parametrized by a U(2) group.

• D(Ĥ) = L2([a, b]) : (n+, n−) = (4, 4) and thus the Hamiltonian operator has infinitely many self-adjoint
extensions parametrized by a U(4) group.

All results produced in this section are briefly presented in Table II (all Ã’s, B̃’s, C̃’s, and D̃’s are constants).

TABLE II: Results for GUP-modified Hamiltonian operator

(n+, n−
)

Operator ψ+(ρ) ψ
−
(ρ)

(−∞,∞) [0,∞) [a, b]

Ã1 exp [+k+x] Ã3 exp [+k−x]
1
2m
p̂20

Ã2 exp [−k+x] Ã4 exp [−k−x]
(0, 0) (1, 1) (2, 2)

B̃1 exp
[

λ1+ρ
]

B̃4 exp
[

λ1
−

ρ
]

1
2m
p̂20 − α

m
p̂30 B̃2 exp

[

λ2+ρ
]

B̃5 exp
[

λ2
−

ρ
]

(0, 0) (1, 2) (3, 3)

B̃3 exp
[

λ3+ρ
]

B̃6 exp
[

λ3
−

ρ
]

C̃1 exp
[

µ1
+ρ
]

C̃5 exp
[

µ1
−

ρ
]

C̃2 exp
[

µ2
+ρ
]

C̃6 exp
[

µ2
−

ρ
]

1
2m
p̂20 +

5α2

2m
p̂40

C̃3 exp
[

µ3
+ρ
]

C̃7 exp
[

µ3
−

ρ
]

(0, 0) (2, 2) (4, 4)

C̃4 exp
[

µ4
+ρ
]

C̃8 exp
[

µ4
−

ρ
]

D̃1 exp
[

ν1+ρ
]

D̃5 exp
[

ν1
−

ρ
]

D̃2 exp
[

ν2+ρ
]

D̃6 exp
[

ν2
−

ρ
]

p̂
2

0

2m
− α

m
p̂30 +

5α2

2m
p̂40

D̃3 exp
[

ν3+ρ
]

D̃8 exp
[

ν3
−

ρ
]

(0, 0) (2, 2) (4, 4)

D̃4 exp
[

ν4+ρ
]

D̃8 exp
[

ν4
−

ρ
]

V. A SIMPLE EXAMPLE

In this section we present a simple example of the GUP-modified Hamiltonian with a linear term in α [3]

H =
p20
2m

− α

m
p30 . (106)

We follow the analysis of [9] in order to describe the self-adjoint extensions of the specific Hamiltonian. We choose the
domain of the operator to be the positive semi-axis. Therefore, we obtain (we use ⋆ to denote complex conjugates)
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(H†φ, ψ) − (φ,H†ψ) =

∫ L

0

[(

− ~
2

2m

d2φ⋆

dx2
+
iα~3

m

d3φ⋆

dx3

)

ψ − φ⋆
(

− ~
2

2m

d2ψ

dx2
− iα~3

m

d3ψ

dx3

)]

=

∫ L

0

[

~
2

2m

(

φ⋆
d2ψ

dx2
− ψ

d2φ⋆

dx2

)(

d3φ⋆

dx3
ψ + φ⋆

d3ψ

dx3

)]

=

∫ L

0

[

~
2

2m

d

dx

(

φ⋆
dψ

dx
− ψ

dφ⋆

dx

)

+
iα~3

m

(

d2

dx2
(φ⋆ψ)− 3

dφ⋆

dx

dψ

dx

)]

=
~
2

2m
[(φ⋆(L)ψ′(L)− ψ(L)φ′⋆(L))− (φ⋆(0)ψ′(0)− ψ(0)φ′⋆(0))]

+
iα~3

m
[(φ′′⋆(L)ψ(L) + φ⋆(L)ψ′′(L)− φ′⋆(L)ψ′(L))

− (φ′′⋆(0)ψ(0) + φ⋆(0)ψ′′(0)− φ′⋆(0)ψ′(0))] (107)

which for φ = ψ reduces to

(H†φ, φ)− (φ,H†φ) =
2i~2

2m

1

2i
[L (φ⋆(L)φ′(L)− φ(L)φ′⋆(L))− L (φ⋆(0)φ′(0)− φ(0)φ′⋆)]

+
iα~3

mL2

[

L2 (φ′′⋆φ(L) + φ⋆(L)φ′′(L)− φ′⋆(L)φ′(L))− L2 (φ′′⋆(0)φ(0) + φ⋆(0)φ′′(0)− φ′⋆(0)φ′(0))
]

= κ
[(

|Lφ′(0)− iφ(0)|2 + |Lφ′(L) + iφ(L)|2 .− |Lφ′(0) + iφ(0)|2 − |Lφ′(L)− iφ(L)|
)

+
α~

2L

(

|L2φ′′(0) + φ(0)|2 + |L2φ′′(L) + φ(L)|2 − |L2φ′′(0)− φ(0)|2 − |L2φ′′(L)− φ(L)|2

+L2|φ′(L)|2 − L2|φ′(0)|2
)]

(108)

where κ = i~2/mL, as in [9]. In addition, we have introduced factors of L for dimensional reasons and the following
identities were employed

1

2i
(xy⋆ − yx⋆) =

1

4

(

|x+ iy|2 − |x− iy|2
)

2 (xy⋆ + yx⋆) = |x+ y|2 − |x− y|2 .

