
A new rejection sampling method without using hat func-
tion and exact simulation for the posterior of finite mixture
models

Hongsheng Dai†
University of Essex, UK

Summary.
It is nontrivial to draw exact realisations from the posterior of finite mixture models, for which all
existing exact Monte Carlo simulation methods are not practical or just work theoretically. Motivated
by this problem, this paper proposes a new exact simulation method, which simulates a realisation
from a proposal density and then uses exact simulation of a Langevin diffusion to check whether the
proposal should be accepted or rejected. Comparing to the existing rejection sampling method, the
new method does not require the proposal density function to bound the target density function. The
new method is much more efficient than existing methods for simulation from the posterior of finite
mixture models.

Keywords: Conditioned Brownian motion; Coupling from the past; Diffusion bridges; Exact Monte
Carlo simulation; Langevin diffusion; Mixture models; Rejection sampling.

1. Introduction

In Bayesian analysis of complex statistical models, the calculation of posterior normalising con-
stants and the evaluation of posterior estimates, are typically infeasible either analytically or by
numerical quadrature. Monte Carlo simulation provides an alternative. Markov chain Monte
Carlo (MCMC) methods have been the most popular methods in more than 20 years for sta-
tistical analysis of complex data sets. MCMC methods generate statistically dependent and
approximate realisations from the target distribution. A potential weakness of these methods is
that the simulated trajectory of a Markov chain will depend on its initial state. Concerns about
the quality of the sampled realisations of the simulated Markov chains have motivated the search
for Monte Carlo methods that can be guaranteed to provide samples from the target distribution.

A breakthrough in the search for perfect Monte Carlo simulation methods was made by Propp
and Wilson (1996). Their method, named as coupling from the past (CFTP), is an MCMC-
based algorithm that produces realisations exactly from the target distribution. CFTP transfers
the difficulty of running the Markov chain for extensive periods (to ensure convergence) to the
difficulty of establishing whether a large number of coupled Markov chains have coalesced. The
CFTP algorithm is only practical for small discrete sample spaces or for a target distribution
having a probability space equipped a partial order preserved by an appropriate Markov chain
construction. Although in recent decades, there have been many theoretical developments and

†Address for correspondence: Department of Mathematical Sciences, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, UK
E-mail: hdaia@essex.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/18528335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Dai H.

applications in this area such as Mira et. al. (2001), Huber (2004), Wilson (2000), Dai (2008)
and Dai (2011), CFTP algorithm is still not practical for complex statistical models.

Perfect sampling can also be achieved via rejection sampling method. This involves sampling
from a density that bounds a suitable multiple of the target density, followed by acceptance
or rejection of the sampled value. In general it is a very challenging task to find a bounding
density, although efficient rejection sampling methods have been developed for the special class
of one-dimensional log-concave densities (Gilks and Wild, 1992).

In the next subsection, we briefly introduce the finite mixture models and discuss why it is
non-trivial to draw exact realisations from the posterior of finite mixture models using existing
methods.

1.1. Motivation: exact simulation from the posterior of finite mixture models
This research is motivated by the question: how to draw exact realisations from the posterior of
finite mixture models, which is very challenging and has been an open problem for more than
a decade. Consider the following mixture model, where the data {zi, i = 1, · · · , n} are from the
density

h(zi;Θ) =
K∑
k=1

pkhk(zi;Θk), (1)

where hk is the component density and pk is the component proportion with 0 ≤ pk ≤ 1 and∑
k pk = 1. Given the prior π0(Θ) for Θ = (Θ1, · · · ,ΘK), we can write the posterior distribution

as

f(Θ) ∝
n∏
i=1

[
K∑
k=1

pkhk(zi;Θk)

]
π0(Θ). (2)

Gibbs sampler for (2) is readily available (Diebolt and Robert, 1994). However, it is very
difficult to diagnose the convergence of the MCMC algorithms for the above posterior of mixture
models. Some illustrations of this are given by Fearnhead and Meligkotsidou (2007). Celeux
et al. (2000) even argue that ‘almost the entirety of MCMC samplers implemented for mixture
models has failed to converge’. Therefore, it is important to find an efficient method to draw
exact realisations from (2). This is extremely challenging when (p,Θ) is unknown, because by
expanding (2) the posterior is a sum of Kn terms, which is a huge number even for small values
of K and n and makes direct simulation from (2) to be non-trivial.

Note that for certain simpler versions of (1), exact simulation from its posterior is readily
available. For example for the simple mixture models with known Θ, methods in Hobert et.
al. (1999) and Fearnhead (2005) and the method of adaptive rejection sampling for log-concave
densities base on the algorithm in Leydold J. (1998) can draw exact realisations from its pos-
terior. The application of all these methods is limited to small sample sizes and small number
of components. Dai (2007) proposed a rejection sampling method, called Geometric-Arithmetic
Mean (GAM) method, to draw from the posterior of the simple mixture model. This method
can deal with large sample sizes and large number of components and is much more efficient
than all the other existing methods. Although practical methods are available for simple mixture
models, it is extremely difficult to apply them to the mixture models with unknown component
parameters Θ.

Rejection sampling without using hat function 3

If zi is a discrete random variable, say from a mixture of Poisson distributions, then many
terms in the expanded posterior can be merged which makes it possible to draw from (2) directly
(Fearnhead, 2005). For continuous random variable zi, however, this is not the case. For instance
zi is from the mixture of normal densities with

hk(zi; θk, ν) = |ν|e−
ν2

2 (zi−θk)2 . (3)

By discretising continuous data, Fearnhead and Meligkotsidou (2007) extend the direct simulation
method to continuous case and suggested to using an importance sampling approach. Another
method (Casella et al., 2002) investigates the use of a CFTP algorithm, called the perfect slice
sampler, to simulate from (2), but this method only works theoretically.

Note that the rejection sampling method does not work either since the posterior (2) is not
log-concave and it is very challenging to find a good hat function. In summary, existing methods
are based on either direct simulation, simple rejection sampler or CFTP algorithms, and they do
not work practically.

