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Abstract: Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic
resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms).
Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity
and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria
(quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co(HL)2)
synthesized from (E)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole (HL) is reported
herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR
system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a
possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by
molecular modeling with the coordination compound ligand having stronger predicted interactions
than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal
group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.

Keywords: antibacterial resistance; antivirulence/antipathogenic compounds; biofilm prevention;
cobalt complex; furvina; pyocyanin; pyoverdine; quorum sensing inhibition; transcriptional activator
protein LasR

1. Introduction

The discovery of antibiotics during the twentieth century is considered one of the most important
achievements in the history of medicine, having saved humans from a large number of life-threatening
and debilitating diseases [1,2]. Although antibiotics have proven to be powerful drugs for the control
of infectious diseases, their extensive and unrestricted use over the last century has imposed selective
pressure upon bacteria, leading to the development of resistance. According to the World Health
Organization (WHO), antimicrobial resistance is a worldwide problem which is considered a major
threat to the treatment of infectious diseases [3]. In addition to this serious problem, the premise that
bacteria in biofilms are highly resistant to antimicrobials (100–1000 times more) when compared to their
planktonic counterparts presents another obstacle towards the treatment of bacterial infections [4,5].
For some bacteria, working together as a group provides a means to build a defense that is impossible
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to achieve by planktonic cells [2]. Hence, these observations highlight a strong need to develop
therapies that can provide sustainable and long-term effectiveness against bacterial biofilms [2,6].

Typically, therapies with antibiotics are meant to affect bacterial viability, placing a strong
selective pressure on bacteria to develop resistance mechanisms. For that reason, much research
has been conducted in order to break out of this vicious cycle by interfering with bacterial systems
responsible for pathogenicity/virulence [7]. In this context, attention has been focused on strategies
for interfering with the quorum sensing (QS) systems of pathogenic bacteria, in order to target
their pathogenicity/virulence and to develop new anti-infective therapies. QS is an intercellular
communication system mediated by diffusible chemical signal molecules termed autoinducers (AIs)
that control gene expression patterns and therefore allows bacteria to synchronize their behavior [8].
In many cases, the responses prompted by QS signals contribute directly to pathogenesis through the
production of virulence determinants, such as toxins and proteases. Additionally, QS can contribute to
behaviors such as biofilm development that enable bacteria to acquire resistance against antimicrobial
compounds [2]. If these efforts to coordinate bacteria behavior are blocked, it is possible that bacterial
adaptability will be reduced, facilitating the host immune system to combat the infection and thus
reducing the strong selective pressure imposed by conventional antibiotics [9]. Moreover, bacteria will
be less able to form organized microbial communities that promote pathogenesis and resistance,
such as biofilms [2]. QS inhibitors (QSI) can also improve therapy with antibiotics increasing their
effectiveness, favoring the use of lower doses and avoiding the indiscriminate use of broad-spectrum
antibiotics [10].

The relationships between QS, virulence regulation and biofilm formation have been most
extensively studied in Pseudomonas aeruginosa. Therefore, it is not surprising that most of the
research on QSI has been centered on this bacterium as a model system [9]. P. aeruginosa is
a Gram-negative opportunistic pathogen associated with biofilm-related nosocomial infections
such as ventilator-associated pneumonia and chronic lung infection in cystic fibrosis patients [11].
Furthermore, it is associated with a high incidence of antibiotic resistance and biofilm formation [12].
P. aeruginosa employs at least four different QS circuits to regulate the production of virulence
factors and promote biofilm development/maturation, namely the LasRI and RhlRI (LuxRI-type
systems), the Pseudomonas quinolone signal (Pqs), and the Integrated Quorum Sensing Signal
(IQS) [11]. QS genes function in a hierarchical manner with the prominent LasRI system controlling
the activity of RhlRI circuit and subsequently the Pqs. The IQS is also strongly controlled by
LasRI under rich medium conditions [13]. LasRI and RhlRI systems comprises a transcriptional
regulator (LasR and Rh1R, respectively) and its cognate N-acyl homoserine lactone (AHL) signal
(N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-butyryl-L-homoserine lactone
(C4-HSL), respectively), which is synthesized by the AHL synthase (LasI or RhlI, respectively) [14,15].
These systems are responsible for the regulation of virulence factors production, such as
protease, exotoxin A, siderophores and pyocyanin, among others. Additionally, the AHL-based
QS system triggers a third P. aeruginosa quinolone signaling system by producing the AI
2-heptyl-3-hydroxy-4(1H)-quinolone (PQS). This system regulates the expression of virulence factors,
biofilm formation, and bacterial motility [12]. As such, new chemical compounds that can disrupt
P. aeruginosa QS signaling pathways and related mechanisms are welcome for the treatment of
important infectious diseases.

The thiazole ring is one of the most important scaffolds in medicinal chemistry [16].
In our previous work, a hydrazonyl-thiazole-based compound, (E)-2-(2-(pyridin-2-ylmethylene)
hydrazinyl)-4-(p-tolyl)thiazole (HL, Scheme 1), was synthesized in order to test its activity against
cancer cells. Due to poor solubility in culture medium, the activity of HL could not be tested,
so its cobalt(III) complex ([Co(HL)2]BF4, Scheme 1) was prepared. Our results revealed that Co(HL)2

showed stronger activity on human mammary adenocarcinoma (MCF-7) cancer cells than cisplatin [17].
Additionally, the antibacterial activity of Co(HL)2 was tested by the disc diffusion method on several
Gram-positive (Staphylococcus aureus, Clostridium sporogenes, Bacillus subtilis, and Kocuria rhizophila) and
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Gram-negative (Proteus hauseri, P. aeruginosa, Escherichia coli, and Salmonella enterica) strains. The results
obtained showed that Co(HL)2 possesses antibacterial activity comparable to antibiotic amikacin [18].
The latter result encouraged us to test the activity of Co(HL)2 on QS inhibition and QS-dependent
phenotypes, namely biofilm development and virulence factors production.

