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Abstract

Given a finite set A of integers, we define its restricted sumset A+̂A to be the set
of sums of two distinct elements of A - a subset of the sumset A + A - and its
difference set A− A to be the set of differences of two elements of A. We say A is
a restricted-sum-dominant set if |A+̂A| > |A− A|. Though intuition suggests that
such sets should be rare, we present various constructions of such sets and prove
that a positive proportion of subsets of {0, 1, . . . n−1} are restricted-sum-dominant
sets. As a by-product, we improve on the previous record for the maximum value
of ln(|A+A|)/ ln(|A−A|), and give some related discussion.

1. Introduction

Let A be a finite set of integers. We define its sumset A+A to be {a+b : a, b ∈ A},
its difference set A − A to be {a − b : a, b ∈ A} and its restricted sumset A+̂A

to be {a + b : a 6= b, a, b ∈ A}. It is a natural intuition that, since addition is

commutative but subtraction is not, that ‘often’ we should have |A+A| ≤ |A−A|.
However it has been known for some time that this is not always the case: for

example, the set C = {0, 2, 3, 4, 7, 11, 12, 14}, which is attributed to Conway, has

|C+C| = 26, but |C−C| = 25. In this paper, sets with this property are called sum-

dominant: in some other literature, they are described as MSTD (for ‘more sums

than differences’) sets, see e.g. Nathanson [6]. It is now known by work of Martin

and O’Bryant [5] that sum-dominant sets are less rare than they might initially

appear: they prove that, for n ≥ 15, the proportion of subsets of {0, 1, 2 . . . n − 1}
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which are sum-dominant is at least 2× 10−7. The constant was sharpened, and the

existence of a limit shown, by Zhao [11].

In this paper we investigate what might appear to be an even more demanding

condition on a set, namely what we will call the restricted-sum-dominant property.

Definition 1. A set A of integers is said to be restricted-sum-dominant if

|A+̂A| > |A−A|.

There are examples of this. For example, we find the set from Hegarty [3]

A15 = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45}

has |A15+̂A15| = 86 whilst |A15 −A15| = 83.

Clearly any restricted-sum-dominant set is sum-dominant. The converse is false

as Conway’s set is sum-dominant but not restricted-sum-dominant (|C+̂C| = 21).

Note that the property of being restricted-sum-dominant is preserved when we

apply a bijection of the form x → ax + b with a, b ∈ Z, a 6= 0. It therefore suffices

to consider sets A ⊂ Z with min(A) = 0 and gcd(A) = 1. We shall refer to such

sets as being normalised.

The organisation of this paper is as follows. In Section 2 we exhibit several

sequences of restricted-sum-dominant sets, addressing some natural questions about

the relative sizes of the restricted sumset and difference sets. In Section 3, we show

that a strictly positive proportion of subsets of {0, 1, 2, . . . n−1} are restricted-sum-

dominant sets. In Section 4 we obtain a new record high value of each of

f(A) =
ln(|A+A|)
ln(|A−A|)

and g(A) =
ln(|A+A|/|A|)
ln(|A−A|/|A|)

and give some related discussion. Finally, in Section 5 we improve somewhat the

bounds on the order of the smallest restricted-sum-dominant set.

We shall, slightly unusually, use the notation [a, b], when a < b are integers, to

denote {a, a+ 1, . . . b}.
We are grateful to the referee for suggestions which have non-trivially improved

the organisation and exposition of this paper, especially in Section 5.

2. Explicit sequences of restricted-sum-dominant sets

Our first sequence of restricted-sum-dominant sets arose by considering the set

B = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 25, 28, 30, 32, 33} which appears in [7] and [9]

as a set of integers with |B+̂B| > |(B−B)\{0}|). We then noted that replacing 33

with 29 gives a 16 element restricted-sum-dominant set (which will be T ′3 below).

To get the subsequent terms of the sequence, we used (here and elsewhere in the

paper) the idea from [9], Conjecture 6, that repetition of certain so-called interior



INTEGERS: 13 (2013) 3

blocks when the set is written in order as a sequence of differences can increase the

size of the sumset more than the difference set: see [9] for details.

Theorem 2. For every integer j ≥ 1 we define

T ′j ={0, 2} ∪ {1, 9, . . . , 1 + 8j} ∪ {4, 12, . . . , 4 + 8j}
∪ {5, 13, . . . , 5 + 8j} ∪ {6 + 8j, 8(j + 1)}.

Then

T ′j+̂T
′
j = [1, 6 + 8(2j + 1)] \ {8, 8(2j + 1)},

T ′j + T ′j = [0, 8(2j + 2)] \ {7 + 8(2j + 1)} and

T ′j − T ′j = [−8(j + 1), 8(j + 1)]\{±6, . . .± (6 + 8(j − 1))}.

Proof. We deal first with the restricted sumset. Since 0 ∈ T ′j , T ′j \ {0} ⊆ T ′j+̂T
′
j ,

giving all elements congruent to 1,4 or 5 mod 8 less than 8(j + 1). Also

8(j + 1)+̂{1, 9, . . . , 1 + 8j} = {1 + 8(j + 1), . . . , 1 + 8(2j + 1)}
8(j + 1)+̂{4, 12, . . . , 4 + 8j} = {4 + 8(j + 1), . . . , 4 + 8(2j + 1)}
8(j + 1)+̂{5, 13, . . . , 5 + 8j} = {5 + 8(j + 1), . . . , 5 + 8(2j + 1)}

so T ′j+̂T
′
j contains all the elements congruent modulo 8 to 1,4 or 5 stated. For

integers congruent to 2 modulo 8 the restricted sumset contains 0+2 and

{1, 9, . . . , 1 + 8j}+̂{1, 9, . . . , 1 + 8j} = {10, 18, . . . , 2 + 8(2j − 1)}

gives most of the rest: the two missing elements are (4+8j)+(6+8j) = 2+8(2j+1)

and 4 + 8(j − 1) + 6 + 8j = 2 + 8(2j).

For integers congruent to 3 modulo 8, note that

{1, 9, . . . , 1 + 8j}+̂(2) = {3, 11, . . . , 3 + 8j}

and

(6 + 8j)+̂{5, 13, . . . 5 + 8j} = {3 + 8(j + 1), . . . 3 + 8(2j + 1)}.

For integers congruent to 6 modulo 8,

{1, 9, . . . , 1 + 8j}+̂{5, 13, . . . , 5 + 8j} = {6, 14, . . . 6 + 8(2j)}

and (6 + 8j) + 8(j + 1) = 6 + 8(2j + 1) ∈ T ′j+̂T ′j also. The elements congruent to 7

modulo 8 are obtained from

(2) + {5, 13, . . . , 5 + 8j} = {7, 15, . . . , 7 + 8j}

and

(6 + 8j) + {1, 9, . . . , 1 + 8j} = {7 + 8j, . . . , 7 + 8(2j)}
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in T ′j+̂T
′
j . Finally, the required multiples of 8 are obtained from

{4, 12, . . . , 4 + 8j}+̂{4, 12, . . . , 4 + 8j} = {16, 24, . . . , 8(2j)}.

Finally we note that the alleged omitted elements 0, 8 and 8(2j + 1) are not in

T ′j+̂T
′
j . The claim for 0 is clear, the only way to get 8 is as 4 + 4 which is not a

restricted sum, for 8(2j+ 1) the large elements of T ′j are 5 + 8j, 6 + 8j, 8(j+ 1) ∈ T ′j
but 3 + 8j, 2 + 8j, 8j /∈ T ′j so it could only be obtained as (4 + 8j) + (4 + 8j) which

is not a restricted sum.