For the above reasons, concerns about the quality of the MCMC realisations and lack of
efficient and exact simulation methods for the mixture of normal (or other continuous) densities
motivate us to develop a new rejection sampling method to solve this problem.

1.2. The new idea and the structure of the paper
To introduce the idea of the new method in this paper, we first consider the decomposition of a
density f , as f(·) = g1(·)g2(·), where g1 and g2 are also proper density functions and it is easy
to simulate from them. Note that here f, g1 and g2 are density functions up to a normalising
constant. Such a decomposition can be find easily, especially for Bayesian posterior distributions.
For example, we can decompose the posterior in (2) as{

n1∏
i=1

[∑
k

pkhk(zi;Θ)

]
√
π0

}
·

{
n∏

i=n1+1

[∑
k

pkhk(zi;Θ)

]
√
π0

}
.

If we can find M such that g2(·) ≤ M , then traditional rejection sampling can be used to draw
samples from f with the hat function M · g1. In practice, we may not be able to find M or M is
too large to make the rejection sampling efficient.

Our idea is not to find the hat function for f , but to independently simulate x1 and x2 from
g1 and g2, respectively. If the two independent samples x1 = x2 = y then it is easy to show (at
least for discrete variables and heuristically for continuous variables) that the value y must be
from f(·) ∝ g1(·)g2(·). Note that when f, g1 and g2 are densities for discrete random variables, it
is possible to simulate y from f using the above idea since P(x1 = x2) > 0, but for continuous
densities this is impossible since P(x1 = x2) = 0.

Although it is impossible to achieve x1 and x2 with distance 0 for continuous case, the simu-
lated x1 and x2, if they are very close (defined in later sections), can be viewed as approximately
from the target f . Our idea is to use x1 (or x2) as a proposal and then accept x1 (or x2) as a
perfect sample from f based on perfect Monte Carlo simulation of diffusion bridges (Beskos et al.,
2006, 2008). We will show that the new method is an exact simulation algorithm theoretically
and via simulation studies. The new method is more efficient than all existing exact simulation
methods when applying to simulations from the posterior of Bayesian mixture models.

This paper is organized as follows. In Section 2 we present the new methodology and show
it is an exact simulation algorithm theoretically and via simulations for a toy example. We also

4 Dai H.

demonstrate that the new algorithm is related to CFTP algorithm. In Section 3, we present
an improved version of the exact simulation algorithm. The improvement is achieved via two
aspects. One aspect is to find a better decomposition of f = g1 · g2 and the other aspect is
improve the perfect Monte Carlo simulation algorithms for diffusion bridges in (Beskos et al.,
2006) and Beskos et al. (2008). In Section 4 we provide a generalised version of the new method.
Then we apply the the new method to the mixture of normal densities and demonstrate that
the new method is more practical than all existing algorithms in Section 5. Section 6 provides a
discussion.

2. Methodology

2.1. Preliminaries
Consider the target density f(x) with support Rq for a q-dimensional random variable X. Sup-
pose that it is non-trivial to simulate from f and that f can be decomposed as a product of two
proper density functions, f(x) ∝ g1(x)g2(x). Assume that we can easily simulate from g1 and
g2. We can further write f(x) ∝ f1(x)f2(x) with f1 = g21 and f2 = g2/g1. Clearly f1 is also a
proper density. Note that here f , f1, g1 and g2 are densities up to a constant.

Let

A(x) =
1

2
log f1(x) = log g1(x)

α(x) = (α(1), · · · , α(q))tr(x) = ∇A(x) (4)

where ∇ is the partial derivative operator for each component of x.
Then we consider a q-dimensional diffusion process Xt(ω), t ∈ [0, T] (T <∞), defined on the

space Ω = (C[0, T]q,B(C[0, T]q)), given by

dXt = α(Xt)dt+ dBt, (5)

where ω⃗ = {ωt, t ∈ [0, T]} a typical element of Ω. Under the probability measure Wω0 , the
coordinate mapping process Bt(ω⃗) = ωt is a Brownian motion starting at B0 = ω0. Let
W be the probability measure for a Brownian motion with the initial probability distribution
B0 = ω0 ∼ f1(·).

From the equations in (4) we know that the above X(t) is a Langevin diffusion (Hansen, 2003)
with the invariant distribution f1(x), which means Xt ∼ f1(x) for any t ∈ [0, T] if X0 ∼ f1(x).
LetQω0 be the probability law induced byXt, t ∈ [0, T], givenX0 = ω0. LetQ be the probability
law induced by Xt, t ∈ [0, T], with X0 = ω0 ∼ f1(·), i.e. under Q we have Xt ∼ f1(x) for any
t ∈ [0, T].

We shall assume that α satisfies the following standard conditions. Note that under careful
variable transformations it is usually possible to guarantee that α satisfies these conditions. We
will demonstrate this by the toy example in Section 2.5 and via the posterior of mixture models
in Section 5.

Condition 2.1. α is continuously differentiable in all its arguments.

Condition 2.2. There exists l > −∞ such that

ϕ(x) =
1

2
(||α||2 + div α)(x)− l ≥ 0, (6)

where div is the divergence of α, defined in (9).

Rejection sampling without using hat function 5

Condition 2.3. The following

exp

(∫ T

0

α(ωs)dωs −
1

2

∫ T

0

||α(ωs)||2ds

)

is a martingale with respect to each measure Wω0 .

Consider a biased diffusion process X̄ = {X̄t; 0 ≤ t ≤ T} defined as follows. The starting and
ending points are X̄0 ∼ f1(x), X̄T ∼ f(x) and given (X̄0, X̄T) the process {X̄t, 0 < t < T}
is given by the diffusion bridge driven by (5). Note that X̄ is actually a biased version of X.
Conditional on the right ending point the two processes X̄ and X have the same distribution.