It is evident that if α = 0, then Eq.(108) reduces to Eq.(30) of [9], as expected.
To bring out the U(3) invariance of the self-adjoint extensions of the Hamiltonian, defined by H†φ, ψ) − (φ,H†ψ),
one might, for example, use a 5-dimensional representation of U(3) [we scale both sides of Eq.(108) by κ, and in the
following , A = α~/2L]





















Lφ′(0)− iφ(0)

Lφ′(L) + iφ(L)

A(L2φ′′(0) + φ(0))

A(L2φ′′(L) + φ(L))

Aφ′(L)





















= U





















Lφ′(0) + iφ(0)

Lφ′(L)− iφ(L)

A(L2φ′′(0)− φ(0))

A(L2φ′′(L) + φ(L))

Aφ′(0)





















. (109)

The construction of U could be involved. However, note that corresponding to U = I, the 5 × 5 identity matrix,
φ(0) = φ(L) = 0 (like we assumed in [3]), φ′′(0), φ′′(L) arbitrary, and |φ′(0)| = |φ′(L)| is a valid solution set of
(H†φ, φ)− (φ,H†φ) = 0. From [3], we get (ℓ ≡ 2α~)

φ′ = iA

[

k′eik
′x − 1

ℓ
eix/ℓ

]

− iB

[

k′′e−ik′′x +
1

ℓ
eix/ℓ

]

= 2iAk

[

cos kx+
ikℓ

2
sin kx

]

−Ak3ℓx cos kx

+iC

[

keikx +
1

ℓ
eix/ℓ

]

. (110)
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using A+B + C = 0, k′ = k(1 + kα~) and k′′ = k(1− kα~), and simplifying.
Then the condition |φ′(0)| = |φ′(L)| translates to,

(−1)n
[

2iAk · eik2ℓL/2 + iC

(

k +
1

ℓ
ei2tπ

)]

= eiχ
[

2iAk + iC

(

k +
1

ℓ

)]

(111)

where 2tπ ≡ π(p− n) + 2ǫiθC , where ǫ1 = 1 and ǫ2 = 0, corresponding to solutions (20) and (21) of [3] respectively,
and χ is an arbitrary phase. This can be simplified to

(−1)neiφ
[

2iAk +
iC

ℓ
ei(2tπ−Φ)

]

= eiχ
[

2iAk +
iC

ℓ

]

(112)

where Φ = k2ℓL/2 and we have used k + 1/ℓ ≈ 1/ℓ. The above admits of the solution

χ = nπ +Φ , 2tπ − φ = 2p1π , p1 ∈ N. (113)

At this point, it is noteworthy that the above solution show that the quantization conditions (20) and (21) of [3] form
a subset of the general solution (likely with more parameters).

VI. CONCLUSIONS

In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different
domains. The domains under study are: (a) the whole real axis, (b) the positive semi-axis, and (c) a finite internal. In
order to utilize the von Neumann’s theorem, we first obtain the functions ψ±, second we compute the dimensions n±
of the deficiency subspaces of the GUP-modified momentum and Hamiltonian operators, and finally we infer whether
the operators are self-adjoint or not, or they have infinitely many self-adjoint extensions. This analysis is adopted
for all three cases of GUP-modified momentum and Hamiltonian operators, namely with a linear term in the GUP
parameter α, with a quadratic term in α, and with both terms, i.e., the linear and the quadratic in α, to be included. It
is noteworthy that the GUP-modified momentum operator with both terms in α to be included is self-adjoint operator
when its domain is the whole real axis, it is not self-adjoint operator when its domain is the positive semi-axis, and
it has infinitely many self-adjoint extensions when its domain is a finite internal. Furthermore, the GUP-modified
Hamiltonian operator with both terms in α to be included is self-adjoint operator when its domain is the whole real
axis, and it has infinitely many self-adjoint extensions when its domain is the positive semi-axis or a finite internal.
At this point, it should be stressed that the self-adjoint extensions of different domains are parametrized by different
unitary groups. Finally, a simple example of the Hamiltonian for a particle in a box is given and the solutions for the
boundary conditions which describe the self-adjoint extensions of the specific operator are obtained.
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