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ABSTRACT 

 

 

Escherichia coli O157:H7 is an important human pathogen that resides primarily in cattle 

and feedlot environments.  E. coli O157:H7 can be divided into phylogenetic groups 

termed lineages; lineage I strains are responsible for most human illnesses. An 

understanding of the etiology of these lineages within cattle and the feedlot environment 

could allow for more effective surveillance and mitigation strategies. There were no 

lineage associated differences in growth or survival of E. coli O157:H7 in bovine feces at 

4°C, 12°C or 25°C.  Lineage I strains more readily colonized cattle jejunum tissue and a 

bovine colonic cell line than lineage II and intermediate type strains. Enhanced 

colonization of cattle by lineage I strains may increase the persistence of these strains in 

feedlots via re-infection and increased shedding. This outcome could increase the 

transmission of lineage I strains to the food supply and increase the potential for these 

strains to cause human illness. 
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INTRODUCTION 

Escherichia coli O157:H7 is a pathogenic bacterium of the gastrointestinal tract of 

humans and other animals.  First isolated and implicated as the source of human disease 

in the early 1980’s (Riley et al. 1983; Wells et al. 1983), this pathogen has now emerged 

as one of the leading causes of gastrointestinal disease in the North America, the United 

Kingdom and Japan (Chase-Topping et al. 2008). E. coli O157:H7 causes a number of 

symptoms in humans ranging from watery diarrhea to hemorrhagic colitis and potentially 

fatal hemolytic uremic syndrome (Karmali 1989). Ruminants, especially cattle, are the 

primary reservoirs of the bacterium; however they are generally considered to be 

asymptomatic carriers. Regardless, the elimination of E. coli O157:H7 at the farm 

site/feedlot and its passage to the food supply is expected to have the greatest positive 

impact on food safety (Jordan et al. 1999).  

 Recent research has identified two predominant phylogenetic lineages of E. coli 

O157:H7, lineages I and II (Kim et al. 1999; Kim et al. 2001). Further, there seems to be 

a bias in the distribution of these lineages among hosts. Initial studies found that E. coli 

O157:H7 strains associated with clinical human illnesses predominantly belonged to the 

lineage I branch while strains isolated from feedlots belonged predominantly to the 

lineage II branch (Kim et al. 1999; Kim et al. 2001). This was further confirmed with a 

more diverse set of strains and found that lineage I strains comprised 73.8% and 49.5% of 

human and bovine isolates respectively (Ziebell et al. 2008). Intermediate lineage type 

strains of E. coli O157:H7 have been identified, however the role that these strains play 

in human illness and the cattle reservoir is not well understood (Sharma et al. 2009).  
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 It has been recently established that cattle colonized by and shedding E. coli 

O157:H7 make up a heterogeneous population (Naylor et al. 2003; Low et al. 2005). 

Among this heterogeneous population are individuals which have been termed 

supershedders. Various studies have used different criteria for defining these animals but 

supershedders, which make up approximately 10% of cattle population, are likely 

responsible for greater than 90% of the total E. coli O157:H7 shed by cattle (Chase-

Topping et al. 2008). It is possible that these supershedders are the result of increased 

colonization of the cattle, colonization of a different location within the intestinal tract of 

cattle or some combination thereof. Due to the often high concentrations of E. coli 

O157:H7 within the environment, an understanding of factors which alter its survival 

could have implications when implementing effective detection and mitigation strategies. 

As such, it is critical to understand what factors may influence the colonization of cattle 

as well as factors that could alter survival of E. coli O157:H7 in the environment. 

 This thesis encompasses three chapters which are aimed at furthering our 

understanding of how E. coli O157:H7 persists within the feedlot environment. The 

ultimate goal of this work is to contribute to the knowledge necessary to reduce or 

eliminate the passage of this important human pathogen from the feedlot to the food 

supply. Chapter 1 is a critical overview of the available literature regarding E. coli 

O157:H7 as it pertains to human infections, cattle and the feedlot environment. The 

second chapter is a research study which explores the possible role of lineage type 

alongside temperature and fecal matrix in the long term survival of E. coli O157:H7 in 

cattle feces. The final chapter contains a number of linked experiments attempting to 
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define E. coli O157:H7 colonization of cattle in vitro in terms of lineage type, strain 

origin and cytotoxin production. 
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CHAPTER ONE 

Literature Review 

1.1. Escherichia coli O157:H7 and human illness 

Escherichia coli are a large group of typically non-pathogenic bacteria that normally 

reside within the gastrointestinal tract of humans and other animals. A subset of bacteria 

within this group are the Shiga toxin (or verotoxin) producing E. coli (STEC or VTEC) 

that produce toxins similar to a toxin produced by Shigella dysenteriae I (O'Brien et al. 

1982). These are known as the Shiga-like toxins, Stx1 and Stx2, and STEC strains may 

produce one or both of these toxins (Nataro and Kaper 1998). An extremely virulent 

group of STEC strains are known to cause hemorrhagic colitis and hemolytic uremic 

syndrome (HUS) and are termed enterohemorrhagic E. coli (EHEC)(Levine 1987). E. 

coli serotype O157:H7 is the most prevalent EHEC strain; however, there are other non-

O157:H7 EHEC serotypes such as O111:H-, O117:H4 and O121:H19 (Karmali 1989; 

Johnson et al. 1996). 

 Escherichia coli O157:H7 was first linked with enteric disease in the early 1980’s 

following outbreaks of human illness traced back to contaminated meat (Riley et al. 

1983; Wells et al. 1983). Symptoms of these first reported infections with E. coli 

O157:H7 were abdominal cramping, watery diarrhea followed by bloody diarrhea 

(hemorrhagic colitis) (Riley et al. 1983; Wells et al. 1983).  Soon after, a group of 

potentially fatal symptoms (acute renal failure, microangiopathic hemolytic anemia and 

thrombocytopenia) known collectively as hemolytic uremic syndrome (HUS) was added 

to the symptoms of E. coli O157:H7 infection (Karmali 1989). Children, the elderly and 

immuno-compromised individuals are at the highest risk for severe complications of E. 
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coli O157:H7 infection and severe cases of illness may require blood transfusions and 

kidney dialysis (Fremaux et al. 2008). Presently, E. coli O157:H7 is known to cause 

outbreaks which include thousands of illnesses and several deaths every year in North 

America (Centre for Infectious Disease Prevention and Control 2005; Centers for Disease 

Control and Prevention 2007; Chase-Topping et al. 2008). A review of E. coli strains that 

caused illness and were serotyped prior to the initial description of E. coli O157:H7 in 

1983 suggests that the O157:H7 serotype is indeed an emerging pathogen (Nataro and 

Kaper 1998). Further, the economic cost of this disease in terms of medical costs, time 

missed from work and premature death is estimated to be in the hundreds of millions of 

dollars annually (Frenzen et al. 2005; United States Department of Agriculture 2006). 

Canada, the United States, Japan and Scotland have been reported to have the highest 

incidence rates of E. coli O157:H7 infection in the world over the last 20 years (Chase-

Topping et al. 2008). 

 

1.2. E. coli O157:H7 virulence factors and human infection 

E. coli O157:H7 cells cause attaching and effacing (A/E) lesions on the intestinal 

epithelium by effacing the microvilli and rearranging the cytoskeleton to create actin 

pedestals (Vallance and Finlay 2000). There are a number of essential virulence factors 

which are involved in the effective colonization of humans. The locus of enterocyte 

effacement (LEE) pathogenicity island contains 41 open reading frames (ORFs), and 

many of the products of the LEE are critical for colonization (Moxley 2004). The LEE is 

organized into five operons designated as LEE1 through LEE5 (Moxley 2004). Among 

those genes encoded on the LEE pathogenicity island are ler (LEE-encoded regulator), 
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sep and esc (encode a type III secretion system), the espABD genes (encode protein 

products that are secreted by the type III secretion system), eae and tir (Nataro and Kaper 

1998). Intimin is encoded by eae while tir encodes Tir (translocated intimin receptor). 

Tir, the receptor for intimin, is translocated into the host cell via a type III secretion 

apparatus and it is partially through the interaction of these two proteins that intimate 

adherence of E. coli O157:H7 to host cells is gained (Nataro and Kaper 1998). Non-

intimin mediated adherence is controlled by ler (Ogierman et al. 2000), expression of 

which is up-regulated by the presence of NaHCO3 in the lower intestine, partially 

explaining the affinity for E. coli O157:H7 to the lower intestine (Abe et al. 2002).  

 There are also a number of non LEE encoded virulence factors. Two important 

non-LEE virulence factors are the Shiga-like toxins. The Shiga toxins are potent 

cytotoxins which contribute to hemorrhagic colitis and HUS in humans (Moxley 2004) 

and Shiga toxin 1 (Stx1) causes apoptosis of human intestinal epithelial cells (Smith et al. 

2003).  Other important E. coli O157:H7 virulence factors exist whose functions are not 

fully understood. For instance, a large plasmid contained within almost all E. coli 

O157:H7 strains, known as the pO157 plasmid, contains 100 ORFs of which only 

approximately 20 have been characterized (Yoon and Hovde 2008). These characterized 

ORFs include genes that encode a type II secretory system and a possible adhesin (toxB) 

(Yoon and Hovde 2008). Similarly, flagella have also been shown to be important in 

colonization in vitro (Erdem et al. 2007; Mahajan et al. 2009). 
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1.3. E. coli O157:H7 colonization of cattle 

Ruminants have been identified as a primary reservoir of E. coli O157:H7 with numerous 

outbreaks being traced to meat (MacDonald et al. 2004), dairy products (Gillespie et al. 

2003), fresh produce (Welinder-Olsson et al. 2004), drinking and recreational waters 

(Ackman et al. 1997; Centre for Infectious Disease Prevention and Control 2005) 

contaminated by bovine feces. Neonatal calves are well known to be susceptible to E. coli 

O157:H7 and infection causes A/E lesions, watery and/or bloody diarrhea and can often 

be fatal (Cray and Moon 1995; Dean-Nystrom et al. 1997; Dean-Nystrom et al. 1998; 

Dean-Nystrom et al. 1999). E. coli O157:H7 prevalence in cattle is seasonal and different 

studies have reported prevalence rates as low as 2% to as high as 80% (Cray and Moon 

1995; Elder et al. 2000; Callaway et al. 2003; Callaway et al. 2009). It appears that 

prevalence rates of E. coli O157:H7 in cattle and feedlot environments have been 

increasing since the first description of the pathogen; however it is difficult to determine 

whether prevalence rates are increasing or if the detection methods have become more 

sensitive. Surveillance and mitigation strategies for E. coli O157:H7 are primarily aimed 

at the cattle reservoir and mathematical models have predicted that agents to reduce 

shedding, including vaccines, could reduce human infections dramatically (Jordan et al. 

1999).  

 

1.3.1. E. coli O157:H7 virulence factors and cattle colonization 

The intimin-Tir interaction is thought to be essential in the effective colonization of 

calves (Dean-Nystrom et al. 1998; Vlisidou et al. 2006). When neonatal calves were 

infected with eae positive strains of E. coli O157:H7 there were increased symptoms of 
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infection, including death, and increased shedding periods compared to mutant strains 

lacking eae (Dean-Nystrom et al. 1998; Vlisidou et al. 2006). Similarly, calves infected 

with Tir-producing strains of E. coli O157:H7 had longer shedding periods and shed 

more bacteria than mutant strains lacking the tir gene (Vlisidou et al. 2006). It was also 

noted that calves inoculated with double mutant E. coli O157:H7 strains lacking both eae 

and tir had comparable shedding to single mutant strains lacking eae, but not single 

mutants lacking tir, suggesting that intimin is involved in non-Tir mediated colonization 

as well (Vlisidou et al. 2006).  

 The role of the Shiga toxins in cattle is not well understood.  Cattle lack receptors 

for Stx1 (Pruimboom-Brees et al. 2000) and the toxin is degraded in the crypt cells of the 

colon (Hoey et al. 2003). Further, Shiga toxin 2 (Stx2), which is toxic to humans, does 

not kill epithelial cells from the jejunum or descending colon of cattle (Baines et al. 

2008a). However, recently Stx2 has been observed to increase colonization of E. coli 

O157:H7 in disease-susceptible animals (Robinson et al. 2006) and cattle (Baines et al. 

2008a), likely through an increase in expression of non-Tir colonization sites such as 

nucleolin (Robinson et al. 2006). While the mechanism whereby the H7 flagellin is able 

to increase adherence is poorly understood, it has been reported that immunization of 

calves with H7 flagellin reduced colonization rates (McNeilly et al. 2008) demonstrating 

the potential for vaccines to target virulence factors involved in colonization.  

 

1.3.2. E. coli O157:H7 colonization site 

E. coli O157:H7 colonization of cattle primarily occurs within the large intestine, likely 

due to an affinity of intimin-γ for receptors of the large intestine (Tzipori et al. 1995; 
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Naylor et al. 2003). Despite this knowledge, prior to 2003, detection of the pathogen 

within necropsy samples of the large intestine of cattle was not successful even when E. 

coli O157:H7 was present in feces of the animals (Naylor et al. 2003). Naylor et al. 

(2003) hypothesized that the pathogen may colonize within the terminal rectum or anal 

canal of cattle because these areas are not routinely processed for necropsy due to their 

intrapelvic location within the animal. Upon investigation, it was discovered that E. coli 

O157:H7 does indeed colonize cattle most heavily within the terminal rectum, 

approximately 1 to 5 cm proximal to the recto-anal junction (RAJ) (Naylor et al. 2003; 

Low et al. 2005). The RAJ is an area dense with lymphoid follicles which was 

hypothesized to create a previously undescribed niche that E. coli O157:H7 cells are 

capable of colonizing (Naylor et al. 2003; Low et al. 2005). This hypothesis was 

supported by data regarding human infection that showed the pathogen to have an affinity 

for the follicle associated epithelium of Peyer’s patches in the human small intestine 

(Phillips et al. 2000). 

 Since the recognition of the terminal rectum as the primary location of E. coli 

O157:H7 colonization, attempts to detect E. coli O157:H7 within this location have been 

made using recto-anal mucosal swabs (RAMS). It has been reported that RAMS may be 

the most sensitive method for detecting E. coli O157:H7 carriage in cattle (Rice et al. 

2003; Greenquist et al. 2005; Davis et al. 2006; Cobbold et al. 2007). It was noted that 

concentrations of E. coli O157:H7 on the surface of feces were approximately 1000-fold 

higher than in the core of feces and researchers suggested that as feces passes through the 

terminal rectum, the fecal surface gets coated with E. coli O157:H7 that is colonizing the 

area (Naylor et al. 2003). Low et al. (2005) compared the concentration of E. coli 
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O157:H7 isolated from tissues 1 and 15 cm proximal to the RAJ and from feces 1 and 15 

cm proximal to the RAJ. These researchers found that E. coli O157:H7 concentrations 

were higher closer to the RAJ (1 cm proximal) and that high levels of mucosal carriage 

was associated with fecal excretion of E. coli O157:H7 (Low et al. 2005). Further, it 

appeared that there existed two populations of animals; cattle shedding high 

concentrations of E. coli O157:H7 (>10
3
 CFU/g) detectable by less sensitive dilution 

plating methods and cattle shedding low concentrations (<10
3
 CFU/g) detectable only by 

immunomagnetic separation (Naylor et al. 2003; Low et al. 2005).  