Lemma 2.1. Let Q̄ be the probability law induced by X̄. Then we have the Radon-Nikodym
derivative:

dQ̄
dQ

(ω⃗) ∝ f2(ωT). (7)

Proof. The proof of the lemma follows easily from the proof of Proposition 3 in Beskos and
Roberts (2005). �

To draw a sample from the target distribution f(x) we need to simulate a process X̄t, t ∈ [0, T]
from Q̄ and then X̄T ∼ f(x). The above lemma gives us an implication of how to simulate the
process X̄, which will be introduced in the following subsection.

2.2. Simulating the process X̄
We here use similar rejection sampling ideas as that in Beskos et al. (2006) and Beskos et al.
(2008). Under conditions 2.1 to 2.3 and following Beskos et al. (2006) we have

dQ
dW

(ω) = exp

[
A(ωT)−A(ω0)−

1

2

∫ T

0

(||α||2 + div α)(ωt)dt

]
(8)

where

div α(x) =

q∑
j=1

∂α(j)(x)

∂x(j)
(9)

and x(j) is the jth component of x.
Then we consider a biased Brownian motion {B̄t; 0 ≤ t ≤ T} defined as (B̄0, B̄T) following a

distribution with a density h(x,y) and {B̄t; 0 < t < T} to be a Brownian bridge given (B̄0, B̄T).

Lemma 2.2. Let Z be the probability law induced by {B̄t; 0 ≤ t ≤ T}. We have that the
Radon-Nikodym derivative of Z with respect to W is given by

dZ
dW

(ω) =
h(ω0,ωT)

f1(ω0)
1√
2πT

e−
||ωT −ω0||2

2T

. (10)

6 Dai H.

Proof. Let Wω0,ωT

0,T be the probability measure, under which Bt(ω⃗) = ωt (given B0 =

ω0,BT = ωT) is a Brownian bridge. Let Zω0,ωT

0,T be the probability law induced by B̄t (given

B̄0 = ω0, B̄T = ωT). From the definition of B̄t we know that B̄t and Bt have the same
distribution law given B̄0 = B0 and B̄T = BT . Choose any set F ∈ B(C[0, T]q). We have

Zω0,ωT

0,T {ω⃗ ∈ F } = Wω0,ωT

0,T {ω⃗ ∈ F }.

Therefore

EZ[I[ω⃗ ∈ F]] =

∫
Rq

∫
Rq

EZω0,ωT
0,T

[I[ω⃗ ∈ F]]h(ω0,ωT)dω0dωT

=

∫
Rq

∫
Rq

EWω0,ωT
0,T

[I[ω⃗ ∈ F]]h(ω0,ωT)dω0dωT

= EW

I[ω⃗ ∈ F]
h(ω0,ωT)

f1(ω0)
1√
2πT

e−
||ωT −ω0||2

2T

which implies (10). �

By letting

h(ω0,ωT) = f2(ωT) exp [A(ωT)−A(ω0)] f1(ω0)
1√
2πT

e−
||ωT −ω0||2

2T (11)

and using (8), (10) and (7), we have

dQ̄
dZ

(ω⃗) ∝ dQ̄
dQ

(ω⃗)
dQ
dW

(ω⃗)
dW
dZ

(ω⃗)

= f2(ωT) · exp

[
A(ωT)−A(ω0)−

1

2

∫ T

0

(||α||2 + div α)(ωt)dt

]
·
f1(ω0)

1√
2πT

e−
||ωT −ω0||2

2T

h(ω0,ωT)

= exp

[
−1

2

∫ T

0

(||α||2 + div α)(ωt)dt

]
. (12)

Then under Condition 2.2 we can rewrite (12) as

dQ̄
dZ

(ω) ∝ exp

[
−
∫ T

0

ϕ(ωt)dt

]
, (13)

which has a value no more than 1. Now it is ready to use rejection sampling to simulate X̄t from
Q̄. First we simulate a proposal B̄t from Z and then we accept the proposal as X̄t according to
the probability in (13). Note that this rejection sampling can be done using similar methods as
that in Beskos et al. (2006) and Beskos et al. (2008).

Note that to simulate a proposal B̄t from Z, it is necessary to simulate (ω0,ωT) from h given
in (11). This is not difficult, because according to f1 = g21 and f2 = g2/g1 we have

h(ω0,ωT) = f2(ωT) exp [A(ωT)−A(ω0)] f1(ω0)
1√
2πT

e−
||ωT −ω0||2

2T

= g2(ωT)g1(ω0)
1√
2πT

e−
||ωT −ω0||2

2T . (14)

Rejection sampling without using hat function 7

We can easily simulate ω0 from g1 and ωT from g2 and then accept (ω0,ωT) as a sample from

h according to probability exp
[
− ||ωT−ω0||2

2T

]
.

2.3. Rejection sampling for f(x) ∝ g1(x)g2(x) without using hat function
The previous subsection demonstrated how to simulate X̄t, t ∈ [0, T] from Q̄ via rejection sam-
pling technique. From the definition of X̄t in Section 2.1, we then have that X̄T is actually a
sample from f1(x)f2(x), the target distribution f(x). Therefore the following rejection sampling
algorithm (Algorithm 1) can be used to simulate x from f ∝ g1g2 = f1f2.

1 Simulate ω0 from g1 and ωT from g2;
2 Simulate a standard uniform variable U ;
3 if U ≤ exp[−||ω0 − ωT ||2/(2T)] then
4 (ω0,ωT) is from h;
5 else
6 Go to step 1;
7 end
8 Simulate the Brownian bridge B̄ = {ωt, t ∈ (0, T)} conditional on (ω0,ωT);
9 Simulate I = 1 with probability given by (13);

10 if I = 1 then
11 Output ωT ;
12 else
13 return to step 1;
14 end

Algorithm 1: Rejection sampling for f ∝ g1g2 = f1f2.

Remark 1: Step 9 of Algorithm 1 can be done using the method in Beskos et al. (2006) and
Beskos et al. (2008).

Remark 2: Algorithm 1 is a rejection sampling algorithm but it does not require finding a
hat function to bound the target density, which is usually the main challenge of the traditional
rejection sampling for complicated target densities. The above algorithm uses g2 as the proposal
density function, which does not have to bound the target f .

