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Abstract

Background: Antibiotic resistance and its rapid dissemination around the world threaten the efficacy of currently-used
medical treatments and call for novel, innovative approaches to manage multi-drug resistant infections. Phage
therapy, i.e., the use of viruses (phages) to specifically infect and kill bacteria during their life cycle, is one of the most
promising alternatives to antibiotics. It is based on the correct matching between a target pathogenic bacteria and
the therapeutic phage. Nevertheless, correctly matching them is a major challenge. Currently, there is no systematic
method to efficiently predict whether phage-bacterium interactions exist and these pairs must be empirically tested
in laboratory. Herein, we present our approach for developing a computational model able to predict whether a given
phage-bacterium pair can interact based on their genome.
Results: Based on public data from GenBank and phagesDB.org, we collected more than a thousand positive
phage-bacterium interactions with their complete genomes. In addition, we generated putative negative (i.e.,
non-interacting) pairs. We extracted, from the collected genomes, a set of informative features based on the
distribution of predictive protein-protein interactions and on their primary structure (e.g. amino-acid frequency,
molecular weight and chemical composition of each protein). With these features, we generated multiple candidate
datasets to train our algorithms. On this base, we built predictive models exhibiting predictive performance of around
90% in terms of F1-score, sensitivity, specificity, and accuracy, obtained on the test set with 10-fold cross-validation.
Conclusion: These promising results reinforce the hypothesis that machine learning techniques may produce
highly-predictive models accelerating the search of interacting phage-bacteria pairs.
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Background
Nowadays, the most-used therapeutic method to treat
bacterial infections is the use of antibiotics. However, in
recent years, this technique had to face resistance dif-
ficulties due to their overconsumption, which threatens
medical progress [1]. The increase in resistance makes it

*Correspondence: carlos.pena@heig-vd.ch
†Aitana Neves and Carlos Peña-Reyes contributed equally to this work.
1School of Business and Engineering Vaud (HEIG-VD), University of Applied
Sciences Western Switzerland (HES-SO), Route. de Cheseaux 1, 1400
Yverdon-Les-Bains, Switzerland
2SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
Full list of author information is available at the end of the article

harder to fight bacterial infections, that is why alterna-
tive methods are required in the near future. The research
required to discover new molecules, fueling novel antibi-
otics, in pharmaceutical laboratories usually implies long
time, intensive work, and huge financial effort in com-
parison with the operating time before the occurrence of
resistance. Phage-therapy is one of the most promising
re-emergent therapies, consisting in the use of viruses,
called bacteriophages, to infect and kill pathogenic bac-
teria along their life cycle with the aim of curing the
infections they cause [2]. These viruses have cohabited
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and evolved with bacteria, which, along the time, con-
trolled the epidemics, bacterial population and, have con-
tributed to their genetic exchanges since already billions of
years. Phages or bacteriophages have the advantage to be
extremely strain-specific and do not have a major impact
on the commensal flora. The selection of a phage needs
to be carefully done due to the fact that some of them
can be used for a bacterial treatment but may also drive a
horizontal gene transfer contributing to phage resistance.

The first experiments of phage-therapy started at the
beginning of the 20th century, when bacteriophages were
discovered [3]. In the middle of that century, due to
the antibiotics exploration, this therapy was set aside
in western countries. Unfortunately, the overexploitation
of antibiotics (human health, animal, agriculture,...) has
allowed bacteria to develop resistances and, nowadays, the
research of new antibiotic molecules is often longer than
the time it takes some bacteria to adapt, causing these
antibiotics to lose their effect. The concept of phage ther-
apy involves correctly matching a bacterium and a phage
able to interact with it. Currently, searching for these
pairs is done experimentally in laboratories by means of
infection tests [4], process that may take several days of
labor. Many positive interactions have been uncovered
using these tests revealing, for example, that highly phage-
sensitive bacteria get infected by phages with both nar-
row and broad-host range, whereas highly phage-resistant
bacteria are only infected by broad-range phages [5].
There is an increasing number of studies focused on how
phages can infect bacteria [6, 7] and on the defense mech-
anisms developed by bacteria against phage invasion [8].
Receptor-binding proteins (RBPs) in phages are able to
recognize and bind specifically to receptors on the sur-
face of the bacterium. These bacterial receptors have been
experimentally identified in some cases and shown to gen-
erally involve both proteins and cell-wall glycopolymers
[9]. When the phage is bound and connected with the
bacterial host, it injects its genome inside the bacterial
cytoplasm. Only the phage genome can enter in a target
bacteria.