 Rectal administration of E. coli O157:H7 has allowed researchers to study factors 

that may affect in vivo colonization of cattle because this technique provides the ability to 

directly apply the E. coli O157:H7 to the RAJ (Sheng et al. 2004). In one of the first uses 

of the recto-anal administration technique, mutant strains of E. coli O157:H7 lacking 

functional eae and tir genes colonized cattle less efficiently than the wild type strain 

(Sheng et al. 2006). In the same study, Stx2 producing and Stx2 lacking E. coli O157:H7 

strains had similar colonization of the recto-anal mucosa suggesting that this toxin does 

not increase adherence at the follicle-dense RAJ (Sheng et al. 2006). In contrast, the 

pO157 plasmid was found to be an important factor for E. coli O157:H7 adherence and 

colonization (Sheng et al. 2006). In another application of recto-anal inoculation of E. 

coli O157:H7 researchers observed that shedding of an O-antigen-deficient mutant E. coli 

O157:H7 strain was shorter in duration and smaller in magnitude compared to the wild 

type strain suggesting a role for the O antigen in the colonization of cattle (Sheng et al. 

2008). 
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 Following the identification of the RAJ as a location of important colonization 

within cattle, several other studies were aimed at characterizing the location of E. coli 

O157:H7 within persistently shedding cattle. In one study, three persistently shedding 

cattle were necropsied and the majority of culture positive samples were obtained from 

the RAJ (Lim et al. 2007), supporting this area as the key site for E. coli O157:H7 

colonization. In another study, intestinal tissues from experimentally inoculated cattle 

were examined 1 to 3 months after shedding had ceased (Baines et al. 2008b). Focal 

petechiae (pinpoint hemorrhages) and mucosal hemorrhages were observed in tissues 

from non-persistently and persistently shedding animals (Baines et al. 2008b). These 

hemorrhages were more numerous in tissues from the persistently shedding animals and 

repair of the tissue was estimated to take approximately 3 months following the end of 

shedding (Baines et al. 2008b). While pathologies were observed to affect the mucosa of 

the jejunum, ileum, cecum and ascending colon, the most severe pathologies were 

associated with the jejunum (Baines et al. 2008b). These authors suggested that the 

jejunum and ileum may play a larger role than the RAJ in maintaining infection and that 

the RAJ may serve as an indicator of infection status but it is not responsible for 

persistent shedding (Baines et al. 2008b). Nart et al. (2008) examined 8 to 14 week old 

weaned calves for the presence of pathologies and immune response to E. coli O157:H7 

infection. The investigators found A/E lesions associated with the terminal rectum and a 

localized production of IgA antibodies (Nart et al. 2008). The presence of pathologies 

and localized immune responses suggests that E. coli O157:H7 should not be considered 

a commensal organism in cattle but instead a pathogen of cattle (Baines et al. 2008b; Nart 

et al. 2008).   
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Recently, Baines et al. (2008b) used an in vitro organ culture (IVOC) adherence 

assay to compare E. coli O157:H7 colonization of intestinal tissues from both persistent 

and non-persistent shedding cattle. While the IVOC adherence assay did not reveal any 

tissue tropism for E. coli O157:H7 colonization, there was significantly greater adherence 

to tissues from persistently shedding than non-persistently shedding cattle (Baines et al. 

2008b). Due to the lack of an immune response in the in vitro assay, an “undefined 

mucosal factor” was implicated for causing the difference between tissues from the 

different animals and further speculated that this mucosal factor could in fact be alternate 

non-Tir based colonization sites (Baines et al. 2008b). 

 Other areas in cattle have been identified to harbor E. coli O157:H7 including oral 

cavities and hide surfaces (Keen and Elder 2002).  However, it is unlikely that the 

pathogen actually colonizes these areas and is likely present only on the surface in a 

transient state. The oral cavity of cattle has been suggested to contain E. coli O157:H7 

due to the process of rumination (Callaway et al. 2009). Similarly, cattle hides are 

presumed to be contaminated by feces and soil containing E. coli O157:H7 due to the 

extended duration of survival in these substrates (Wang et al. 1996; Kudva et al. 1998; 

Jiang et al. 2002; Franz et al. 2008). Fecal prevalence of E. coli O157:H7 was found to be 

correlated to hide prevalence; cattle that were housed in pens that contained greater than 

20% of the total fecal pats contaminated with E. coli O157:H7 had much higher hide 

prevalence than cattle that were housed in pens with less than 20% of the total fecal pats 

contaminated with E. coli O157:H7 (Woerner et al. 2006). Due to often high prevalence 

of E. coli O157:H7 on cattle hides, practices aimed at reducing this load have been 

implemented (Callaway et al. 2009). Simple and inexpensive hide washing cabinets 
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(Arthur et al. 2007b) using ozonated, electrolyzed (Bosilevac et al. 2005) or hot water 

(Bosilevac et al. 2006) have been shown to be effective at significantly reducing the E. 

coli O157:H7 load on cattle hides.  

 

1.4. Shedding of E. coli O157:H7 by cattle 

The cattle reservoir has been identified as the key target for mitigation strategies aimed at 

reducing human E. coli O157:H7 infections (Jordan et al. 1999) and efforts to understand 

and reduce fecal shedding of cattle have been a focal point of research. Diet modification 

has been implicated as a practical method of reducing the amount of E. coli O157:H7 

shed by cattle; however relationships between feeding practices and shedding have been 

clouded by conflicting or inconsistent results (Callaway et al. 2003). There seem to be a 

number of different dietary factors which may affect E. coli O157:H7 populations within 

cattle including fasting, feed additives and probiotics. Before and during transport, cattle 

are often subject to fasting for up to 48 hours (Callaway et al. 2009). Dietary stress was 

found to make weaned calves more susceptible to infection by E. coli O157:H7 (Cray et 

al. 1998). However, while fasting has been shown to increase total E. coli populations 

(Cray et al. 1998) it is unclear whether fasting also increases E. coli O157:H7 shedding as 

previous studies have failed to find an increase in shedding following fasting (Kudva et 

al. 1997; Harmon et al. 1999).  

 The feed additive monensin is an ionophore commonly used to increase the 

efficiency of feed utilization (Russell and Strobel 1989) and because the use of monensin 

roughly coincided with the first cases of human infection, it has been proposed that this 

additive may have played a role in increasing the prevalence of E. coli O157:H7 (Bach et 
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al. 2002a). Monensin concentrations up to 25 µg/ml did not affect in vitro growth and 

survival rates for E. coli O157:H7 (Bach et al. 2002a). Only at very high concentrations 

of monensin (50 µg/ml) was survival impaired (Bach et al. 2002a). Similarly, ionophores 

including monensin were found to have no effect on E. coli O157:H7 in vitro (Edrington 

et al. 2003b) or in vivo (Edrington et al. 2003a). In contrast, Van Baale et al. (2004) found 

that adding monensin to a grain diet resulted in the shedding of lower concentrations of 

E. coli O157:H7 in the first 5 days following inoculation. When monensin was added to a 

forage diet, the duration of E. coli O157:H7 shedding was significantly reduced (Van 

Baale et al. 2004). Whether monensin and other similar ionophores reduce fecal shedding 

of E. coli O157:H7 remains unclear, however the original hypothesis that monensin could 

select for and increase E. coli O157:H7 shedding has been dismissed. 

 In 1998, the probiotic effect of other bacteria on E. coli O157:H7 was 

demonstrated when a cocktail containing one Proteus mirabilis and 17 E. coli strains was 

able to significantly reduce cattle carriage and shedding of E. coli O157:H7 (Zhao et al. 

1998). Since then there has been extensive research into developing and assessing the 

effects of different probiotics on E. coli O157:H7. Lactic acid producing Lactobacillus 

strains have been observed to reduce E. coli O157:H7 growth in vitro (Ogawa et al. 2001) 

and shedding in vivo (Brashears et al. 2003; Younts-Dahl et al. 2004). Similarly, the 

probiotic effect of a three strain mixture of commensal E. coli was demonstrated when E. 

coli O157:H7 shedding was significantly reduced in weaned calves, presumably by 

competitive exclusion (Tkalcic et al. 2003). Recently, a commensal E. coli strain, which 

has the ability to significantly reduce the levels of Shiga toxins produced by various 

STEC strains, was discovered and characterized (Reissbrodt et al. 2009). While the exact 
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mechanism or combination of factors that resulted in this reduction in Shiga toxins 

remains to be elucidated, this E. coli strain has potential as an effective probiotic. The 

mechanism by which probiotics are able to affect pathogens has received much attention 

and it was found that a cell free supernatant of a probiotic strain was able to increase 

epithelial cell tight junction integrity and prevent tight junction damage following the 

administration of E. coli O157:H7 cell free supernatant (Putaala et al. 2008). Similarly, 

other researchers observed that L. acidophilius cell extracts were able to increase 

expression of MUC2 mucin, which inhibited E. coli O157:H7 attachment to human 

intestinal epithelial cells (Kim et al. 2008). 

 

1.5. E. coli O157:H7 survival in the environment 

E. coli O157:H7 is capable of surviving within the environment for extended periods of 

time. The most common source of E. coli O157:H7 within the environment is cattle feces 

and fecal slurries (Avery et al. 2004; Bach et al. 2005a; Franz et al. 2005; Scott et al. 

2006). However, E. coli O157:H7 can also survive for durations in cattle feed, water 

(Avery et al. 2008), soil (Franz et al. 2008; Semenov et al. 2008) and on fresh fruits or 

vegetables (Aruscavage et al. 2008). A significant source of E. coli O157:H7 

contamination is attributed to contact with cattle feces, through cattle mediated transfer of 

feces, runoff or deposition of feces onto farm land. It is worth noting that E. coli 

O157:H7 can be present in the saliva of infected cattle, and this is a possible route for the 

contamination of feed and water troughs (Keen and Elder 2002). Once in the 

environment, the pathogen is available to re-infect and spread throughout cattle 

populations within individual feedlots. Of major concern are feces as a source of E. coli 
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O157:H7 contamination during transportation to housing at beef-processing facilities 

because hide prevalence has been noted to be increased just prior to slaughter, likely due 

to fecal contamination (Arthur et al. 2007a; Arthur et al. 2008). Further, infections of 

humans from contaminated environments have also been reported. Human E. coli 

O157:H7 outbreaks have been traced back to fairs and petting zoos (Stirling et al. 2008; 

Centers for Disease Control and Prevention 2009; Goode et al. 2009). 

 The long term survival of E. coli O157:H7 in animal feces has long been known 

(Wang et al. 1996; Kudva et al. 1998; Fukushima et al. 1999). In early studies, E. coli 

O157:H7 survival in feces ranged from 4 weeks up to 21 months depending on the 

environmental conditions (Wang et al. 1996; Kudva et al. 1998; Fukushima et al. 1999). 

Further, it was observed that E. coli O157:H7 persistence was enhanced when feces were 

under environmental conditions compared to feces that were maintained under controlled 

conditions (Kudva et al. 1998). Various studies have attempted to elucidate the factors 

that may alter E. coli O157:H7 survival in feces and many factors have been implicated 

including temperature, fecal matrix, pH, volatile fatty acid (VFA) content and dry matter 

(DM) content of the feces. In one study, E. coli O157:H7 had greater survival at 22°C 

than -10°C and 4°C (Bach et al. 2005a). Similarly, Kudva et al. (1998) observed that E. 

coli O157:H7 in bovine feces had higher viable counts for at least 14 days when 

incubated at 23°C compared to -20°C and 4°C. Further, a rapid decline in viable cell 

count was observed in feces at 37°C (Kudva et al. 1998). In another study, survival of E. 

coli O157:H7 was enhanced at 4°C compared to 37°C (Echeverry et al. 2006).  

Diet can also influence the persistence of E. coli O157:H7 as at -10°C it persisted 

longer in feces from cattle fed barley as compared to those fed corn (Bach et al. 2005a). 
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Similarly, reduced E. coli O157:H7 survival was observed in manure derived from cattle 

fed straw as compared to manure from cattle fed a mixture of grass and maize silage 

(Franz et al. 2005). Dehydration of feces was suggested to reduce E. coli O157:H7 

survival in early studies (Wang et al. 1996; Kudva et al. 1998), however more recent 

research suggests that this may not be the case (Bach et al. 2005a; Hutchison et al. 2005). 

Both pH and VFA content have been suggested to affect the survival of E. coli O157:H7 

and it is believed that rapid fermentation of grain diets in the rumen leads to increased 

VFA concentrations which in turn lowers ruminal pH (Leyer et al. 1995; Diez-Gonzalez 

et al. 1998). However, different studies have resulted in conflicting results regarding the 

effect of pH on E. coli O157:H7 survival. In one study, high VFA concentrations and a 

pH below 6.5 reduced  E. coli O157:H7 survival (Bach et al. 2005a). In another study, 

feces with a high pH (7.8) from cattle fed straw reduced the survival of E. coli O157:H7 

as compared to the lower pH (6.1) in feces from cattle fed a mixture of grass and maize 

silage (Franz et al. 2005). However, comparing across studies is often difficult due to 

differences in methodologies and Franz et al. (2005) suggested that the increased rate of 

decline could be related to fiber content as well. E. coli O157:H7 is often associated with 

relatively nutrient rich environments and slower release of readily available nutrients 

from feces with high fiber content may impair survival (Franz et al. 2005).  

 E. coli O157:H7 contaminated water can infect humans (Ackman et al. 1997) and 

this pathogen may also persist in water within feedlots (McGee et al. 2002; Avery et al. 

2008). Duration of survival seems to vary with water source as it was observed that E. 

coli O157:H7 survived longer in lake waters than river waters and drinking toughs 

(Avery et al. 2008). Further, the mode of contamination seems to have an effect and 
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researchers observed that passage through the bovine gastrointestinal tract increased E. 

coli O157:H7 survival in untreated river water, possibly due to acclimatization to a more 

harsh environment (Scott et al. 2006).  

 There are a number of other surfaces on which E. coli O157:H7 can survive for 

extended periods of time and the roles of these surfaces in the maintenance and 

transmission of the pathogen have been partially elucidated. E. coli O157:H7 was 

observed to have extended survival in grass hay feed in the laboratory, outside and within 

barns, and survived up to 60 days in the laboratory (Davis et al. 2005).  E. coli O157:H7 

has also been found to grow and persist in wood chip bedding. At 25°C, E. coli O157:H7 

counts in cedar chip bedding moistened with water decreased whereas on bedding 

moistened with undiluted urine they increased (Davis et al. 2005). E. coli O157:H7 can 

also persist in manure-amended soils for weeks and even months (Jiang et al. 2002; Franz 

et al. 2008). It appears that persistence can be influenced by soil composition. 

Researchers observed that more oligotrophic conditions can reduce E. coli O157:H7 

survival (Franz et al. 2008). Similarly, E. coli O157:H7 can survive for five to six months 

following the deposition of feces onto pasture (Avery et al. 2004). Due to a number of 

outbreaks linked to contaminated fruits and vegetables, there has been a focus on 

determining the fate of E. coli O157:H7 on contaminated fresh produce. In a study 

comparing survival of E. coli O157:H7 on a range of vegetables at different temperatures, 

there was considerable growth of the pathogen on lettuce (~3 log increase) and soybean 

sprouts (~2 log increase) when incubated at 8°C for 12 days, but no growth of E. coli 

O157:H7 was on these crops at 4°C (Francis and O'Beirne 2001). E. coli O157:H7 grew 

more readily on damaged as compared to intact lettuce (Aruscavage et al. 2008) and a 
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contaminated coring knife was able to contaminate 19 lettuce heads (McEvoy et al. 2009) 

demonstrating the importance of careful handling during harvesting. 

