
APPROXIMATE DYNAMIC PROGRAMMING WITH BÉZIERCURVES/SURFACES FOR TOP-PERCENTILE TRAFFICROUTINGANDREAS GROTHEY, XINAN YANGSCHOOL OF MATHEMATICSCOLLEGE OF SCIENCE AND ENGINEERINGTHE UNIVERSITY OF EDINBURGHAbstrat. Multi-homing is used by Internet Servie Provider (ISP) to on-net to the Internet via di�erent network providers. This study investigatesthe optimal routing strategy under multi-homing in the ase where networkproviders harge ISPs aording to top-perentile priing (i.e. based on the θ-th highest volume of tra� shipped). We all this problem the Top-perentileTra� Routing Problem (TpTRP).Solution approahes based on Stohasti Dynami Programming requiredisretization in state spae, whih introdues a large number of state variables.This is known as the urse of dimensionality. To overome this we suggested touse Approximate Dynami Programming (ADP) to onstrut approximationsof the value funtion in previous work, whih works niely for medium sizeinstanes of TpTRP. In this work we keep working on the ADP model, useBézier Curves/Surfaes to do the aggregation over time. This modi�ationaelerates the e�ieny of parameter training in the solution of the ADPmodel, whih makes the real-sized TpTRP tratable.Keywords: top-perentile priing, multi-homing, stohasti, routing poliy,approximate dynami programming, Bézier Curves/Surfaes1. IntrodutionInternet Servie Providers (ISPs) do not generally have their own network infra-struture to route the inoming tra� of their ustomers, but instead use externalnetwork providers. Multi-homing is used by ISPs to onnet to the Internet viamore than one network provider. This tehnique is urrently widely adopted toprovide fault tolerane and tra� engineering apabilities [1℄.Traditionally network providers harge ISPs based on a ombination of �xedost and per usage priing. Top-perentile priing is a relatively new and inreas-ingly popular priing regime used by network providers to harge servie providers(although it usually appears as part of a mixed priing strategy), that is quiklybeoming established [8℄. In this sheme, the network provider divides the hargeperiod, say a month, into several time intervals with equal, �xed length. Then, itmeasures and evaluates the amount of data (tra�) sent in these time intervals. Atthe end of the harge period, the network provider selets the tra� volume of thetop q-perentile interval as the basis for omputing the ost. For example, if theharge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10mins, and if top 5-perentile priing is used, the ost omputed by top-perentilepriing is based on the tra� volume of the top 216th interval.1
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2 ANDREAS GROTHEY, XINAN YANGIt has been disussed (e.g. in [8℄) what the optimal multi-homing routing strate-gies look like under traditional priing regimes and whether they are eonomiallyviable. In ontrast, very little work has been done on network operation under top-perentile priing. The deterministi problem (in whih we assume that we knowall the tra� volumes in advane) has been analysed in [2℄, where the authors inves-tigate the tra� routing problem under a ombined priing poliy � top-perentilepriing and �xed ost priing. In the stohasti ase, Levy et al. in [7℄ develop aprobabilisti model and provide analysis of the expeted osts, thus demonstratethat multi-homing an be eonomial e�ient under top-perentile priing thoughthey did not investigate the optimal routing poliy. On the other hand, Goldenberget al. [4℄ fous on the development of smart routing algorithms for optimising bothost and performane for multi-homing users under top-perentile priing. How-ever, in ase where tra� volumes are not available in advane (stohasti ase),the algorithm only depends on the predition of one later time interval's tra�but the expetation of the future ost. As a onlusion, to the best of our knowl-edge there is no result dealing with the optimal multi-homing routing poliy undertop-perentile priing in the stohasti ase.The purpose of our study is to �nd the optimal routing strategy in order to allowthe ISP to make full use of the underlying networks with minimum ost, when allnetwork providers harge the ISP based on the volume of the top q-perentile timeinterval's tra� (pure top-perentile priing). In the following parts of this paperwe all this problem, the Top-perentile Tra� Routing Problem (TpTRP). TheTpTRP is a stohasti problem, where the ISP an not predit the volume of futuretime intervals' tra�. Instead, we assume that the ISP knows the probabilistidistributions of every time intervals' tra� ahead of time.In [5℄, the authors have shown that solving the TpTRP as an Stohasti Mixed-integer Programming (SMIP) problem is intratable for all but extremely smallinstanes, due to the fat that modelling of the top-perentile ost requires theintrodution of integer variables within the �nal time stage, whih make the prob-lem non-onvex thus hard to solve. On the other hand, we suggested a StohastiDynami Programming (SDP) model based on a disretization of the state spae,whih gives routing poliies that outperform all available naive routing poliies forsmall sized instanes. However due to the huge number of states arising from thedisretization of tra� volumes, an e�et well known as the urse of dimensionalityprevents the use of the SDP model on larger problem instanes. As a modi�ation,in [6℄ the authors applied the Approximate Dynami Programming (ADP) teh-nique to solve the TpTRP, whih allows to work on the ontinuous state spae thusoveroming the urse of dimensionality introdued by the disretization. With theADP model, medium sized TpTRP instanes an be solved within reasonable time.This work follows the study in [6℄, where we intend to develop an ADP modelbased aggregation algorithm to make the real sized TpTRP problem tratable.The fous of this work is on the investigation of the parameter struture in theoriginal disrete ADP model given by [6℄, and the resulting Bézier Curves/Surfaesaggregation of the original ADP model. In the remainder of this paper, we �rstlygive the parameters of the TpTRP problem and its basi SDP modelling elementsin Setion 2. In Setion 3, we give a brief introdution to the ADP tehnique andbuild the ADP model. Then we analysis the problem of the urrent ADP model andshow how to exploit its speial struture of data to improve it with Bézier Curves