Phages can be classified in two categories according to
the way their genome develops inside the bacteria: (1)
Tempered phages that follow the lysogenic cycle, whose
genome can integrate with the bacterium DNA, becom-
ing a prophage that follows bacterial cell division. When
the cell is under stress (e.g., cell damage), the prophage
becomes active and initiate the “lytic cycle”. (2) Virulent,
or lytic, phages, whose replication begins immediately
after injecting their genome, resulting in bacterial wall dis-
ruption and destruction due to holins and lysins activity.
Lytic phages are more suitable for phage therapy. A recent
machine-learning approach, called PHACTS (Phage
Classification Tool Set) [10], is able to automatically
identify the type of life cycle of a phage based on its
protein sequence.

Bacteria and phage constantly adapt their defense and
attack mechanisms [6, 7]. One method used by bacte-
ria to prevent phage attack is to render their receptors
unrecognizable for the phage through mutations on them.
Another mechanism is to hide the receptors’ binding
regions with capsules as physical barriers [8]. They may
also develop the ability to block phage DNA injection
when a second phage is trying to infect them [9]. Some
bacteria are also able to detect genetically-encoded sites
that could be targeted by a restriction-modification sys-
tem which cuts stranger DNA at specific recognition sites
(e.g., the CRISPR/Cas system, evolved by bacteria, is a
kind of prokaryotic immune system that confers resis-
tance to a phage). Some bacteria choose to suicide to
prevent their replication and to avoid any type of repro-
duction (abortive infection system [7]). Finally, phages can
be defeated by bacteria through phage assembly inter-
ference, where bacteria encode phage-inducible chromo-
somal islands capable of negatively interacting with the
assembly of the phage [11].

Thus, the host range of a phage not only depends on
its own attack mechanisms: receptor-binding and lysins,
but also on the bacterial defense mechanisms. Naturally,
phages found in man-made and/or natural environments
co-evolve quickly with their bacterial target. In conse-
quence, the infectivity of a phage may differ from one host
bacterial species to another and even from one strain to
another of the same bacterial species [12]. Currently, the
host range of a phage is determined by means of infection
tests [4] usually based on spot assays or, more recently, on
methods such as microfluidic-PCR or PhageFish [13, 14].
All these methods, depending on the number of bacterial
hosts tested, may require several days of laboratory work.

As already mentioned, phage-therapy is one of the most
promising alternatives to fight against the emergence of
multi-resistant bacteria. Usually, phage-therapy is per-
formed by using cocktails of different phages able to kill a
specific population of bacteria [2]. These cocktails contain
both lytic phages able to lyse the bacteria from outside [15]
and temperate phages that add extra genes to the bacteria
making them to lose their resistance, allowing thus to treat
the patient with normal antibiotics [16, 17]. Several pre-
clinical and veterinary trials [1] have shown good results
but, unfortunately, phage-therapy still requires having a
completely-characterized phage library as well as meth-
ods able to quickly detect a potential phage collection
for a specific bacterial strain. A recent work by Vold-
dby Larsen et al. [13] proposes a computational approach
and a companion bioinformatic tool named HostPhin-
der, that deals partially with this goal as it predicts the
bacterial host of a given phage based on its genome, by
computing its similarity with the genomes of other phages
with known host. There exist other approaches able to
detect a phage-host range. For instance, Coelho et al. [18]
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propose a method based on PPIs, and Edwards et al. [14]
propose a method based on sequence similarity resorting
to techniques like Blast. Computational modeling-based
approaches like PHAST (PHAge Search Tool) [19] are
able to detect if a given bacteria contains a prophage
using genomic information and BLAST matching to a
phage-specific sequence. All these methods are based on
sequence similarity to make their predictions.