 

1.6. E. coli O157:H7 lineage types 

In an effort to increase knowledge of the evolutionary history of E. coli O157:H7, a new 

method of performing genomic comparisons was devised. Using fluorescently labeled 

primers to amplify over-represented oligomers of the E. coli O157:H7 genome, non-

specific amplification was used to sequence and piece together large fragments of the 

genome which allowed the detection of not only single nucleotide insertions or deletions 

but large-scale genome alterations as well (Kim et al. 1999). Using this novel method of 

genome comparison, termed octamer-based genome scanning (OBGS), a phylogenetic 

tree was constructed for a number of clinical E. coli O157:H7 strains from humans as 

well as strains from cattle and two separate phylogenetic branches, known as lineages, 

were identified (Kim et al. 1999). Further, due to the over-representation of the study 

strains associated with clinical human disease to cluster within the lineage I branch and 

the propensity of study strains isolated from healthy cattle to group within the lineage II 

branch, it was suggested that the lineage I branch may contain the strains which are the 

primary cause of human illness, while lineage II strains may be relatively benign (Kim et 

al. 1999). It was suggested that the higher association of lineage I strains with human 

illness was due to phage-specific polymorphisms which also clustered specifically with 

each lineage (Kim et al. 1999). Indeed, others have also observed the link between E. coli 

O157:H7 phage type and lineage type as well as the over-representation of lineage I 

strains as the cause of human illness. Recently, Zhang et al. (2007) found certain phage-
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types to be specific or dominant to the different lineages while Ziebell et al. (2008) found 

a similar phage-type bias and also noted that 73.8% of their human and 49.5% of their 

bovine E. coli O157:H7 isolates studied were lineage I strains. However, a recent 

surveillance study conducted in southern Alberta noted that lineage I strains accounted 

for 72.2% of bovine and 90.1% of human E. coli O157:H7 isolates, indicating that 

geographic location may influence the prevalence of the lineages of E. coli O157:H7 

(Sharma et al. 2009).  

 As a follow-up to their OBGS analysis, a more diverse set of E. coli O157:H7 

strains from Australia and the USA were analyzed using OBGS and a more extensive 

phylogenetic tree was constructed (Kim et al. 2001). Again the same two lineages were 

identified from the diverse group of E. coli O157:H7 strains which suggested that the 

divergence of lineage I and II strains was an ancestral event prior to the dissemination of 

the pathogen to the geographically separate continents (Kim et al. 2001). However, with 

the increased number of geographically distributed strains of E. coli O157:H7, it has 

become apparent that regional subpopulations had arisen with the emergence of at least 

three independent lineage II branches (Kim et al. 2001). 

 

1.6.1. Lineage-specific polymorphism assay-6 

In an effort to devise a higher throughput method of lineage typing, Yang et al. (2004) 

screened 95 lineage-specific OBGS fragments for polymorphisms which were within 

selectively neutral genes or non-coding regions. A total of six fragments were selected 

based on these criteria and used to create the lineage-specific polymorphism assay-6 

(LSPA-6), a multiplex PCR assay capable of categorizing E. coli O157:H7 strains into 
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OBGS lineages based on PCR allele length (Table 1.1) (Yang et al. 2004). For the LSPA-

6 assay, allele sizes of OBGS lineage I strains are denoted as 1’s while allele sizes of 

OBGS lineage II strains are denoted as 2’s to give a six digit LSPA-6 genotype (Yang et 

al. 2004). The LSPA-6 codes E. coli O157:H7 lineage I strains as 111111 (for lineage I 

fragment lengths at all loci), lineage II strains as 222222 and also types a number of 

LSPA-6 lineage intermediates, such as 211111. It was suggested that many of these 

intermediate lineage types belong to OBGS lineage II strains (Yang et al. 2004). 

However, more recent characterization of the most common intermediate lineage type, 

LSPA-6 genotype 211111, suggests that this group shares some features with both 

lineage I and II strains and may represent a third distinct phylogenetic subset of E. coli 

O157:H7 strains, designated lineage I/II strains (Zhang et al. 2007; Laing et al. 2008; 

Ziebell et al. 2008). 

 The LSPA-6 alleles were compared to genome sequences of a commensal E. coli 

K-12 strain and a strain of uropathogenic E. coli. The E. coli K-12 strain contained five 

of the six alleles used in the LSPA-6 and four of these five had allele sizes which 

corresponded to OBGS lineage I strains. The uropathogenic E. coli strain only contained 

two of the six alleles used in the LSPA-6 but both of these were the same size as OBGS 

lineage I alleles (Yang et al. 2004). This suggests that the OBGS lineage I state is 

ancestral and that lineage II traits are derived (Yang et al. 2004). Twelve regions of 

genomic DNA were found to be conserved in most lineage I strains and in other E. coli 

strains such as K-12, but these were regions were present in only a few lineage II and 

intermediate lineage strains. This further supports the hypothesis that lineage I is the 

ancestral lineage (Steele et al. 2007).  
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Table 1.1. Allele sizes of lineage-specific polymorphisms in the LSPA-6 

 

 

Primer/allele name Lineage 1 expected amplicon 

size (bp) 

Lineage 2 expected amplicon 

size (bp) 

folD-sfmA 161 170 

Z5935 133 142 

yhcG 394 472 

rbsB 218 209/214 

rtcB 270 279 

arp-iclR 315 333/324 
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1.6.2. Virulence and pathogenicity of E. coli O157:H7 lineages 

E. coli O157:H7 lineage I strains are more often associated with human clinical infection 

(Kim et al. 1999; Kim et al. 2001; Saridakis et al. 2004; Yang et al. 2004; Ziebell et al. 

2008) suggesting that lineage I strains are more virulent or more readily survive in the  

human digestive tract than lineage II. Saridakis et al. (2004) compared the survival of 

lineage I and II strains challenged with different acids. Lineage I strains were found to 

have greater survival than lineage II strains after a six hour challenge in a cocktail of 

volatile fatty acids, while lineage II strains had greater survival after a three and six hour 

challenge in HCl (Saridakis et al. 2004). However, most of the lineage I strains were of 

human or porcine-origin whereas the lineage II strains were of bovine-origin, raising the 

possibility that the sensitivity of isolates to different acid challenges depends on the host 

from which they were derived. To our knowledge, further studies of E. coli O157:H7 

lineage survival within acid challenges have yet to be completed. 

 There have been few comparisons of gene expression profiles between E. coli 

O157:H7 lineage I and II strains. Many have compared expression profiles between E. 

coli O157:H7 isolates of bovine and human-origin (McNally et al. 2001; Ritchie et al. 

2003; Lejeune et al. 2004; Rashid et al. 2006; Baker et al. 2007), often suggesting that 

their results are related to lineage type. However, surveillance studies suggest that a large 

fraction of bovine isolates are still lineage I strains (Kim et al. 1999, Kim et al. 2001, 

Yang et al. 2004, Ziebell et al. 2008), making it difficult to solely equate lineage to host 

type. In 2006, microarray analysis was used to compare gene expression between E. coli 

O157:H7 lineage I and II isolates. It was found that of the 610 genes monitored, 73 

differed in their level of expression between lineages (Dowd and Ishizaki 2006). Genes 
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that tended to be up-regulated in lineage I strains included stx2A, stx2B and some genes 

coding for proteins involved in the type III secretory system, an observation that may 

account for the increased virulence associated with lineage I strains (Dowd and Ishizaki 

2006). Other genes of potential importance up-regulated in lineage I strains were 

involved in urease production, which might confer increased acid resistance (Dowd and 

Ishizaki 2006). In another study, twelve conserved regions within the genome of lineage I 

strains were absent in most lineage II strains and many of these regions were located 

within prophage or prophage-like elements related to virulence factors, including the 

shiga toxin genes, or contain ORFs with homology to virulence genes (Steele et al. 2007). 

Similarly, Zhang et al. (2007) found 132 out of 1751 variably absent or present (VAP) 

ORFs to be specific or dominant to either lineage I or II strains and noted that many of 

these occurred within prophage regions. Not surprisingly, there were VAPs located 

within the region encoding Stx2 as well as an absence of known effector genes (nleH1-2, 

nleF and pchD) in lineage II strains (Zhang et al. 2007). The VAPs located around Stx2 

are likely related to results found by others where the Stx2c variant was found in 59 of 61 

lineage II strains but only 2 of 112 lineage I strains (Ziebell et al. 2008) and an Stx2-

specific ELISA found that lineage I strains produced more Stx2 than lineage II strains 

(Dowd and Williams 2008). Most recently, Laing et al. (2008) used 23 VAP regions to 

develop a comparative genomic fingerprinting method for typing E. coli O157:H7 strains. 

This method was found to be superior to both pulsed field gel electrophoresis and phage-

typing and produced a phylogeny where LSPA-6 lineages I, II and I/II all grouped 

separately (Laing et al. 2008). 

 



 25 

CHAPTER TWO 

Lineage type does not influence the survival of Escherichia coli O157:H7 in feces 

from cattle fed grain or grass hay diets 

2.1 ABSTRACT 

Genetic comparisons of numerous Escherichia coli O157:H7 strains have resulted in the 

recognition of different phylogenetic branches of the pathogen and it appears lineage I 

strains cause the majority of human illnesses. Recently described differential acid 

resistance between E. coli O157:H7 lineages suggests that cattle feeding practices and 

warm summer months may alter fecal acidity, resulting potentially in increased 

transmission of lineage I strains to the food supply. The objective of this study was to 

document the impact of lineage type on the proliferation and survival of E. coli O157:H7 

in feces from cattle fed grain or forage diets at different temperatures encountered in 

Alberta during peak shedding periods. Three strains of E. coli O157:H7 lineages I and II 

were inoculated into feces derived from cattle fed grain or hay and survival was assessed 

at 4°C, 12°C and 25°C over a period of 28 days. There were no significant lineage 

associated differences in survival in grain or hay feces at any temperatures studied. There 

was an interaction of temperature, feces type and day post inoculation on the survival of 

E. coli O157:H7 in feces. This was related to pH of the feces. Fecal pH increased with 

temperature for both feces types and hay feces always had a higher pH than grain feces, 

however this difference was smallest at 25°C. The highest volatile fatty acid 

accumulation was observed in the grain feces at 4°C and VFA content was higher in 

grain than hay feces. E. coli O157:H7, irrespective of lineage, survived better in grain 

than hay feces at 4°C but the reverse was observed for grain and hay feces at 25°C. The 
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current study concludes that lineages of E. coli O157:H7 do not differ in their persistence 

in feces, but temperature and fecal matrix do affect the survival of E. coli O157:H7. 
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2.2. INTRODUCTION 

Escherichia coli serotype O157:H7 is a pathogenic, Gram-negative bacterium that 

belongs to the enterohemorrhagic E. coli (EHEC) group. E. coli O157:H7 infections 

cause diarrhea, hemorrhagic colitis and can lead to often fatal hemolytic uremic 

syndrome (HUS) in humans. There have been outbreaks and sporadic cases of E. coli 

O157:H7 infection since its first identification as a predominant pathogen associated with 

HUS in the early 1980’s (Riley et al. 1983; Ratnam et al. 1988). In North America, E. 

coli O157:H7 causes thousands of infections and several deaths per year (Centre for 

Infectious Disease Prevention and Control 2005; Chase-Topping et al. 2008) costing 

national healthcare systems millions of dollars annually (Frenzen et al. 2005; United 

States Department of Agriculture 2006). Despite aggressive efforts to improve 

operational practices (Bach et al. 2002b) to reduce the incidence of transmission at the 

processing level, the incidence of E. coli O157:H7-related disease outbreaks has not 

significantly declined. Understanding how this pathogen behaves in the environment and 

host may provide new insight into control measures. 

Ruminants have been identified as the primary reservoir of E. coli O157:H7 with 

numerous outbreaks being traced to contaminated meat (MacDonald et al. 2004) and 

dairy products (Gillespie et al. 2003). Other sources of infection include fresh produce 

(Welinder-Olsson et al. 2004) as well as drinking and recreational waters (Ackman et al. 

1997; Centre for Infectious Disease Prevention and Control 2006) that have been 

contaminated by livestock manure. Controlling E. coli O157:H7 shedding in cattle has 

received much attention with an increasing focus on identification of strategies to reduce 

the post-shedding dissemination and proliferation of this pathogen (Bach et al. 2002b). 
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Previous work from our lab has indicated that animal diet may affect the survival of E. 

coli O157:H7 in feces as survival was enhanced in feces from cattle fed barley compared 

to those fed corn (Bach et al. 2005b), indicating that diet modifications could potentially 

reduce E. coli O157:H7 prevalence.  

New molecular techniques, such as octamer-based genome scanning, have helped 

identify two distinct lineages of E. coli O157:H7, lineages I and II (Kim et al. 2001; Yang 

et al. 2004). Although both lineages have been recovered from cattle, lineage I is 

primarily associated with human infection (Sharma et al. 2009). At present, rapid lineage 

genotyping techniques such as the lineage specific polymorphism assay (LSPA-6) are 

valuable for discrimination of lineage types from different sources including humans, 

cattle and the environments (Yang et al. 2004). Assessing the differential survival of E. 

coli O157:H7 lineages in feces could provide useful insight into why there are differences 

in the prevalence and dissemination of E. coli O157:H7 lineages.  

The objective of this study was to determine the in vitro growth and survival 

characteristics of E. coli O157:H7 lineages I and II in feces stored at 4°C, 12°C and 25°C 

from cattle fed barley-grain or hay diets. For this purpose, we used three representative 

strains from each lineage type. We monitored the pH, dry matter content (DM) and 

volatile fatty acid (VFA) content of the feces in order to gain information on how 

changes in chemical composition of feces with time may influence the persistence and 

survival of E. coli O157:H7.    
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2.3. MATERIALS AND METHODS 

2.3.1. E. coli O157:H7 strains 

Distinct lineage I (LSPA-6 genotype 111111) and II (LSPA-6 genotype 222222) strains 

were used for in vitro inoculation of feces and were typed using the LSPA-6 assay (Yang 

et al. 2004). Three E. coli O157:H7 strains from each lineage I (Sakai, A and B) and 

lineage II (E3081, C and D) were used. Strains A, B, C and D were isolated from feces of 

feedlot cattle, strain Sakai (RIMD 0509952) was obtained from the American Type 

Culture Collection (Rockford, MD) and E3081 was kindly made available by W. C. Cray, 

National Animal Disease Center, Ames, IA.  

To circumvent problems associated with high coliform counts in cattle feces, 

nalidixic acid resistant (Nal
R
; 50 μg/ml nalidixic acid) strains of Sakai, A, B, C and D 

strains were produced; strain E3081 was naturally resistant to kanamycin/ampicillin 

(Kan
R
/Amp

R
; 100 μg/ml of kanamycin and ampicillin) and thus a Nal

R
 mutant of this 

strain was not produced. Nal
R
 strains were produced by stepwise selection on increasing 

concentrations (5, 10, 20, 40 and 50 μg/ml) of nalidixic acid (Sigma-Aldrich Canada Ltd., 

Oakville, Ontario, Canada) until strains resistant to ≥ 50 μg/ml were obtained. Once the 

desired level of resistance was achieved in liquid culture, Nal
R
 strains were plated on 

sorbitol MacConkey agar supplemented with cefixime (0.05 mg/l), potassium tellurite 

(2.5 mg/l) (CT-SMAC) and nalidixic acid (50 μg/ml; CT-SMACnal; Dalynn, Calgary, 

Alberta, Canada) and incubated at 37°C for an additional 24 h. Single isolates were 

selected by re-streaking on CT-SMACnal plates. All parental and Nal
R
 strains were 

stored in glycerol at -80°C for subsequent inoculations. The Nal
R
 E. coli O157:H7 

produced in this study have been denoted with subscript “n” (eg. Sakain, An, etc). We did 
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not find any differences in the growth kinetics between Nal
R
 generated strains and their 

parental counterparts (data not shown) as noted by others (Duffy et al. 2006).  