Choosing an appropriate value T is important for Algorithm 1 to achieve a larger acceptance
probability. We can see that the proposal y = ωT will be accepted if U ≤ exp[−||ω0−ωT ||2/(2T)]
and if I = 1, where I is the indicator simulated in step 9 of Algorithm 1. Define

AP1 = P{U ≤ exp[−||ω0 − ωT ||2/(2T)]},
AP2 = Eh [P{I = 1|(ω0,ωT)}] (15)

where Eh means the expectation is with respect to (ω0,ωT) ∼ h. If T is large, the probability
AP1 will be relatively large, but the probability AP2, the expected value of

Eh [P(I = 1|(ω0,ωT))] = EZ

[
exp

(
−
∫ T

0

ϕ(ωt)dt

)]
, (16)

will be small. On the contrary, if T is small, the probability AP2 will be relatively large, but
AP1 will be small. Therefore it is important to choose an appropriate value of T to make the

8 Dai H.

acceptance probability AP1 · AP2 to be as large as possible. We will discuss the choice of T in
later sections via simulation studies.

2.4. The advantage of the new algorithm and its relation to CFTP and direct sampling
2.4.1. The advantage of the new algorithm
Note that in the new algorithm, we do not need g2 (or g1) to bound the target density f . Instead,
Algorithm 1 makes use of the proposals from both g1 and g2 and the acceptance/rejection of
a diffusion bridge to draw samples exactly from the target. We can see that the acceptance
probability AP2 in (15) depends on the lower bound l for (||α||2 + div α)/2. Therefore this
algorithm will be attractive when it is possible to find good lower bounds for (||α||2 + div α)/2,
but difficult to find a good hat function for the target density f . In Section 3, we will demonstrate
how to find good lower bounds for (||α||2 + div α)/2. The new method in Section 3 does not
require any specified properties for the target function f or α, such as log-concativity. This
makes the new method more practical than existing adaptive rejection sampling methods. We
will also demonstrate this when dealing with the posterior of mixture models in Section 5.

2.4.2. The link to CFTP – a heuristic interpretation
In summary, Algorithm 1 first simulates ω0 from g1 and ωT from g2 and then accept (ω0,ωT)
as a sample from h with probability exp(−||ω0 − ωT ||2/(2T)). To accept the proposal ωT , the
algorithm simulate I = 1 via acceptance/rejection of a diffusion bridge.

To explain the link of the new algorithm with CFTP, we temporarily assume that f2 is a
proper density. Note that this assumption is not required by the algorithm.

If we write (14) as

h(ω0,ωT) = f2(ωT) ·
{
exp [A(ωT)−A(ω0)] f1(ω0)

1√
2πT

e−
||ωT −ω0||2

2T

}
(17)

the algorithm can be viewed heuristically as doing the following two steps independently: Step [1]:
we simulate ω0 from g1(·) = f1(·) exp(−A(·)), then simulate ωT from exp((log f1(ωT))/2) exp(−||ω0−
ωT ||2/(2T)) and then simulate I = 1 via acceptance/rejection of a diffusion bridge; Step [2]:
simulate ωT from f2. Step [1] is equivalent to simulating a diffusion process with invariant distri-
bution f1. We can also imagine that Step [2] simulates another diffusion process with invariant
distribution f2, but only output the process at time T . The two processes are simulated inde-
pendently and coalesce at ωT where time T is a pre-determined value. This means that two
random variables (but having the same values) ωT and ωT are simulated independently from f1
and from f2 respectively. Their joint distribution must be f1(ωT)f2(ωT) = f(ωT). Therefore
ωT is a sample from f .

Recall that CFTP algorithm simulates Markov chains starting from all possible states and
uses the same random numbers for each chain. The challenge of CFTP is to monitor coalescence
for many different Markov chains. The new method can be viewed heuristically as running
two independent diffusion processes, where the product of the invariant distributions of the two
diffusions is the target distribution. When the two processes coalesce at a pre-determined time
point T (independent of the diffusions), the coalesced point is from the target distribution. The
challenge here is to guarantee that the two independent processes coalesce at a pre-determined
time point. This challenge is solved via rejection sampling for diffusions, i.e. we choose a value
of T first and then use rejection sampling to find the diffusion.

Rejection sampling without using hat function 9

2.4.3. The link to sampling directly from f– a heuristic interpretation
Note that theoretically, we can choose any value of T in Algorithm 1, although T affects the algo-
rithm efficiency. When we choose T = 0, Algorithm 1 actually ignores the diffusion simulations,
but only involves simulation of ω0 from g1 and ωT from g2. The proposal ωT will be accepted if
ω0 = ωT , since exp(||ω0−ωT ||2/(2T)) = 1 with T = 0 and ||ω0−ωT || = 0 if we define 0/0 = 0.
This means that we independent simulate ω0 from g1 and ωT from g2. When ω0 = ωT := ω∗
we accept ω∗ as a sample from f . Although it is impossible to have ω0 = ωT , this approach can
be viewed as simulate ω∗ ∼ g1 · g2 = f .

2.5. A toy example
We end this section by providing a toy example to demonstrate the density decomposition and
necessary variable transformation which is to guarantee conditions 2.1 and 2.2 are satisfied. The
variable transformation will also be used in Section 5.

Example 2.1.

Consider a Dirichlet distribution as the target, having density proportional to fp(p) = p41p
4
2(1−

p1 − p2)4, 0 ≤ p1, p2 ≤ 1. Since Algorithm 1 requires that the target f(·) should have support in
R2, we first consider the transformed variable x = (x1, x2) with

p1 = exp(x1)/[1 + exp(x1) + exp(x2)],

p2 = exp(x2)/[1 + exp(x1) + exp(x2)]. (18)

Then the density function for x can be written as

fx(x) ∝
[

exp(x1)

1 + exp(x1) + exp(x2)

]5 [
exp(x2)

1 + exp(x1) + exp(x2)

]5 [
1

1 + exp(x1) + exp(x2)

]5
and can be decomposed as fx(x) = g1(x)g2(x), with

g1(x) =

[
exp(x1)

1 + exp(x1) + exp(x2)

]2 [
exp(x2)

1 + exp(x1) + exp(x2)

]2 [
1

1 + exp(x1) + exp(x2)

]2
g2(x) =

[
exp(x1)

1 + exp(x1) + exp(x2)

]3 [
exp(x2)

1 + exp(x1) + exp(x2)

]3 [
1

1 + exp(x1) + exp(x2)

]3
.