This is where our approach steps in, as it might be used
to automatically identify, from a phage library, a num-
ber of candidate phages able to infect a given pathogenic
bacterium based mainly, or solely, on their genomes. To
achieve this, we combine state-of-the-art techniques from
machine-learning and bioinformatics with genomic data
and the ever-growing information about phage-bacteria
interactions. We conceived, explored and implemented
an original approach, based on supervised modeling,
to predict if a given phage-bacterium pair would inter-
act. To build such predictive models based exclusively
on genomic information, one of the biggest challenges
resides in the, so-called, feature engineering. It consists
in, first extracting informative features that capture essen-
tial properties of the phage and the bacterium. Then, in
further selecting a subset of these features that allow the
models to obtain the best predictive results.

Methods
Creation of the dataset
To create our training dataset, we extracted phage-
bacterium pairs that have been annotated in public
databases as exhibiting (positive) interactions. In order
to complete the training dataset, we generated puta-
tive non-interacting (i.e., negative) pairs, since the public
databases do not clearly annotate the absence of inter-
action. Two public databases were used to collect the
complete genomes of all bacteria and phages: PhagesDB
[20] and GenBank [21], consulted in February 2016. We
compiled 1064 phage sequences—79 from GenBank and
986 from PhageDB—as well as 42 host bacteria sequences,
extracted from GenBank. It results, thus, in a total of 1064
positive phage-bacterium interactions.

Phage sequences
As mentioned above, we obtained a first set of 986
complete phage genome sequences from PhageDB
[20]. From this data we performed gene predic-
tion, so as to retrieve coding-DNA and protein
sequences, using GeneMarkS [22]. We retrieved a
second set of 79 phage sequences from GenBank
accessed through the Entrez Nucleotide service [23,
24] which provides directly the genome, coding-DNA,
and protein sequences. (The query ‘phage [Title] and
complete genome’ was used to obtain the information for
each phage.)

Bacterial sequences
We parsed the annotation of each phage to obtain its bac-
terial host, by extracting it from the fields ‘Isolation Host’
and ‘host’, respectively, in PhagesDb and GenBank. The
genome, coding-DNA, and protein sequences, for each
bacterium, were extracted with the Entrez Nucleotide ser-
vice, using the query ‘name of bacteria [ORGN] AND
‘complete genome’. All phages whose bacterial host was
unknown or did not have a complete sequence were
removed.

Positive interactions
As already mentioned, the initial positive dataset con-
tains 1064 phage-bacterium pairs with annotated inter-
actions. Among them, 915 correspond to the same
bacterial host (i.e., M. Smegmatis). Unfortunately, such
over-representation of a single bacterium in the dataset
may have a negative effect on the pertinence of the
models obtained during the learning phase. In effect,
a model based only on the presence or absence of M.
Smegmatis to predict interactions. To palliate this effect,
we grouped the interactions by bacterial families based
on the NCBI’s taxonomy database [25] and further bal-
anced their presence in the training dataset by means
of oversampling—or replacement-sampling—a technique
used to balance datasets containing classes with very
different number of instances [26]. We applied this tech-
nique to our positive interactions dataset using two steps:
(1) grouping the interactions considering their bacterial
families, we obtained 19 families with, in average, two
bacteria. (2) replicating the interactions of each family as
many times as necessary to ensure that it is represented
around 300 times—excepting for the family containing
M. Smegmatis. E.g, the family “Alteromonadaceae” which
contains a total of four interactions (2 bacteria, each with
two interactions) is replicated 75 times. This approach
allows reducing the over-representation of M. Smegmatis.
The oversampled dataset is composed by 6’517 interac-
tions of which 915 involve M. Smegmatis, representing
14% of the interactions—against 86% for the original data.