In the present work, Co(HL)2 was investigated as a P. aeruginosa LasI/LasR QS/biofilm formation
inhibitor and virulence attenuator (pyocyanin and pyoverdine inhibition), as well as its interactions
with a possible target, the transcriptional activator protein LasR, by molecular docking simulations.
To the best of our knowledge, this work reports the first investigation of the activity of a metal complex
on P. aeruginosa signaling pathways and its biofilms. Interestingly, the results show that Co(HL)2 can
inhibit this type of cell-to-cell communications system (LasI/LasR) and underlying phenotypes and
that this complex aids the HL to have a stronger interaction with the target protein than the known
inhibitors (e.g., furvina).
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Scheme 1. Structures of the hydrazonyl-thiazole based compound, (E)-2-(2-(pyridin-2-ylmethylene)
hydrazinyl)-4-(p-tolyl)thiazole (HL) (a) and its Co(III) complex; Co(HL)2 (b).

2. Results and Discussion

2.1. Cordination Complex Stability Analysis

Before evaluation of antimicrobial activity, the aqueous solution behavior of the complex Co(HL)2

with respect to hydrolysis was studied in dimethyl sulfoxide/water (DMSO/H2O, 6% vv−1) at 298 K
over 24 h by ultraviolet/visible (UV/Vis) spectroscopy. The complex was quite stable, as can be seen
from the electronic absorption spectra (See Supplementary Materials, Figure S1). Only a small portion
of the complex (~5%) was hydrolysed during 24 h period.

2.2. Antimicrobial Activity of Co(HL)2

In order to know the inhibitory and bactericidal activities of Co(HL)2, as well as to choose
the suitable concentrations for QS inhibition assays, the minimum inhibitory and bactericidal
concentrations (MIC and MBC) were determined. MIC and MBC values obtained for Co(HL)2

against P. aeruginosa PA14 wild-type and biosensor P. aeruginosa PA14-R3 are presented in Table 1.
Both strains exhibited the same MIC values of 800 µg mL−1. No bactericidal activity was detected
below 1000 µg mL−1.
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Table 1. Minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations values of
Co(HL)2 against P. aeruginosa PA14 wild-type and biosensor PA14-R3.

Compound
P. aeruginosa PA14 P. aeruginosa PA14-R3

MIC (µg mL−1) MBC (µg mL−1) MIC (µg mL−1) MBC (µg mL−1)

Co(HL)2 800 >1000 1 800 >1000 1

1 MBC not found, it is higher than the maximum concentration tested (1000 µg mL−1).

2.3. Co(HL)2 Mediated Inhibition of the 3-oxo-C12-HSL-Dependent QS System of P. aeruginosa

The P. aeruginosa PA14/PA14-R3 co-cultivation system was used to screen the global effect of
Co(HL)2 on the P. aeruginosa 3-oxo-C12-HSL-dependent QS system. Due to this method being revealed
to be sensitive to DMSO, concentrations of this solvent equal to or lower than 6% (vv−1) of the final
volume of cell suspension were applied.

According to Imperi et al. [9], the criteria used for selection of hit compounds were: at least 50%
of relative bioluminescence emission and a maximum of 20% in the reduction of cell growth with
respect to the negative controls (cells with DMSO at 6%). The latter criterion was aimed at avoiding
any unspecific effect of impaired growth on the QS response.

The results of the QS inhibition screening, performed using Co(HL)2 in a range of different
concentrations (6.25 to 1000 µg mL−1), are depicted in Figure 1. Co(HL)2 interfered with
P. aeruginosa 3-oxo-C12-HSL-dependent QS system and its effect was dose-dependent (25 to 100%).
Total bioluminescence reduction was achieved with the higher concentrations evaluated (800 and
1000 µg mL−1). This initial screening assay allowed the identification of Co(HL)2 as a putative
QSI that inhibited the QS response of the P. aeruginosa PA14/PA14-R3 co-cultivation system,
without affecting bacterial growth (Figure 1, secondary y-axis). This is in accordance with the premise
that any compound able to interfere with QS without affecting cell growth can be considered a
promising inhibitor [19]. Indeed, the selection of an effective QSI is based on its specificity for a given
QS regulator with no or little adverse effects on bacteria or host [20].
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Figure 1. Effect of increasing concentrations of Co(HL)2 (6.25 to 1000 µg mL−1) on P. aeruginosa
3-oxo-C12-HSL-dependent QS system (bars) in general and on growth inhibition (dashed line)
(based on the co-culture of wild-type/biosensor). Bioluminescence emissions were normalized to
the cell density of the bacterial culture and expressed as percentages with respect to untreated controls
(cells + DMSO at 6%; relative bioluminescence). Mean values ± standard deviations for at least three
replicates are illustrated.

To further study the effect of Co(HL)2 on the P. aeruginosa 3-oxo-C12-HSL-dependent QS system,
additional assays were performed in order to find out if this compound interfered with the production
and/or detection of the 3-oxo-C12-HSL AI (Figures 2 and 3). Figure 2 shows the effect of Co(HL)2 on
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the production of 3-oxo-C12-HSL. Bioluminescence reductions between 26% and 76% and continuous
decrease of the levels of 3-oxo-C12-HSL produced were found.

Relative to the effect of Co(HL)2 on the AI detection (Figure 3), the data shows a
dose-dependent activity with a maxiumum reduction of 41%. Co(HL)2 demonstrated ability to
interfere with both production and detection mechanisms, being this effect less pronounced on the
3-oxo-C12-HSL detection.
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Figure 2. Effect of increasing concentrations of Co(HL)2 (6.25 to 1000 µg mL−1) on the production of
3-oxo-C12-HSL by P. aeruginosa PA14 (wild-type strain) (bars) and quantification of the 3-oxo-C12-HSL
produced levels (dashed line). Bioluminescence emissions were normalized to the cell density of the
bacterial culture and expressed as percentages with respect to untreated controls (cells + DMSO at
6%; relative bioluminescence). 3-oxo-C12-HSL levels were expressed as percentages with respect to
untreated controls (cells + DMSO at 6%; relative 3-oxo-C12-HSL). Mean values ± standard deviations
for at least three replicates are illustrated.
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Figure 3. Effect of increasing concentrations of Co(HL)2 (6.25 to 1000 µg mL−1) on the detection
of 3-oxo-C12-HSL by P. aeruginosa PA14-R3 (biosensor strain). Bioluminescence emissions were
normalized to the cell density of the bacterial culture and expressed as percentages with respect
to untreated controls (cells + DMSO at 6%; relative bioluminescence). Mean values ± standard
deviations for at least three replicates are illustrated.