Note that α(x) satisfies conditions 2.1 and 2.2, since A(x) = log(g1(x)) = 2(x1 +x2)− 6[log(1+
exp(x1) + exp(x2))] and

α(x) =

[
2
2

]
− 6

exp(x1)

1 + exp(x1) + exp(x2)
exp(x2)

1 + exp(x1) + exp(x2)

We further have

div α(x) = −6[1 + exp(x1) + exp(x2)]
−2[exp(x1)(1 + exp(x2)) + exp(x2)(1 + exp(x1))]

and ||α(x)||2 + div α(x) ≥ −3.

10 Dai H.

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p_1

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p_2

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Fig. 1. Left figure: marginal empirical distribution for p1; right figure: marginal empirical distribution for p2.
Red curve: empirical distribution based on ’rdirichlet’; black cure: empirical distribution based on the new
method. For both p1 and p2 the red and black curves overlap.

We simulate 5000 realisations using the proposed new method and another 5000 realisations
using the ‘rdirichlet’ command of MCMCpack package of R. The marginal empirical distributions
for p1 and p2 are plotted for both methods. We can see that the empirical distributions under
different methods overlap everywhere, i.e. the empirical distribution for the two methods are
almost exactly the same for p1 (the left figure) and p2 (the right figure).

3. Improvement of the new rejection sampling algorithm

We can see that in Algorithm 1, there are two rejection steps: line 3 and line 10. The acceptance
probabilities are given in (15). These two probabilities can be very small, especially when the
dimension, q, of x is large. Therefore to make Algorithm 1 practical, we need to find methods
to increase the acceptance probabilities AP1 and AP2.

In sections 3.1 and 3.2, we will develop an approach to increase AP2. Then in Section 3.3, we
will show how to increase AP1 by finding appropriate decomposition of f .

3.1. Improvement for increasing AP2, when x ∈ R – the one-dimensional case
The method proposed in this subsection relies on the concept of layered Brownian motion in
Beskos et al. (2008). So we first briefly introduce in Section 3.1.1 the layers defined in Beskos et
al. (2008) and the methods developed therein.

3.1.1. The layered Brownian motion in Beskos et al. (2008)

Let x = ω0, y = ωT , where (x = ω0, y = ωT) is simulated from line 1 to line 7 of Algorithm 1.
Define the probability measure Wx,y

0,T , under which ωt is a Brownian bridge with (x = ω0, y = ωT)
as the starting and ending points.

Let {ai}i≥1 be an increasing sequence of positive numbers and a0 = 0. Let x̄ = x∧y, ȳ = x∨y.

Rejection sampling without using hat function 11

Define the events as Di(x̄, ȳ; 0, T) = Ui(x̄, ȳ; 0, T) ∪ Li(x̄, ȳ; 0, T), where

Ui(x, y; 0, T) =

{
ω⃗ : sup

0≤s≤T
ωs ∈ [ȳ + ai−1, ȳ + ai]

}
∩
{
ω⃗ : inf

0≤s≤T
ωs > x̄− ai

}
,

Li(x, y; 0, T) =

{
ω⃗ : inf

0≤s≤T
ωs ∈ [x̄− ai, x̄− ai−1]

}
∩
{
ω⃗ : sup

0≤s≤T
ωs < ȳ + ai

}
. (19)

We say that the Brownian bridge ω⃗ is in layer I if ω⃗ ∈ DI .
In Algorithm 1, the acceptance indicator I can be simulated via the following subroutine

(Beskos et al., 2008).

1 Given ω0 = x and ωT = y, simulate a Brownian bridge ωt, t ∈ [0, T] via the following
steps 1a and 1b:;
// 1a: Simulate layer I with probability P(I) = Wx,y

0,T (ω⃗ ∈ DI)
// 1b: Given ω0 and ωT, simulate a sample path ω⃗, from Wx,y

0,T

conditional on ω⃗ ∈ DI, using the algorithm in Beskos et al. (2008)

2 Calculate l = inf[α2(u) + α′(u)]/2, for all u ∈ R;
3 Calculate rI such that rI ≥ supt∈[0,T],ω⃗∈DI

{[α2(ωt) + α′(ωt)]/2− l};
4 Simulate Ψ = {ψ1, · · · , ψρ} uniformly distributed on U[0, T] and marks
Υ = {ν1, · · · , νρ} uniformly distributed on U[0, 1], where ρ is from Poi(rIT);

5 Compute the acceptance indicator I :=
∏ρ
j=1 I[r

−1
I ϕ(ωψj) < νj];

Algorithm 2: Subroutine for steps 8 and 9 in Algorithm 1: simulation for I

3.1.2. Increase the acceptance probability by re-weighting the layer probabilities
The acceptance probability I = 1, given by (13), can be very small, if the lower bound l is very
small. Therefore, Algorithm 2 may be very inefficient (having acceptance probability close to
0). To increase P(I = 1), we should increase the lower bound l. For one-dimensional case, Dai
(2013) proposed an adaptive approach to increase the lower bound, which uses different lower
bounds of (α2 + α′)(ωs)/2 for different layers. We here briefly introduce the idea as follows and
then extend the method in Dai (2013) to multi-dimensional processes in Section 3.2.

Given ω⃗ ∈ Di (the Brownian bridge is in layer i), Condition 2.2 implies that we can find
li such that li ≤ infs∈[0,T],ω∈Di

{(α2 + α′)(ωs)/2} and li → l. Obviously such li ≥ l for all i.