Negative interactions
Ideally, a negative dataset should contain phage-bacteria
pairs that have been shown, experimentally, to not inter-
act. Unfortunately, to the best of our knowledge, no data
source provides such an information. For this reason, we
created a set of putative negative interactions using all
the phages and bacteria from the positive dataset. From
all the possible phage-bacterium pairs, a given pair would
be considered as not-interacting if it satisfies two condi-
tions: (1) it does not exist in the positive set and (2) the
bacterium belongs to a different species than that of the
phage’s known host. Although, these criteria do not war-
rant that a given pair won’t interact at all, it will select
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pairs that are not known to physically interact and that
are not likely to do it, considering the high specificity of
phages to one bacterial species, even to specific strains
within a species [27, 28]. This approach results in more
than 43’000 putative negative interactions pairs. As before,
in order to improve the relevance of the models extracted
from the data, we decided to maintain the same number
of negative pairs for each bacterial species than in the pos-
itive dataset. Whenever possible, these pairs are randomly
selected from the putative negative set. In the case where
the number of available negative pairs is not enough, some
of them are repeated.

Feature extraction: Protein-Protein Interactions
The interactions between a phage and a bacterium are,
in principle, mainly due to the interactions between their
encoded proteins. So, one can expect protein-protein
interactions (PPIs) to contain relevant information for
predicting phage-bacterium interactions. In this section,
we present the methodology used to extract two dif-
ferent sets of features, based on PPIs [18], that consti-
tute the base for our candidate training datasets. In our
database bacterial genomes encode, in average, for 3’417
proteins, whereas an average phage expresses 74 proteins,
resulting in 74 × 3417 ≈ 2.5 × 105 PPIs for an aver-
age phage-bacterium pair. Note, nevertheless, that the
number of PPIs may be (very) different from one phage-
bacterium pair to another. In consequence, during the
feature extraction stage, it is necessary to apply some kind
of post-processing to make them comparable and eas-
ily exploitable by the machine learning algorithms. We
extracted two kinds of features from these PPIs: domain-
domain interaction scores and protein primary structure
information, as explained below.

Domain-domain interaction scores
A domain is defined as a structural or functional subunit
of a protein [29, 30]. Often, a PPI involves one or more
bindings between pairs of their constituting domains.
DOMINE [31] is a database of known and predicted
protein domain interactions—or domain-domain interac-
tions (DDIs). It contains DDIs observed in PDB crystal
structures as well as those predicted by several compu-
tational approaches. In DOMINE, all DDIs are obtained
using Pfam HMM profiles for protein domain definitions
[32], to detect them in our proteins we used the HMMER
API [32, 33]. Each DDI is evaluated by a quality score
that represents the predicted quality of the interaction,
computed by several algorithms. The cumulated interac-
tion score of a PPI is then calculated as the sum of all its
DDIs. Our database contains more than 2.2×105 proteins
(from both bacteria and phages) with more than 3.5 × 105

domains. Using the scoring procedure described before,
we obtain a vector of PPI scores for each phage-bacterium

pair. To deal with the different vector lengths of these
scores, we transformed them into a vector of frequencies
(a histogram of PPI-scores) in order to obtain vectors of
the same size. Doing so, we explored two parameters: (1)
using normalized or absolute frequency, and (2) predefin-
ing the size of the histogram bins (SB) or their number
(NB). We produced thus, four different kinds of datasets
from the DDI scores, as described in Table 1.

Protein primary structure information
A second set of features is based on the physicochemi-
cal properties of the proteins of each PPI [34–37]. Using
the sequence of each protein, we extracted the following
27 features: 21 representing the frequency of each amino-
acid—i.e. the 20 amino-acids plus one for unknown
amino-acids; five other features corresponding to the
abundance of selected chemical elements composing the
proteins (i.e. Carbon, Hydrogen, Nitrogen, Oxygen, and
Sulfur) [38] and, finally, the molecular weight of the pro-
tein. So, for each protein-protein interaction, we have
54 features. As already mentioned, each phage-bacterium
pair has, in average, more than 2.5 × 105 PPI scores, rep-
resenting an extremely high dimensionality. In order to
reduce it, we calculated, for each phage-bacterium pair,
the mean and the standard deviation for the features
across all its PPIs. At the end, each phage-bacterium pair
is represented by 108 features, 54 mean values and 54
standard-deviation values.