Next we address the sumset T ′j + T ′j . All we need do here is note that 0 = 0 + 0,

8 = 4 + 4, 7 + 8(2j+ 1) is still not attained and that 8(2j+ 2) = 8(j+ 1) + 8(j+ 1).

We finally deal with T ′j−T ′j . Given that d ∈ Tj−Tj ⇐⇒ −d ∈ Tj−Tj it suffices

to consider the positive differences. Firstly we show that {6, . . . , 6 + 8(j − 1)} /∈
T ′j − T ′j . Given that T ′j has the form

T ′j = {0, 1 + 8x, 2, 4 + 8y, 5 + 8z, 6 + 8j, 8(j + 1)}

(where 0 ≤ x, y, z,≤ j), considering the difference set T ′j − T ′j we see that the only

difference of the form 6 + 8t (where t is a non-negative integer) is 6 + 8j, as stated.

To confirm T ′j − T ′j does contain the other elements in the interval specified, note

that, as 0 ∈ T ′j , T ′j ⊆ T ′j − T ′j . The other elements are obtained as follows:

{1, 9, . . . , 1 + 8j} − (1) = {0, 8, . . . , 8j}
{4, 12, . . . , 4 + 8j} − 1 = {3, 11, . . . , 3 + 8j}
{4, 12, . . . , 4 + 8j} − 2 = {2, 10, . . . , 2 + 8j}

{12, 20, . . . , 4 + 8j} − (5) = {7, 15, . . . , 7 + 8(j − 1)}
8(j + 1)− (1) = 7 + 8j.

Thus all the elements of the right-hand side are in T ′j − T ′j as required.

Corollary 3. For every integer j ≥ 1 the set T ′j ⊂ Z has

|T ′j | = 3j + 7, |T ′j+̂T ′j | = 16j + 12, |T ′j + T ′j | = 16j + 16 and |T ′j − T ′j | = 14j + 17.

Therefore

|T ′j+̂T ′j | − |T ′j − T ′j | = 2j − 5, |T ′j + T ′j | − |T ′j − T ′j | = 2j − 1

and T ′j is an restricted-sum-dominant set for every integer j ≥ 3.

T ′3 of order 16 is one of the two smallest restricted-sum-dominant sets we have.

The set T ′j has a superset Tj = T ′j ∪ 1 + 8(j + 1), which is also restricted-sum-

dominant for j ≥ 3:
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Theorem 4. For every integer j ≥ 1 define

Tj ={0, 2} ∪ {1, 9, . . . , 1 + 8(j + 1)} ∪ {4, 12, . . . , 4 + 8j}
∪ {5, 13, . . . , 5 + 8j} ∪ {6 + 8j, 8(j + 1)}.

Then

Tj+̂Tj = [1, 1 + 8(2j + 2)]\{8, 8(2j + 1), 8(2j + 2)},
Tj + Tj = [0, 2 + 8(2j + 2)] and

Tj − Tj = [−(1 + 8(j + 1)), 1 + 8(j + 1)]\{±6, . . .± (6 + 8(j − 1))}.

Proof. Firstly since Tj ⊃ T ′j we have Tj+̂Tj ⊃ [1, 6 + 8(2j + 1)] \ {8, 8(2j + 1)}.
With 1 + 8(j + 1) ∈ Tj we now also have that

8(j + 1) + (1 + 8(j + 1)) = 1 + 8(2j + 2) and

(6 + 8j) + (1 + 8(j + 1)) = 7 + 8(2j + 1)

are in Tj+̂Tj as well. Furthermore

(1 + 8(j + 1)) + (1 + 8(j + 1)) = 2 + 8(2j + 2) ∈ Tj + Tj .

This completes the claims for the sumset and restricted sumset, noting that clearly

8 and 8(2j + 2) are not in Tj+̂Tj and checking that 8(2j + 1) 6∈ Tj+̂Tj .
As regards the difference set, with 0 ≤ x ≤ j+1 the positive differences resulting

from the introduction of the new element have the form

(1 + 8(j + 1))− {0, 2, 1 + 8x, 4 + 8y, 5 + 8z, 6 + 8j, 8(j + 1)}
={1 + 8(j + 1), 8j + 7, 8(j − x+ 1), 8(j − y) + 5, 8(j − z) + 4, 3, 1, 0}.

This shows that Tj − Tj = T ′j − T ′j ∪ ±(1 + 8(j + 1)) and the result follows.

Corollary 5. For every integer j ≥ 1 the set Tj ⊂ Z has

|Tj | = 3j + 8, |Tj+̂Tj | = 16j + 14, |Tj + Tj | = 16j + 19 and |Tj − Tj | = 14j + 19.

Therefore

|Tj+̂Tj | − |Tj − Tj | = 2j − 5, |Tj + Tj | − |Tj − Tj | = 2j

and Tj is an restricted-sum-dominant set for every integer j ≥ 3.

In [5], Martin and O’Bryant construct, for all integers x, subsets S of [0, 17|x|]
with |S + S| − |S − S| = x. Corollary 3 shows that for each positive odd integer x

there is T ′j ⊂ Z with |T ′j + T ′j | − |T ′j − T ′j | = x, and Corollary 5 shows each positive
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even integer can be expressed as the difference of the cardinalities of the sumset

and the difference set of some Tj ⊂ Z.

Recall that the diameter of a finite set A of integers is max(A)−min(A). There

is some interest in finding sets of integers of small diameter with prescribed rela-

tionships between the order of the sumset (or restricted sumset) and the difference

set: see e.g. [5] Theorem 4 where sets Sx of diameter at most 17|x| are constructed

with |Sx +Sx| − |Sx−Sx| equal to x. Our sets T ′j and Tj have respective diameters

8j + 8 and 8j + 9, which is smaller than the sets Sx in [5] for j ≥ 3.

Further Corollary 5 makes it clear that the difference between the size of the

restricted sumset and the difference set can be any odd positive integer. We will

get any even difference for |A+̂A| − |A − A| in our next construction. This was

motivated by the sum-dominant (but not restricted-sum-dominant) set called A13 =

{0, 1, 2, 4, 7, 8, 12, 14, 15, 18, 19, 20} in Hegarty [3]. We exhibit, addressing his remark

about the desirability of generalising A13, two infinite sequences of (eventually)

restricted-sum dominant sets derived from A13 (which shall be our R1).

Theorem 6. For each integer j ≥ 1 define Rj ⊂ Z to be the set

Rj ={1, 4} ∪ {0, 12, . . . , 12j} ∪ {2, 14, . . . , 2 + 12j}
∪ {7, 19, . . . , 7 + 12j} ∪ {8, 20, . . . , 8 + 12j} ∪ {3 + 12j, 6 + 12j}.

For each integer j ≥ 2 we have

Rj+̂Rj = [1, 3 + 12(2j + 1)] \ {{17, . . . , 5 + 12(j − 1)} ∪ {12(2j), 12(2j + 1)}},
Rj +Rj = [0, 4 + 12(2j + 1)] \ {17, . . . , 5 + 12(j − 1)} and

Rj −Rj = [−(8 + 12j), 8 + 12j] \ {±9, . . . ,±(9 + 12(j − 1))}.

Proof. We first verify the claim for the restricted sumset. For multiples of 12,

{0, 12, . . . , 12j}+̂{0, 12, . . . , 12j} = {12, 24, . . . , 12(2j − 1)}.