Based on the layers and the lower bounds li, we consider the following proposal process, B̃t with
(B̃0 = x, B̃T = y) ∼ h(x, y) and B̃t, 0 < t < T to be a process with measure Z̃x,y0,T , where

dZ̃x,y0,T

dWx,y
0,T

(ω⃗) ∝
∞∑
i=1

exp{−T li}I{ω⃗ ∈ Di}. (20)

Then we have the following lemma.

Lemma 3.1. Let Z̃ be the probability law induced by {B̃t, 0 ≤ t ≤ T}. We have that the

Radon-Nikodym derivative of Z̃ with respect to W is given by

dZ̃
dW

(ω⃗) ∝ h(x, y)

f1(x) · 1√
2πT

e−(x−y)2/(2T)

∞∑
i=1

exp{−T li}I{ω⃗ ∈ Di}

12 Dai H.

Proof. Using (20), the proof is similar as that of Lemma 2.2. �

We then have

dQ̄
dZ̃

(ω⃗) ∝ dQ̄
dQ

(ω⃗)
dQ
dW

(ω⃗)
dW
dZ̃

(ω⃗)

= f2(ωT) · exp

[
A(ωT)−A(ω0)−

1

2

∫ T

0

(α2 + α′)(ωt)dt

]
·
f1(ω0)

1√
2πT

e−
|ωT −ω0|2

2T

h(ω0, ωT)

· 1∑∞
i=1 exp{−T li}I{ω⃗ ∈ Di}

=
∞∑
i=1

exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− li

]
ds

}
I{ω⃗ ∈ Di}, (21)

which is also a value no more than 1. Therefore we can also use rejection sampling to simulate
from Q̄ if we can simulate from Z̃(ω). The acceptance probability is now given by

∞∑
i=1

EZ

[
exp

{
−
∫ T

0

[
1

2
(α2 + α′)(ωs)− li

]
ds

}
I{ω ∈ Di}

]
, (22)

which will be larger than the acceptance probability in (16).

Note that, simulating from Z̃(ω⃗) can actually be done with the method in Dai (2013) if ω⃗ is
a one dimensional process.

3.2. Improvement for increasing AP2, when x ∈ Rq

The methodology in Section 3.1 can be extended for q-dimensional processes. Suppose that

ω⃗ = (ω(1), · · · ,ω(q)) and ω(j) = {ω(j)
s , s ∈ [0, T]}. Let x = ω0 and y = ωT be simulated from

line 1 to line 7 of Algorithm 1. Define x̄(j) = x(j) ∧ y(j) and ȳ(j) = x(j) ∨ y(j), where x(j) and y(j)
are the jth component of x and y respectively.

We define the events D(j)
i (x̄(j), ȳ(j); 0, T) = U (j)

i (x̄(j), ȳ(j); 0, T) ∪ L(j)
i (x̄(j), ȳ(j); 0, T), where

U (j)
i (·, ·; 0, T) and L(j)

i (·, ·; 0, T) are defined similarly as before for each component ω(j). For
simplicity the sequence {ai} in (19) is chosen to be same for all components ω(j), j = 1, · · · , q.

Define event Qi = ⊗j
[
∪ik=1D

(j)
k

]
−⊗j

[
∪i−1
k=1D

(j)
k

]
, where the sign ⊗ is the direct product for

all j = 1, · · · , q. Then the q-dimensional Brownian bridge ω⃗ belongs to Qi is equivalent to that

each component of ω(j) belongs to ∪ik=1D
(j)
k and at least one component ω(j′) belongs to D(j′)

i .
Clearly {Qi, i = 1, · · · } form a partition for the space of the q-dimensional ω⃗.

With the definition above, we can find li such that li ≤ infs∈[0,T],ω⃗∈Qi
{(||α||2+ div α)(ωs)/2}

and li → l. The same as the one-dimensional case, we consider a process B̃t with (B̃0 = x, B̃T =

y) having distribution h(x,y) and {B̃t, 0 < t < T} having probability law Z̃x,y
0,T (ω⃗) given by

dZ̃x,y
0,T

dWx,y
0,T

(ω⃗) =

∑∞
i=1 exp{−T li}I{ω⃗ ∈Qi}∑∞

i=1 exp{−T li}W
x,y
0,T {ω⃗ ∈Qi}

(23)

=

∞∑
i=1

{
exp{−T li}Wx,y

0,T {ω⃗ ∈Qi}∑∞
i=1 exp{−T li}W

x,y
0,T {ω⃗ ∈Qi}

I{ω⃗ ∈Qi}
Wx,y

0,T {ω⃗ ∈Qi}

}

Rejection sampling without using hat function 13

where Wx,y
0,T is the Brownian bridge measure and Wx,y

0,T {ω⃗ ∈ Qi} is the probability that the
Brownian bridge belongs to the event Qi (in layer i).

Lemma 3.2. Let Z̃ be the probability law induced by {B̃t, 0 ≤ t ≤ T}. We have

dZ̃
dW

(ω⃗) ∝ h(x,y)

f1(x)e−||x−y||2/(2T)

∞∑
i=1

exp{−T li}I{ω⃗ ∈Qi} (24)

Proof. Using (23), the proof is similar as that of Lemma 2.2. �

Then the Radon-Nikodym derivative of Q̄ to Z̃ becomes

dQ̄
dZ̃

(ω⃗) ∝
∞∑
i=1

exp

{
−
∫ T

0

[
1

2
(||α||2 + div α)(ωs)− li

]
ds

}
I{ω⃗ ∈ Qi}, (25)

Similarly as before, if we can simulate from Z̃(ω⃗) then we can simulate from Q̃(ω⃗) via rejection
sampling.

To simulate from Z̃(ω⃗), we can first simulate x,y from h(x,y) and then conditional on (x,y),

we simulate from Z̃x,y
0,T (ω⃗) given by (23).