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 3in Setion 4. Setion 5 gives the numerial results and provides a stronger � BézierSurfaes aggregation model, whih makes the real-world sized instanes tratable.Finally we give onlusions in Setion 6.2. The Top-perentile Traffi Routing ProblemThis setion gives a formal desription of the TpTRP parameters and de�nes themain modelling elements in the dynami programming model formulation.2.1. Notations and Assumptions.Problem parameters.
• I, |I| = n : The set of network providers.
• Γ : The set of time intervals.
• q : The perentile parameter.
• θ = ⌊|Γ| ∗ q⌋: The index of the top-perentile time interval.
• ci, i ∈ I : The per unit ost harged by network provider i on the top-perentile tra�.In this work, we assume that all network providers divide the harge periodequally into |Γ| time intervals. Network providers use pure top-perentile priingwith parameter q, namely the ost harged on the ISP depends solely on the θ-thhighest volume of tra� that has been sent to network provider i. It is worthwhileto point out that, under this assumption, the ISP an ship several time intervals'tra� via a network without being harged, provided tra� shipped during thetop-perentile time interval is zero. We also assume that there is no upper boundon the volume of tra� that an be shipped to eah network provider, and no failureourring in any network during the harge period.
• T τ , τ ∈ Γ : The volume of tra� in time interval τ .We assume that before the routing deision for period τ is made, T τ (ωτ ) is arandom variable depending on the random event ωτ . When the random event ω̂τbeomes known, we use T̂ τ = T τ (ω̂τ ) to represent the realisation of T τ .State variables and value funtion. In our problem, at the beginning of time interval

τ , we know all the previous realisations of tra� volumes T̂ t, t = 1, ..., τ − 1 androuting deisions xt, t = 1, ..., τ−1. The implied usage T̂ t
i = T t

i (T̂ t, xt), t = 1, ..., τ−

1 of network i an be omputed. Then a ombination of {T̂ t
i |t = 1, ..., τ − 1; i =

1, ..., n} de�nes the urrent state Sτ of the system. We use T̂ j,τ
i to represent the

j-th highest volume of tra� in T̂ t
i , t = 1, ..., τ − 1 and rewrite Sτ = {T̂ j,τ

i |i =
1, ..., n; j = 1, ..., τ − 1}.However, under pure top-perentile priing poliy the ost is solely determined bythe θ-th highest volume of tra� shipped by every network provider, at the end ofthe harging period. We an see that at any time interval τ , only tra�s whih aregreater than the urrent θ-th volume of tra� an be the θ-th highest in later stages,thus have an in�uene on the �nal ost. Instead, any tra� whih is no higher thanthe urrent θ-th volume of tra� (namely, tra�s T̂ j,τ

i , j = θ + 1, ..., τ − 1 at timeinterval τ) has no impat on the �nal ost. Noting this, we delete this redundantinformation from the state spae, whih leads to the state at τ being desribed by
Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., θ}.



4 ANDREAS GROTHEY, XINAN YANGNamely the dimension of the state spae is equal to nθ.The value funtion Vτ (Sτ ) represents the expeted ost for the ISP, given state
Sτ at the beginning of time interval τ and optimal deisions in all future timeintervals.Deision variables.

• xτ , τ ∈ Γ : The routing deision for time interval τ .In our model, xτ is the deision made on the proportional routing of the `addi-tional tra�' 1. Given a state Sτ = {T̂ j,τ
i }, it is obvious that if we send no morethan T̂ θ,τ

i to provider i then the system will remain in this state for time inter-val τ + 1. The additional tra� represents the amount of tra� exeeding T̂ θ,τ
ithat annot be sent without a�eting the urrent θ-th highest volume of tra� ofany network provider. Making deision on the additional tra� allows us to usemost of every network provider, thus is appropriate. A detailed justi�ation of thisargument is given in [6℄. The feasible deision set for time interval τ is thus,

χτ = {xτ
1 , xτ

2 , ..., xτ
n|0 ≤ xτ

i ≤ 1, ∀i ∈ I,
∑

i∈I

xτ
i = 1}.When implementing a deision xτ , we alloate the random tra� T τ aordingto the following rule:(1) If ĩ