The elements congruent to 1 modulo 12 are given by

(1) + {0, 12, . . . , 12j} = {1, 13, . . . , 1 + 12j}.

and

(6 + 12j) + {7, 19, . . . , 7 + 12j} = {1 + 12(j + 1), . . . , 1 + 12(2j + 1)}.

For those congruent to 2 modulo 12

{0, 12, . . . , 12j}+̂{2, 14, . . . , 2 + 12j} = {2, 14, . . . , 2 + 12(2j)}

and also (6 + 12j) + (8 + 12j) = 2 + 12(2j + 1) ∈ Rj+̂Rj . For 3 modulo 12 clearly

3 = 1 + 2 ∈ Rj+̂Rj and the rest follow from

{7, 19, . . . , 7 + 12j}+̂{8, 20, . . . , 8 + 12j} = {15, 27, . . . , 3 + 12(2j + 1)}.
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For elements congruent to 4 modulo 12, we clearly have that 4 and 16 are in Rj+̂Rj

as well as

{8, 20, . . . , 8 + 12j}+̂{8, 20, . . . , 8 + 12j} = {28, 40, . . . , 4 + 12(2j)}.

The elements congruent to 6 modulo 12 in Rj+̂Rj can be obtained as the union of

(4)+̂{2, 14, . . . , 2 + 12j} = {6, 18, . . . , 6 + 12j}

and

(6 + 12j) + {0, 12, . . . , 12j}.

The elements congruent to 7 (respectively 8) modulo 12 are obtained from

{0, 12, . . . , 12j}+̂{7, 19, . . . , 7 + 12j} = {7, 19, . . . , 7 + 12(2j)}.

and

{0, 12, . . . , 12j}+̂{8, 20, . . . , 8 + 12j} = {8, 20, . . . , 8 + 12(2j)}.

For 9 (respectively 10) modulo 12 use

{2, 14, . . . , 2 + 12j}+̂{7, 19, . . . , 7 + 12j} = {9, 21, . . . , 9 + 12(2j)}

respectively

{2, 14, . . . , 2 + 12j}+̂{8, 20, . . . , 8 + 12j} = {10, 22, . . . , 10 + 12(2j)}.

Finally the elements congruent to 11 modulo 12 are obtained from

(4) + {7, 19, . . . , 7 + 12j} = {11, 23, . . . , 11 + 12j}

and

(3 + 12j) + {8, 20, . . . , 8 + 12j} = {11 + 12j, . . . , 11 + 12(2j)}.

To see that the restricted sumset does not contain any of {17, . . . , 5 + 12(j − 1)},
note that none of the sumsets of the progressions with common difference 12 give

elements which are congruent to 5 modulo 12 and neither can translates of the

progressions by 1 or 4). The remaining elements congruent to 5 modulo 12 are

obtained as clearly 5 ∈ Rj+̂Rj , and also

(3 + 12j) + {2, 14, . . . , 2 + 12j} = {5 + 12j, . . . , 5 + 12(2j)} ⊆ Rj+̂Rj .

Finally, to see that Rj+̂Rj does not contain 12(2j) or 12(2j + 1), note that it

is impossible to obtain 12(2j) as a sum of distinct elements of Rj since the only

elements of Rj greater than 12j are S = {2 + 12j, 3 + 12j, 6 + 12j, 7 + 12j, 8 + 12j}
but none of the numbers in 2(12j)− S (namely 10 + 12(j − 1), 9 + 12(j − 1),
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6 + 12(j − 1), 5 + 12(j − 1), 4 + 12(j − 1)) are in Rj . Further as 12(j + 1) 6∈ Rj

12(2j + 1) is excluded from Rj+̂Rj . This completes the argument for Rj+̂Rj .

However, we do have that 12j+12j = 12(2j) ∈ Rj+Rj and (6+12j)+(6+12j) =

12(2j + 1) ∈ Rj + Rj , so both these missing elements get into Rj + Rj . Since we

readily see that none of the numbers congruent to 7 mod 12 ruled out of Rj+̂Rj

are in Rj +Rj either, the sumset is as stated.

To confirm the claim for the difference set as before we consider the positive

differences. Writing Rj as

{1, 4, 12w, 2 + 12x, 7 + 12y, 8 + 12z, 3 + 12j, 6 + 12j}

the remainders which occur in Rj−Rj are exactly the set [0, 11]\{9}. On the other

hand, to see that Rj −Rj contains all the claimed differences, note that as 0 ∈ Rj

we have Rj ⊂ Rj −Rj . Also the right hand sides of

{0, 12, . . . , 12j} − (1) = {−1, 11, . . . , 11 + 12(j − 1)}
{2, 14, . . . , 2 + 12j} − (1) = {1, 13, . . . , 1 + 12j}
{7, 19, . . . , 7 + 12j} − (4) = {3, 15, . . . , 3 + 12j}
{8, 20, . . . , 8 + 12j} − (4) = {4, 16, . . . , 4 + 12j}
{7, 19, . . . , 7 + 12j} − (2) = {5, 17, . . . , 5 + 12j}
{7, 19, . . . , 7 + 12j} − (1) = {6, 18, . . . , 6 + 12j}
{2, 14, . . . , 2 + 12j} − (4) = {−2, 10, . . . , 10 + 12(j − 1)}.

are in the difference set which completes the claim.

Corollary 7. For every integer j ≥ 2 the set Rj ⊂ Z has

|Rj | = 4j+8, |Rj+̂Rj | = 23j+14, |Rj +Rj | = 23j+18 and |Rj−Rj | = 22j+17.

Therefore

|Rj+̂Rj | − |Rj −Rj | = j − 3, |Rj +Rj | − |Rj −Rj | = j + 1

and Rj is an restricted-sum-dominant set for every integer j ≥ 4.

This indeed confirms that any positive integer can be obtained as

|Rj+̂Rj | − |Rj −Rj |.
Our fourth sequence of sets, the Mjs, also has R1 (Hegarty’s A13) as its first

member, but this time we focus not on prescribing |Mj+̂Mj | − |Mj − Mj | but

instead on getting a reduced diameter 9 + 11j rather than the diameter 8 + 12j

of Rj . (We were first led to this family by considering Marica’s sum-dominant

set [4] M = {1, 2, 3, 5, 8, 9, 13, 15, 16}, normalising it and trying to expand it to a

restricted-sum-dominant set).
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Theorem 8. For j ≥ 1 define

Mj ={0, 2} ∪ {1, 12, . . . , 1 + 11j} ∪ {4, 15, . . . , 4 + 11j}
∪ {7, 18, . . . , 7 + 11j} ∪ {8, 19, . . . , 8 + 11j} ∪ {3 + 11j, 9 + 11j}

We then have that

Mj+̂Mj = [1, 6 + 11(2j + 1)] \ {3 + 11(2j + 1)},
Mj +Mj = [0, 7 + 11(2j + 1)] and

Mj −Mj = [−(9 + 11j), 9 + 11j] \ {±9, . . . ,±(9 + 11(j − 1))}.

