J.Serb.Chem.Soc. 67(2)123–126(2002) JSCS – 2932 UDC 546.73:542.913:66.095.64.094.522 Note

NOTE

Synthesis and characterization of tris[butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamato]cobalt(III) seskvitoluene

GORAN N. KALUDJEROVIĆ¹, VESNA M. DJINOVIĆ^{1#}, SREĆKO R. TRIFUNOVIĆ^{2#}, ISMET M. HODŽIĆ^{1#} and TIBOR J. SABO^{1*#}

¹Faculty of Chemistry, University of Belgrade, P. O. Box 158, Studentski trg 16, YU-11001 Belgrade and ²Department of Chemistry, Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

(Received 24 May, revised 6 September 2001)

A new bidentate ligand butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamate (bm Φ pdtc) was prepared, as the sodium salt. In the reaction of hexaaminecobalt(III) chloride with Nabm Φ pdtc, the corresponding *tris*[butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamato]cobalt(III), [Co(bm Φ pdtc)₃] complex was prepared. The complex was characterized by elemental analysis, infrared, electronic absorption, ¹H and ¹³C-NMR spectroscopy.

Keywords: cobal(III) complex, dithiocarbamate, bidentate ligand.

Dithiocarbamates are organosulphur compounds with wide applications. They are used as accelerators in vulcanization, as high-pressure lubricants and as fungicides and pesticides. Also, dithiocarbamates are often used for the synthesis of transition metal complexes.^{1–15} As the dithiocarbamates themselves, dithiocarbamate-metal complexes have been used in agriculture for controlling insects and fungi, in the treatment of alcoholism, *etc.*³

Dithiocarbamates have been found to act almost as uninegative dibentate ligands, coordinating through both sulphur atoms, and both tetra- and hexa-coordinated complexes of many transition metal ions have been isolated.^{4,9–15} Little is known about mixed-ligand dithiocarbamate complex,^{13–15} and cyclam is a most useful macrocycle to form and stabilize those complexes.

In this work, a new bidentate ligand butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamate ($bm\Phi pdtc$) was prepared, as the sodium salt. In the reaction of hexaamminecobalt(III) chloride with the sodium $bm\Phi pdtc$ ligand, the corresponding [Co($bm\Phi pdtc$)₃] complex

[#] Serbian Chemical Society active member.

^{*} Author for correspondence.

was obtained. The complex was characterized by elemental analysis, infrared, electronic absorption and ¹H and ¹³C-NMR spectroscopy.

EXPERIMENTAL

Materials

Reagents, NaOH, CS₂, diethylether, p.a., were obtained commercially (Merck) and used without further purification. The amine was obtained by the procedure described by Mićović *et al.*¹⁶

Preparation of sodium butyl-(1-metyl-3-phenyl-propyl)-dithiocarbamate, NabmФpdtc

The sodium salt of the ligand was prepared by treating 1.03 g butyl-(1-metyl-3-phenyl-propyl)-amine in 20.00 cm³ of dry diethylether with 0.48 cm³ (0.38 g) CS₂ and adding 0.20 g NaOH with vigorous stirring over a 5 h period. Mole ratio amine : CS₂ : NaOH = 1 : 1 : 1. Yield: 1.12 g (78.2 %). The crude, light yellow product was used directly for the synthesis of the corresponding complex.

Preparation of tris[*butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamato*]*cobalt(III), seskvitoluene,* $[Co(bm\Phi pdtc)_3] \cdot 1.5 C_6H_5CH_3$

To a solution of 0.267 g (0.001 mol) of hexaamminecobalt(III) chloride in 10.00 cm³ of water, 0.910 g (0.003 mol) of sodium dithiocarbamate was added. The green trisdithiocarbamate cobalt(III) which immediately precipitated was extracted with toluene and evaporated under reduced pressure. The product was dried at 115 °C. Yield: 0.571 g (63.5 %). Anal. Calcd. for $[Co(bm\Phi pdtc)_3]$ ·1.5 $C_6H_5CH_3$: C, 62.95; H, 7.51; N, 4.23 %. Found: C, 62.66; H, 7.75; N, 4.14 %.