∑

i=1

T̂ θ,τ
i ≤ T̂ τ <

ĩ+1
∑

i=1

T̂ θ,τ
i for some ĩ ∈ I, we send:

• newT τ
i = T̂ θ,τ

i to network provider 1 ≤ i ≤ ĩ,
• newT τ

i = T̂ τ −
ĩ

∑

i=1

T̂ θ,τ
i to network provider ĩ + 1,

• newT τ
i = 0 to network provider i > ĩ + 1.(2) If T̂ τ ≥

∑

i∈I

T̂ θ,τ
i , we send:

• newT τ
i = T̂ θ,τ

i + xτ
i (T̂ τ −

∑

i∈I

T̂ θ,τ
i ) to provider i ∈ I.Namely deision xτ

i means we send at most T τ
i,add = T̂ θ,τ

i + xτ
i TAdd(S

τ ) toprovider i during τ .3. Approximate Dynami Programming ModelGiven the de�nitions of state representation and feasible deision set, the Tp-TRP an be solved by dynami programming. Starting from the �nal time stage,the expeted future ost and optimal routing deision for all possible states anbe omputed by stepping bakwards though time. However, traditional dynamiprogramming is only appliable for disrete state spaes. The disretization of thestate spae ombined with the large dimension of the state spae will result in alarge number of states, whih prevents large sized instanes being solved.To avoid this problem, we have suggested an ADP model in [6℄. It replaes thelook-up table representation of the value funtion by a ontinuous regression model,thus redues the number of parameters required to be estimated. During everyiteration, we follow a new sample path and make routing deisions aording to1The additional tra� is de�ned as: TAdd(Sτ , T τ ) = max{T̂ τ −
P

i∈I

T̂
θ,τ
i , 0}.



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 5the urrent value funtion estimation, then update the regression model iterativelywith a stohasti gradient algorithm until the value funtion estimation onverges.This makes the proess more e�ient as it fouses on the states whih are morelikely to be visited as well as signi�antly reduing the number of parameters inthe model.3.1. ADP model. The basi Approximate Dynami Programming algorithm issummarised below [9℄:Step 0. Initialisation:Step 0a. Build a initial value funtion approximation V̄
(0)
τ (Sτ ) for all time in-tervals τ .Step 0b. Choose an initial state S1

(1).Step 0. Set m = 1.Step 1. Choose a sample path ω(m) = (ω1
(m), ..., ω

|Γ|
(m)).Step 2. For τ = 0, 1, 2, ..., |Γ| do:Step 2a. Solve(3.1) v̂(m)

τ = min
xτ∈χτ

(Eωτ∈Ωτ V̄
(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )).Step 2b. Update the value funtion approximation V̄

(m−1)
τ (Sτ ) with the valueof v̂

(m)
τ .Step 2. Compute Sτ+1

(m) (Sτ
(m), ω

τ
(m), x̂

τ ), where x̂τ is the optimal solution of(3.1).Step 3. If we have not met our stopping rule, let m = m + 1 and go to step 1.Spei�ally, we approximate the value funtion by linear regression model inStep 0a:(3.2) V̄τ (Sτ ) = βτ
0 +

∑

i∈I

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i ,whih means that we suppose the value funtion hanges linearly with every entryof the state variable. The update used in Step 2b is derived from the stohastigradient algorithm and given by:(3.3) β(m) = β(m−1) − αm−1[V̄

(m−1)
τ (Sτ ) − v̂(m)

τ ]∇β(m−1) V̄ (m−1)
τ (Sτ ),where the updating stepsize αm is de�ned by the MClain's formula (ᾱ is a spei�edparameter):

αMC
m =

αMC
m−1

(1 + αMC
m−1 − ᾱ)

.The deision problem given in Step 2a is built with the `urrent' estimation ofparameters β(m−1), namely parameters updated with the previous m−1 iterations.Due to the requirement of reordering entries in state variable after a new tra�is alloated, the dynami step from one time interval to the next (in Step 2a) is



6 ANDREAS GROTHEY, XINAN YANGnon-trivial. As a result, the deision problem in Step 2a is non-onvex, whih makesit di�ult to solve to global optimality. (a detailed disussion on this issue is givenin [6℄). Thus in the ADP model we suggested to solve the deision problem by asimple disretization of the deision spae, i.e., generating several disrete deisions(for example xτ = 0.0, 0.1, 0.2...1.0), and �nding the best one by enumeration.As the stohasti gradient algorithm typially onverges rapidly at the beginningand then vibrates with noise, in this work we hek for onvergene of the ADPmodel by evaluating the mean ost over bloks of iterations (e.g. bloks of every
100 iterations). One we observe the mean ost hanges mainly with noise insteadof dereasing / inreasing rapidly, we stop and treat the urrent model as onvergedmodel. This forms the stopping riterion in Step 3.3.2. Problem size. As shown in formula (3.2), for every time interval τ we set asingle value funtion estimation V̄τ to approximate Vτ . With this `disrete' ADPmodel (where the regression parameters are disrete in time), TpTRP instanesup to 86 periods an be trained (ahieving onvergene of the β weights) withinreasonable time (see Table 1). However, for larger sized instanes it is still hard.Though the urse of dimensionality is avoided in the disrete ADP model, the speedof ahieving onvergene depends on the number of parameters to estimate. FromTable 1 we an see that the number of regression parameters required in the disreteADP model grows quadratially with the number of time intervals. This means itwill take several hours to ahieve onvergene for the 432-period model.Parameters No. of βs ConvergeneInd.