2.4. Effect of Co(HL)2 on the Prevention of Biofilm Formation

P. aeruginosa is responsible for chronic infections due to biofilm formation ability. It is known that
QS is an important event that is linked with the different steps of bacterial biofilm development (initial
formation, maturation, and dispersal) and dynamic (heterogeneity, architecture, stress resistance,
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maintenance, and sloughing). The blockage of QS pathways can lead to formation of biofilms more
unstructured/cohesive and susceptible to host defenses and chemical agents favouring the use of
low doses of antimicrobials and leading to an easier removal/eradication [21,22]. Numerous studies
using flow cell chambers for biofilm formation, together with confocal scanner electron microscopy
observations, have shown that a proficient QS system is essential for optimal biofilm development [23].
The first evidence that QS influences biofilm formation in P. aeruginosa was the finding that a LasI
mutant produces a thinner biofilm that was more susceptible to disruption by detergents [24]. In this
context, the preventive effect of putative QSI Co(HL)2 at the MIC (800 µg mL−1) and sub-inhibitory
concentrations (6.25 to 400 µg mL−1) on P. aeruginosa PA14 biomass production was studied (Figure 4).
It was observed that Co(HL)2 significantly decreased the ability of P. aeruginosa to establish biofilms
(p < 0.05). Total biofilm mass productivity reduction was not achieved. However, Co(HL)2 promoted
biomass reductions from 35 to 63%. No effect was observed on the metabolic activity of the biofilm
cells (data not shown). It is known that any compound able to interfere with QS without affecting cell
growth can be considered a promising inhibitor [19].
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Figure 4. Preventive action of Co(HL)2 at MIC (800 µg mL−1) and sub-inhibitory concentrations (6.25
to 400 µg mL−1) on biomass productivity of P. aeruginosa PA14 (wild-type strain) biofilm. Mean values
± standard deviations for at least three replicates are illustrated.

2.5. Effect of Co(HL)2 on the Production of Pyocyanin and Pyoverdine Virulence Factors

P. aeruginosa produces a wide array of virulence factors and evades the immune system by a great
variety of adaptive mechanisms. Treatment of P. aeruginosa infection is difficult to achieve due to the
problem of multidrug resistance and to the production of several virulence factors including pyocyanin,
siderophores, and proteases, among others, that contribute to its pathogenesis [24]. The production
of many of the key virulence factors is controlled by QS. Thus, the disruption of this process by
chemical interference is becoming a topic of increasing interest in the pharmaceutical industry and
academia [25].

Most studies of QS in P. aeruginosa have been focused on its role in pathogenicity. In this context,
the effect of QSI on the inhibition of virulence factor production controlled by QS such as pyocyanin
and pyoverdine was also studied. Pyocyanin, a redox-active small molecule, is one key virulence
factor produced by P. aeruginosa at high cell density in response to the Las and Rhl AHL signal.
In addition to its role as a terminal signal in the QS pathway, this phenazine derivative has the
ability to maintain P. aeruginosa redox balance, mainly under low oxygen conditions, and also protect
it from reactive oxygen species [26]. In addition to this, pyocyanin induces neutrophil apoptosis,
inflammatory response, and neutrophil-mediated tissue damage [27].
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The efficacy of Co(HL)2 at reducing pyocyanin levels was calculated with respect to cell
suspension without treatment. Co(HL)2 demonstrated ability to considerably reduce the amount
of pyocyanin produced as can be observed in Figure 5. A maximum reduction of ~90% was acquired
at 12.5 µg mL−1. No significant growth inhibition was observed.
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Figure 5. Influence of Co(HL)2 on pyocyanin production (bars) and on cell growth (A600nm) (dashed
line) of P. aeruginosa PA14 (wild-type strain) as a function of the different concentrations (6.25 to 1000 µg
mL−1). The levels of pyocyanin were measured in cell-free supernatants from cultures of P. aeruginosa
PA14 (wild-type strain). The total amount of protein was calculated (µg mL−1), normalized per cell
density (A600nm values) and expressed as relative pyoverdine production. Mean values ± standard
deviations for at least three replicates are illustrated.

P. aeruginosa also secretes two types of siderophores, pyoverdine and pyochelin, which are
high-affinity and lower-affinity iron-chelating compounds, respectively, with an important role in the
incorporation of iron in proteins. These iron-chelating molecules compete with mammalian cells for
iron, and when successful sequestration occurs, they starve the host tissues [28]. These molecules are
also involved in the regulation of the expression of genes related with the production of virulence
factors (e.g., exotoxin A, an endoprotease, and pyoverdine itself) which are major contributors to
P. aeruginosa pathogenicity [28]. Any factor influencing the siderophore secretion by P. aeruginosa
would greatly influence the efficacy of this opportunistic pathogen in promoting disease, since they
are important for both bacterial virulence and biofilm development.

To address the question whether Co(HL)2 alters the production of pyoverdine by P. aeruginosa,
the absorbance values of cell-free supernatants from cultures of the P. aeruginosa wild-type strain (PA14)
were assessed in the presence of this compound and compared with negative control (cells + DMSO at
6%). Apparently, Co(HL)2 had no effect on the pyoverdine production (Figure 6).
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Figure 6. Influence of Co(HL)2 on pyoverdine production (bars) and on cell growth (A600nm)
(dashed line) of P. aeruginosa PA14 (wild-type strain) as a function of the different concentrations
(6.25 to 1000 µg mL−1). The levels of pyoverdine were measured in cell-free supernatants from cultures
of P. aeruginosa PA14 (wild-type strain), normalized per cell density (A600nm values) and expressed
as relative pyoverdine production. Mean values ± standard deviations for at least three replicates
are illustrated.