 

2.3.2. Feces collection 

Feces were collected from 16 British-Continental steers fed either barley-grain based 

diets (85% barley, 10% barley silage and 5% vitamin and mineral supplement on a dry 

matter basis) or 100% grass hay diets and designated as “grain” or “hay” feces, 

respectively. Composite samples were prepared from feces collected four animals. Each 

replicate consisted of feces from four different animals. Feces were collected within 1 h 

after defecation. Homogenized feces were weighed (297 g) into sterile stomacher bags 

(Fisher Scientific, Ottawa, ON, Canada) prior to inoculation with E. coli O157:H7. 

  

2.3.3. E. coli O157:H7 inoculation and sampling 

The lineage I (Sakain, An and Bn) and II (Cn, Dn and E3081) strains were individually 

inoculated into feces originating from cattle fed grain or hay. For this purpose, strains 

were grown at 37°C in tryptic soy broth (TSB; Difco, Ottawa, Ontario, Canada) for 18 h. 

Growth was measured spectrophotometrically and the cell suspension was diluted with 

TSB to obtain an OD640 of 0.5 which corresponded to ≈10
8
 CFU/ml. Cells were further 

diluted to 10
7
 CFU/ml using phosphate buffered saline (1× PBS).  

For inoculation, 3 ml of E. coli O157:H7 (10
7
 CFU/ml) were inoculated into 297 

g of pre-weighed feces to give a final concentration of 10
5
 CFU/g. Each inoculated 

sample was mixed for 4 min at high speed using a laboratory stomacher 400 (Seward 

Ltd., Worthing, West Sussex, UK). Feces were scraped to the bottom of the stomacher 
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bag at the midway point and upon completion of stomaching. The inoculated feces were 

left in the stomacher bags with the tops spread open (Wang et al. 1996).  

For each temperature and feces type, duplicate control inoculations were prepared 

whereby sterile inoculum (3ml, sterile TSB diluted 1:9 v/v in 1× PBS) was added to 297 

g of pre-weighed feces.  The control inoculations containing no E. coli O157:H7 were 

stomached, incubated and sub-sampled in the same manner as the inoculated feces. 

Duplicate fecal samples for each diet and inoculated with each strain were 

incubated at 4°C, 12°C or 25°C to monitor the persistence of individual lineage types. 

These temperatures were selected as they represent those commonly encountered in 

southern Alberta during spring (4°C, 12°C) and summer months (25°C), seasons when 

the prevalence of E. coli O157:H7 is highest. The fecal samples were sub-sampled (10 g) 

on days 0, 1, 3, 7, 14, 21 and 28. The sub-samples were taken by collecting feces from 

multiple locations within each of the stomacher bags. The sub-samples were then mixed 

prior to bacterial enumeration and chemical analyses. During sampling, efforts were 

made to avoid dried feces. 

 

2.3.4. Enumeration and detection of E. coli O157:H7 

E. coli O157:H7 was enumerated from fecal samples by serially diluting 1 g of feces in 9 

ml 1× PBS and plating 50 μl (in duplicate) of the appropriate dilutions (ranging from 10
-1

 

to 10
-4

) on CT-SMACnal for all strains except E3081. For E3081, CT-SMAC 

supplemented with kanamycin and ampicillin (100 μg/ml; CT-KASMAC, Dalynn) was 

used. Colonies were enumerated using a colony counter (Reichert, Depew, NY) and 

CFU/g wet weight calculated. Three representative non-sorbitol fermenting (NSF) 
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colonies from each sampling point were confirmed as E. coli O157 using the E. coli 

O157 latex test kit (Oxoid Ltd., Basingstoke, Hampshire, UK). During the course of 

incubations, representative individual NSF colonies were confirmed to retain their 

lineage characteristic using the described LSPA-6 assay.  

 

2.3.5. Fecal dry matter, volatile fatty acid and pH determinations 

Fecal DM content and pH were measured 0, 7, 14, 21 and 28 d following inoculation as 

described previously (Bach et al. 2005b). VFA content was quantified 0, 7, 14, 21 and 28 

d following inoculation. Due to processing limitations, VFA content was analyzed for 

one strain of each lineage and control feces on days 7, 14, 21 and 28 while all three 

strains of each lineage and control feces were analyzed for VFA content on day 0. 

Analysis of pH and DM content was performed on all three strains of each lineage and 

control feces on all days. All pH, DM and VFA analysis was performed in duplicate. 

Fecal samples for VFA analysis were weighed (0.2 g) into micro-centrifuge tubes, mixed 

with 1 ml 25% (w/v) m-phosphoric acid (Sigma-Aldrich Canada Ltd.) and frozen at         

-20°C for subsequent analysis by gas chromatography. The acidified samples were 

thawed overnight at 4°C and centrifuged at 14 000 × g for 5 min. A 0.6 ml aliquot of the 

supernatant was transferred to an autosampler vial and mixed with 0.1 ml of internal 

standard (0.25 mmol/l crotonic acid; Sigma-Aldrich Canada Ltd.). Concentrations of 

acetic, propionic, iso-butyric, butyric, iso-valeric, valeric and caprioc acids were 

quantified using an Agilent 6890 gas chromatograph fitted with a flame ionization 

detector (Agilent Technologies Canada Inc., Mississauga, Ontario, Canada).  A ZB-FFAP 

capillary column (30 m × 0.32 mm × 1μm; Phenomenex, Torrance, CA) was used with 
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helium as a carrier gas (linear velocity ca 1 ml/min). The samples were split-injected 

(split ratio ca 10 : 1) with analysis performed using the following temperature programs: 

170°C, 4 min; increasing 3.5°C per min to 180°C; increasing 30°C per min to 215°C and 

held for 3 min. The injector was maintained at 225°C and the flame ionization detector at 

250°C. VFA concentrations were quantified by comparing the peak area ratios 

(acid/internal standard) against standard curves using the same concentration of internal 

standard.  

  

2.3.6. Statistical analysis 

E. coli O157:H7 counts (CFU/g) and VFA concentrations (mmol/l) were calculated and 

log transformed to normalize the data. For viable count, DM, pH and VFA analysis, 

separate analyses were performed using the MIXED procedure (SAS Institute Inc. 2005) 

with temperature, feces, lineage, day and all their interactions in the model as fixed 

effects and the replication by feces by lineage interaction as the random effect.  Lineage 

included E. coli O157:H7 lineages I and II for viable count analysis and lineages I, II and 

the control feces for DM, pH and VFA analysis. Day was treated as a repeated measure 

effect to account for potential correlations among the various days.  Mean separation was 

performed using a LSD test. Additionally, viable count data were analyzed by strain for 

each temperature treatment using the MIXED procedure (SAS Institute Inc. 2005) with 

feces, strain, day and all their interactions in the model as fixed effects and the replication 

by feces by strain interaction as the random effect. Mean separations for the strain 

differences were performed using a LSD test with a Bonferroni correction. Various types 

of variance-covariance matrices were fitted and the one with the lowest AIC value was 
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used for the final analysis.  The UNIVARIATE procedure was used to check the 

residuals for normality and for potential outliers.  When an outlier was detected, it was 

removed before the final analysis was performed.  Differences were considered 

significant where P < 0.05. 

 

2.4. RESULTS 

There was a progressive decline in viable E. coli O157:H7 after the inoculations 

reached peak cell densities (at 0 to 3 d; Fig. 2.1), the rate of which was dependant on the 

feces type and temperature of the incubation. No background E. coli O157:H7 or other 

nalidixic acid resistant (50 μg/ml) or kanamycin/ampicillin resistant (100 μg/ml) bacteria 

were detected in any of the control inoculations. Growth curves for all antibiotic resistant 

E. coli O157:H7 strains are shown in appendix one (Fig. A.1). 

 

2.4.1. Thermostability of E. coli O157:H7 lineages 

There was no effect of lineage type (P = 0.13; Table 2.1) or interactions containing 

lineage type (P > 0.05) on the counts of E. coli O157:H7 in feces (Fig. 2.1). There was a 

highly significant interaction of temperature, feces type and day (P = 0.001) on the 

number of E. coli O157:H7 in feces. The interaction of temperature, feces and day 

resulted in the grain feces having higher counts than the hay feces on days 3, 14, 21 and 

28 at 4°C (Fig. 2.2). At 12°C, there was only one day where the grain and hay feces had 

different E. coli O157:H7 counts; E. coli O157:H7 numbers were higher in the hay feces 

on day 21. At 25°C, the grain feces had higher E. coli O157:H7 numbers than the hay 

feces on days 7 and 14 but lower counts on days 21 and 28.  
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Table 2.1. Interactions and effects of lineage type, feces origin, temperature and time 

post-inoculation on viable E. coli O157:H7 counts, dry matter content, pH and volatile 

fatty acid content of feces. 

Variable Effect/Interaction P  value 

Viable E. coli O157:H7 counts lineage*feces*temp*day 0.82 

 lineage*feces*temp 0.19 

 lineage*feces*day 0.18 

 lineage*temp*day 0.32 

 lineage*feces 0.49 

 lineage*temp 0.20 

 lineage*day 0.07 

 lineage 0.13 

 feces*temp*day 0.001 

Fecal DM Content lineage*feces*temp*day 0.76 

 lineage*feces*temp 0.30 

 lineage*feces*day 0.016 

 lineage*temp*day 0.23 

 lineage*temp 0.54 

 feces*temp*day 0.60 

 feces*temp 0.002 

 feces*day 0.001 

 temp*day 0.001 

Fecal pH lineage*feces*temp*day 0.66 

 lineage*feces*temp 0.16 

 lineage*feces*day 0.004 

 lineage*temp*day 0.18 

 lineage*temp 0.30 

 feces*temp*day 0.001 

Fecal VFA Content lineage*feces*temp*day 0.99 

 lineage*feces*temp 0.88 

 lineage*feces*day 0.92 

 lineage*temp*day 0.93 

 lineage*feces 0.05 

 lineage*temp 0.92 

 lineage*day 0.94 

 feces*temp*day 0.03 
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Figure 2.1. Differences in the growth and survival of Escherichia coli O157:H7 lineages 

I and II when inoculated in feces from grain or hay fed cattle. Feces were incubated at 

4°C, 12°C and 25°C. Mean ± standard error values represent the average of three strains 

(in duplicate) for lineage I (Sakain, An, Bn) and lineage II (E3081, Cn, Dn). ‡ denotes a 

significant interaction of temperature, feces type and day (P = 0.001). 
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Figure 2.2. Differences in the growth and survival of Escherichia coli O157:H7 when 

inoculated in feces from grain or hay fed cattle. Feces were at 4°C, 12°C and 25°C. Mean 

± standard error values represent the average of six strains (Sakain, An, Bn, E3081, Cn, 

Dn). Denoted values are means from two independent experiments. ‡ denotes a 

significant interaction of temperature, feces type and day (P = 0.001). 
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2.4.2 Survival of individual E. coli O157:H7 strains 

At all temperatures there were significant differences between individual strains for E. 

coli O157:H7 survival (data not shown). At 4°C, there was a significant interaction of 

feces, strain and sampling day (P = 0.003). In the grain feces, there were no differences 

between different strains on any sampling day (P > 0.05). In the hay feces, viable counts 

were not different among strains on days 0, 7, 14, 21 and 28 (P > 0.05). On day 1 of the 

hay feces, the strain hierarchy for viable counts was Dn > Sakain, An, Cn > E3081 > Bn (P 

< 0.05). On day 3 of the hay feces, Sakain and E3081 had higher counts than Bn (P < 

0.05) but there were no differences between the other strains.  

 At 12°C, there was a significant interaction of feces and strain (P = 0.003). This 

resulted in strains Sakain, Bn, E3081 and Cn having higher viable counts than An in the 

grain inoculations (P < 0.05) and strains E3081 and Cn having higher counts than An, Bn 

and Dn in the hay feces (P < 0.05). 

 Similarly, at 25°C, a significant interaction of feces, strain and day was observed 

(P = 0.003). No differences were observed between different strains on days 0, 1, 3 and 

14 in the grain feces. On day 7 in the grain feces, the strain hierarchy for cell counts was 

E3081, Cn > Sakain, Bn > An, Dn (P < 0.05). On day 21 in grain feces, the hierarchy for 

cell counts was Sakain > Bn, Cn > E3081 > An > Dn (P < 0.05). On day 28 of the grain 

feces, Cn had higher cell counts than Dn (P < 0.05). In the hay inoculations, there were no 

differences between strains on days 0, 1, 3, 14, 21 and 28. On day 7 the observed 

hierarchy for cell counts was Bn, E3081, Cn > Sakain > Dn > An (P < 0.05).  
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2.4.3. Fecal dry matter, volatile fatty acid and pH determinations 

There was a significant interaction of temperature and feces type on the DM content of 

the feces (P = 0.002; Fig. 2.3). The DM content was lowest at 25°C for both feces types 

and likely represents a difference in relative humidity between incubation systems as well 

as efforts to avoid dried feces when sampling. For all temperatures, the grain feces had 

higher DM content than the hay feces. There was also a significant interaction of 

temperature and day (P < 0.001). Despite the significant interaction of temperature and 

day, there were no trends of increasing or decreasing DM at any temperature. Finally, 

there was a significant interaction of feces, lineage type and day (P = 0.016). On every 

day and for both lineage types and the controls, the grain feces had higher DM content 

than the hay; approximately 3-6% higher. On day 7 in the grain feces, the lineage I group 

had approximately 1.5% higher DM content than the lineage II group.  

There was a significant interaction of temperature, feces type and day on the pH 

of the feces (P < 0.001; Fig. 2.4). For both feces types, there were no differences between 

temperatures in pH of the feces on day 0. Following day 0, the pH was higher for the 

25°C treatment than the 4°C treatment on every sampling day for both feces. The hay 

feces had a higher pH than the grain feces on every day for the 4°C and 12°C groups. At 

25°C, the hay feces had a higher pH than the grain feces on days 14, 21 and 28. Both 

feces types had a trend of increasing pH over time for all temperatures. There was also a 

significant interaction of feces, lineage and day (P = 0.004). On day 14, the control grain 

feces had a higher pH than the lineage I and II grain feces. On day 28, the control grain 

feces had a higher pH than the lineage I grain feces. On day 14, the control hay feces had 

a lower pH than the lineage I and II hay feces. Each of these differences between control  
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Figure 2.3. Changes in mean dry matter (DM) content in grain or hay feces during 

incubation at 4°C, 12°C and 25°C for 28 days following inoculation with E. coli 

O157:H7 lineages I and II. Mean ± standard error values represent the average of three 

strains (in duplicate) for lineage I (Sakain, An, Bn) and lineage II (E3081, Cn, Dn). Control 

values represent mean ± standard error values of duplicate fecal inoculations containing 

no E. coli O157:H7. ‡ denotes a significant interaction of temperature and feces type (P < 

0.05). 
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Figure 2.4. Changes in pH of grain or hay feces during incubation at 4°C, 12°C and 25°C 

for 28 days following inoculation with E. coli O157:H7 lineages I and II. Mean ± 

standard error values represent the average of three strains (in duplicate) for lineage I 

(Sakain, An, Bn) and lineage II (E3081, Cn, Dn). Control values represent mean ± standard 

error values of duplicate fecal inoculations containing no E. coli O157:H7. ‡ denotes a 

significant interaction of temperature, feces type and day (P < 0.05). 
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feces and feces containing E. coli O157:H7 were small in magnitude (approximately a 

0.2 difference in pH) and likely a result of the smaller sample size of the control feces 

compared to the inoculated feces.  