Γ θ I Γ(θI + 1) Iterations TimeIns.2_43 43 3 2 301 200,000 99.674sIns.2_86 86 5 2 946 500,000 515.743sIns.2_432 432 22 2 19440 - -Ins.2_4320 4320 216 2 1870560 - -Table 1: Size of the ADP model and its regression informationTo solve this problem, we suggest to aggregate the regression oe�ients βτ
0(whih are urrently disrete in τ) and βτ

i,j (whih are urrently disrete in diretions
i, j and τ) over time intervals, namely to replae the βτ

0 , βτ
i,j by funtions β0(τ),

βi,j(τ) to redue the number of parameters to estimate.4. Time-Aggregated ADP ModelTo guide the hoie of good approximating funtions β0(τ), βi,j(τ), �rstly wehave a look at the optimal βτ
0 , βτ

i,j for an example of the disrete ADP model (forthe detail of this ADP model please refer to [6℄).Figure 4.1 shows how the optimal βτ
0 , βτ

i,j vary with time τ for the 86-periodInstane 2 (for instane parameters see Table 1). Every point shows an estimationof β0, βi,j at some time point τ in the trained model. It is obvious that everysingle β0, βi,j has its time varying pattern, whih is smooth (or near smooth) thusan be approximated with less parameters. The purpose of this study is to replaethe disrete values βτ
0 , βτ

i,j by approximating funtion β0(τ), βi,j(τ) with a smallnumber of parameters, whih are updated by the normal ADP iteration.
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() Converged regression oe�ients βτ
2,j in 86-period Instane 2Figure 4.1: Tra� distribution used in testing instanes4.1. Bézier Curve. In this work we suggest to use Bézier Curves approximatingfuntions. Bézier urves were widely publiised in 1962 by the Frenh engineerPierre Bézier, who used them to design automobile bodies [3℄. A Bézier Curve isa parametri urve that is frequently used to produe urves whih appear reason-ably smooth. Mathematially, Bézier Curves approximate polynomials depend onertain ontrol points. Given a large enough number of properly seleted ontrolpoints, any smooth funtion an be approximated by Bézier Curve to arbitraryauray.The Bézier Curve of degree K an be generated as follows. Given ontrol points

P0,P1, ...,PK, the Bézier Curve is the set of points satisfying:
B(u) =

K
P

k=1

„

K

k

«

(u)k(1 − u)K−k
Pk

= (1 − u)K
P0 +

„

K

1

«

(1 − u)K−1uP1 + ...

... +

„

K

K − 1

«

(1 − u)(u)K−1
PK−1 + uK

PK, u ∈ [0, 1],where (

K
k

) is the binomial oe�ient.



8 ANDREAS GROTHEY, XINAN YANG4.2. An example. In our model, we use Bézier Curves in (τ, β)-spae to estimatethe regression parameters βi,j(τ). Given a (�xed) set of τ -omponents of the ontrolpoints {τ̂k
i,j , k = 1, ..., K} and parameters βk

i,j , the Bézier Curve model for βi,j(τ)is
(

τ
β̄i,j(τ)

)

=

K
∑

k=1

(

K
k

)

(u)k(1 − u)K−k

(

τ̂k
i,j

βk
i,j

)

.(4.1)With this model, in order to �nd βi,j(τ), for any given τ we need to solve a Kthdegree polynomial equation to �nd its root uτ ∈ [0, 1], then alulate the value of
βi,j(τ) with uτ .
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Figure 4.2: Comparison of original disrete values and the Bézier Curve approximationwith K = 5Figure 4.2 shows an example of how the 5-degree Bézier Curve works in theestimation of β1,3(τ), taken from the instane shown in Figure 4.1. We an seethat for the given hoie of {τ̂k
i,j , k = 1, ..., K}, the 5-degree Bézier Curve anapproximate the disrete set of βτ

1,3 reasonably well by a ontinuous urve. Thismeans we an replae the original disrete regression model (with 86 oe�ientsto estimate: βτ
1,3, τ = 1, ..., 86) by a ontinuous funtion with only 5 parameters(βk