2.6. Molecular Docking Analysis

Given that the transcriptional activator protein complex LasR-3-oxo-C12-HSL can coordinate
the expression of target genes with cell density, including many genes that encode virulence factors
for P. aeruginosa [28], it may be a target for QSI, and so docking was performed on this protein target.
Results from docking showed that the strongest interaction score came from the coordination ligand HL,
rather than from the whole complex (Co(HL)2) (Table 2). In fact, HL formed the strongest interaction,
when compared with the known ligand furvina, as well as the co-crystallized ligand 3-oxo-C12-HSL
(HET-ID OHN) and Co(HL)2.

Table 2. Docking interaction scores (kcal/mol) with transcriptional activator protein LasR.

Compound QPLD Autodock4 Vina

Co(HL)2 - +51.94 −4.0
HL −8.86 −8.41 −10.1

Furvina −4.71 −5.74 −7.0
3-oxo-C12-HSL −8.60 −7.39 −8.7

Indeed, neither Quantum-Polarized Ligand Docking (QPLD) nor Autodock4 could find a strong
interaction or good binding pose for the whole cobalt complex in the binding site, given its large size.
On the other hand, all of the docking programs and scoring functions were in consensus that the
strength of the interaction to the protein was in the order: HL > 3-oxo-C12-HSL > furvina > Co(HL)2.
Based on these results, it may be possible that the coordination complex delivers the ligands to the
site of action of the protein, where they dissociate and form strong protein-ligand complexes with the
transcriptional activator protein LasR. Both functions, delivery and protein-binding, are probably very
important to the ligand′s efficacy [29,30]. This is of additional importance considering that the ligand
HL is less soluble in uncoordinated form as opposed to coordinated cobalt complex form.
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The docked ligands, as well as co-crystallized ligand are shown in the binding site of LasR in
Figure 7. A good overlap between the ligands can be seen, as well as hydrogen bonds and hydrophobic
interactions made with the protein and with bridging water molecules HOH 222 and 453.
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binder 3-oxo-C12-HSL in slate (HET-ID OHN), co-crystallized (X-ray) known binder 3-oxo-C12-HSL in
yellow, in the binding site of transcriptional activator protein LasR (3IX3) in white, hydrogen bonds as
dashes, sulphur in yellow, oxygen in red, nitrogen in blue, and halogen in salmon.

The results offer a possible route for cobalt coordination complexes as P. aeruginosa anti-QS
compounds, biofilm inhibitors, and virulence attenuators. Such possibilities expand the use of group 9
transition metal complexes as biomolecular ligands [31,32] and their possible use in drug design.

3. Materials and Methods

3.1. Reagents, Apparatus, and Synthesis

Thiosemicarbazide (99%), 2-pyridinecarboxaldehyde (99%), and 2-bromo-4'- methylacetophenone
were obtained from Acros Organics (BVBA, Geel, Belgium). Cobalt tetrafluoroborate hexahydrate was
obtained from Aldrich (Sigma-Aldrich Chemie GmbH, Steinheim, Germany). All solvents (reagent
grade) were obtained from commercial suppliers and used without purification. Elemental analyses
(C, H and N) were performed by the standard micromethods using the ELEMENTAR Vario
ELIII C.H.N.S=O analyzer. Infrared spectra were recorded on a Thermo Scientific Nicolet
6700 FT-IR spectrophotometer by the attenuated total reflection technique from 4000–400 cm−1.
Molar conductivity measurement was performed at ambient temperature on a Crison Multimeter
MM41. 1H and 13C NMR spectra were performed on Bruker Avance 500, equipped with a broad-band
direct probe. All spectra were measured at 298 K. Co(HL)2 was prepared by reaction of HL and
Co(BF4)2·6H2O in MeOH as emerald colored single crystals as described previously [17]. IR and NMR
spectroscopy data, as well as molar conductivity measurements and results of elemental analysis for
Co(HL)2 are in good agreement with the data previously published [17]. The UV/Vis spectra during a
24 h period were recorded with a GBC Scientific Cintra 6 UV/Vis spectrophotometer (250–800 nm) with
sample dissolved in DMSO and diluted with water such that the final DMSO content was 6% (vv−1).
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3.2. Bacterial Strains, Growth Conditions, and Solutions

To seek for QS inhibition activity, two bacterial strains, P. aeruginosa PA14 wild-type and
P. aeruginosa PA14-R3 biosensor, were used [33]. The biosensor is a mutant of the wild-type strain that
is not capable of producing its own AI (3-oxo-C12-HSL), but is able to detect/respond to exogenous AI
with bioluminescence emission [33]. In the P. aeruginosa PA14-R3 biosensor a transcriptional fusion
between the LasR-dependent rsaL promoter and the luxCDABE operon was chromosomally integrated
at the attB neutral site of the chromosome. Additionally, the lasI gene encoding 3-oxo-C12-HSL synthase
was inactivated by transposon insertion [34]. These strains were kindly provided by Professor Livia
Leoni (University Roma Tre, Rome, Italy). Bacterial cultures were grown aerobically overnight (≈ 16 h)
in Luria–Bertani broth (LBB; Liofilchem, Roseto degli Abruzzi, Italy) at 37 ◦C in a shaking incubator
(150 rpm) (AGITORB 200, Aralab, Rio de Mouro, Portugal), prior to each experiment. Co(HL)2 stock
solution was prepared in 100% (vv−1) dimethyl sulfoxide (DMSO; Fisher Scientific, Loughborough,
UK) under sterile conditions. Serial dilutions were prepared when needed and the percentage of
DMSO never exceeded 6% (vv−1) of the final volume of cell suspension. Negative controls sets
containing cell suspensions with DMSO and without Co(HL)2 were used. Also, a cell suspension
with (Z-)-4-bromo-5-(bromomethylene)-2(5H)-fu (Furanone C-30–FC30) was used as a positive control
(due to its known P. aeruginosa QS inhibition potential) [9,35] for QS inhibition assays and the known
QSI furvina was used as positive control for other assays (biofilm prevention, virulence factors and
molecular modeling). All assays were performed in triplicate with a minimum of three repeats.