 There was a significant interaction of temperature, feces type and day on VFA 

content (P = 0.03; Fig. 2.5). In the grain feces, VFA content was highest at 4°C on days 

7, 14, 21 and 28. In contrast, VFA content was not different across temperatures for the 

hay feces. At 4°C, the grain feces had higher VFA content than the hay feces on days 7, 

14, 21 and 28. The same was true at 12°C on days 7 and 14 and at 25°C on days 21 and 

28. VFA content data is broken down by its organic acid component for each feces type 

and temperature combination in Appendix Two (Fig. A.2). There was also a significant 

interaction of feces and lineage (P = 0.05). In the grain feces, the E. coli O157:H7 lineage 

I feces had lower VFA content than the lineage II and control feces. However, this 

difference may reflect the variability and limited samples for which VFA content could 

be analyzed.  

 

2.5. DISCUSSION 

Currently, there is limited information available regarding the effect of different 

temperatures and fecal matrices on the survival of lineages of E. coli O157:H7. Some 

studies have reported long-term survival of E. coli O157:H7 in feces (Avery et al. 2004; 

Bach et al. 2005b; Franz et al. 2005; Scott et al. 2006). The current study was not 

intended as a long-term survival study but instead aimed to define the proliferation and 

persistence characteristics of E. coli O157:H7 lineages I and II in the first few days and 

weeks at temperatures commonly encountered in Alberta during peak shedding periods.  
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Figure 2.5. Changes in volatile fatty acid content of grain or hay feces during incubation 

at 4°C, 12°C and 25°C for 28 days following inoculation with E. coli O157:H7 lineages I 

and II. Mean ± standard error values represent the average of duplicate inoculations for 

lineage I (Sakain) and lineage II (E3081). Control values represent mean ± standard error 

values of duplicate fecal inoculations containing no E. coli O157:H7. ‡ denotes a 

significant interaction of temperature, feces type and day (P < 0.05). 
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In addition, since cattle are fed high grain diets during the finishing process, the current 

study also examined the role that diet may play in the persistence of E. coli O157:H7 in  

bovine feces. Feces are a vector of transmission of E. coli O157:H7 (Wang et al. 1996; 

Bach et al. 2005b) and changes in cattle diets have been shown to affect E. coli O157:H7 

survival in feces (Bach et al. 2005b; Franz et al. 2005). However, it is not known if the 

persistence of E. coli O157:H7 differs between lineages. Lineage associated differences 

in the growth or survival of E. coli O157:H7 in feces shortly after excretion could greatly 

alter the transmission potential to other animals and the environment. Further, if one feed 

type provides a selective survival advantage to E. coli O157:H7 lineage I strains, 

surveillance and mitigation strategies would need to include this factor into consideration 

because increased survival would also likely increase prevalence at the processing plant 

and in turn increase contamination of the food supply.  

The current study describes, for the first time, that different lineage types of E. 

coli O157:H7 do not differ in survival in feces arising from cattle fed grain or forage 

diets. Previously reported differences in acid tolerance between lineages of E. coli 

O157:H7 (Saridakis et al. 2004) suggested that conditions which could alter fecal acidity, 

such as animal diet and temperature, may also influence the survival of lineages in feces, 

however this was not observed. The lack of differential lineage survival in either grain or 

hay feces at any of the three temperatures examined suggests that feeding practices and 

warm summer temperatures do not contribute to lineage I strains being a more 

predominant contaminate of the food supply than lineage II strains of E. coli O157:H7. 

Therefore the bias for E. coli O157:H7 lineage I to be implicated in human disease more 

often than lineage II is likely due to increased virulence and not prevalence. A recent 
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modeling study reported heterogeneity in human cases of E. coli O157:H7 infection 

where exposure dose was not correlated with the percentage of exposed individuals 

becoming infected (Teunis et al. 2008), supporting the hypothesis that E. coli O157:H7 

lineage I strains are more virulent but not necessarily more prevalent. Studies have found 

that some strains of E. coli O157:H7 survive better in the environment than others, with 

acid resistance being one of the factors responsible for this differential survival (Arnold 

and Kaspar 1995; Bach et al. 2005a; Bach et al. 2005b). Alkaline tolerance is thought to 

be provided by the stationary-phase sigma factor (RpoS), which affects cellular responses 

to a variety of stresses (Bhagwat et al. 2006). Mutant alleles for RpoS have been 

identified (Notley-McRobb et al. 2002; King et al. 2004) and it was possible that different 

RpoS alleles or differences in RpoS regulation among E. coli O157:H7 lineages could 

have affected lineage survival in the moderately alkaline hay feces. However, comparing 

tolerances to alkaline conditions via the RpoS system was beyond the scope of this study. 

Further, the lack of lineage associated differences in survival within the feces suggests 

that RpoS systems may not differ among E. coli O157:H7 lineages. It has been previously 

demonstrated that different RpoS alleles were correlated with alkaline tolerance but these 

differences were at much higher pHs than those observed in the current study (Bhagwat 

et al. 2006). Without further study it is difficult to speculate how the RpoS system may 

have influenced E. coli O157:H7 survival. However, if RpoS plays a role under slightly 

alkaline conditions, it could account for any strain differences in survival that were 

observed. Indeed, based on our results it does seem that of the strain set used, certain 

strains had a tendency to survive better than others, such as Sakain, E3081 and Cn. The 
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current study used a limited strain set and it is possible that with a larger set of strains, 

lineage associated differences in survival could become more apparent.  

The strong interaction of temperature, feces type and day suggests that feeding 

practices and changing temperatures from spring to summer months may alter the 

chemical composition of bovine feces in a manner that alters E. coli O157:H7 growth and 

survival. Feces from steers fed grain versus grass hay were selected as the substrates for 

assessing E. coli O157:H7 lineage survival because these diets are routinely given as 

finishing and backgrounding diets, respectively. Previous studies have demonstrated that 

fecal matrix plays a role in E. coli O157:H7 survival. Reduced E. coli O157:H7 survival 

in corn based feces as compared to barley based feces has been previously observed at -

10°C (Bach et al. 2005b). In another study, Franz et al. (2005) found that E. coli 

O157:H7 survived longer in manure from cattle fed a mixture of grass and maize silage 

as compared to feces from cattle fed straw. Both these groups correlated E. coli O157:H7 

survival with pH; however, the former positively correlated the rate of decline with a pH 

below 6.5 while the latter positively correlated rate of decline with a high pH (~7.8). In 

the current study, there were differences in the survival of E. coli O157:H7, which were 

independent of lineage type. We found that E. coli O157:H7 survival was enhanced in 

grain feces compared to hay feces at 4°C. At this temperature, a more neutral pH in the 

grain feces (pH ranging from 7.1 to 7.6) versus a more alkaline pH of the hay feces (pH 

ranging 7.6 to 8.3) may have contributed to the increased survival. In contrast, at 12°C 

survival of E. coli O157:H7 in grain feces (pH ranging from 7.2 to 7.9) was comparable 

to hay feces (pH ranging from 7.6 to 8.3). Finally, at 25°C, the grain feces (pH ranging 

from 7.4 to 8.1) allowed a longer period of growth (~3 days of growth in grain feces 
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compared to ~1 day of growth in hay feces) followed by an increased rate of decline 

compared to the hay feces (pH ranging from 7.6 to 8.5). The current study supports 

previous reports and suggests a possible role of pH and temperature in the survival of E. 

coli O157:H7 in feces. The pH of grain feces did increase with increases in incubation 

temperature (a pH range of 7.1 to 7.6 at 4°C compared to 7.4 to 8.1 at 25°C) while the pH 

of the hay feces remained more stable (a pH range of 7.6 to 8.3 at 4°C compared to 7.6 to 

8.5 at 25°C). In addition, below ~12°C E. coli O157:H7 survives better in grain feces 

than hay feces, while above ~12°C the reverse is true.  

Volatile fatty acid content has also been previously correlated with E. coli 

O157:H7 survival in feces (Bach et al. 2005b). Differences in pH between feces derived 

from different feed types have been previously attributed to the rapid fermentation of 

grain based feeds within the rumen increasing the VFA concentration and it has been 

suggested that this process could favor an increased acid tolerance of commensal and 

pathogenic E. coli (Leyer et al. 1995; Diez-Gonzalez et al. 1998; Bach et al. 2005b). 

Higher VFA concentrations were observed in the feces from cattle fed grain than in feces 

from cattle fed hay supporting reports that grains can increase the VFA content of feces 

(Shabtay et al. 2009; Spiehs and Varel 2009). The higher VFA concentrations of the grain 

feces were likely responsible for their lower pHs compared to the hay feces as the VFA 

content of the grain feces decreased with increasing temperature and pH. VFAs may 

accumulate to a higher degree in grain feces at low temperatures (< 12°C) and create a 

neutral environment that favors the survival of E. coli O157:H7. The pH reducing effect 

of increasing VFA concentrations does not seem to favor the survival of E. coli O157:H7 



 48 

lineage I over lineage II or vice versa. However, the relationships between fecal matrix, 

pH, VFA content and temperature are complex. 

Fecal dehydration has been implicated as a factor affecting E. coli O157:H7 

survival because survival of the pathogen in feces has been found to be temperature 

dependent (Fremaux et al. 2008). However, conflicting results surrounding the issue of 

fecal dehydration have been reported. Wang et al. (1996) reported E. coli  O157:H7 

survival in feces to vary with temperature of incubation and suggested that this was 

related to lower water activity (aw) and dry matter content of samples at 22°C and 37°C 

as compared to 5°C. It was noted that the long term survival of the pathogen at such low 

aw and dry matter content was unexpected because E. coli O157:H7 had not been 

documented to survive at low aw. Others have also concluded that dehydration of feces 

may affect pathogen survival at increased temperatures (Himathongkham et al. 1999). In 

contrast, it was more recently reported that E. coli O157:H7 survival was not affected 

dehydration of the feces (Bach et al. 2005b; Hutchison et al. 2005). In the current study, 

we did not find a trend of feces dehydration over time at any temperature. This was likely 

due to sampling methods aimed at decreasing E. coli O157:H7 count variability by 

sampling from the moist portions of the pat and avoiding dry areas. Despite not finding a 

trend of dehydration, E. coli O157:H7 did decline over the course of this short term 

study, supporting reports that factors other than dehydration influence the survival of E. 

coli O157:H7 in feces (Bach et al. 2005b; Hutchison et al. 2005). It should be noted that 

fecal dehydration may take on a role as time progresses in longer duration studies. 

However, we did find differences in growth and survival at the three temperatures with 
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feces at 4°C having the lowest numbers of E. coli O157:H7 counts on the final sampling 

day.  

This is the first study of its kind aimed at assessing in vitro growth and survival 

dynamics of selected strains of Escherichia coli O157:H7 lineages I and II in fecal 

inoculations. Differences in the survival of E. coli O157:H7 based on the fecal matrix and 

temperature was observed. However, no lineage associated differences in growth or 

survival in bovine feces were observed at any of the temperatures examined. This is a 

critical initial piece of knowledge regarding E. coli O157:H7 lineages as it suggests that 

factors other than growth and survival on the feedlot are responsible for differences in the 

number of human illnesses that the different E. coli O157:H7 lineages cause.  
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CHAPTER THREE 

Escherichia coli O157:H7 strain origin, lineage and Shiga toxin 2 expression affects 

colonization of cattle
1
 

3.1. ABSTRACT 

Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human 

pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-

induced pathologies in challenged cattle has suggested that previously discounted 

bacterial virulence factors may contribute to the colonization of cattle. The objective of 

the current study was to examine the impact of lineage type, cell extract activity and 

cytotoxin expression on the amount of E. coli O157:H7 colonization of cattle tissue and 

cells in vitro. Using selected bovine and human-origin strains, we determined that lineage 

type predicted the amount of E. coli O157:H7 strain adherence of cattle intestinal cells: 

lineage I > intermediate lineages > lineage II. All E. coli O157:H7 strain colonization 

was dose-dependent with threshold colonization at 10
3
-10

5
 CFU and maximum 

colonization at 10
7
 CFU. We also determined that an as of yet, unknown factor, strain-

origin, was the most dominant predictor of the amount of strain colonization in vitro. The 

amount of E. coli O157:H7 colonization was also influenced by strain cell extract activity 

and the inclusion of cell extracts from lineage I or intermediate lineage strains increased 

colonization of a lineage II strain. Human-origin strains had greater levels of Shiga toxin 

1 (stx1) mRNA than bovine-origin strains. In addition, lineage I strains had higher levels 

of Shiga toxin 2 (stx2) mRNA. The current study supports a role for strain origin, lineage 

                                                 
1
 Chapter published in Applied and Environmental Microbiology; Lowe, R.M.S., Baines, D., Selinger, 

L.B., Thomas, J.E., McAllister, T.A. and Sharma, R. (2009) Escherichia coli O157:H7 strain origin, 

lineage, and Shiga toxin 2 expression affect colonization of cattle. Appl Environ Microbiol 75, 5074-5081. 
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type, cell extract activity and stx2 expression in modulating the amount of E. coli 

O157:H7 colonization of cattle. 
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3.2. INTRODUCTION 

Enterohemorrhagic Escherichia coli O157:H7 is a bacterium that causes serious human 

disease outbreaks through the consumption of contaminated food or water (Wales et al. 

2005). Mature cattle are considered the primary reservoir for E. coli O157:H7 and 

historically were reported to have no symptoms or pathologies (Grauke et al. 2002; Van 

Baale et al. 2004; Lim et al. 2007) which was attributed both to a lack of receptors for a 

critical E. coli O157:H7 virulence factor, Shiga toxin1 (Stx 1) (Pruimboom-Brees et al. 

2000) and a differential expression of type III protein secretion system effector molecules 

such as EspA, EspD and Iha (McNally et al. 2001; Rashid et al. 2006), in cattle compared 

with humans. In 2008, it was established for the first time that E. coli O157:H7 causes 

mild to severe intestinal pathology in persistent shedding cattle (Baines et al. 2008b; Nart 

et al. 2008) and that the cell extracts enhanced E. coli O157:H7 colonization of intestinal 

tissues of cattle (Baines et al. 2008c). This suggested that cattle were susceptible to E. 

coli O157:H7 infection and that previously discounted virulence factors could influence 

the colonization in cattle.   

Three distinct E. coli O157:H7 lineages have been identified based on the lineage 

specific polymorphism assay (LSPA-6) that reflects the evolutionary history of the strain 

and their propensity to be present among animals, the environment and clinical human 

isolates (Kim et al. 1999; Kim et al. 2001; Yang et al. 2004; Manning et al. 2008; Ziebell 

et al. 2008; Sharma et al. 2009). Typically two predominant lineages have been 

described, lineages I and II (Kim et al. 2001; Yang et al. 2004) and more recently, 

intermediate lineages with characteristics of both lineage I and/or II, have been reported 

at higher frequency among cattle (Sharma et al. 2008). While all E. coli O157:H7 
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lineages have been isolated from feedlot cattle, the predominant recovery of lineage I 

from clinical human illnesses suggests that this particular lineage type has unique 

expression patterns that may contribute to its preferential colonization of humans. There 

is some evidence to suggest that lineage I strains do not express certain virulence factors 

in bovine hosts while other factors such as cytotoxins are expressed equally irrespective 

of host (Rashid et al. 2006). One virulence factor associated with all lineages is the 

bacterium’s ability to form intimate A/E lesions or colonization sites in the ileum of 

susceptible animals (Phillips et al. 2000). The amount of colonization is enhanced by the 

expression of Shiga toxin 2 (Stx2) through both an increase in the expression of 

alternative non-Tir colonization sites (Robinson et al. 2006) and toxicity to the absorptive 

epithelial cells (Schuller et al. 2004). In cattle, A/E lesions are also formed (Baines et al. 