1,3, k = 1, ..., 5) to estimate. This redues the size of the problem, thus speedingup the onvergene of the ADP model.4.3. ADP-Bézier-Curve model. Now we desribe the aggregated ADP-Bézier-Curve algorithm we use in this work.Initialisation � Step 0a. For the simpliity and generality of the model, in thiswork we use the Bézier Curve model with �xed values {τ̂k, k = 1, ..., K}, whileupdating values {βk
i,j , k = 1, ..., K} iteration by iteration. Note that the set of
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{βk

i,j, k = 1, ..., K} is dependent on indexes i and j while {τ̂k, k = 1, ..., K} is not.Given K ontrol points, as initialisation we set {τ̂k, k = 1, ..., K} equally amongthe harging period [0, |Γ|]:
τ̂k =

k

K
|Γ|, k = 1, ..., K,and all the unknown βk

i,j are initialised to 0.As the set {τ̂k, k = 1, ..., K} does not hange with the iterations, we an alulatethe solutions uτ of polynomial equations:
τ =

K
∑

k=1

(

K
k

)

(uτ )k(1 − uτ )K−k τ̂kbefore the updating sheme, to �nd the root uτ ∈ [0, 1] for all time intervals τ .Deision problem � Step 2a. At time interval τ , we need to solve the deisionproblem based on the urrent value funtion estimation to generate the optimalrouting deision for this time interval's tra�. In the ADP-Bézier-Curve model,the value funtion estimation (3.2) is still assumed to be a linear regression funtionof state variables. The only di�erene from before is that the regression parameters
βτ

i,js, are now approximated by Bézier Curves (4.1). Thus to get the urrent valuefuntion estimation (3.2), we �rstly need to alulate all the urrent estimation(estimation after m − 1 iterations) of the βτ
i,j values using:

β̄
(m−1)
i,j (τ) =

K
∑

k=1

(

K
k

)

(uτ )k(1 − uτ )K−kβ
k,(m−1)
i,j .(4.2)Updating sheme � Step 2b. The parameter update in Step 2b. now beomes:

β
k,(m)
i,j = β

k,(m−1)
i,j − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ]∇

β̄
(m−1)
i,j

V̄
(m−1)
τ (Sτ )∇

β
k,(m−1)
i,j

β̄
(m−1)
i,j

= β
k,(m−1)
i,j − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ] · T̂ j,τ

i ·

(

K
k

)

(uτ )k(1 − uτ )K−k,for all k = 1, ..., K.Thus in the aggregated ADP model every time we get a sample estimation ofthe value funtion v̂τ (∀τ ∈ [0, |Γ|]), we an update all βk
i,j , k = 1, ..., K at one,whih aelerate the onvergene speed signi�antly.5. Numerial results5.1. Test Problems. In this setion we disuss the numerial results of applyingthe ADP-Bézier-Curve algorithm. We start by the TpTRP instanes with 86-periodfrom [6℄. For larity, we �rstly haraterise and index these instanes whih areexamined in the later part of this setion.Table 2 summarises the instanes used. In all instanes, we assume that wedivide the modelling region into 86 time intervals and harges are based on thetime interval with the 5th (q = 5%) highest volume of tra�. In all ases we use

2 network providers (n = 2) with osts c1 = 10, c2 = 12. The instanes di�er bythe assumptions made on the random tra�. In instane 2 and 4 the tra� inevery period follows the same uniform (U(6000, 14000) in Instane 2) or normal



10 ANDREAS GROTHEY, XINAN YANGParameters Stohasti InformationIndex
|Γ| θ n distribution time dependenyIns.2 86 5 2 U(6000, 14000) i.i.d.Ins.3 86 5 2 uniform see Fig. 5Ins.4 86 5 2 trunated N(10000, 106) i.i.d.Ins.5 86 5 2 trunated normal see Fig. 6Table 2: List of TpTRP Instanes

time interval1 2 3 4 5 6 7 8 9 10

6000

8000

10000

12000

14000

volume

0(a) Upper and lower bounds for uniform dis-tributions in Ins.3 6000

0

8000

10000

12000

1 2 3 4 8 105 6 7 time interval

14000

volume

9(b) Mean and 99.7% (±3σ) on�dene re-gion for normal distributions in Ins.5Figure 5.1: Tra� distribution used in testing instanes(N(10000, 106) in Instane 4) distribution. Instane 3 and 5 on the other hand,use tra� distributed aording to a time varying uniform or normal distribution.The parameter for this time varying pattern is displayed in Figures 5.1. Note thatInstanes 4 and 5 use a trunated normal distribution in whih tra� outside the
99.7% (±3σ) on�dene region is projeted onto the boundary of the region to avoidnegative tra� volumes.5.2. Numerial results on 86-period TpTRP instanes. In this setion weevaluate the ADP-Bézier-Curve model by testing it on several instanes with 86 pe-riods. For every testing instane we build its own ADP-Bézier-Curve model, trainthis model with random senarios until it onverges, then test the resulting routingpoliy on a simulation of 1, 000, 000 random senarios taken from the original dis-tribution. The routing poliy given by this model is indiated by ADPRP_BC inthe following tables. All the results are ompared with the original disrete ADPmodel developed in [6℄, and three naive routing poliies summarised below:

• SRP - Single-homing Routing Poliy, i.e. send everything to the heapestnetwork provider � provider 1;
• TMRP - Trivial Multi-homing Routing Poliy, i.e. send randomly θ − 1tra�s to the expensive provider and all the rest to the heaper one. Inthis way the ISP is only harged by the heapest network provider, but usesthe free time intervals of all network providers;
• DRP - Deterministi Routing Poliy, i.e. assuming we know all tra�s inadvane. The optimal routing poliy (as proved in [5℄) is to send the θ − 1highest tra�s to the expensive provider and the rest to the heaper one.Note that as we assume that we have full knowledge of the tra� ahead in



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 11time, the DRP is not implementable. It provides us with lower bound onall the stohasti routing poliies.Table 3 shows the omparison of mean ost of implementing several routingpoliies, where K indiates the number of ontrol points in the ADP-Bézier-Curvemodel.Ind. SRP TMRP ADPRP K ADPRP_BC DRP3 133595.05±3.13Ins.2_86 135404.34±1.98 135181.68±2.08 132902.35±2.71 4 132739.81±2.77 131727.00±2.605 132809.52±2.68Ins.2_216 135945.63±1.19 135749.17±1.25 - 4 133212.44±1.71 132258.12±1.60Ins.2_432 135935.06±0.84 135727.89±0.88 - 4 132965.84±1.28 132054.59±1.153 129980.79±4.65Ins.3_86 132585.06±3.00 131588.78±3.35 129071.22±3.57 4 128400.82±3.85 126686.15±3.645 129645.63±3.67Ins.3_216 133663.71±1.77 132838.35±1.98 - 4 130575.08±1.98 127902.03±2.27Ins.3_432 133770.80±1.24 132930.47±1.39 - 4 129602.03±1.88 127826.36±1.603 114614.44±2.52Ins.4_86 116104.12±2.22 115904.52±2.24 113892.97±2.46 4 113631.76±2.16 112833.05±1.845 113680.34±2.11Ins.4_216 116549.93±1.44 116319.57±1.46 - 4 113952.68±1.37 113091.56±1.18Ins.4_432 116454.96±1.02 116212.32±1.03 - 4 113844.21±1.07 112898.46±0.833 123850.12±2.95Ins.5_86 123039.58±2.33 122175.78±2.40 121002.27±2.38 4 122405.06±2.72 119310.87±1.975 120497.46±2.22Ins.5_216 123705.80±1.50 122906.99±1.54 - 5 120918.74±1.40 119876.40±1.25Ins.5_432 123720.58±1.05 122900.68±1.08 - 5 120906.23±1.32 119804.31±0.87Table 3: Comparison of mean ost (± s.d.) of disrete ADPRP and ADP with BézierCurveGenerally speaking, the routing poliy generated by the ADP-Bézier-Curve modelperforms well. In almost all ases the ADPRP_BC routing poliy outperformingthe trivial routing poliies, sometimes even better than the ADPRP. Spei�ally,the ADPRP_BC with K = 4 works �ne for Instane 2, 3 and 4, while K = 5seems better for Instane 5. With the best seletion of K, mean osts given byADPRP_BC an be (in most ases) even less than the ADPRP generated with thedisrete ADP model.In addition to the omparison with other routing poliies, it is also worthwhileto point out that the performane of ADP-Bézier-Curve model is not neessarilygetting better with the number of ontrol points K, though it should be true in ourexpetation. Look at the results for the 86-period instanes, we an see that theADPRP_BC with K = 5 might be a little worse than the one with K = 4. This isbeause no matter how many ontrol point we use in the Bézier Curve model, wealways set their τ -omponents equidistant within the harging period. This mightmake the position of ontrol points in the larger model worse than the ones in thesmaller model in the approximation of funtion shape, espeially in ases when Kis small. Nevertheless, generally speaking the performane of ADP-Bézier-Curvemodel is getting better with K, though with some noises due to the equidistantsetting up of ontrol points.Table 4 ompares the statistis on solution time of the ADP-Bézier-Curve modelwith the original disrete ADP model with four 86-period instanes. The olumnsdenoted by βs show the number of regression parameters to be estimated in eithermodel. We an see that the ADP-Bézier-Curve model redues this value by a fatorof around 20 for the 86-period instanes. In addition to this, in the ADP-Bézier-Curve model the number of βs inreases linearly with the instane size (given the