3.3. Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC)

The MIC of Co(HL)2 was determined by the microdilution method [36]. Briefly, bacterial overnight
(≈16 h) cultures were taken and adjusted to an absorbance value of 0.1 ± 0.02 (A600nm) (7.4 × 107

CFU (colony-forming units) mL−1; determined by CFU counts in solid medium). Then, 96-well
clear bottomed polystyrene (PS) microtiter plates (Orange Scientific, Braine-l’Alleud, Belgium) were
filled with 180 µL of cells and 20 µL of Co(HL)2 at different concentrations (6.25 to 1000 µg mL−1),
and incubated at 37 ◦C and 150 rpm for 24 h. Absorbance measurements were performed before
(t = 0 h) and after (t = 24 h) the incubation period using a microplate reader (FLUOstar Omega;
BMG LABTECH, Ortenberg, Germany). The MIC was recorded as the lowest concentration of
compound which showed no difference between the absorbance values measured at both distinct times
(no bacterial growth is detected). The drop method was applied for MBC determination, which consists
of directly removing a volume of 10 µL from the wells containing Co(HL)2 concentrations equal to
and above the MIC, and plates out on LB agar (LBA; Merck, Darmstadt, Germany). Plates were
incubated at 37 ◦C for 24 h and the growth was visually inspected. The MBC was recorded as the
lowest concentration of compound in which total growth inhibition was observed [35].

3.4. High-Throughput QS Inhibition Screening

The ability of Co(HL)2 to interfere with the QS response of P. aeruginosa was evaluated using a
high-throughput QS inhibition screening system based on a co-cultivation assay (P. aeruginosa PA14-R3
biosensor and P. aeruginosa PA14 wild-type) [33]. For this, P. aeruginosa PA14 wild-type and P. aeruginosa
PA14-R3 biosensor were grown overnight at 37 ◦C on LBA plates. Then, some colonies were taken
from the plate surfaces and diluted in LBB to an absorbance (A600nm) values of 0.045 (5.80 × 107 CFU
mL−1) and 0.015 (2.15 × 107 CFU mL−1) for P. aeruginosa PA14-R3 biosensor and P. aeruginosa PA14
wild-type, respectively (3:1 reporter/wild-type ratio). Black 96-well opaque bottomed PS microtiter
plates and 96-well clear bottomed PS microtiter plates were filled with co-culture (180 µL) and Co(HL)2

(20 µL) in a range of different concentrations (6.25 to 1000 µg mL−1). The light counts per second
(LCPS) and A600nm were measured after 4 h of growth using a microplate reader. Luminescence values
were normalized, dividing LCPS values by the A600nm values.
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3.4.1. Autoinducer Synthesis Assay

The effect of Co(HL)2 on the production of the AI 3-oxo-C12-HSL was evaluated according to
Massai et al. [33]. Firstly, P. aeruginosa PA14 was grown for 24 h at 37 ◦C on LBA. After that, bacteria
were scrapped from the plate surfaces and diluted in LBB to an absorbance (A600nm) of 0.05 (5.85 × 107

CFU mL−1) and incubated overnight (≈16 h) at 37 ◦C and 150 rpm, in the absence and presence
of Co(HL)2 in a range of different concentrations (6.25 to 1000 µg mL−1). Afterwards, the growth
of bacterial suspensions was examined and the remaining volume centrifuged for 20 min at 3772
g. Black 96-well opaque bottomed PS microtiter plates and 96-well clear bottomed PS microtiter
plates were filled with cell free supernatant (20 µL) and PA14-R3 cell suspension (180 µL), prepared
as previously described for PA14 (A600nm = 0.045). After 4 h of incubation at the temperature and
agitation conditions indicated above, the LCPS and A600nm were measured using a microplate reader.
Luminescence values were normalized dividing LCPS values by the A600nm values. A calibration
curve was generated by growing P. aeruginosa PA14-R3 in the presence of increasing concentrations of
synthetic 3-oxo-C12-HSL, to calculate the concentration of 3-oxo-C12-HSL in each culture supernatant
(See Supplementary Materials, Figure S2).

3.4.2. Autoinducer Response Assay

To evaluate the influence of Co(HL)2 in the detection of the AI 3-oxo-C12-HSL a similar protocol
to the AI synthesis was used. For this, P. aeruginosa PA14-R3 was grown for 24 h at 37 ◦C in LBA plates.
Then, the bacteria were scrapped from the plate surface and diluted in LBB to an absorbance (A600nm)
of 0.05 (5.85 × 107 CFU mL−1) and overnight incubated at 37 ◦C and 150 rpm in the absence and
presence of Co(HL)2 in a range of different concentrations (6.25 to 1000 µg mL−1). After the incubation
period the bacterial growth was inspected and the cell suspensions adjusted to an absorbance (A600nm)
of 0.045. Black 96-well opaque bottomed PS microtiter plates and 96-well clear bottomed PS microtiter
plates were filled with PA14-R3 cellular suspension (180 µL) and synthetic 3-oxo-C12-HSL (20 µL) at
concentration of 25 µM. After 4 h of incubation at the temperature and agitation conditions indicated
above, the LCPS and A600nm were measured using a microplate reader. Luminescence values were
normalized dividing LCPS values by the A600nm values.