2008b) and Stx2 increases colonization but is not cytotoxic to epithelial cells from the 

jejunum and descending colon of cattle (Baines et al. 2008a). Differential expression of 

stx2 among E. coli O157:H7 lineages is also linked to the increased pathogenicity of 

lineage I strains in humans (McNally et al. 2001) and may affect cattle similarly. 

Together, this information suggests that at least some similar virulence factors affecting 

E. coli O157:H7 colonization in humans, function in cattle.  

To gain a better understanding of the factors modulating E. coli O157:H7 

colonization in cattle, we compared the ability of lineage I, lineage II and intermediate 

lineages isolated from human sources to colonize the jejunum tissue and a colonic cell 

line from cattle. We hypothesized that the bovine colonic cell line could be used as a 

model system to reflect E. coli O157:H7 colonization of tissue. To confirm the value of 

this model, the role of strain origin in colonization of cattle was examined. In order to 
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understand differences in colonization associated with lineage and strain-origin, we 

assessed cytotoxin mRNA production, cell extract activity and cell extract-induced 

changes in E. coli O157:H7 colonization. Given the known lack of Stx1 activity in cattle, 

we examined the effect of LSPA-6 genotype, strain origin (human vs. bovine) and cell 

extract activity on E. coli O157:H7 colonization of cattle. 

 

3.3. MATERIALS AND METHODS 

3.3.1. E. coli O157:H7 strains and culture conditions 

E. coli O157:H7 lineage I (Sakai, 24), lineage II (ECI 1717, 25) and intermediate lineages 

(84, 12, 86, 138, 197, H3-2R) used in this study (Table 3.1.) were obtained and 

characterized from a previous study (Sharma et al. 2009). These strains were maintained 

at -80°C in 25% glycerol:75% TSB (Becton Dickinson, Oakville, Ontario, Canada) and 

were grown overnight at 37°C in LB broth (Fisher Scientific, Ottawa, Ontario, Canada) 

when required. Each strain was serially diluted to the desired concentration with 

phosphate buffered saline (PBS). Bacterial cell counts were determined by plating on 

sorbitol MacConkey agar (SMAC; Dalynn, Calgary, Alberta, Canada) and examined for 

non-sorbitol fermenting (NSF) colonies that appeared as colorless colonies.  

 

3.3.2. Cell extract isolation 

E. coli O157:H7 cell extracts were isolated and concentrated using a combination of 

centrifugation and ultrafiltration as described previously (Baines et al. 2008c). Briefly, 

the strains were grown in 15 ml of M9 media (47 mM Na2HPO4, 22 mM KH2PO4, 8 mM 

NaCl, 19 mM NH4Cl, 44 mM NaH2CO3 supplemented with 13.2 ml/l of 1 M glucose and  
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Table 3.1. Host source, lineage type, LSPA-6 genotype and virulence gene 

characteristics of the strains used in the study. 

 

*Isolates of the selected intermediate lineage type were not available from both bovine 

and human hosts. 

1
Presence or absence of the designated gene represented by + or - respectively. 

 

Strain Source Lineage; LSPA-6 genotype Virulence gene 

characterization
1
 

stx1 stx2 ehxA eae tir 

Sakai human I; 111111 + + + + + 

24 bovine I; 111111 + + + + + 

ECI 1717 human II; 222222 + + + + + 

25 bovine II; 222222 + + + + + 

84 human intermediate lineage; 211111 + + + + + 

12 bovine intermediate lineage; 211111 + + + + + 

86 human intermediate lineage; 222212 + + + + - 

138 bovine intermediate lineage; 222212 + + + + - 

197 human intermediate lineage; 110111* + + + + + 

H3-2R bovine intermediate lineage; 100111* + + + + + 
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10 ml/l 30 % casamino acid solution, Sigma-Aldrich, Oakville, Ontario, Canada) at 37°C 

without shaking for 5 days. Following growth, the cultures were centrifuged at 5 049 ×g 

for 20 min, the supernatant was collected and the pellet discarded. The supernatant was 

centrifuged for an additional 20 min at 9 300 ×g and then added to an Amicon® Ultra-

10K filter unit (Fisher Scientific). The supernatant was centrifuged at 5 049 ×g for 20 min 

and the concentrated solution (500 l) was collected. The protein content of the cell 

extracts was assessed using a Quick Start Bradford Protein Assay kit (Bio-Rad 

Laboratories, Hercules, CA). The concentrated cell extracts were then serially diluted 

with M9 media in a 1:1 ratio for eight dilutions. 

 

3.3.3. In vitro organ culture (IVOC) E. coli O157:H7 adherence assay 

Necropsy samples were obtained from eight Hereford × Angus steers using standard 

methods (Van Baale et al. 2004; Baines et al. 2008b; Baines et al. 2008c). Jejunum 

tissues (30 cm) were removed within 2 min of release of the intestinal tract from the 

carcass and each piece was placed in 200 ml oxygenated Dulbecco’s Modified Eagle’s 

Medium (DMEM; high glucose, Hyclone, Logan, UT) supplemented with bovine 

albumin. The tissue was maintained at 4°C and transported back to the laboratory. Upon 

arrival, the tissue was cut open, washed using PBS at 4°C and 2.5 cm
2
 pieces were 

excised. Excess fat or connective tissue was removed and the complete organ piece 

(mucosa and muscle) was used in order to maintain mucosal structure. Care was taken 

while cutting not to press down on the tissue and distort size. The tissue pieces were 

placed in PBS at 4°C until all sites were processed (about 20 min/animal). Experiments 

were started within 2 h of collecting the tissue sample. 
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The IVOC adherence assay was conducted as previously described (Baines et al. 

2008c) using the human-origin E. coli O157:H7 strains. This assay has been established 

as representing in vivo colonization (Baehler and Moxley 2000; Phillips et al. 2000; 

Dibb-Fuller et al. 2001; Cobbold and Desmarchelier 2004). Briefly, each 2.5 cm
2
 tissue 

piece was drained using a paper towel and placed in approximately 3 ml of DMEM at 

15°C, adjusted to minimally cover the surface of the mucosa. This was critical for 

maintaining tissue viability for the duration of the experiment. To compare E. coli 

O157:H7 lineage adhesion to cattle intestinal tissue, varying concentrations (final 

exposure doses of 10
3
, 10

4
, 10

5
, 10

6
, 10

7
 and 10

8
 CFU/ml) of each E. coli O157:H7 strain 

was applied to the mucosal surface. The tissue pieces were incubated for 4 h under 

standard culture conditions (37°C, 95% humidity and 5% CO2). After incubation, each 

tissue piece was washed six times with 10 ml of PBS to remove any unattached bacteria. 

The tissue was then turned mucosa-side down in 3 to 4 ml of PBS supplemented with 1% 

TritonX-100 (Sigma-Aldrich) and incubated at 4°C overnight. The next day the released 

bacteria were quantified by plating serial dilutions on SMAC agar and counting the non-

sorbitol fermenting colorless colonies. The assay was replicated eight times using the 

jejunum from eight different animals. 

 

3.3.4. In vitro cell culture (IVCC) E. coli O157:H7 adherence assay 

A colonic cell line was developed from a persistent E. coli O157:H7 shedding steer 

(F1112) in 2006 and has since been maintained in our laboratory. The cell line was 

cultured in 75 cm
2
 tissue culture flasks (Fisher Scientific) in DMEM supplemented with 

10% fetal bovine serum (FBS; Hyclone) and gentamicin (50 µg/ml, Sigma-Aldrich) 
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under standard culture conditions.  Cells were sub-cultured by trypsinization of the 

monolayer with 5-10 ml of 0.25% trypsin-EDTA solution (Sigma-Aldrich) for 2-5 min, 

collecting and then centrifuging the cell suspension at 2 087 ×g for 10 min.  The 

supernatant was decanted and the cell pellet re-suspended in the culture medium. Cells 

were added to 6-well multi-well Falcon plates (Fisher Scientific) at a density of 

approximately 10
3 

cells. Cells were cultured until confluent (approximately 1 week) and 

the culture medium changed every three days.  

The IVCC adherence assay was performed with all human- and bovine-origin E. 

coli O157:H7 strains. The same methodology was used as described above for the IVOC 

E. coli O157:H7 adherence assay with a few modifications to accommodate the use of the 

colonic cell line. To compare E. coli O157:H7 strain colonization to the colonic cell line, 

each well of confluent cells was washed once with DMEM following which 3 ml of 

DMEM was added to each well to remove any residual FBS or antibiotic that could affect 

bacterial adherence. To each well, a 100 μl aliquot of each E. coli O157:H7 strain was 

added to deliver final exposure doses of 10
3
, 10

4
, 10

5
, 10

6
, 10

7
 and 10

8
 CFU/ml. The cell 

cultures were incubated for 4 h under standard culture conditions. The medium was 

replaced for the highest dose after 2 h to maintain pH. At the end of the experiment, cell 

monolayers were washed four times with 10 ml of PBS to remove any unattached 

bacteria. To release the bacteria from the cells, 2 ml of PBS supplemented with 1% 

Triton X-100 was added to each well and incubated overnight at 4°C. Serial dilutions of 

the released bacteria were performed the next day and quantified by plating onto SMAC 

plates. Plates were incubated at 37°C overnight and E. coli O157:H7 was quantified by 

counting the non-sorbitol fermenting colonies that appeared colorless. The IVCC assay 



 59 

was replicated 5 times for each strain with a minimum of 3 different culture dates for the 

colonic cell line. 

The cell extracts from a human-origin E. coli lineage I strain have been shown to 

enhance the colonization of a bovine-origin E. coli lineage I strain that had significantly 

lower colonization on its own (Baines et al. 2008c). To understand the role of secreted 

materials (ie. cytotoxins) or materials released from the cell surface (ie. Surface proteins, 

endotoxins), the colonic cell line was exposed to about 80 ng of cell extract from each of 

the E. coli O157:H7 strains in conjunction with a 10
8
 CFU/ml of the least adherent E. coli 

O157:H7 strain, ECI 1717. This assay was replicated three times for the cell extracts 

produced from all strains except for ECI 1717.  

 

3.3.5. Lawn assay 

The lawn assay was used to compare the toxicity of cell extracts from the E. coli 

O157:H7 strains to epithelial cells. Epithelial cells were extracted from the jejunum and 

the lawn assay performed using the cell extracts from human and bovine E. coli O157:H7 

strains as described previously (Baines et al. 2008d). Briefly, each tissue loop was opened 

and washed with epithelial cell saline (ECS; 137 mM NaCl, 2.7 mM KCl, 1 mM CaCl2, 

0.4 mM NaH2PO4, 5.6 mM glucose, 44 mM NaH2CO3, pH 7.4; Sigma-Aldrich) until all 

luminal contents were removed. A mucosal strip was scraped away from the underlying 

tissues, finely diced, added to 200 ml of chelating buffer at 4°C (ECS supplemented with 

17 g/l D-glucose, 8.8 g/l sodium citrate, 4.2 g/l citric acid and 2.9 g/l EDTA, pH 7.4; 

Sigma-Aldrich) and stirred at 600 rpm in a beaker for 2 to 5 min. The supernatant was 

decanted and replaced with fresh chelating buffer followed by stirring for another 20 min. 
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The supernatant containing cells was collected, centrifuged at 1 262 ×g for 6 min.  The 

resulting pellet was washed three times with DMEM containing 50 μg/ml gentamicin. 

The final epithelial cell pellet was re-suspended in ECS. A 1% SeaKem Agarose (Mandel 

Scientific, Guelph, Ontario, Canada) support gel was poured into a petri dish and left to 

gel for 30 min. Next, the lawn agarose [3 ml of 3.7% SeaPlaque agarose (Mandel 

Scientific)] was mixed with 3 ml of cell suspension and poured over the support agarose.  

Each toxin dilution (3 μl) was applied and the treated lawn was incubated for 4 h under 

standard culture conditions. The amount of total cell extract applied was 0.1 to 120 ng. 

The lawn was stained with 0.1% trypan blue (Sigma-Aldrich) and de-stained using 1.84% 

KCl. Plates were scored the same day and the amount of cell extract activity was defined 

as the threshold dose (ng) of cell extract in the dilution series to cause areas of cell death 

as observed by the presence of a blue spot on the lawn. 

 

3.3.6. Real time PCR analysis 

To determine which cytotoxins may be expressed by the strains according to origin and 

lineage type, levels of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2) and ehxA 

(enterohemolysin) mRNA were quantified from all strains using real time PCR. Cells 

were cultured to log phase in LB broth and total RNA was extracted using RNeasy Mini 

Kit (Qiagen, Inc., Mississauga, Ontario, Canada) using RNAProtect bacteria reagent 

(Qiagen, Inc.). Extracted RNA was quantified using Quant-iT Ribogreen RNA assay kit 

(Invitrogen, Burlington, Ontario, Canada) on a Nanodrop 3330 fluorometer 

(ThermoScientific, Wilmington, DE). Analysis was performed using one-step Brilliant II 

QRT-PCR Master Mix Kit (Stratagene, La Jolla, CA). Relative quantification was 
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performed on an Mx3000p Real-time PCR system (Stratagene) with previously described 

primers, probes and cycling conditions for stx1 (Sharma and Dean-Nystrom 2003), stx2 

and ehxA (Rashid et al. 2006). Each plate setup included a standard curve generated by 

reverse transcribing known concentrations of Sakai RNA (50, 25, 12.5, 6.25, 3.125 ng). 

Relative gene mRNA levels were analyzed using the built-in comparative threshold cycle 

(Ct) methods (ΔΔCT) of MxPro Real-Time software (version 4.01) normalized using the 

housekeeping gene gnd and calibrated to strain Sakai. All real-time PCR reactions were 

conducted in triplicate. 