12 ANDREAS GROTHEY, XINAN YANGADP_disrete ADP_BCInd.
βs Iterations Time T/I K βs Iterations Time T/I3 32 3,000 6.952s 0.0023sIns.2_86 946 500,000 515.743s 0.0010s 4 42 6,000 13.689s 0.0023s5 52 6,000 14.743s 0.0025sIns.2_216 4968 - - - 4 90 4,000 62.285s 0.0156sIns.2_432 19440 - - - 4 180 3,000 252.951s 0.0843s3 32 3,000 6.051s 0.0020sIns.3_86 946 800,000 748.245s 0.0009s 4 42 5,000 10.016s 0.0020s5 52 5,000 10.305s 0.0021sIns.3_216 4968 - - - 4 90 3,000 38.535s 0.0128sIns.3_432 19440 - - - 4 180 3,000 211.739s 0.0706s3 32 4,000 96.594s 0.0241sIns.4_86 946 1,800,000 13590.433s 0.0076s 4 42 6,000 158.715s 0.0265s5 52 7,000 187.663s 0.0268sIns.4_216 4968 - - - 4 90 7,000 836.776s 0.1195sIns.4_432 19440 - - - 4 180 4,000 2349.898s 0.5875s3 32 4,000 70.995s 0.0177sIns.5_86 946 2,000,000 14351.873s 0.0072s 4 42 4,000 73.869s 0.0185s5 52 5,000 93.914s 0.0188sIns.5_216 4968 - - - 5 112 6,000 732.712s 0.1221sIns.5_432 19440 - - - 5 225 3,000 1810.346s 0.6034sTable 4: Comparison of running time of ADPRP and ADPRP_BCsame number of ontrol points used), as opposed to quadratially in the disreteADP model. Consequentially, the ADP-Bézier-Curve model an be trained in afration of the time required for the disrete ADP model, despite the fat that asingle iteration (given in olumn T/I) takes around twie the time longer than thedisrete ADP model.Results of mean ost and running time on larger instanes are summarised inTable 3 and 4 as well. We an see with the urrent ADP-Bézier-Curve model,TpTRP instanes up to 216 periods an be solved within reasonable time (around10 mins). However, for larger instanes (e.g. 432-period) the running time is stilllong (though the routing poliies generated performs equally well), whih preventsthe appliation of the ADP-Bézier-Curve model to larger problems.5.3. Two dimensional approximation with Bézier Surfae. From Table 4we an see that although the number of ontrol points (K) stays the same withinreasing problem size, the number of βs still inreases linearly with θ. For realsized instanes whih possesses n = 2 network providers, |Γ| = 4320 time intervalsand θ = 215, it requires K · n(θ + 2) = 434K regression parameters. Thus forlarger instanes, the urrent ADP-Bézier-Curve model is still not ompat enoughto be e�ient. To redue the problem size further, in this setion we extend theaggregation to two dimensions with Bézier Surfaes.The higher dimensional Bézier Curve is alled a Bézier Surfae. Figure 5.2 gives atwo dimensional view of Figure 4.1(b), whih shows how the βτ

1,j hange in diretion
τ and j (j is the index of tra� while tra� volumes are in non-dereasing order).Comparing with Figure 4.1(b), we see that the surfae is smooth in j-diretion aswell, thus should be well approximated with less than θ parameters.In this part, we intend to approximate the surfae shown in Figure 5.2 with aBézier Surfae, and then integrate it into the ADP model. We all this model, theADP-Bézier-Surfae model. The ontrol points in the Bézier Surfae model are nowde�ned as (τ, j, β) and given by a (�xed) oordinate (τ̂k

i , ĵr
i ) in (τ, j)-spae and a
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orresponding parameter βk,r
i . Assuming that we set K τ -omponents of ontrolpoints {τ̂k

i , k = 1, ..., K} and R j-omponents of ontrol points {ĵr
i , r = 1, ..., R},the Bézier Surfae approximation to β̄i(τ, j) is given by
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i = j.Similarly to the ADP-Bézier-Curve model, we �x the values of {τ̂k, k = 1, ..., K}and {ĵr, r = 1, ..., R} for all iterations:

{
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K
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R