3.5. Biofilm Prevention Assays

Biofilms were developed according to the modified microtiter plate assay proposed by Stepanović
et al. (2000). Briefly, 96-well clear bottomed PS microtiter plates were filled with 180 µL of suspension
of P. aeruginosa PA14 wild-type (A600 nm = 0.04 (4.9 × 107 CFU mL−1)) and 20 µl of Co(HL)2 at the MIC
(800 µg mL−1) and the sub-inhibitory concentrations (6.25 to 400 µg mL−1). The plates were incubated
at 37 ◦C and 150 rpm for 24 h. After the incubation period, the content of each well was discarded
and washed twice with saline solution (NaCl, 0.85%). The plates were analyzed in terms of biomass
formation by crystal violet (CV; Merck, Darmstadt, Germany) and alamar blue staining’s [37] and the
results were expressed as percentages of biomass productivity and metabolic activity reduction [38].

3.6. Virulence Factors Assays

3.6.1. Pyocyanin Production

Pyocyanin was extracted from PA14 wild-type culture supernatants and measured as previously
described by [39]. Briefly, PA14 wild-type suspension (A600nm = 0.05) (5.85 × 107 CFU mL−1) was
grown in the presence of Co(HL)2 in a range of different concentrations (6.25 to 1000 µg mL−1),
at 37 ◦C and 150 rpm for 16 h. After incubation, the absorbance of the grown cultures were measured
(A600nm) and the cells were then harvested by centrifugation (15 min at 12,000 g), and the culture
supernatant recovered. Pyocyanin was extracted by mixing chloroform with culture supernatant (3:5
chloroform/supernatant ratio). Then, the chloroform layer (lower blue layer) was transferred to a fresh
tube and mixed with 1 mL of 0.2 M hydrochloric acid (HCl; Fisher Chemical, Merelbeke, Belgium).
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The A520nm of the resulting solution (upper red/pink layer) was measured to determine the amount
of extracted pyocyanin. The amount of pyocyanin, in µg mL−1, was calculated by multiplication
of the A520nm values for 17.072 and was normalized dividing A520nm values by the A600nm values
[(A520nm/A600nm) × 17.072].

3.6.2. Pyoverdine Production

Pyoverdine production was measured according to a spectrophotometric method previously
described by Höfte et al. [40], with some modifications. Briefly, the concentration of pyoverdine in the
culture supernatant was measured directly at 400 nm. Relative pyoverdine production was estimated
by dividing A400nm values by the A600nm values of the cultures [41].

3.7. Molecular Modeling of Co(HL)2 with LasR Receptor

Ligand structures were based on the X-ray crystal structure [17]. The protein crystal structure
of the transcriptional activator protein LasR-3-oxo-C12-HSL complex was downloaded from the
Protein Databank (1ix3) [Protein Data Bank. Research Collaboratory for Structural Bioinformatics.
http://www.pdb.org/pdb/home/home.do (accessed March 2018)]. The protein and ligand structures
were preprocessed with Maestro [Schrödinger, LLC: New York, 2017], including determining
protonation states and adding hydrogen atoms, and then docking was performed on the LasR protein
using compound Co(HL)2, the coordination ligand HL on its own, as well as the co-crystallized
ligand 3-oxo-C12-HSL, and the known inhibitor furvina (2-Bromo-5-(2-bromo-2-nitrovinyl)furan,
G1). Docking used three programs: (1) Quantum-Polarized Ligand Docking (QPLD) using Glide XP
scoring function in Schrödinger [Schrödinger, LLC: New York, 2017], using default parameters in
addition to no Epik penalties; (2) the Autodock4 docking program and scoring function [42] with
settings intelec (calculate internal electrostatics) ON, tran0 random initial coordinates, axisangle0
random initial orientation, dihe0 random initial dihedrals, tstep 2.0 Å translation step, qstep 50.0
degrees quaternion step, dstep 50.0 degrees torsion step, torsdof 2 torsional degrees of freedom,
rmstol 2.0 Å cluster_tolerance, extnrg 1000.0 external grid energy, e0max 0.0 max initial energy,
10000 max number of retries, ga_pop_size 250 number of individuals in population, ga_num_evals
20000000 maximum number of energy evaluations, ga_num_generations 27000 maximum number of
generations, ga_elitism 1 number of top individuals to survive to next generation, ga_mutation_rate
0.02, ga_crossover_rate 0.8, ga_window_size 10, ga_cauchy_alpha 0.0 Alpha parameter of Cauchy
distribution, ga_cauchy_beta 1.0 Beta parameter Cauchy distribution, genetic algorithm, sw_max_its
300 iterations of Solis & Wets local search, sw_max_succ 4 consecutive successes before changing
rho, sw_max_fail 4 consecutive failures before changing rho, sw_rho 1.0 size of local search space to
sample, sw_lb_rho 0.01 lower bound on rho, ls_search_freq 0.06 probability of performing local search
on individual, unbound_model extended state of unbound ligand; 3) the Autodock Vina docking
program and scoring function [43] with settings: size_x = 25, size_y = 25, size_z = 25, num_modes = 9,
energy_range = 1, exhaustiveness = 64, cpu = 1. Checks were performed as before [44,45].

3.8. Statistical Analysis

The data were analyzed using paired sample t-test from the SPSS (Statistical Package for the Social
Sciences) program (IBM® SPSS® Statistics, Lisbon, Portugal), version 20.0. The mean and standard
deviation (SD) within samples were calculated for all experiments. All tests were done in triplicate
with three independent repeats for each condition tested. The statistical calculations were based on a
confidence level of ≥95% (p < 0.05 was considered statistically significant).

4. Conclusions

For the first time, a coordination complex is reported to inhibit P. aeruginosa LasR QS system
as well as their biofilms and QS regulated virulence factors. The results of molecular docking on
transcriptional activator protein LasR suggest that the possible mechanism involves the coordination
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complex not directly binding the protein. Instead, the ligands from the coordination complex can be
responsible for binding to the transcriptional activator protein LasR target. The ligand from this cobalt
coordination compound, HL, has stronger predicted interactions than those of the known-binder
and co-crystallized ligand 3-oxo-C12-HSL, as well as those of another known-binder, furvina. It is
interesting to note that the ligand HL is also a chelator, as is the case of the QS compound pyoverdine
produced by P. aeruginosa. In addition, the ligand HL is more soluble in the cobalt coordination form
than uncomplexed, so cobalt complexation may aid in increasing its solubility and delivery to the
protein site of action. Transition metal group 9 coordination compounds can thus be explored as QS
and biofilm inhibitors, as well as their possible use in drug design and delivery.