3.2.1. Simulation from Z̃x,y
0,T (ω⃗) given by (23)

Now the key step to be solved is to simulate from Z̃x,y
0,T (ω⃗) given by (23). By observing (23), we

know that its simulation can be achieved via the following two steps.
Step 1: we can first simulate the layer I according to the probability

P̃(I = i) =
exp{−T li}Wx,y

0,T {ω⃗ ∈Qi}∑∞
i=1 exp{−T li}W

x,y
0,T {ω⃗ ∈Qi}

; (26)

Step 2: then conditional on the layer I we simulate ω⃗ from dWx,y
0,T (ω⃗)I{ω⃗ ∈Qi} as follows.

Step 1
This step can be done using the same method in Dai (2013).
Step 2: Conditional on the layer I, simulation of ω⃗ from dWx,y

0,T (ω⃗)I{ω⃗ ∈Qi}
First we need simulate the layers for each component. This is because for multi-dimensional

case, the layer I = i only tells us ω⃗ ∈Qi, i.e. all the components ω(j) belong to ∪ik=1D
(j)
k and at

least one component ω(j′) belongs to D(j′)
i , but we do not know which component it is. Given I =

i, the simulation for the layers of each component can be done via the following approach. We sim-

ulate a uniform variable U from the interval
[
P
(
ω⃗ ∈ ⊗j

[
∪i−1
k=1D

(j)
k

])
,P
(
ω⃗ ∈ ⊗j

[
∪ik=1D

(j)
k

])]
,

i.e. simulate U from ∏
j

P
(
ω(j) ∈ ∪i−1

k=1D
(j)
k

)
,
∏
j

P
(
ω(j) ∈ ∪ik=1D

(j)
k

) .
Note that such U can be simulated, since the two boundary points of the above interval are limits
of certain alternating sequences (Beskos et al., 2008).

14 Dai H.

This means U is simulated by conditioning on ω⃗ ∈Qi. Then use this U to simulate the layer
of each component ω(j). If U belongs to the interval [Ul, Ur],

Ul =

j′−1∏
j=1

P(ω(j) ∈ ∪ik=1D
(j)
k) ·

q∏
j=j′

P(ω(j) ∪i−1
k=1 D

(j)
k),

Ur =

j′∏
j=1

P(ω(j) ∈ ∪ik=1D
(j)
k) ·

q∏
j=j′+1

P(ω(j) ∪i−1
k=1 D

(j)
k),

then we have that

ω(j′) ∈ D(j′)
k

ω(j) ∈ ∪ik=1D
(j)
k for j < j′

ω(j) ∈ ∪i−1
k=1D

(j)
k for j > j′. (27)

Second, once the boundaries for each component ω(j) has been sampled, we can simulate a
Brownian bridge ω⃗ with ω0 = x and ωT = y by conditional on the boundaries using the method
in (Beskos et al., 2008).

3.2.2. The algorithm improvement

Using the above method, such a simulated multi-dimensional process ω⃗ = (ω(1), · · · ,ω(q)) is

drawn from Z̃. Then use the rejection sampling idea in Beskos et al. (2006), we can use a
rejection sampling to accept ω⃗ as a process from Q̄ or to reject it. The acceptance-rejection ratio
is given by (25).

In summary, an improved version of Algorithm 2 is given below, which is a subroutine to
replace steps 8 and 9 in Algorithm 1.

1 Given B̃0 = x and B̃T = y, simulate a process B̃t, t ∈ [0, T] via the following steps 1a
and 1b:;

// 1a: Simulate layer I with probability P̃(I) given in (26) (Dai, 2013)

// 1b: Simulate the layers for each component (given by (27))

// 1c: Given B̃0 and B̃T , simulate a sample path B̃t, 0 < t < T, from Wx,y
0,T

conditional on ω(j′) ∈ D(j′)
k ,ω(j) ∈ ∪ik=1D

(j)
k for j < j′ and

ω(j) ∈ ∪i−1
k=1D

(j)
k for j > j′, using the algorithm in Beskos et al. (2008)

2 Calculate lI such that lI ≤ infs∈[0,T],ω⃗∈QI
{(||α||2 + div α)(ωs)/2};

3 Calculate rI such that rI ≥ supt∈[0,T],ω⃗∈DI
{[||α||2(ωt) + div α′(ωt)]/2− lI};

4 Simulate Ψ = {ψ1, · · · , ψρ} uniformly distributed on U[0, T] and marks
Υ = {ν1, · · · , νρ} uniformly distributed on U[0, 1], where ρ is from Poi(rIT);

5 Compute the acceptance indicator I :=
∏ρ
j=1 I[r

−1
I [(||α||2+ div α)(ωψj)/2− lI] < νj];

Algorithm 3: Improved version of Algorithm 2: simulation for I

Rejection sampling without using hat function 15

3.2.3. Why such an improvement is important
Note that, based on the methods in Section 3.1 and Section 3.2, the new method is more efficient
than existing rejection sampling methods when a good hat function for f is not readily available.
The posterior of finite mixture models is not log-concave. It is nontrivial to find a good hat
function for it by partitioning the support of the posterior into several subsets and finding a
bound for each subsets. However, it is always possible to partition the space of a Brownian
bridge into many different layers and then we can find lower bounds for each layer. This makes
the new method to be practical for complicated target distributions.

3.3. Improvement for increasing AP1

The algorithm simulates ωT from g2 as a proposal. We can see that the proposal is more likely to
be accepted if the distance ||ω0 − ωT ||2 becomes smaller. Therefore, to increase the acceptance
probability, we need to find a good decomposition, f = g1 · g2, to make AP1 as large as possible,
where

AP1 = P{U ≤ exp[−||ω0 − ωT ||2/(2T)]}
= P{||ω0 − ωT ||2 ≤ −2T log(U)} (28)

where U ∼ U [0, 1], ω0 ∼ g1, ωT ∼ g2.
Note that it is nontrivial to find the best decomposition f = g1 · g2 to achieve the maximum

value of AP1, since there are infinite decompositions. However, we can find the best one under
a subset of all possible decompositions of f , which will provide us a direction of finding a good
decomposition.

First we introduce the following notations: Eg1 =
∫
xg1(x)dx and Eg2 =

∫
xg2(x)dx. Then

we have the following lemma.