In summary, 19 candidate datasets were created based
on the two extracted types of features: 18 based on
DDIs and one based on primary structure information,
dubbed chemical composition (CH). A set of 13’034
phage-bacterium pairs, comprising an equal number of
positive and negative interactions, was selected for fea-
ture extraction and to generate the datasets. Ten per-
cent (10%) of the data was removed and used to create
a stratified test set. For each bacteria family, the same

Table 1 DDI-score-based datasets

Histogram’s
bin
generation

Normalized Values Abbreviation

Fixed
number of
bins

Yes 5, 10, 15, 30, 50 NBN sets

No 5, 10, 15, 30, 50 NB sets

Fixed-size
bins

Yes 1, 5, 10, 15, 20 SBN sets

No 1 × 10−6, 2.5 × 10−6,
5 × 10−6

SB sets

Different configurations were used to generate 18 datasets based on the frequency
distribution of domain-domain interaction scores. There exist four types of datasets
according to (1) whether the histogram’s bins are defined with fixed size or fixed
number and (2) whether or not the score frequencies are absolute or normalized
values
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proportion of interactions were taken into consideration
for creating the train and the test sets. We then used
a machine learning-based process, as described in next
section, to investigate them and select the most infor-
mative datasets in order to constitute the final training
dataset.

Predictive modeling and machine learning
We constructed a predictive model able to evaluate if a
phage-bacterium pair can interact or not. Four machine-
learning modeling techniques were explored in order to
find their best configuration parameters as well as to iden-
tify the datasets that more consistently allow for the best
prediction scores. These methods are: K-Nearest Neigh-
bors (K-NN) [39], Random Forests (RF) [40], Support Vec-
tor Machines (SVM) [26], and Artificial Neural Networks
(ANN) [41].

The modeling process was performed in two phases:
exploration and refinement. The exploration phase
allowed us to test multiple algorithm configurations per-
forming a grid search with multiple parameter values
for each modeling technique and for each dataset. The
refinement phase extended the exploration of the num-
ber of neurons for ANNs on some selected datasets.
Indeed, we noticed that their performance increased with
such a number and required for further investigation. All
along the process we used 10-fold cross-validation [26]
in order to prevent model over-fitting and to optimize
model selection. The predictive performance was assessed
by using several metrics: accuracy, f-score, specificity, and
sensitivity.

Results
Exploratory phase
Given the large space of parameters explored for each
algorithm, as well as the large number of datasets on
which they were tested, we visualized all the results
with heatmaps in order to better analyze them. Figure 1
shows, as an example, the heatmap of the F1-score results
obtained in the exploratory phase. Note that during all
the process we considered four performance metrics—i.e.,
sensitivity, specificity, accuracy, and F1 score to make the
decisions.

At first sight, it seems that RF and K-NN attain excel-
lent predictive performances while SVM and ANN are
less predictive. However, such good results ask for special
scrutiny and analysis:

• K-NN: it bases its predictions on the similarity of
each case (i.e., interaction) with its closest neighbors.
As our dataset includes repetitions to reduce the
over-representation problem of a bacterium, K-NN is
fooled by this redundancy and obtains false high
performances. This is clearly illustrated in Fig. 1

where it attains more than 96% of F1-score for almost
any combination of dataset and k-values.

• RF: It seems clear, from the very-high performance
figures, often superior to 98% (see Fig. 1), that RF is
also not performing well with repeating data. Indeed,
as already reported in the literature, RF is closely
related to K-NN and both can be viewed as weighted
neighborhood schemes that make predictions by
looking at the “neighborhood” of the target point [42].

• SVM: From the results, we can observe that the best
results are obtained on the datasets CH, SBN
1 × 10−6, NBN50, and NB50 when using small values
for momentum and penalty. For those parameter
configurations, the F1-score shown in Fig. 1 takes on
values bigger than 85%.