Supplementary Materials: Supplementary Materials are available online.
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Djordjević, I.S.; Li, H.; Šojić, N. Co (III) complexes of (1,3-selenazol-2-yl) hydrazones and their sulphur
analogues. Dalton Trans. 2017, 46, 2910–2924. [CrossRef] [PubMed]

19. Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract.
Lett. Appl. Microbiol. 2006, 42, 637–641. [CrossRef] [PubMed]

20. Borges, A.; Abreu, A.; Dias, C.; Saavedra, M.; Borges, F.; Simões, M. New perspectives on the use of
phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21,
877. [CrossRef] [PubMed]

21. Borges, A.; Saavedra, M.J.; Simões, M. Insights on antimicrobial resistance, biofilms and the use of
phytochemicals as new antimicrobial agents. Curr. Med. Chem. 2015, 22, 2590–2614. [CrossRef] [PubMed]

22. Kirisits, M.J.; Parsek, M.R. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm
communities? Cell. Microbiol. 2006, 8, 1841–1849. [CrossRef] [PubMed]

23. Zegans, M.E.; Wozniak, D.; Griffin, E.; Toutain-Kidd, C.M.; Hammond, J.H.; Garfoot, A.; Lam, J.S.
Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate
80. Antimicrob. Agents Chemother. 2012, 56, 4112–41122. [CrossRef] [PubMed]

24. Hansen, M.R.; Jakobsen, T.H.; Bang, C.G.; Cohrt, A.E.; Hansen, C.L.; Clausen, J.W.; Le Quement, S.T.;
Tolker-Nielsen, T.; Givskov, M.; Nielsen, T.E. Triazole-containing N-acyl homoserine lactones targeting the
quorum sensing system in Pseudomonas aeruginosa. Bioorg. Med. Chem. 2015, 23, 1638–1650. [CrossRef]
[PubMed]

25. Miller, L.C.; O’Loughlin, C.T.; Zhang, Z.; Siryaporn, A.; Silpe, J.E.; Bassler, B.L.; Semmelhack, M.F.
Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa. J. Med. Chem. 2015, 58,
1298–1306. [CrossRef] [PubMed]

26. Allen, L.; Dockrell, D.H.; Pattery, T.; Lee, D.G.; Cornelis, P.; Hellewell, P.G.; Whyte, M.K. Pyocyanin production
by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses
in vivo. J. Immunol. 2005, 174, 3643–3649. [CrossRef] [PubMed]

27. Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates
virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 2002, 99, 7072–7077.
[CrossRef] [PubMed]

28. Kiratisin, P.; Tucker, K.; Passador, L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence
genes, functions as a multimer. J. Bacteriol. 2002, 184, 4912–4919. [CrossRef] [PubMed]

29. Hambley, T. Developing new metal-based therapeutics: Challenges and opportunities. Dalton Trans. 2007,
43, 4929–4937. [CrossRef] [PubMed]

30. Gianferrara, T.; Bratsos, I.; Alessio, E. A categorization of metal anticancer compounds based on their mode
of action. Dalton Trans. 2009, 37, 7588–7598. [CrossRef] [PubMed]

31. Heffern, M.; Yamamoto, N.; Holbrook, R.; Eckermann, A.; Meade, T. Cobalt derivatives as promising
therapeutic agents. Curr. Opin. Chem. Biol. 2013, 17, 189–196. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/jam.12631
http://www.ncbi.nlm.nih.gov/pubmed/25175797
http://dx.doi.org/10.1007/s13238-014-0100-x
http://www.ncbi.nlm.nih.gov/pubmed/25249263
http://dx.doi.org/10.1111/j.1469-0691.2007.01925.x
http://www.ncbi.nlm.nih.gov/pubmed/18190582
http://dx.doi.org/10.1111/j.1462-2920.2008.01792.x
http://www.ncbi.nlm.nih.gov/pubmed/19196266
http://dx.doi.org/10.1016/j.ejmech.2015.04.015
http://www.ncbi.nlm.nih.gov/pubmed/25934508
http://dx.doi.org/10.1080/00958972.2016.1232404
http://dx.doi.org/10.1039/C6DT04785H
http://www.ncbi.nlm.nih.gov/pubmed/28197616
http://dx.doi.org/10.1111/j.1472-765X.2006.01928.x
http://www.ncbi.nlm.nih.gov/pubmed/16706905
http://dx.doi.org/10.3390/molecules21070877
http://www.ncbi.nlm.nih.gov/pubmed/27399652
http://dx.doi.org/10.2174/0929867322666150530210522
http://www.ncbi.nlm.nih.gov/pubmed/26028341
http://dx.doi.org/10.1111/j.1462-5822.2006.00817.x
http://www.ncbi.nlm.nih.gov/pubmed/17026480
http://dx.doi.org/10.1128/AAC.00373-12
http://www.ncbi.nlm.nih.gov/pubmed/22585230
http://dx.doi.org/10.1016/j.bmc.2015.01.038
http://www.ncbi.nlm.nih.gov/pubmed/25716005
http://dx.doi.org/10.1021/jm5015082
http://www.ncbi.nlm.nih.gov/pubmed/25597392
http://dx.doi.org/10.4049/jimmunol.174.6.3643
http://www.ncbi.nlm.nih.gov/pubmed/15749902
http://dx.doi.org/10.1073/pnas.092016999
http://www.ncbi.nlm.nih.gov/pubmed/11997446
http://dx.doi.org/10.1128/JB.184.17.4912-4919.2002
http://www.ncbi.nlm.nih.gov/pubmed/12169617
http://dx.doi.org/10.1039/b706075k
http://www.ncbi.nlm.nih.gov/pubmed/17992277
http://dx.doi.org/10.1039/b905798f
http://www.ncbi.nlm.nih.gov/pubmed/19759927
http://dx.doi.org/10.1016/j.cbpa.2012.11.019
http://www.ncbi.nlm.nih.gov/pubmed/23270779