Proof. Firstly we show that Mj+̂Mj consists of⋃
a=1,2,4,5,6

{a, a+ 11, . . . , a+ 11(2j + 1)}

and ⋃
a=3,7,8,9,10,11

{a, a+ 11, . . . , a+ 11(2j)}

and then show that the sumset contains the additional elements claimed. In the

case where a = 1 we have

{4, 15, . . . , 4+11j}+̂{8, 19, . . . , 8+11j} = {12, 23, . . . , 12+11(2j) = 1+11(2j+1)}

and 0 + 1 ∈Mj+̂Mj also. For the case a = 2

{1, 12, . . . , 1 + 11j}+̂{1, 12, . . . , 1 + 11j} = {13, 24, . . . , 2 + 11(2j − 1)}

and 0+2, (4+11(j−1))+(9+11j) = 2+11(2j), (4+11j)+(9+11j) = 2+11(2j+1)

are also in Mj+̂Mj .

For the case a = 4,

{7, 18, . . . , 7+11j}+̂{8, 19, . . . , 8+11j} = {15, 26, . . . , 15+11(2j) = 4+11(2j+1)}

and 0 + 4 ∈Mj+̂Mj .

For the case a = 5,

{8, 19, . . . , 8 + 11j}+̂{8, 19, . . . , 8 + 11j} = {27, . . . , 16 + 11(2j − 1) = 5 + 11(2j)}

and also 5 = 1 + 4, 16 = 12 + 4 and (7 + 11j) + (9 + 11j) = 5 + 11(2j + 1).

For the case a = 6

(2) + {4, 15, . . . , 4 + 11j} = {6, 17, . . . , 6 + 11j}
(9 + 11j) + {8, 19, . . . , 8 + 11j} = {6 + 11(j + 1), . . . , 6 + 11(2j + 1)}.
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For the case a = 3

{7, 18, . . . , 7 + 11j}+̂{7, 18, . . . , 7 + 11j} = {25, 36, . . . , 3 + 11(2j)}

and 3 = 1 + 2, 14 = 2 + 12 are in Mj+̂Mj .

For the case a = 7

(0) + {7, 18, . . . , 7 + 11j} = {7, 18, . . . , 7 + 11j}
(3 + 11j) + {4, 15, . . . , 4 + 11j} = {7 + 11j, . . . , 7 + 11(2j)}.

For the case a = 8

{1, 12, . . . , 1 + 11j}+̂{7, 18, . . . , 7 + 11j} = {8, 19, . . . , 8 + 11(2j)}.

For the case a = 9

{1, 12, . . . , 1 + 11j}+̂{8, 19, . . . , 8 + 11j} = {9, 20, . . . , 9 + 11(2j)}.

For a = 10

(2)+̂{8, 19, . . . , 8 + 11j} = {10, 21, . . . , 10 + 11j}
(3 + 11j)+̂{7, 18, . . . , 7 + 11j} = {10 + 11j, . . . , 10 + 11(2j)}.

For a = 11

{4, 15, . . . , 4 + 11j}+̂{7, 18, . . . , 7 + 11j} = {11, 22, . . . , 11 + 11(2j)}.

To see that 3 + 11(2j + 1) /∈ M+̂M , if it did not we would have a sum of the

form (a + 11j) + (c + 11j) = 14 + 22j from elements of Mj with a + c = 14,

however, since a and c are distinct elements of {1, 3, 4, 7, 8, 9} this is impossible and

hence 3 + 11(2j + 1) /∈Mj+̂Mj . This confirms the claim for the restricted sumset.

Furthermore for each m ∈ Mj the sumset contains 0, 2(7 + 11j) = 3 + 11(2j + 1)

and 2(9 + 11j) = 7 + 11(2j + 1) which completes the claim for the sumset.

For the difference set to see that {±9, . . . ,±(9 + 11(j − 1))} /∈Mj −Mj let

Mj = {0, 2, 1 + 11w, 4 + 11x, 7 + 11y, 8 + 11z, 3 + 11j, 9 + 11j},

where 0 ≤ w, x, y, z ≤ j. It suffices to consider just the positive differences. Calcu-

lation of Mj −Mj reveals that the only positive difference congruent to 9 modulo

11 is (9 + 11j)− 0, which is outside the range claimed.

To see that Mj −Mj contains the remaining elements in the interval, firstly note

that as 0 ∈ Mj we have Mj −Mj ⊃ Mj . Furthermore Mj −Mj also contains the
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right hand sides of the following:

{1, 12, . . . , 1 + 11j} − (1) = {0, 11, . . . , 11j}
{4, 15, . . . , 4 + 11j} − (1) = {3, 14, . . . , 3 + 11j}
{7, 18, . . . , 7 + 11j} − (1) = {6, 17, . . . , 6 + 11j}
{1, 12, . . . , 1 + 11j} − (2) = {−1, 10, 21, . . . , 10 + 11(j − 1)}
{4, 15, . . . , 4 + 11j} − (2) = {2, 13, . . . , 2 + 11j}
{7, 18, . . . , 7 + 11j} − (2) = {5, 16, . . . , 5 + 11j}

9 + 11j − 0 = 9 + 11j.

This completes the claim of the theorem.

Corollary 9. For every integer j ≥ 1 the set Mj ⊂ Z has

|Mj | = 4j+8, |Mj+̂Mj | = 22j+16, |Mj+Mj | = 22j+19 and |Mj−Mj | = 20j+19.

Hence

|Mj+̂Mj | − |Mj −Mj | = 2j − 3, |Mj +Mj | − |Mj −Mj | = 2j

and Mj is an restricted-sum-dominant set for every j ≥ 2.

Note that the set M2 has slightly smaller diameter 31 than the other 16 element

restricted-sum-dominant set T ′3.

Martin and O’Bryant refer to sets with |A + A| = |A − A| as sum-difference

balanced. Similarly we can consider sets with |A+̂A| = |A − A| as restricted-sum-

difference balanced. The results above show such sets exist (e.g. R3). The smallest

such set we have found has order 14: it is is

M ′ = {0, 1, 2, 4, 7, 8, 12, 14, 15, 19, 22, 25, 26, 27},

so |M ′+̂M ′| = |[1, 53]\{43, 50}| = 51 and |M ′−M ′| = |[−27, 27]\{±9,±16}| = 51.

We show that by taking the union of translates of M ′ by non-negative integer

multiples of its maximum element one can obtain arbitrarily large restricted-sum-

difference balanced sets.

Lemma 10. Let k ≥ 2 and A0 = A = {0 = a1 < a2 < · · · < ak = m} ⊂ Z and

Ai = A ∪ (A+m) ∪ · · · ∪ (A+ im). Then

|Ai+̂Ai| − |Ai−1+̂Ai−1| = c1 ∀ i ≥ 2,

|Ai +Ai| − |Ai−1 +Ai−1| = c1 ∀ i ≥ 1

and

|Ai −Ai| − |Ai−1 −Ai−1| = c2 ∀ i ≥ 1.

where c1 and c2 are positive constants.



INTEGERS: 13 (2013) 12

Proof. We first note

|Ai+̂Ai| − |Ai−1+̂Ai−1| = |(Ai+̂Ai) \ (Ai−1+̂Ai−1)|

and show that the right-hand side is a constant by showing that the set of new

elements introduced on each iteration is a translate of the set of new elements

introduced on the previous iteration. We have

Ai+̂Ai = ∪ir,s=0((A+ rm)+̂(A+ sm)).

If |r− s| ≥ 2, it is clear that A+ rm and A+ sm are disjoint so their restricted sum

is just their sum. If i−1 ≥ r = s ≥ 1, then (A+ rm)+̂(A+ rm) = (A+ (r−1)m) +

(A+ (r + 1)m). The only case needing a little thought is |r − s| = 1: without loss

of generality, r = s+ 1. Then

(A+ (s+ 1)m)+̂(A+ sm) = {a+ b+ (2s+ 1)m : a+m 6= b}

the only way we can have a+m = b is if a = 0, b = m, but in this case

(0 + (s+ 1)m) + (m+ sm) = (m+ (s+ 1)m)+̂(0 + sm)

We deduce that, for all i ≥ 2

Ai+̂Ai =(A+̂A) ∪ (A+ (A+m)) ∪ · · · ∪ (A+A+ (2i− 1)m) ∪ (A+̂A+ 2im).