 

3.3.7. Statistical analysis 

The IVOC adherence assay and IVCC adherence assay data were log transformed to 

normalize the data prior to analysis. All data were analyzed using ANOVA followed by a 

posthoc Tukey’s test for comparison of the means. For the IVOC, the model consisted of 

two factors, lineage type and dose. For the IVCC, the model consisted of two factors, 

strain origin and lineage type. Individual strain colonization was analyzed with dose as a 

factor. Threshold adherence, which was defined as the lowest exposure dose to have 

significantly higher adherence (P < 0.05) than a dose of 10 times fewer bacteria, was 

determined. For all data analysis, P < 0.05 was considered significant and P > 0.05 was 

non-significant. 
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3.4. RESULTS 

3.4.1. IVOC E. coli O157:H7 adherence assay 

There was a significant difference (Table 3.2) in colonization of the jejunum by E. coli 

O157:H7 human-origin strains (P = 0.001, Fig. 3.1A) and a significant dose-dependent 

response to E. coli lineage colonization (P = 0.001, Fig. 3.1B). The strain hierarchy for 

colonization of intestinal tissue was Sakai, 84, ECI 1717 > 86, 197. The strains Sakai, 

ECI 1717 and 84 colonized equally (P = 0.653), while strains 86 and 197 had lower 

colonization levels (P = 0.502).  Strains Sakai and 84 had significantly higher 

colonization compared with strains 86 and 197 (P < 0.05). Strain ECI 1717 had 

significantly higher colonization than strain 86 (P = 0.01) but ECI 1717 was not 

significantly different from strain 197 (P > 0.524). This apparent contrast between strains 

ECI 1717 (lineage II) and Sakai (lineage I)/84 (intermediate lineage) was related to a 

consistent but not significantly lower colonization in all assays. At the highest doses, 

strains Sakai and 84 had approximately ten times higher colonization than the rest of the 

strains (Fig. 3.1A). At 10
3
-10

5
 CFU, strain 84 had the highest colonization, 

approximately ten times higher than the next highest strain, ECI 1717. Throughout the 

dose range, the lineage I strain, Sakai, was the most adherent strain while the lineage II 

strain, ECI 1717, provided variable adherence depending on the replicate. This variability 

was also observed for the intermediate lineage strains but the extent of variability was 

dependent on the exposure dose. The removal of this variable by using cultured cells 

allows for an examination of the ability of strains to colonize colonic cells thus 

supporting a role for a cell culture model in understanding E. coli O157:H7 infections in 

cattle. In addition, the intermediate lineages (84, 86, 197) when averaged had about a ten- 



 63 

Table 3.2. Interactions and effects of lineage type, strain origin and E. coli O157:H7 

exposure dose on E. coli O157:H7 adherence to bovine tissue and cells, cytotoxin 

activity, and delected virulence gene mRNA levels. 

 

 

 

  

Variable Effect/Interaction P  value 

E. coli O157:H7 adherence to tissue strain  0.001 

 dose 0.001 

E. coli O157:H7 adherence to cells strain*dose 0.001 

 lineage 0.001 

 strain origin 0.001 

 dose 0.001 

Cytotoxin activity lineage 0.05 

 strain origin 0.05 

stx1 mRNA levels lineage 0.70 

 strain origin 0.001 

stx2 mRNA levels lineage 0.007 

 strain origin 0.33 

ehxA mRNA levels lineage 0.15 

 strain origin 0.70 
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Figure 3.1. Escherichia coli O157:H7 lineage and strain colonization of the jejunum 

from cattle (n=8) using an in vitro organ culture (IVOC) adherence assay.  Lineage I 

(Sakai), lineage II (ECI 1717) and intermediate lineages (84, 86, 197) were assessed for 

colonization. A. Comparison of individual strains. B. Comparison of individual lineage 

types. 
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fold lower adherence relative to lineage I (Sakai) and lineage II (ECI 1717) strains. 

Within environmental exposure dose ranges, the range of E. coli O157:H7 density that 

cattle would be exposed to under natural circumstances (typically 10
3
- 10

5
 CFU/ g) 

(Naylor et al. 2003), there was a significant but low colonization of the jejunum by all 

lineages (Fig. 3.1B). Further, at the lowest exposure doses, detection and enumeration of 

attached E. coli O157:H7 was interfered with by the presence of endogenous non-

O157:H7 E. coli. The effect of the endogenous non-O157:H7 E. coli prevented the ability 

to measure E. coli O157:H7 adherence at doses lower than 10
3
 CFU. The lineage II strain 

had the equivalent of a lineage I or much lower colonization depending upon the replicate 

or animal tissue used. 

 

3.4.2. IVCC E. coli O157:H7 adherence assay 

A similar hierarchy for E. coli O157:H7 lineage adherence was obtained with the colonic 

cell line as observed for the jejunum tissues. To ensure that this hierarchy was not related 

to strain origin, five additional E. coli O157:H7 strains were selected, four of which 

represented previously used human LSPA-6 genotypes but were of bovine origin. The 

strain hierarchy for colonization of the colonic cell line was 24, H3-2R > Sakai, 25, 12, 

138 > 86, 197 > 84 >ECI 1717. However, this type of strain hierarchy is difficult to 

interpret due to differences in the low dose colonization between the human and bovine-

origin strains. For example, the interaction of lineage type, strain origin and dose resulted 

in Sakai having lower adherence than H3-2R at doses below 10
5
 CFU/ml but higher 

adherence at the highest dose. 
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We observed a significant dose-dependent response to E. coli O157:H7 

colonization of the colonic cell line (P = 0.001). The human-origin lineage I strain Sakai 

had a threshold adherence below 10
3
 CFU/ml (Fig. 3.2A). The human-origin strains ECI 

1717, 86 and 197 had threshold adherence at 10
4
 CFU/ml (Fig. 3.2A). The human origin 

intermediate lineage strain 84 had a threshold adherence at 10
5
 CFU/ml (Fig. 3.2A). This 

suggests that among human-origin strains of E. coli O157:H7, lineage I strains may have 

a higher probability of colonizing at low environmental exposure doses (10
3
-10

5
 

CFU/ml). All bovine-origin strains had a threshold adherence below 10
3
 CFU/ml (Fig. 

3.2B). All strains had a maximum adherence at 10
7
 CFU/ml; there were no significant 

differences in adherence between the 10
7
 and 10

8
 CFU/ml doses. There was a significant 

difference in E. coli O157:H7 lineage adherence to the colonic cell line (P = 0.001, Fig. 

3.3A). The lineage I strains had greater adherence than the remaining lineages regardless 

of their origin, human or bovine (Fig. 3.3A). The lineage II strains had the lowest 

adherence compared with the other lineages, while intermediate lineages had an 

adherence that was between the lineage I and II strains (Fig. 3.3A). Finally, there was a 

significant difference in E. coli O157:H7 strain adherence to the colonic cell line based 

on strain origin (P = 0.001, Fig. 3.3B). The bovine-origin strains had higher adherence at 

environmental exposure doses (10
3
-10

6
 CFU/ml). In contrast, at higher exposure doses 

(10
7
-10

8
 CFU/ml), there were no differences between human and bovine origin strains 

(Fig. 3.3B). This suggests that bovine-origin E. coli O157:H7 strains have a higher 

probability of colonizing cattle than human-origin strains. There was a significant 

strain/dose interaction (P = 0.001) that supports the differences in the slope of the 

dose/response curves for the bovine strains compared with the human strains.  
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Figure 3.2.  Escherichia coli O157:H7 strain colonization of the colonic cell line from 

cattle (n=5) using an in vitro cell culture colonization assay. Lineage I (Sakai, 24), 

lineage II (ECI 1717, 25) and intermediate lineages (84, 86, 197, 12, 138, H3-2R) were 

assessed for colonization. A. Comparison of individual human-origin strains. B. 

Comparison of individual bovine-origin strains. 
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Figure 3.3. Escherichia coli O157:H7 lineage and strain origin effect on colonization of 

a colonic cell line from cattle (n=5). A. Comparison of individual lineage types. Lineage I 

(Sakai, 24), lineage II (ECI 1717, 25) and intermediate lineage (84, 86, 197, 12, 138, H3-

2R) strains. B. Comparison of different strain origins. Human-origin strains (Sakai, ECI 

1717, 84, 86, 197) and bovine-origin strains (24, 25, 12, 138, H3-2R). 
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Sakai had significantly lower adherence than strains 24 and H3-2R at the 10
3
 -10

6
 

CFU/ml doses (P < 0.01) yet similar adherence at the 10
7
 -10

8
 CFU/ml doses (Fig. 3.2A, 

B). Sakai also had significantly higher adherence than ECI 1717 (P = 0.001). In contrast, 

Sakai was not significantly different from strains 84, 86, 197, 25, 12 and 138 (P > 0.142). 

ECI 1717 had significantly lower adherence than strains 86, 197, 24, 25, 12, 138 and H3-

2R (P < 0.02). In contrast, ECI 1717 was not significantly different from strain 84 (P = 

0.14). Strain 84 had significantly lower adherence than strains 24, 12, 138 and H3-2R (P 

< 0.05). Strain 84 was not significantly different from strains 86, 197 and 25 (P > 0.35). 

Strain 86 had significantly lower adherence than strain 24 at the four lowest doses (P = 

0.001). Strain 86 was not significantly different from strains 197, 25, 12, 138 and H3-2R 

(P < 0.06). Strain 197 had significantly lower adherence than strains 24, H3-2R (P < 

0.01). Strain 197 was not significantly different from strains 25, 12 and 138 (P > 0.06). 

Strain 24 had significantly higher adherence than strain 25 (P = 0.001). Strain 24 was not 

significantly different from strains 12, 138 and H3-2R (P > 0.139). Strains 25, 12, 138 

and H3-2R were not significantly different from each other (P > 0.47). 

 Cell extracts from the strains differentially affected the colonization of ECI 1717 

to a colonic cell line (P = 0.001, Fig. 3.4). The addition of cell extracts to the same strain 

from which the toxins were derived was previously found to have little effect on 

adherence (data not shown); therefore the strain with the lowest adherence was selected 

for this assay as it would be expected to have the largest increase in adherence to the cell 

line. The cell extract from the human-origin lineage I strain Sakai (P = 0.05) increased 

colonization as compared to the cell extracts from all other strains. The cell extracts from 

the human-origin intermediate lineage strains (84, 86 and 197), bovine origin lineage II  
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Figure 3.4. Effect of Escherichia coli O157:H7 cell extracts on ECI 1717 colonization of 

a colonic cell line (n=3). The colonic cell line (10
5
 cells) was exposed to ~80 ng of cell 

extracts from each of the E. coli O157:H7 strains in conjunction with 10
8
 CFU of the 

least adherent E. coli O157:H7 strain, ECI 1717. ECI 1717 without the cell extract 

addition is denoted by “control”. * denotes a significant increase in E. coli O157:H7 

adherence. 
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strain (25) and bovine-origin intermediate lineage strains (12, 138 and H3-2R) did not 

significantly increase the adherence relative to ECI 1717 alone.   

 

3.4.3. Lawn assay 

The lawn assay provides a threshold cell extract dose that causes epithelial cell death as 

determined by the uptake of trypan blue which is visualized as a blue spot. The hierarchy 

for the threshold doses of the cell extract activity was human strains < bovine strains (P = 

0.05); lineage 1< intermediate lineages < lineage II (P = 0.05). The strain hierarchy for 

the threshold dose (ng) for the cell extract activity was Sakai < 84, 86, 12 < H3-2R, ECI 

1717 < 138 < 24 < 197, 25 (P < 0.05, Fig. 3.5).  

 

3.4.4. Real time PCR analysis 

In vitro mRNA levels of genes for stx1(Shiga toxin 1), stx2 (Shiga toxin 2) and ehxA 

(enterohemolysin) were quantified and data were described relative to the mRNA levels 

of the human-origin lineage I strain, Sakai. The strain hierarchy for average virulence 

gene mRNA levels was Sakai > 24, 12, 138 > 86, 197 > H3-2R > 84 > 25 (Fig. 3.6). 

There was a significant lineage type × strain origin interaction for levels of stx1 mRNA 

(P = 0.033, Fig. 3.7) whereby human-origin strains had significantly higher mRNA levels 

than bovine-origin strains (P = 0.001). There were no differences in levels of stx1 mRNA 

between lineage types (P > 0.700). We did not find a significant interaction of lineage 

type × strain origin for levels of stx2 mRNA (P = 0.059). For stx2, there was no 

difference between human and bovine-origin strains (P = 0.330), but the lineage I strains 

had significantly higher mRNA levels than lineage II and intermediate lineage strains (P  
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Figure 3.5. Threshold dose (ng) for cell extract activity produced by E. coli O157:H7 

strains using the absorptive epithelial cells from the jejunum of cattle (n=7). A. 

Comparison of strains. B. Comparison of strain-origin (human-origin strains: Sakai, ECI 

1717, 84, 86, 197; bovine-origin strains: 24, 25, 12, 138, H3-2R) and lineage types 

(lineage I strains: Sakai, 24; lineage II strains: ECI 1717, 25; intermediate lineage strains: 

84, 12, 86, 138, 197, H3-2R). 
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Figure 3.6 Relative levels of stx1, stx2 and ehxA mRNA from different Escherichia coli 

O157:H7 strains (n=10) and lineages (n=6). A. Comparison of strains. B. Comparison of 

individual lineage types (lineage I strains: Sakai, 24; lineage II strains: ECI 1717, 25; 

intermediate lineage strains: 84, 12, 86, 138, 197, H3-2R). 
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Figure 3.7.  Escherichia coli O157:H7 strain-origin effect on the relative production of 

stx1, stx2 and ehxA mRNA (n=5). Human-origin strains (Sakai, ECI 1717, 84, 86, 197), 

bovine-origin strains (24, 25, 12, 138, H3-2R). 
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< 0.007). There was no difference in stx2 mRNA levels between lineage II and 

intermediate lineage strains (P = 0.992). We did not find a lineage type × strain origin 

interaction for mRNA levels of ehxA (P = 0.269). There were no differences in mRNA 

levels of ehxA based on strain origin (P = 0.697) or lineage type (P = 0.147).  

 

3.5. DISCUSSION 

Mature cattle challenged with E. coli O157:H7 respond with heterogeneous shedding 

periods, the duration and magnitude of which are affected by exposure dose (Besser et al. 

2001), animal age (Cray and Moon 1995) and an uncharacterized mucosal factor (Baines 

et al. 2008b). However, it is still relatively unclear why one animal becomes more 

heavily colonized than another when exposed to the same dose and strain composition. 

One possibility is that alternative binding sites exist in some animals that allow for 

greater colonization. Stx2 enhances E. coli O157:H7 colonization in cattle (Baines et al. 

2008a) and a similar impact has been documented in a less disease- susceptible animal 

model (Robinson et al. 2006). In the latter system, the Stx2 enhances the expression of 

non-Tir based colonization sites, nucleolin, and inclusion of a Stx2 expressing strain with 

a non-expressing strain results in an equivalent and higher colonization by both strains 

resulting in a longer duration of shedding. Generally, cattle shedding studies have used 

lineage I strains associated with clinical human disease cases and typically cattle 

challenges result in about a ten day shedding period (Bach et al. 2002b). In multi-strain 

studies using lineage I (human origin), intermediate lineage (human origin) and lineage I 

(bovine origin) strains, the shedding period expands to about forty-five days (Bach et al. 

2005a) suggesting that the bacteria may be using a similar mechanism of alternate 



 76 

binding sites in cattle to facilitate prolonged colonization. Earlier studies using the same 

multiple strains suggested that cell extract activity reflects E. coli O157:H7 strain 

colonization (Baines et al. 2008c; d), however a limited number of lineage and origin 

types were used. In the current study, we examined this question in more detail and 

determined that bovine-origin strains had less active cell extracts, as defined by the 

threshold cell extract dose to cause cell death in the lawn assay, compared with human-

origin strains, confirming the previous results. However, bovine-origin E. coli O157:H7 

strains had much higher colonization than human-origin strains at environmental doses, 

which is defined as the range of E. coli O157:H7 density that cattle would be exposed to 

under natural circumstances (typically 10
3
- 10

5
 CFU/ g) (Naylor et al. 2003), suggesting 

that unknown factor(s) other than secreted cell extracts are important for cattle 

colonization. In addition, we examined the role of lineage type in E. coli O157:H7 

colonization in cattle and found that lineage I strains more readily colonize the intestinal 

tract of cattle than other lineages. The hierarchy for lineage cell extract activity was 

lineage I > intermediate lineages > lineage II strains. This is in agreement with the 

previously mentioned studies (Baines et al. 2008d; c), but expands the comparison to 

include lineage II E. coli O157:H7 strains. Further, the same lineage hierarchy was 

observed for adherence with the IVCC assay, suggesting that cell extracts may be 

important to E. coli O157:H7 colonization of cattle and should be investigated further for 

their role in colonization. 