Characterization

The infrared spectrum was recorded on a Perkin-Elmer FTIR 31725-X spectrophotometer using the KBr pellet technique. The electronic absorption spectrum was recorded on a Varian GBC 911A spectrophotometer. A 1×10^{-3} molar solution of the complex in chloroform was used for this measurement. The ¹H and ¹³C-NMR spectra were recorded on a Varian Gemini-200 NMR spectrometer at room temperature. The chemical shifts were determined relative to TMS. Elemental analyses for C, H. N were performed by standard methods.

RESULTS AND DISCUSSION

Electronic absorption spectrum

The complex $[Co(bm\Phi pdtc)_3]$ (Fig. 1) is diamagnetic and has an electronic spectrum which can be assigned to low-spin cobalt(III) in an octahedral environment.

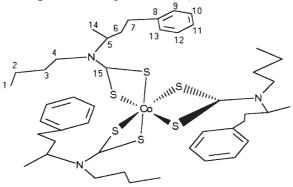


Fig. 1. Possible structure of $[Co(bm\Phi pdtc)_3]$ complex.

Thus the peak at 636.5 nm and the shoulder at 490.0 nm arise from ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ transitions, respectively.¹⁷ The other lower peaks are probably charge-transfer in origin.

Infrared spectrum

Two regions in the IR spectrum of the $[Co(bm\Phi pdtc)_3]$ complex have proven valuable in arguments concerning the electronic and structural characteristics of this compound. The presence of the thioureido band between 1530–1430 cm⁻¹ suggest a considerable double bond character in the C:::N bond vibration of the S₂C–NR₂ group.¹³ The band present in the 940 cm⁻¹ range is attributed to the prevailing contribution of v(C::S).¹⁵ Vibrations in these ranges have been used effectively in differentiating between monodentate and bidentate dithiocarbamate ligands.^{4,5,9–13} The presence of only one strong band supports bidentate coordination of the dithio ligand, whereas a doublet is expected in the case of monodentate coordination.⁶ The v(C::-S) and v(C::-N) stretching frequencies fall in the 1032 cm⁻¹ (1001 cm⁻¹ for the free ligand) and 1473 cm⁻¹, respectively. The methyl group in the complex, as a medium strong bands in the 2960 cm⁻¹ range, can be related to the asymmetric CH₃ streching vibration, while bands at 1380–1360 cm⁻¹ are due to the degenerate symmetric vibrations of the methyl group.¹⁴

¹H and ¹³C-NMR spectra

The ¹H-NMR spectrum of *tris*(dithiocarbamato)cobalt(III) complex showed a pattern at δ 7.2 ppm, which may be assigned to the aromatic protons. The peak at δ 3.5 ppm belong to the tertiary proton (Table I). The resonance between δ 2.6–1.3 ppm may be assigned to methylene protons and at δ 0.9 ppm to methyl protons.¹⁶

¹ H/(ppm)	¹³ C/(ppm)	
0.9 (C1, C14)	13.7 (C1)	30.9 (C7)
1.3 (C2, C3)	20.5 (C2)	141.6 (C8)
1.9 (C6)	32.7 (C3)	128.4 (C9, C10, C12, C13)
2.6 (C4, C7)	44.3 (C4)	125.9 (C11)
3.5 (C5)	53.4 (C5)	18.6 (C14)
7.2 (C9–C13)	36.6 (C6)	205.9 (C15)

TABLE I. ¹H- and ¹³C-NMR chemical shifts (ppm) of the [Co(bmΦpdtc)₃] complex

In the case of the ¹³C-NMR spectrum, the complex showed pattern at δ 205.9 (thiocarboxylato C), 141.6–125.9 (aromatic C), 53.7 (tertiary C), 53.4–30.9 (secondary C) and 18.6–13.7 (primary C).¹⁶

Acknowledgments: The authors are grateful to the Ministry of Science and Technology of the Republic of Serbia for financial support.