Similarly

Ai−1+̂Ai−1 =(A+̂A) ∪ (A+A+m) ∪ · · · ∪ (A+̂A+ (2i− 2)m).

Now some elements of (A + A + (2i − 2)m) \ (A+̂A + (2i − 2)m) may be in A +

A+ (2i− 3)m and thus in Ai−1+̂Ai−1. (Translates of A+A by less than (2i− 3)m

need not be considered). We have

(Ai+̂Ai) \ (Ai−1+̂Ai−1) = ((A+A+ (2i− 2)m) ∪ (A+A+ (2i− 1)m)∪
(A+̂A+ 2im)) \ ((A+A+ (2i− 3)m) ∪ (A+̂A+ (2i− 2)m)). (1)

Likewise

(Ai+1+̂Ai+1) \ (Ai+̂Ai) = ((A+A+ 2im) ∪ (A+A+ (2i+ 1)m)∪
(A+̂A+ (2i+ 2)m)) \ ((A+A+ (2i− 1)m) ∪ (A+̂A+ (2i)m)). (2)

The right-hand side of (2) is a translation of the right-hand side of (1) by 2m. (To

see this, note it is easy to check for sets of integers that if Ci + 2m = Ci+1 and

Di + 2m = Di+1, then (Ci \Di) + 2m = (Ci+1 \Di+1): apply this with the obvious

choices of Ci and Di). Thus

(Ai+1+̂Ai+1) \ (Ai+̂Ai) = ((Ai+̂Ai) \ (Ai−1+̂Ai−1)) + 2m.
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Since translation by a constant leaves the cardinality of the set difference unaltered

it follows that

|(Ai+1+̂Ai+1) \ (Ai+̂Ai)| = |(Ai+̂Ai) \ (Ai−1+̂Ai−1)|

as required.

To see that

|Ai +Ai| − |Ai−1 +Ai−1| = |Ai+̂Ai| − |Ai−1+̂Ai−1| (3)

for all i ≥ 1 we show that the number of additional elements Ai + Ai contains is

constant. All the elements of

(A+A) \ (A+̂A)

except for 2m, which is in Ai+̂Ai for i ≥ 1 due to 0+2m, are excluded from Ai+̂Ai

for all i ≥ 1. Similarly the elements of

((A+A) \ (A+̂A)) + 2im

except for 2im are excluded from Ai+̂Ai. This means that for all i ≥ 1

|Ai +Ai| − |Ai+̂Ai| = 2(|(A+A) \ (A+̂A)| − 1).

In other words the difference between the cardinalities of the sumset and the re-

stricted sumset is a constant for all i ≥ 1 and (3) holds.

To verify the claim for the difference set, write

Ai −Ai = ∪ij=−i(A−A+ jm).

Thus we have

(Ai −Ai) \ (Ai−1 −Ai−1)

= (A−A− im) ∪ (A−A+ im) \ ∪i−1j=−(i−1)(A−A− jm).

But the only sets in ∪i−1j=−(i−1)(A−A− jm) which could intersect (A−A− im) or

(A − A + im) are for j = (i − 1), j = (i − 2) (which will intersect A − A − im in

precisely the one element (1− i)m), j = −(i−2) (which will intersect it in precisely

the one element (i− 1)m) and j = −(i− 1). Thus for all i ≥ 1

(Ai −Ai) \ (Ai−1 −Ai−1) =((A− (A+ im)) \ (A− (A+ (i− 1)m)))

∪ ((A−A+ im) \ (A−A+ (i− 1)m)).

Similarly

(Ai+1 −Ai+1) \ (Ai −Ai) =((A− (A+ (i+ 1)m)) \ (A− (A+ im)))

∪ ((A−A+ (i+ 1)m) \ (A−A+ im)).
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The sets (A− (A+(i+1)m))\ (A− (A+ im)) and (A−A+(i+1)m)\ (A−A+ im)

are disjoint for all i ≥ 1. Also (A− (A+ (i+ 1)m)) \ (A− (A+ im)) is a translation

of (A−(A+ im))\(A−(A+(i−1)m)) by −m and (A−A+(i+1)m)\(A−A+ im)

is a translation of (A−A+ im) \ (A−A+ (i− 1)m) by m. These translations leave

the cardinalities of the sets unchanged, therefore

|(Ai+1 −Ai+1) \ (Ai −Ai)| = |(Ai −Ai) \ (Ai−1 −Ai−1)|

and the overall result follows.

Setting M ′1 = M ′ ∪ (M ′ + 27) we easily check

|M ′1+̂M ′1| = |[1, 107] \ {97, 104}| = |[−54, 54] \ {±36,±43}| = |M ′1 −M ′1|

and M ′2 = M ′ ∪ (M ′ + 27) ∪ (M ′ + 54) gives

|M ′2+̂M ′2| = |[1, 161] \ {151, 158}| = |[−81, 81] \ {±63,±70}| = |M ′2 −M ′2|.

It follows from Lemma 10 that

Corollary 11. There exist arbitrarily large restricted-sum-difference balanced sub-

sets of Z.

Our final sequence of restricted-sum-dominant sets is constructed with a view to

obtaining high values of f(A) as defined in the introduction. Again, this set is a

modification of one in [9], who describes Qj\{1 + 4(4j + 7)} for j = 1, 2, 3 as sets

giving large sumset relative to the difference set. Including 1 + 4(4j + 7) increases

the sumset but does not change the difference set.

Theorem 12. Let

Qj ={0, 2, 4, 12} ∪ {1, 5, . . . , 1 + 4(4j + 8)} ∪ {24, 40, . . . , 8 + 16j}
∪ {4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)}

for an integer j ≥ 1. Then

Qj+̂Qj =[1, 1 + 4(8j + 16)]

\ {8, 20, 32, 48, 4(8j + 4), 4(8j + 8), 4(8j + 11), 4(8j + 14), 4(8j + 16)}

for j ≥ 2, whilst

Qj +Qj = [0, 2 + 4(8j + 16)] \ {20, 32, 4(8j + 8), 4(8j + 11)}

for j ≥ 1 and

Qj −Qj =[−(1 + 4(4j + 8)), 1 + 4(4j + 8)] \ ±{{6}, {14, . . . , 14 + 16j},
{18, . . . , 2 + 16j}, {26, . . . , 10 + 16j}, 6 + 16(j + 1)}

for j ≥ 1.
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Proof. To verify these claims, consider elements of Qj in terms of the union of

Qodd = {1, 5, . . . , 1 + 4(4j + 8)}

and

Qeven ={0, 2, 4, 12} ∪ {24, . . . , 8 + 16j}
∪ {4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)}.

Firstly Qj+̂Qj contains all the odd numbers in the interval since we have

(0)+̂{1, 5, . . . , 1 + 4(4j + 8)} ={1, 5, . . . , 1 + 4(4j + 8)}
16(j + 2)+̂{1, 5, . . . , 1 + 4(4j + 8)} ={1 + 4(4j + 8), 5 + 4(4j + 8),

. . . , 1 + 4(8j + 16)}
(2)+̂{1, 5, . . . , 1 + 4(4j + 8)} ={3, 7, . . . , 3 + 4(4j + 8)}

14 + 16(j + 1)+̂{1, 5, . . . , 1 + 4(4j + 8)} ={3 + 4(4j + 7), 7 + 4(4j + 7),

. . . , 3 + 4(8j + 15)}.