• ANN: Looking at the results in Fig. 1, the main
conclusion we can make is that the more neurones
are in the hidden layer, the better are the results. This
is particularly visible for the four datasets mentioned
above. One may obtain more than 88% of F-1 score
with six neurones in hidden layer.

Considering these results, we decided to maintain four
datasets—SBN 1×10−6, NBN50, NB50 and CH for further
experiments. Note that the performances obtained on the
CH dataset are so high that one could consider it as over-
fitting. We decided, however, to keep it and validate such
hypothesis on the final test set (i.e., the one never used for
training nor validation).

Refinement phase
From the previous analysis we can conclude that the num-
ber of hidden neurons in ANN is the only parameter
that deserves further investigation. Figure 2 shows the F1-
score results obtained for the additional configurations
described in Table 2. Although the performance contin-
ued to increase with the number of neurons in the hidden
layer, it stagnated with around 9 or 10 neurons. The F1-
score reached 93% for the best configuration with the
selected datasets. Note that the refinement phase was per-
formed only on ANN as it is the only method whose
results in the exploring phase are not conclusive enough.
As already discussed, K-NN and RF overfitted the data
and do not deserve more exploration. On the other hand,
observing the SVM results, the parameter values allowing
for the best performances are clear making it unnecessary
to explore more configurations.

Based on the analysis of all the results, we selected as
the best configuration the use of an ANN with 9 neu-
rons in the hidden layer, trained during 50 epochs with
0.1 of momentum value and 0.01% as learning rate. The
10 models obtained by cross-validation during the refine-
ment phase were evaluated on the test set (i.e., a set that
was kept apart since the beginning and was never used
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Fig. 1 Heatmaps resuming the F1 scores obtained during the exploratory phase. Each heatmap represents the results obtained by all the
configurations for each method: K-NN (top left), RF (bottom left), SVM (top right), and NN (bottom left). The lines in the heatmap correspond to the
different datasets and the columns correspond to the different configurations. The vertical white lines indicate the change of one parameter value:
number of neurons for ANN and penalty factor for SVM

during the modeling phases). Table 3 summarizes the
results obtained on such tests. As expected, the perfor-
mance figures on the test set are lower than those on the
validation sets for all selected datasets. Nevertheless the
performance loss is relatively small—e.g., accuracy loss
ranges from around 4.7% for SBN 1×10−6 to around 1.1%
for CH.

Discussion
The emergence of antibiotic-resistant bacteria is a serious
threat for medicine and health care. Phage-therapy, i.e.,
the use of viruses (phages) to fight bacteria, is a promis-
ing alternative to heal patients suffering of antibiotic-
resistant infections. The main challenge for such therapy
is to rapidly and effectively find the correct phage (or a

handful of them) able to attack the target bacterium. To
address this challenge, we explored the use of machine
learning techniques to build models able to predict if a
given phage-bacterium pair would interact, based on the
genome sequences of both organisms. In order to train
the models, our approach first builds a number of train-
ing datasets based on informative features obtained from
the genomic data. For this purpose, we concentrated our
analysis on protein-protein interactions and extracted, for
each PPI, two types of features: one based on domain-
domain interactions and another on chemical composi-
tion. Subsequently, we explored several machine-learning
techniques on all these datasets in order to select a config-
uration (i.e., an algorithm and its parameter values) pro-
ducing the most predictive models. The results obtained,

Fig. 2 F1-score results obtained in the refinement phase. Each line represents a different dataset, while the columns correspond to the different
combinations of parameter values detailed in Table 2. The change on the number of neurons is represented by the vertical white lines
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Table 2 Configurations used along the machine-learning
algorithm in both exploratory and refinement modeling phases

Modeling phase

Parameters Exploratory Refinement

Method K-NNK {1,2,3,4,5,6,7,8,9}

RF N-trees {10^2, 10^3, 10^4}

L-size {2,3,4}

SVM Penalty {10^4, 10^3, ... 10^-2}

Momentum{10^-4, 10^-3, ..., 10^4}

ANN N-neurones{2,3,4,5,6} {7,8,9,10}

Epochs {10,25,50,75,100} {10,25,50,75,100}

Momentum{0.1,0.4,0.7} {0.1,0.4,0.7}

Datasets All 19 sets SB1E-6, NBN50, NB50, CH

with accuracy values ranging from 86% to almost 90% on
test data, are encouraging.