ИЗВОД

СИНТЕЗА И КАРАКТЕРИЗАЦИЈА *ТРИС*[БУТИЛ-(1-МЕТИЛ-3-ФЕНИЛ-ПРОПИЛ)-ДИТИОКАРБАМАТО]КОБАЛТ(III) СЕСКВИТОЛУЕНА

ГОРАН Н. КАЛУЪЕРОВИЋ 1, ВЕСНА М. ЪИНОВИЋ 1, СРЕЋКО Р. ТРИФУНОВИЋ 2, ИСМЕТ М. ХОЦИЋ 1 и ТИБОР Ј. САБО 1

¹Хемијски факулītetīt, Универзиtītetīt у Београду, й. йр. 158, Сійуденійски ійрг 16, 11001 Београд и ²Природно-маітеманійчки факулітені, Одсек за хемију, Универзиніені у Крагујевцу, й. йр. 60, 34000 Крагујевац

Синтетисан је нови бидентатни лиганд бутил-(1-метил-3-фенил-пропил)-дитиокарбамат (bmФpdtc), као натријумова со. Реакцијом хексаамминкобалт(III)-хлорида и наведеног лиганда добијен је одговарајући комплекс *шрис*[бутил-(1-метил-3-фенил-пропил)-дитиокарбамато]кобалт(III), [Co(bmФpdtc)₃]. Комплекс је окарактерисан елементалном анализом, инфрацрвеним, електронско-апсорпционим, ¹Н и ¹³C-NMR спектрима.

(Примљено 24. маја, ревидирано 6. септембра 2001)

REFERENCES

- 1. D. Coucouvanis, Prog. Inorg. Chem. 26 (1989) 301
- 2. B. Prelesnik, K. Andjelković, Z. Marković, T. J. Sabo, S. R. Trifunović, *Acta Cryst.* C53 (1997) 719 3. T. Kitston, *Educ. Chem.* 22 (1985) 43
- 5. 1. Kitston, Eauc. Chem. 22 (1965) 45
- 4. A. C. Fabretti, A. Giusti, C. Preti, G. Tosi, P. Zannini, Polyhedron 5 (1986) 871
- 5. G. C. Franchini, A Giusti, C. Preti, L. Tassi, P. Zannini, Polyhedron 4 (1985) 1558
- 6. D. Coucouvanis, Prog. Inorg. Chem. 11 (1974) 233
- 7. S. P. Sovilj, K. Babić-Samardžija, D. J. Minić, J. Serb. Chem. Soc. 63 (1998) 979
- 8. G. Marcotrigiano, G. C. Pellazani, C. Preti, J. Inorg. Nucl. Chem. 36 (1974) 3709
- 9. C. Preti, G. Tosi, P. Zannini, J. Inorg. Nucl. Chem. 41 (1979) 485
- 10. G. Marcotrigiano, G. C. Pellazani, C. Preti, G. Tosi, Bull. Chem. Soc. Jpn. 48 (1975) 1018
- 11. C. Preti, G. Tosi, P. Zannini, J. Mol. Struc. 65 (1980) 283
- 12. C. Preti, G. Tosi, Z. Anorg. Allg. Chem. 419 (1976) 185
- S. P. Sovilj, G. Vučković, K. Babić, T. J. Sabo, S. Macura, N. Juranić, J. Coord. Chem. 65 (1980) 283
- 14. S. P. Sovilj, K. Babić, Synth. React. Inorg. Met.-Org. Chem. 29 (1999) 1655
- 15. S. P. Sovilj, N. Avramović, D. Poleti, D. Djoković, Bull. Chem. Technol. Macedonia 19 (2000) 117
- 16. I. V. Mićović, M. D. Ivanović, G. M. Roglić, V. D. Kiricojević, J. B. Popović, J. Serb. Chem. Soc. 59 (1994) 949
- 17. B. N. Figgis, Introduction to Ligand Fields, Interscience, New York, 1967, pp. 220-230.