The union of the right hand sides of the above is indeed

{1, 3, . . . , 3 + 4(8j + 15), 1 + 4(8j + 16)} = {1, 3, . . . , 1 + 2(4(4j + 8))}.

To see that the sumset contains all the even elements claimed, note first that

Qodd+̂Qodd gives the following elements congruent to 2 mod 4:

Qodd+̂Qodd = {6, 10, . . . , 2 + 4(8j + 15)} ⊆ Qj+̂Qj .

Clearly 0 + 2 is also in Qj+̂Qj , however whilst max(Qj +Qj) = 2 + 4(8j + 16) this

is not in the restricted sumset. As regards the multiples of four, clearly none of

these can be obtained from Qodd+̂Qodd or Qodd+̂Qeven. To confirm the elements we

claim to be excluded cannot be present note that Qeven is symmetric w.r.t. 16(j+2):

Qeven = 16(j+ 2)−Qeven. Hence Qeven+̂Qeven = 16(2j+ 4)− (Qeven+̂Qeven) and

Qeven+Qeven = 16(2j+4)−(Qeven+Qeven). The restricted sumset of the elements

of Qeven less than or equal to 32 is

{0, 2, 4, 12, 24}+̂{0, 2, 4, 12, 24} = {2, 4, 6, 12, 14, 16, 24, 26, 28, 36}.

Thus 0, 8, 20, 32 and 48 are excluded from Qj+̂Qj . Whilst Qj + Qj contains 0, 8

and 48 as the doubles of 0, 4 and 24 respectively, it is easy to check that neither 20

nor 32 are in Qj +Qj . By symmetry

16(2j+4)−{0, 8, 20, 32, 48} = {4(8j+4), 4(8j+8), 4(8j+11), 4(8j+14), 4(8j+16)}

which has empty intersection with Qj+̂Qj .
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It remains to show that all other (relevant) multiples of 4 are in the (restricted)

sumset; we consider the cases 0,4,8 and 12 modulo 16 separately. We have the

following multiples of 16 in Qj+̂Qj :

{24, 40, . . . , 16j + 8}+̂{24, 40, . . . , 16j + 8} = {64, 80, . . . , 16(2j)}
(4 + 16(j + 1))+̂(12 + 16(j + 1)) = 4(8j + 12) = 16(2j + 3).

Furthermore Qj +Qj contains 48 and 16(2j + 1) = 2(16j + 8) and also 16(j + 2) +

16(j + 2) = 4(8j + 16) = 16(2j + 4). We already saw 16(2j + 2) = 4(8j + 8) is not

in Qj +Qj .

We obtain those congruent to 4 modulo 16 from

(12)+̂{24, 40, . . . , 16j + 8} = {36, 52, . . . , 4 + 16(j + 1)}
(4)+̂(16(j + 2)) = 4 + 16(j + 2)

(12 + 16(j + 1))+̂{24, . . . , 8 + 16j} = {4 + 16(j + 3), . . . , 4 + 16(2j + 2)}
(4 + 16(j + 1))+̂(16(j + 2)) = 4 + 16(2j + 3).

The elements congruent to 8 modulo 16 are given by

(0)+̂{24, 40, . . . , 8 + 16j} = {24, 40, . . . , 8 + 16j}
(4)+̂(4 + 16(j + 1)) = 8 + 16(j + 1)

(12)+̂(12 + 16(j + 1)) = 8 + 16(j + 2)

(16(j + 2))+̂{24, 40, . . . , 8 + 16j} = {8 + 16(j + 3), . . . , 8 + 16(2j + 2)}.

Also (12 + 16(j + 1)) + (12 + 16(j + 1)) = 8 + 16(2j + 3) ∈ Qj + Qj . Finally the

elements congruent to 12 modulo 16 follow from

(4)+̂{24, . . . , 8 + 16j} = {28, . . . , 12 + 16j}
(0)+̂(12 + 16(j + 1)) = 12 + 16(j + 1)

(4 + 16(j + 1))+̂{24, . . . , 8 + 16j} = {12 + 16(j + 2), . . . , 12 + 16(2j + 1)}
(12 + 16(j + 1))+̂(16(j + 2)) = 12 + 16(2j + 3).

We now deal with the difference set. Again, it suffices to consider the non-negative

differences. Since all the differences which we claim are excluded are even we need

only consider differences of pairs of elements of Qj of the same parity and therefore

divide into cases accordingly. The non-negative elements of Qodd −Qodd are

{0, 4, . . . , 4(4j + 8)}.

The even elements of Qj have the form

Qeven = {0, 2, 4, 12, 8 + 16x, 4 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)}
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where x ∈ Z with 1 ≤ x ≤ j. The positive differences of the elements of Qeven are

{2, 4, 8, 10, 12, 12 + 16(x− 1), 4 + 16x, 6 + 16x, 8 + 16x,

12 + 16(j − x), 4 + 16(j − x+ 1), 6 + 16(j − x+ 1), 8 + 16(j − x+ 1),

8 + 16j, 16(j + 1), 2 + 16(j + 1), 4 + 16(j + 1), 8 + 16(j + 1),

10 + 16(j + 1), 12 + 16(j + 1), 14 + 16(j + 1), 16(j + 2)}.

Thus none of the differences in Qj −Qj have the form which we claim is excluded.

To confirm the presence of the remaining differences we have that all the differences

congruent to 1 modulo 4 are present since

{1, 5, . . . , 1 + 4(4j + 8)} − {0} = {1, 5, . . . , 1 + 4(4j + 8)} ⊆ Qj −Qj .

The elements congruent to 3 modulo 4 follow from

{1, 5, . . . , 1 + 4(4j + 8)} − {2} = {−1, 3, . . . , 3 + 4(4j + 7)} ⊆ Qj −Qj .

The multiples of 4 are obtained from

{1, 5, . . . , 1 + 4(4j + 8)} − {1} = {0, 4, . . . , 4(4j + 8)}.

For elements congruent to 2 mod 4, the only elements congruent to 2 mod 16 we

are claiming to get are 2 and 2 + 16(j + 1); 2 is clearly in, and 2 + 16(j + 1) =

14 + 16(j + 1)− 12.

The elements congruent to 6 modulo 16 arise can be obtained from

{24, 40, . . . , 8 + 16j} − {2} = {22, 38, . . . , 6 + 16j}.

The only elements congruent to 10 mod 16 we are claiming are 10 + 16(j + 1) =

12 + 16(j + 1)− 2 and 10 = 12− 2. Finally the only element congruent to 14 mod

16 we claim is present is 14 + 16(j + 1) ∈ Qj .

Corollary 13. For the set Qj defined above we have

|Qj | = 5j + 17, |Qj+̂Qj | = 32j + 56 for j ≥ 2, |Qj +Qj | = 32j + 63 for j ≥ 1,

|Qj −Qj | = 26j + 61 for j ≥ 1

(and |Q1+̂Q1| = 90). Thus Qj is an restricted-sum-dominant set for all j ≥ 1.