Note that it is hard to make a direct comparison
between the present work and our early approach. Indeed,
as already explained, an oversampling was applied to our
data so as to palliate the problem of the M. Segmatis bac-
terium being over-represented in the original dataset. As
a consequence of this modification, K-NN and RF became
unusable because of the repeats. The classification perfor-
mances obtained on this new dataset are similar to those
obtained previously, meaning that the other methods were
able to adapt to the new data distribution. Another major
difference with the previous results is the classification
performance obtained on the CH dataset. This is due to
the fact that this dataset is no longer based on princi-
pal component analysis, as this technique didn’t convey
enough information to be predictive, but it is now cal-
culated as the mean and the standard deviation of each
feature.

Thanks to the experience acquired, we have identified
the following issues that we should address in the future.

• A first improvement should relate with the number
and the diversity of the phage-bacterium pairs
included in the database. Indeed, our positive dataset

contains only 1’064 positive interactions, from which
915 were based on the same bacterial species (M.
Segmatis) creating a serious bias on the data and
limiting the predictive power of the models. The
dataset should be enriched with more interaction
pairs involving other bacteria. In the same sense, only
a few pairs of our current data correspond to
different strains of the same bacterial species. In
consequence, it is not currently possible to make
predictions at the strain level. We plan to add more
strain-specific interactions to our database;

• We will also consider two alternative strategies to
avoid repeating interaction pairs in the dataset. In a
first approach, we may under-sample the positive
interactions containing M. Smegmatis so as to
generate several small-but-balanced, training
datasets. Then, obtaining classifiers for each dataset
and, finally, combining them in a single
ensemble-classifier. A second alternative would be to
assign weights to each phage-bacterium pair inversely
proportional to the relative frequency of its
bacterium. In that way, those pairs containing M.
Smegmatis would contribute much less to the global
error while learning the classifiers;

• Finally, another limitation concerns the current
relevance of the features that depend on the DOMINE
database, as its last release dates back to 2007.

Conclusions
In conclusion, the present work showed the poten-
tial of using machine-learning methods to predict if a
given phage-bacterium pair will interact. The increasing
amount of annotated interactions and that of available
bacterial and viral genomes, together with advances in the
comprehension of phage biology, leads us to think that
we will soon have enough information to develop novel
in silico tools that accurately predict phage-bacterium
interactions. Such tools would contribute to the develop-
ment of personalized therapies against bacterial infections
and will reduce the time required to search for such a
treatment.

Some ideas we are planning to further investigate
include (1) performing “one-class learning” based only on

Table 3 Summary of the results obtained by the selected modeling approach (i.e., ANN with 9 neurones in the hidden layer) on both
validation and test conditions.

DataSet
Accuracy F-Score Sensitivity Specificity

Val. Test Val. Test Val. Test Val. Test

CH 99,0% 97,9% 99,0% 97,0% 99,9% 97,5% 98,6% 98,3%

SBN1E-6 90,4% 85,7% 90,6% 86,2% 90,5% 85,4% 90,9% 86,3%

NB50 91,4% 88,2% 91,7% 88.5% 91,1% 88,6% 92.1% 87.7%

NBN50 92,4% 89,8% 92,5% 90,1% 93,6% 90.7% 91,3% 88.8%
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validated positive interactions, (2) using reinforcement-
learning, which is based on a reward system used along-
side the training process, to drive the identification of
genetic code relevant for phage-bacterium interaction,
and (3) applying sequence-oriented machine learning
techniques to learn directly from the genetic sequences
instead of, or in addition to, extracted features.
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