θ, r = 1, ..., R,



14 ANDREAS GROTHEY, XINAN YANGand iteratively update the values of βk,r
i (whih are initialised to 0) to approximate

βi(τ, j). The updating formulation is thus:
β
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∑
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(
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)
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R−r)],for all k = 1, ..., K; r = 1, ..., R.Numerial results on instanes with 432 periods are shown in Table 5 and 6.Ind. SRP TMRP ADPRP_BC ADPRP_BS DRPIns.2_432 135935.06±0.84 135727.89±0.88 132965.84±1.28 132931.12±1.26 132054.59±1.15Ins.3_432 133770.80±1.24 132930.47±1.39 129602.03±1.88 129964.61±1.75 127826.36±1.60Ins.4_432 116454.96±1.02 116212.32±1.03 113844.21±1.07 113829.03±1.05 112898.46±0.83Ins.5_432 123720.58±1.05 122900.68±1.08 120906.23±1.32 120934.34±1.20 119804.31±0.87Table 5: Comparison of mean ost (± s.d.) of ADPRP_BC and ADPRP_BS on 432-period instanesInd. K βs Iterations Time T/I K R βs Iterations Time T/IIns.2_432 4 180 3,000 252.951s 0.0843s 4 3 28 1,000 90.013s 0.0900sIns.3_432 4 180 3,000 211.739s 0.0706s 4 3 28 1,000 75.648s 0.0756sIns.4_432 4 180 4,000 2349.898s 0.5875s 4 3 28 1,000 684.169s 0.6842sIns.5_432 5 225 3,000 1810.346s 0.6034s 5 3 35 1,000 752.156s 0.7522sTable 6: Comparison of running time of ADPRP_BC and ADPRP_BS on 432-periodinstanesWe an see that the routing poliies generated with the ADP-Bézier-Surfaemodel an be ompared with their ounterparts of ADP-Bézier-Curve model, whihare all better than any naive routing poliy. However, Table 6 shows the ADP-Bézier-Surfae model saves about 2/3 of the training time of the model, thus makingthe TpTRP instanes with 432 periods solvable within reasonable time.5.4. Real-sized Instanes. Though we make the above aggregation to redue thenumber of regression parameters, it is still hard to solve the real-sized problem withthe urrent ADP-Bézier-Surfae model. We an see from Table 6 that the number ofiterations we need to train the model is signi�antly redued from the original ADPmodel. The only problem left is the long running time it requires to go throughevery iteration, where we have to solve |Γ| (in real-sized instanes is 4320) deisionproblems and then update the value funtion estimation.As an alternative, we an simplify the solution step by reduing the time tosolve deision problems. Instead of solving the deision problem for every timeinterval, for the real-sized problem we solve one deision problem for every 10 timeintervals and use this deision for all these 10 time intervals. As the regressionparameters hange smoothly with time, this simpli�ation will not introdue largeerrors. Numerial results (tested on 100 random senarios) are shown in Table 7and 8.



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 15Ind. SRP TMRP ADPRP_BS DRPIns.2_4320 136012.25±27.86 135812.07±29.09 133550.22±34.52 132029.70±39.71Ins.3_4320 133900.08±38.82 133075.17±42.18 130901.60±41.23 127857.37±46.14Ins.4_4320 116477.31±32.59 116228.23±33.36 114042.22±34.89 112820.29±24.56Ins.5_4320 123733.71±28.14 122892.62±33.26 120994.18±32.10 119768.49±24.52Table 7: Comparison of mean ost (± s.d.) of ADPRP_BS on 4320-period instanesInd. K R βs Iterations Time T/IIns.2_4320 4 6 52 300 2036.554s 6.7885sIns.3_4320 4 6 52 300 1527.347s 5.0912sIns.4_4320 4 6 52 350 3801.735s 10.8621sIns.5_4320 5 6 65 400 3741.024s 9.3526Table 8: Comparison of running time of ADPRP_BS on 4320-period instanesWith the ADP-Bézier-Surfae model and a simple deision aggregation step,real-sized TpTRP instanes are solvable, providing very good routing poliy forall four instanes with di�erent distributions. Due to the small number of ontrolpoints we used in the ADP-Bézier-Surfae model, it an be trained after severalhundred of iterations within around 1 hour, while alulating the optimal routingpoliy from the trained model for a given set of observed tra� required 5 − 10seonds, omparable to one training iteration. Indeed, while applying the trainedmodel as a routing orale, the β update an be left in plae at (virtually) no extraost to ontinually improve the model.6. Conlusions and Future WorksIn this work, we ahieved to modify the original disrete ADP model for theTpTRP by aggregating regression oe�ients β over both time interval τ and indexof tra� order j with Bézier Surfaes. This redues the number of parametersin the ADP model, thus drastially improves the model. The TpTRP instanesup to 432-period are tratable with this ADP-Bézier-Surfae model, giving routingpoliies whih perform better than all naive routing poliies.For real-size problem (whih possesses 4320 time intervals, network providersharge the ISP based on the 216th highest volume of shipped tra�), we developeda way to aggregate deision problems, thus aelerate the speed of going throughevery single iteration and make it solvable with the ADP-Bézier-Surfae model.Referenes[1℄ M. Bagnulo, A. Garia-Martinez, J. Rodriguez, and A. Azorra, The ase for soureaddress dependent routing in multihoming, Leture Notes In Computer Siene, 3266 (2004),pp. 237�246.[2℄ M. Chardy, A. Ouorou, and T. VanDonselaar, Optimization of interonnotion strategyin top-perentile priing framework, tehnial report, Orange Labs, Frane Teleom, 38-40 ruedu général Leler, BP 92130, Issy-les-Moulineaux, 2009.[3℄ J. Choi and G. Elkaim, Bézier urves for trajetory guidane, World Congress on Engineer-ing and Computer Siene, WCECS 2008, San Franiso, CA, Ot.22-24 (2008).[4℄ D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang, Optimizing ost and per-formane for multihoming, ACM SIGCOMM Computer Communiation Review, 34 (2004),pp. 79�92.
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