3. The proportion of restricted-sum-dominant sets is strictly positive

Martin and O’Bryant prove that for n ≥ 15 the number of sum-dominant subsets

of [0, n − 1] is at least (2 × 10−7)2n (see Theorem 1 of [5]). Their result has been
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improved by Zhao [11] who shows that the proportion of sum-dominant sets tends

to a limit and that that limit is at least 4.28×10−4. In this section we will show that

the proportion of subsets of {0, 1, 2, . . . n− 1} which are restricted-sum-dominant is

bounded below by a much weaker constant. It may well be that Zhao’s techniques,

or others, can be modified to improve the result but at least a substantial piece

of computation would appear to be required and our concern at present is simply

to show that a positive proportion of sets are restricted-sum-dominant sets. Note

that the fact that a positive proportion of sets have more differences than restricted

sums is an immediate consequence of Theorem 14 in [5]. Many lemmas etc. in what

follows are very slight modifications of corresponding results in [5] and we merely

present these proofs without further comment. However the construction of the two

‘fringe sets’ U and L is notably more involved.

Lemma 14. Let n, ` and u be integers such that n ≥ `+ u. Fix L ⊆ [0, `− 1] and

U ⊆ [n−u, n−1]. Suppose R is a uniformly randomly selected subset of [`, n−u−1]

(where each element is chosen with probability 1/2) and set A = L ∪ R ∪ U . Then

for every integer k satisfying 2`− 1 ≤ k ≤ n− u− 1, we have

P(k /∈ A+̂A) =

{(
1
2

)|L| ( 3
4

)(k+1)/2−`
, if k is odd,(

1
2

)|L| ( 3
4

)k/2−`
, if k is even.

Proof. Define an indicator variable

Xj =

{
1, if j ∈ A,
0, otherwise.

Since A = L∪R∪U the Xj are independent random variables for ` ≤ j ≤ n−u−1,

each taking values 0 or 1 equiprobably. For 0 ≤ j ≤ ` − 1 and n − u ≤ j ≤ n − 1

the values of Xj are dictated by the choices of L and U .

Now, k /∈ A+̂A if and only if XjXk−j = 0 for all 0 ≤ j ≤ k/2 − 1. (j = k/2

would not give a restricted sum). The random variables XjXk−j for 0 ≤ j ≤ k/2

are independent of each other. Hence

P(k /∈ A+̂A) = Π0≤j≤k/2−1P(XjXk−j = 0).

When k is odd we have

P(k /∈ A+̂A) =

`−1∏
j=0

P(XjXk−j = 0)

(k−1)/2∏
j=`

P(XjXk−j = 0)

=
∏
j∈L

P(Xk−j = 0)

(k−1)/2∏
j=`

P(Xj = 0 orXk−j = 0) =

(
1

2

)|L|(
3

4

)(k+1)/2−`

.
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When k is even

P(k /∈ A+̂A) =

`−1∏
j=0

P(XjXk−j = 0)

k/2−1∏
j=`

P(XjXk−j = 0)

=
∏
j∈L

P(Xk−j = 0)

k/2−1∏
j=`

P(Xj = 0 orXk−j = 0) =

(
1

2

)|L|(
3

4

)k/2−`

.

Lemma 15. Let n, `, u, L, U,R and A be defined as in Lemma 14. Then for every

integer k satisfying n+ `− 1 ≤ k ≤ 2n− 2u− 1, we have

P(k /∈ A+̂A) =

{(
1
2

)|U | ( 3
4

)n−(k+1)/2−u
, if k is odd,(

1
2

)|U | ( 3
4

)n−1−k/2−u
, if k is even.

Proof. This is similar to the previous lemma, but we consider different intervals for

the summands. For k odd, we have

P(k /∈ A+̂A) =

n−u−1∏
j=(k+1)/2

P(XjXk−j = 0)

n−1∏
j=n−u

P(XjXk−j = 0)

=

n−u−1∏
j=(k+1)/2

P(Xj = 0 orXk−j = 0)
∏
j∈U

P(Xk−j = 0)

=

(
3

4

)n−(k+1)/2−u(
1

2

)|U |
.

For k even, as k = k/2 + k/2 is forbidden,

P(k /∈ A+̂A) =
n−u−1∏
j=k/2+1

P(XjXk−j = 0)
n−1∏

j=n−u
P(XjXk−j = 0)

=

n−u−1∏
j=k/2+1

P(Xj = 0 orXk−j = 0)
∏
j∈U

P(Xk−j = 0)

=

(
3

4

)n−1−k/2−u(
1

2

)|U |
.

Proposition 16. Let n, ` and u be integers such that n ≥ `+ u. Fix L ⊆ [0, `− 1]

and U ⊆ [n − u, n − 1]. Suppose R is a uniformly randomly selected subset of

[`, n − u − 1] (where each element is chosen, independently of all other elements,
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with probability 1/2) and set A = L ∪ R ∪ U . Then for every integer k satisfying

2`− 1 ≤ n− u− 1,

P([2`− 1, n− u− 1] ∪ [n+ `− 1, 2n− 2u− 1] ⊆ A+̂A) > 1− 8(2−|L| + 2−|U |).

Proof. We crudely estimate

P([2`− 1, n− u− 1] ∪ [n+ `− 1, 2n− 2u− 1] 6⊆ A+̂A)

≤
n−u−1∑
k=2`−1

P(k /∈ A+̂A) +

2n−2u−1∑
k=n+`−1

P(k /∈ A+̂A).

The left summation of the line above can be bounded using Lemma 14:

n−u−1∑
k=2`−1

P(k /∈ A+̂A) <
∑

k≥2`−1
k odd

(
1

2

)|L|(
3

4

)(k+1)/2−`

+
∑

k≥2`−1
k even

(
1

2

)|L|(
3

4

)k/2−`

=

(
1

2

)|L| ∞∑
m=0

(
3

4

)m

+

(
1

2

)|L| ∞∑
m=0

(
3

4

)m

= 8

(
1

2

)|L|
.

The summation on the right can be bounded similarly, using Lemma 15, to give

2n−2u−1∑
k=n+`−1

P(k /∈ A+̂A) < 8

(
1

2

)|U |
.

Thus P([2`, n − u − 1] ∪ [n + ` − 1, 2n − 2u − 1] ⊆ A+̂A) is bounded above by

8((1/2)|L| + (1/2)|U |), which is equivalent to the claim of Proposition 16.

We now come to the main result. Whilst the respective lower and upper fringes

U = {0, 2, 3, 7, 8, 9, 10} and L = {n−11, n−10, n−9, n−8, n−6, n−3, n−2, n−1}
used by Martin and O’Bryant are sufficient for the sum-dominant case these fall

some way short of what is required for a restricted-sum-dominant result. However

we can again use Spohn’s idea of repeating interior blocks. After a few iterations

we get the new fringes, which we shall henceforth refer to as L and U , to fit with

the earlier lemmas. Thus from now on

L = {0, 2, 3, 7, 9, 10, 14, 16, 17, 21, 23, 24, 28, 30, 31, 35,

37, 38, 42, 44, 45, 49, 51, 52, 56, 57, 58, 59, 60},
U = n− {59, 58, 57, 55, 52, 51, 50, 48, 45, 44, 43, 41, 38, 37, 36, 34, 31,

30, 29, 27, 24, 23, 22, 20, 17, 16, 15, 13, 10, 9, 8, 6, 3, 2, 1}.

Theorem 17. For n ≥ 120, the number of restricted-sum-dominant subsets of

[0, n− 1] is at least (7.52× 10−37)2n.
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Proof. With L and U as just defined, one can check that

U − L = [n− 119, n− 1] \ {n− 7, n− 14, n− 21, n− 28,

n− 35, n− 42, n− 49, n− 56}.