Shiga toxins are key virulence factors of human disease with both lethal and 

sublethal effects on target cells (Valdivieso-Garcia et al. 1996; Ferens and Hovde 2000; 

Schuller et al. 2004; Robinson et al. 2006; Ferens and Hovde 2007). Only a few studies 
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are available that have examined the role of lineage or origin on Shiga toxin activities or 

the promotion of E. coli O157:H7 colonization of cattle. Inclusion of Stx2 enhances the 

colonization of a human-origin lineage I strain by a factor of 100 (Baines et al. 2008a) 

and in another study (Baines et al. 2008c), inclusion of the cell extract mixture from a 

human-origin lineage I strain increased colonization of a bovine-origin strain 10 fold 

compared with a 4 fold change for a human-origin lineage I strain. This suggested that 

the bovine-origin strains could utilize the cell extracts to enhance their own colonization. 

In the current study, we examined the in vitro mRNA levels of stx’s and ehxA to 

determine whether the amount or type of cytotoxin expressed could explain differences in 

E. coli O157:H7 strain origin and lineage colonization of cattle. We found that human-

origin strains had higher mRNA levels of stx1 than bovine-origin strains indicating that 

this toxin may be more important to the infection process in humans than in cattle. In 

cattle, Stx1 is readily degraded in the crypts of the colon (Hoey et al. 2003) and there are 

no apparent receptors present in the vascular tissue (Hoey et al. 2002) confirming that 

this toxin is unlikely to be critical for E. coli O157:H7 colonization of cattle. Previously, 

other researchers were unable to find differences in stx2 mRNA levels in feces from 

clinical human cases and cattle that were experimentally inoculated with a human-origin 

strain of E. coli O157:H7 (Rashid et al. 2006). Similarly, in the current study, bovine and 

human-origin strains had similar levels of stx2 mRNA suggesting that this toxin is of 

equal importance for colonization of cattle and humans. Finally, ehxA mRNA levels did 

not differ between human- and bovine-origin strains making it unclear whether this toxin 

contributes to the E. coli O157:H7 colonization process of cattle. All lineages had similar 

stx1 mRNA levels, while stx2 mRNA levels were higher in lineage I strains than lineage 
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II or intermediate lineages and this toxin has been shown to increase E. coli O157:H7 

colonization (Baines et al. 2008a) confirming a link between Stx2 activity and higher 

strain colonization of cattle. In contrast, ehxA mRNA levels were highest in intermediate 

lineages with lineage I and II having similar levels. This supports a role for stx2 

expression in the higher lineage I colonization of cattle tissue. In our study, in vitro 

relative mRNA quantification data may have limitations for application to in vivo systems 

and we recognize that expression can be affected by numerous factors such as growth in 

the presence of epithelial cells (Jandu et al. 2009). Nevertheless, in vitro differences 

observed between strains of various origins or lineage types should not be overlooked as 

it is plausible that they would also be witnessed in vivo. Others too have previously used 

in vitro mRNA quantification to model expression that may occur within the cattle 

intestinal tract (Dowd and Ishizaki 2006; Baker et al. 2007; Dowd and Williams 2008). 

Future in vivo expression studies are crucial for inferring how expression may affect E. 

coli colonization of cattle. Another limitation of this study was the small strain set used; 

despite this, the highly significant interactions obtained provide novel insight into E. coli 

O157:H7 pathogenicity.  

Tissue- and cell line-based E. coli O157:H7 colonization assays did have 

differences in lineage and strain colonization. There was significant variability in the 

colonization of lineage II and intermediate lineage strains in any given tissue where the 

colonization could be as high as a lineage I strain or as low as a lineage II strain. This 

variability is possibly due to as yet undefined mucosal factors, such as alternate binding 

sites (Baines et al. 2008b) which necessitated increased replication to detect differences. 

This limitation is particularly present at environmental dose ranges (Baines et al. 2008c) 



 79 

and further supports the efficacy of a bovine cell culture model which provides more 

consistent replication. In addition, the lower environmental dose ranges used in this study 

gave greater variability than higher doses in E. coli O157:H7 colonization of the cattle 

tissue. This was associated with a difficulty in detecting the pathogen in the presence of 

the endogenous non-O157 E. coli. Again, the IVCC colonization assay did not have this 

problem as there are no endogenous bacteria allowing for better separation of strain 

differences. This allowed us for the first time, to detect the significance of strain origin to 

E. coli O157:H7 adherence of cattle. We conclude that the IVCC assay is a rapid, easy 

and sensitive method for evaluating the contribution of E. coli O157:H7 virulence factors 

to colonization of host-specific cells.  

The E. coli O157:H7 lineage I and II strains are thought to cluster as separate 

phylogenetic branches and lineage I is the ancestral form, while lineage II is derived 

through changes to or loss of virulence genes (Kim et al. 1999; Kim et al. 2001; Yang et 

al. 2004; Steele et al. 2007). E. coli O157:H7 lineage I strains cause increased human 

illness (Kim et al. 1999; Ziebell et al. 2008) and colonize bovine tissues at a higher level 

than lineage II strains. The relative abundance of E. coli O157:H7 lineage I strains across 

different geographic areas has been attributed to the rapid dissemination of the newly 

evolved pathogen into a previously unoccupied ecological niche within human and 

bovine populations (Yang et al. 2004). However, different geographic subpopulations of 

lineage II strains have been identified and even though the changes from lineage I to 

lineage II strains are thought to predate the spread of the lineage II strains (Kim et al. 

2001), it is likely that the genetic changes separating these different groups of lineage II 

strains are due to losses or rearrangements of virulence factors. Indeed, it has been 
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suggested that such genomic changes could have a high frequency due to the relative 

abundance and homology of numerous prophage-like genomic inserts encoding virulence 

and regulatory genes within the E. coli O157:H7 genome (Zhang et al. 2007). The 

likelihood of these different lineage II strains becoming or remaining successful within 

bovine populations despite decreased individual colonization capabilities is increased 

dramatically due to the previously unknown niche that is supplied by highly colonizing E. 

coli O157:H7 lineage I strains. This mechanism of virulence factor mutation followed by 

“piggy-back” colonization may have contributed to the different lineage II subgroups that 

are presently common within feedlot environments and may explain how multiple 

branches of a lesser colonizing phenotype evolved. The current study is the first of its 

kind to determine that strain origin, lineage type and levels of stx2 mRNA greatly 

influence the amount of E. coli O157:H7 colonization in the jejunum and a colonic cell 

line from cattle. 
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GENERAL DISCUSSION 

Yearly outbreaks of E. coli O157:H7 infection is the source of considerable morbidity 

and mortality via hemorrhagic colitis and HUS (Centre for Infectious Disease Prevention 

and Control 2005; Centers for Disease Control and Prevention 2007) and modeling 

studies have predicted that controlling the pathogen in the cattle reservoir prior to cattle 

processing will have the greatest impact on food safety (Jordan et al. 1999). As such, 

mitigation of E. coli O157:H7 in the feedlot is a primary focus of research. However, 

despite increasing knowledge of the potential benefits of vaccination (Smith et al. 2009; 

Thornton et al. 2009), feeding (Cray et al. 1998; Brashears et al. 2003; Bach et al. 2005a),  

transportation (Cuesta Alonso et al. 2007; Dewell et al. 2008) and slaughtering 

(Bosilevac et al. 2005; Bosilevac et al. 2006) procedures, there has not been a decline in 

the number of clinical cases of E. coli O157:H7 in humans.  

 The recent description of different E. coli O157:H7 lineages that cause varying 

degrees of human illness (Kim et al. 1999; Ziebell et al. 2008) suggests that variation 

exists with regard to how these lineages persist within cattle. Such variation could explain 

some of the conflicting ideas regarding E. coli O157:H7 infection, shedding and survival 

as well as the lack of success in controlling it within the feedlot. While E. coli O157:H7 

lineage based studies exist, their focus has been on surveillance (Kim et al. 2001; Sharma 

et al. 2009) or genetic comparisons (Dowd and Ishizaki 2006; Zhang et al. 2007; Ziebell 

et al. 2008). This thesis encompasses preliminary comparisons of different E. coli 

O157:H7 lineages in regards to their survival in feces and their colonization of the bovine 

digestive tract. 
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 A comparison of E. coli O157:H7 lineages I and II for growth and survival in 

bovine feces was examined in order to observe possible differences which could be 

indicative of the different lineages abilities to re-infect animals within the feedlot and 

possibly the lineages abilities to survive long enough to enter the food supply. It was 

hypothesized that feeding practices combined with the warm summer months may lead to 

increased survival of E. coli O157:H7 lineage I strains compared to lineage II strains, 

increasing the dissemination of lineage I strains into the food supply. This situation could 

in part account for the apparent bias of E. coli O157:H7 lineage I strains being more 

associated with human illness. However, upon investigation there were no differences 

between the two lineages of E. coli O157:H7 in growth or survival in feces over a range 

of temperatures. This suggests that the higher incidence of E. coli O157:H7 lineage I 

strains causing illness is due to another factor or combination of factors, such as 

increased colonization of cattle or humans, increased shedding by cattle or increased 

virulence as compared to lineage II strains.  

 Diets and temperatures used in the study were selected to mimic commonly 

encountered conditions within southern Alberta during peak shedding periods. These two 

factors had a larger effect on E. coli O157:H7 survival than lineage type and affected 

both lineage types equally. E. coli O157:H7 populations were most stable at 12°C in both 

feces from cattle fed either grain or hay but reached their highest concentrations at 25°C. 

However, ambient conditions fluctuate around all of these temperatures; therefore, E. coli 

O157:H7 may experience periods of stability, decline or even growth at different times. 

Fecal composition also affected growth and survival of E. coli O157:H7. It is important 

to note these differences because cattle are commonly switched to high grain diets just 
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prior to slaughter and this could cause an increased prevalence and concentration at the 

processing plant. This effect was observed to be temperature dependant and correlated to 

pH of the grain feces.  

 After determining that E. coli O157:H7 lineages I and II had similar growth and 

survival characteristics in feces, it was hypothesized that lineage I strains may have an 

increased ability to colonize cattle and/or humans. E. coli O157:H7 lineage colonization 

of cattle was investigated because if differences exist, pre-slaughter intervention 

strategies should account for them. Further, intermediate lineage types were investigated 

as well as the more common lineage I and lineage II types in order to determine if the 

relatively rare intermediate lineage types might be of interest for further study. E. coli 

O157:H7 lineage colonization of cattle was compared using two in vitro models, a 

previously described organ culture model (Baines et al. 2008c) and a novel cell culture 

model. Results demonstrate the utility of the cell culture model because it has neither the 

tissue to tissue variability nor the indigenous bacteria that limit the organ culture model, 

yet this cell culture model is able to provide comparable trends to the organ culture 

model. Both of these models demonstrated significantly greater adherence for lineage I 

strains than lineage II and intermediate lineage strains. This result has multiple 

implications. First, enhanced colonization would allow E. coli O157:H7 lineage I strains 

to re-infect cattle within the feedlot at a higher rate than other lineages. Effective 

colonization is also likely to be a pre-requisite for persistent colonization; therefore, it is 

feasible to speculate that lineage I strains would be better able to reach threshold 

adherence levels to become persistently colonized.  Further, increased colonization by 

lineage I strains likely results in increased shedding, increasing the dissemination of these 
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strains to the food supply and further increasing their transmission to other animals on the 

feedlot. Finally, this result suggests that the increased pathogenicity of lineage I strains to 

humans could be related to increased colonization through similar mechanisms.   

 Interestingly, there was a significant effect of an unexpected factor, strain origin. 

Bovine-origin strains of E. coli O157:H7 were observed to have much greater 

colonization than human-origin strains at common environmental doses but the two 

groups had similar colonization at high doses. This suggests that the pathogen may 

become acclimatized to a particular host type and be better able to colonize it, possibly 

through changes in gene expression patterns. 

 In an attempt to better understand these differences in lineage and strain origin 

colonization, comparisons of cell extract activity and cytotoxin gene transcription were 

made among the lineages. Using the lawn assay, it was observed that the cell extracts 

from lineage I strains had a lower threshold dose for causing intestinal epithelial cell 

death than other lineages and were capable of increasing the adherence of a less effective 

colonizing strain. However, it was also observed that human-origin E. coli O157:H7 

strains produced cell extracts that were more toxic than those produced by bovine-origin 

strains despite the increased adherence of the bovine-origin strains, suggesting that cell 

extract activity may only be a predictor of adherence for a subset of E. coli O157:H7 

strains. This is supported by previous reports that Stx2 is not toxic to epithelial cells from 

the jejunum and descending colon of cattle (Baines et al. 2008a) but does increase 

colonization of E. coli O157:H7 (Robinson et al. 2006; Baines et al. 2008a). 

Transcription of mRNA of selected virulence genes was also quantified and lineage I 

strains had higher levels of stx2 than lineage II and intermediate lineage strains 
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supporting the idea that this toxin may play an important role in colonization. With the 

relatively limited comparison of human and bovine-origin E. coli O157:H7 strains, it was 

also observed that human-origin strains had higher levels of stx1 mRNA and while this 

does not explain the enhanced colonization of bovine-origin strains to the bovine colonic 

cell line, it is evidence of differential gene expression between the two origin types. 

Further, lower levels of stx1 mRNA in bovine-origin strains would be expected if 

expression patterns are host specific because cattle lack receptors for Stx1 (Pruimboom-

Brees et al. 2000) and it is instead degraded in the crypt cells of the colon (Hoey et al. 

2003). 

 This thesis has been aimed at further understanding the roles of different lineages 

of E. coli O157:H7 within the feedlot environment and represents an initial stage of 

research within a recently defined and unexplored gap of E. coli O157:H7 knowledge. 

Future studies of E. coli O157:H7 lineage dynamics should further explore the 

mechanism(s) and implications of enhanced E. coli O157:H7 lineage colonization. Such 

studies could include in vivo colonization and shedding studies. Further, the role of strain 

origin should be examined to determine if E. coli O157:H7 strains exhibit host specificity 

or differential expression in different host types. With a better understanding of those E. 

coli O157:H7 groups which pose a greater risk to human health, it may be possible to 

focus mitigation strategies on a subpopulation of E. coli O157:H7 in an effort to reduce 

the risk of this pathogen to the food supply. 
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APPENDICES 

Appendix One 

 

Figure A.1. Relative growth comparison of E. coli O157:H7 strains used for bovine feces 

inoculations. For all strains, 100 µl of overnight growth (18 hours at 37°C) was 

inoculated into 10 ml of pre-warmed TSB followed by incubation at 37°C. Cell density 

was monitored spectrophotmetrically (OD640) for 24 hours. Blank refers to 10 ml of pre-

warmed TSB inoculated with 10 µl of sterile TSB and incubated at 37°C. 
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Appendix Two 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. Volatile fatty acid content of grain and hay feces incubated at 4°C, 12°C and 

25°C separated into its organic acid components. Values for iso-butyric, iso-valeric, 

valeric and caprioc acids were below limits of reliable detection and are therefore not 

included. Mean ± standard error values represent average acid contents from duplicate 

Sakain, E3081 and control feces inoculations. 
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