Molecules 2018, 23, 1385 15 of 15

32. Lu, L.; Liu, L.; Chao, W.; Zhong, H.; Wang, M.; Chen, X.; Lu, J.; Li, R.; Ma, D.; Leung, C. Identification of
an iridium(III) complex with anti-bacterial and anti-cancer activity. Sci. Rep. 2015, 5, 14544. [CrossRef]
[PubMed]

33. Massai, F.; Imperi, F.; Quattrucci, S.; Zennaro, E.; Visca, P.; Leoni, L. A multitask biosensor
for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal.
Biosens. Bioelectron. 2011, 26, 3444–3449. [CrossRef] [PubMed]

34. Leoni, L.; Landini, P. Microbiological methods for target-oriented screening of biofilm inhibitors. In Donelli G.
(eds) Microbial Biofilms; Methods in Molecular Biology (Methods and Protocols); Springer Science: New York,
NY, USA, 2014; pp. 175–186.

35. Ferreira, C.; Pereira, A.M.; Pereira, M.C.; Melo, L.F.; Simões, M. Physiological changes induced by the
quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens.
J. Antimicrob. Chemother. 2011, 66, 1036–1043. [CrossRef] [PubMed]

36. Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and
control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [CrossRef] [PubMed]

37. Simões, L.C.; Simões, M.; Vieira, M.J. Influence of the diversity of bacterial isolates from drinking water on
resistance of biofilms to disinfection. Appl. Environ. Microbiol. 2010, 76, 6673–6679. [CrossRef] [PubMed]

38. Borges, A.; Lopez-Romero, J.; Oliveira, D.; Giaouris, E.; Simões, M. Prevention, removal and inactivation
of Escherichia coli and Staphylococcus aureus biofilms using selected monoterpenes of essential oils.
J. Appl. Microbiol. 2017. [CrossRef] [PubMed]

39. Essar, D.W.; Eberly, L.; Hadero, A.; Crawford, I.P. Identification and characterization of genes for a second
anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthase and
evolutionary implications. J. Bacteriol. 1990, 172, 884–900. [CrossRef] [PubMed]

40. Höfte, M.; Buysens, S.; Koedam, N.; Cornelis, P. Zinc affects siderophore-mediated high affinity iron uptake
systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 1993, 6, 85–91. [CrossRef] [PubMed]

41. Yang, L.; Rybtke, M.T.; Jakobsen, T.H.; Hentzer, M.; Bjarnsholt, T.; Givskov, M.; Tolker-Nielsen, T.
Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.
Antimicrob. Agents Chemother. 2009, 53, 2432–2443. [CrossRef] [PubMed]

42. Morris, G.; Huey, R.; Lindstrom, W.; Sanner, M.; Belew, R.; Goodsell, D.; Olson, A. AutoDock4 and
AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30,
2785–2791. [CrossRef] [PubMed]

43. Trott, O.; Olson, A. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of
Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010,
31, 455–461. [PubMed]

44. García-Sosa, A.T.; Sild, S.; Maran, U. Docking and virtual screening using distributed grid technology.
QSAR Comb. Sci. 2009, 28, 815–821. [CrossRef]

45. Glisic, S.; Sencanski, M.; Perovic, V.; Stevanovic, S.; García-Sosa, A.T. Arginase flavonoid anti-Leishmanial in
silico inhibitors flagged against anti-targets. Molecules 2016, 21, 589. [CrossRef] [PubMed]

Sample Availability: Samples of the compound Co(HL)2 are available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep14544
http://www.ncbi.nlm.nih.gov/pubmed/26416333
http://dx.doi.org/10.1016/j.bios.2011.01.022
http://www.ncbi.nlm.nih.gov/pubmed/21324665
http://dx.doi.org/10.1093/jac/dkr028
http://www.ncbi.nlm.nih.gov/pubmed/21393196
http://dx.doi.org/10.1080/08927014.2012.706751
http://www.ncbi.nlm.nih.gov/pubmed/22823343
http://dx.doi.org/10.1128/AEM.00872-10
http://www.ncbi.nlm.nih.gov/pubmed/20693444
http://dx.doi.org/10.1111/jam.13490
http://www.ncbi.nlm.nih.gov/pubmed/28497526
http://dx.doi.org/10.1128/jb.172.2.884-900.1990
http://www.ncbi.nlm.nih.gov/pubmed/2153661
http://dx.doi.org/10.1007/BF00140108
http://www.ncbi.nlm.nih.gov/pubmed/8358210
http://dx.doi.org/10.1128/AAC.01283-08
http://www.ncbi.nlm.nih.gov/pubmed/19364871
http://dx.doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://dx.doi.org/10.1002/qsar.200810174
http://dx.doi.org/10.3390/molecules21050589
http://www.ncbi.nlm.nih.gov/pubmed/27164067
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Cordination Complex Stability Analysis 
	Antimicrobial Activity of Co(HL)2 
	Co(HL)2 Mediated Inhibition of the 3-oxo-C12-HSL-Dependent QS System of P. aeruginosa 
	Effect of Co(HL)2 on the Prevention of Biofilm Formation 
	Effect of Co(HL)2 on the Production of Pyocyanin and Pyoverdine Virulence Factors 
	Molecular Docking Analysis 

	Materials and Methods 
	Reagents, Apparatus, and Synthesis 
	Bacterial Strains, Growth Conditions, and Solutions 
	Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC) 
	High-Throughput QS Inhibition Screening 
	Autoinducer Synthesis Assay 
	Autoinducer Response Assay 

	Biofilm Prevention Assays 
	Virulence Factors Assays 
	Pyocyanin Production 
	Pyoverdine Production 

	Molecular Modeling of Co(HL)2 with LasR Receptor 
	Statistical Analysis 

	Conclusions 
	References