Now since n−7, n−14, n−21, n−28, n−35, n−42, n−49, n−56 /∈ U−L it follows that

±(n−7),±(n−14),±(n−21),±(n−28),±(n−35),±(n−42),±(n−49),±(n−56) /∈
A−A ⊆ [−(n− 1), n− 1]. With eight pairs of differences excluded from A−A we

have |A−A| ≤ 2n− 17. On the other hand one can check

L+̂L =[0, 120] \ {0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120}
U+̂L = U + L =[n− 59, n+ 59]

U+̂U =[2n− 118, 2n− 2] \ {2n− 118, 2n− 6, 2n− 2}.

Hence for 120 ≤ n ≤ 178 we have that A+̂A contains

[0, 2n− 2] \ {0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120, 2n− 118, 2n− 6, 2n− 2}

so that |A+̂A| ≥ 2n − 16. There are n − 120 numbers between 61 and n − 60

inclusive. Therefore the number of such A is 2n−120.

For n ≥ 178 applying Proposition 16 with ` = 61 and u = 59 implies that when A

is chosen uniformly randomly from all such sets, the probability that A+̂A contains

[61, n− 60] ∪ [n+ 60, 2n− 119] is at least

1− 8(2−|L| + 2−|U |) = 1− 8(2−29 + 2−35) =
4294967231

4294967296
.

That is, there are at least 2n−120 4294967231
4294967296 > (7.52× 10−37)2n such sets A with

A+̂A = [0, 2n− 2] \ {0, 1, 4, 6, 8, 15, 22, 29, 36, 43, 50, 120, 2n− 118, 2n− 6, 2n− 2},

whilst at the same time eight pairs of differences are excluded from A − A. Thus

all such sets A are restricted-sum-dominant sets.

Martin and O’Bryant’s Lemma 7 and Theorem 16 for a subset S of an arithmetic

progression of length n can also be adapted to give the following result.

Theorem 18. Given a subset S of an arithmetic progression P of length n for

every positive integer n, we have

∑
S⊆P

|S+̂S| = 2n(2n− 15) +

{
26 · 3(n−1)/2, if n is odd,

15 · 3n/2, if n is even.
(4)

Thus 1
2n

∑
S⊆P |S+̂S| ∼ 2n − 15. This combined with Martin and O’Bryant’s

Theorem 3, that 1
2n

∑
S⊆P |S − S| ∼ 2n− 7 gives that on average the difference set

has eight elements more than the restricted sumset. Details will appear in [10].
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4. How much larger can the sumset be?

As in section 4 of [3] we consider this question in terms of f(A) = ln|A+A|/ ln|A−A|
(and the analogous quantity f̂(A) = ln|A+̂A|/ ln|A−A|). It is known - see e.g. [1]

- that 3
4 ≤ f(A) ≤ 4

3 . The reason for considering the ratio of logarithms rather

than (say) the ratio is explained in [3] in terms of the base expansion method. Some

authors, e.g. Granville in [2], prefer to use g(A) = ln(|A+A|/|A|)/ ln(|A−A|/|A|)
for which the analogous bounds are 1/2 ≤ g(A) ≤ 2.

Hegarty’s set A15 is easily checked to have f(A15) = 1.0208 . . ., which is often

quoted as the largest known value of f(A). In fact, the set X (our T2) which Hegarty

uses to write A15 = X ∪ (X + 20) already does fractionally better:

Lemma 19. Let X = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25}. Then X + X =

[0, 50] but X −X = [−25, 25]\{±6,±14}. Thus f(X) = ln(51)/ ln(47) ' 1.0212.

Proof. This is just a short calculation.

We do better than either of these using the sets Qj at the end of Section 2.

Theorem 20. There is a set A of integers for which

f(A) =
ln(|A+A|)
ln(|A−A|)

' 1.030597781 . . .

and another set B of integers for which

f̂(B) =
ln(|B+̂B|)
ln(|B −B|)

' 1.028377107 . . .

Proof. Take A = Q10 for the first claim and A = Q19 for the second claim.

It is easy to check that neither any other Qj , nor any of the Tj , T
′
j , Mj or Rj

give better results than the two Qjs listed above.

The function g has a slightly different behaviour, as it is monotone increasing as

j increases in our sequences. The result here is

Theorem 21. Given ε > 0, there is a set C of integers for which

g(C) =
ln(|C + C|/|C|)
ln(|C − C|/|C|)

>
ln(32/5)

ln(26/5)
− ε ' 1.125944426

Proof. Take Qj for j sufficiently large.

(For comparison, g(A15) ' 1.0717).

The corresponding suprema are ln(16/3)/ ln(14/3) ' 1.0867 for both (g(T ′j)) and

(g(Tj)), ln(23/4)/ ln(11/2) ' 1.0261 for (g(Rj)) and ln(11/2)/ ln(5) ' 1.0592 for

(g(Mj)). None of these do as well as the supremum for the (Qj).
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Note also that because the sumsets and restricted sumsets in each of our families

T ′j , Tj , Mj , Rj and Qj only differ in order by a constant, the function

ĝ(A) =
ln(|A+̂A|/|A|)
ln(|A−A|/|A|)

will give similar insights to g.

5. The smallest order of a restricted-sum-dominant set

We noted above that we have two restricted-sum-dominant sets of order 16, namely

T ′3 and M2: we know of no smaller examples. In this section we reduce the range

in which the smallest restricted-sum-dominant set can be.

Hegarty ([3], Theorem 1) proves that no seven element subset of the integers is

sum-dominant, and that up to linear transformations Conway’s set is the unique

eight element sum-dominant subset of Z. As Conway’s set is not a restricted-sum-

dominant set there is no eight element restricted-sum-dominant set of integers.

Further Hegarty finds all nine-element sum-dominant sets A of integers with the

additional property that for some x ∈ A + A there are at least four ordered pairs

(a, a′) ∈ A×A with a+ a′ = x. There are, up to linear transformations, nine such

sets, listed in [3] as A2 and A4 through to A11. It is easy to check that none of

these nine sets is restricted-sum-dominant.

Thus, the only possible nine element restricted-sum-dominant sets of integers

have the property that for every x ∈ A+A there are fewer than four ordered pairs

(a, a′) such that x = a + a′. This condition implies that there is no solution of

x + y = u + v with x, y, u, v all distinct, so such a set is a weak Sidon set in the

sense of Ruzsa [8].

Defining δ(n) for n ∈ A − A to be the number of ordered pairs (x, y) such that

x− y = n, it is shown in the proof of Theorem 4.7 in [8] that for a weak Sidon set,

δ(n) ≤ 2 whenever n 6= 0 and at most 2|A| elements n have δ(n) = 2.

Thus, noting 0 has |A| = 9 representations and putting m = |A−A|,

81 ≤ 9 + (2× 9)× 2 + (m− 19)⇒ m ≥ 55

so if such a set were to be sum-dominant its sumset would have to have order at

least 56. But of course |A+A| ≤ 9× 10/2 = 45, and we have proven

Theorem 22. All sum-dominant sets of integers of order 9 are linear transforma-

tions of one of Hegarty’s nine sets A2 and A4 to A11. None of these is restricted-

sum-dominant, so there is no restricted-sum-dominant set of order 9.

We thus know that the smallest restricted-sum-dominant set of integers has order

between 10 and 16. It appears a non-trivial computational challenge to find the

order of the smallest restricted-sum-dominant set.
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