Lemma 3.3. Define A = {(g1, g2) : such that f = g1 · g2 and Eg1 = Eg2}. Then for all
(g1, g2) ∈ A and for independent variables ω0 ∼ g1(·) and ωT ∼ g2(·), the expectation E||ω0 −
ω1||2 reaches the minimum when g1(·) = g2(·) =

√
f(·).

Proof. We have

E||ω0 − ω1||2 = Eg1 ||ω0||2 + Eg2 ||ωT ||2 − 2⟨Eg1 , Eg2⟩

=

∫
||x− Eg1 ||2g1(x)dx+

∫
||x− Eg2 ||2g2(x)dx+ ||Eg1 − Eg2 ||2

=

∫
||x− Eg1 ||2

[
g1(x) +

f(x)

g1(x)

]
du

which reaches the minimum when g1(x) = f(x)/g1(x), i.e. g1 = g2 =
√
f . �

The above result implies that we should choose a decomposition to make g1 and g2 as close
to each other as possible. Indeed, we find that this is true in our simulation studies for mixture
models.

4. Rejection sampling for the general case f =
∏ι
l=1 gl

In general, the target density f may be decomposed as a product of ι terms, f(x) =
∏ι
l=1 gl,

where we can easily draw a sample from gl. To draw a sample from f , we can use the following

16 Dai H.

recursive algorithm. First we decompose f as f = f1f2, where f1 = g21 , f2 = g−1
1

∏ι
j=2 gj . To use

Algorithm 1, we need to simulate from
∏ι
j=2 gj , which can be further decomposed as g2 ·

∏ι
j=3 gj .

Keep simplifying the target until it becomes gι−1 · gι. When running such a recursive algorithm,
we actually do it in the reverse procedure, i.e. simulate samples from

∏ι
j=l gj , l from ι− 1 to 1.

This is given by the following algorithm.

1 Simulate y from gι;
2 for l← ι− 1 to 1 do
3 Simulate xl from gl;
4 Simulate standard uniform variable Ul;
5 if Ul > exp(−||xl − y||2/(2T)) then
6 Goto Step 1;
7 end
8 Simulate the Brownian bridge B̄ = {ωt, t ∈ (0, T)} given (ω0 = xl,ωT = y);
9 Simulate Il = 1 with probability given by (13), with α(x) = ∇A(x) and

A(x) = log gl(x);
// the above two steps can be improved using Algorithm 3

10 if Il = 1 then
11 y can be viewed as a sample from

∏ι
j=l gj ;

12 else
13 Goto Step 1;
14 end

15 end
16 Output y.

Algorithm 4: Rejection sampling for f =
∏ι
l=1 gι.

Note that in the for loop of Algorithm 4, the code tries to draw a sample from
∏ι
j=l gj . If

a sample is successfully drawn from
∏ι
j=l gj then l decreases by 1; otherwise the algorithm goes

back to the beginning since the proposal from
∏ι
j=l gj is rejected.

We can also see that Algorithm 4 simulates {xl}ι−1
l=1 and y independently. The proposal y

will be accepted if Ul ≤ exp(−||xl − y||2/(2T)) and Il = 1 for l = 1, · · · , ι− 1. Since simulating
the event Il = 1 using Beskos et al. (2006, 2008) or the more efficient Algorithm 3 is usually
complicated and time consuming, we can revise Algorithm 4 as follows to increase the efficiency:
First, simulate xl, l = 1, · · · , ι − 1 and y; second, check if Ul ≤ exp(−||xl − y||2/(2T)) for
l = 1, · · · , ι− 1; third, simulate Il = 1, for l = 1, · · · , ι− 1. The revised algorithm is given below.

Note that Algorithm 4 and Algorithm 5 can be improved via the methods in Section 3.

Rejection sampling without using hat function 17

1 Simulate y from g(ι);
2 for l← ι− 1 to 1 do
3 Simulate xl from g(l);
4 Simulate standard uniform variable Ul;
5 if Ul > exp(−||xl − y||2/(2T)) then
6 Goto Step 1
7 end

8 end
9 for l← ι− 1 to 1 do

10 Simulate the Brownian bridge B̄ = {ωt, t ∈ (0, T)} given (ω0 = xl,ωT = y);
11 Simulate Il = 1 with probability given by (13), with α(x) = ∇A(x) and

A(x) = log g(l)(x);
// the above two steps can be improved using Algorithm 3

12 if Il = 0 then
13 Goto Step 1;
14 end

15 end
16 Output y;

Algorithm 5: Revised rejection sampling for f =
∏ι
l=1 gι.

5. Exact Monte Carlo simulation for finite mixture models

We here focus on the mixture of normal densities. The method developed here can be easily
extended to the mixture of other density functions. Suppose that the data {zi, i = 1, · · · , n} are
from the finite mixture of normal densities

h(zi;Θ) =
K∑
k=1

pkhk(zi; θk, ν), hk(zi; θk, ν) = |ν|e−
ν2

2 (zi−θk)2 (29)

withΘ = (p, ν,θ), where ν and θk range inR and pk is the component proportion with 0 ≤ pk ≤ 1
and

∑
k pk = 1. When K is unknown, the methods in Richardson and Green (1997) and Stephens

(2000b) can draw approximate samples from the posterior of the mixture model in (29) via
MCMC, for which the diagnostic of convergence for the Markov chains may not be easy since the
label switching problem makes it difficult to confirm the convergence of the Markov chain. This
makes it extremely challenging to draw exact realisations from the posterior with K unknown.
Therefore here we assume K is known and leave the exact simulation for unknown K as a future
work.

The Dirichlet distribution for p and the normal-gamma distribution for (θ, |ν|) are widely
used as the prior for Θ. They are given by

π0(Θ) ∝ |ν|2a−1e−bν
2

|ν|K
K∏
k=1

[
e−

σkν2

2 (θk−µk)
2

pϱk−1
k

]
, (30)

where (σk, µk, ϱk, a, b) is known. We focus on (30) in this paper for simplicity as it is conjugate to
the mixture components, though other choices of prior based on reparameterisations of mixture
models are available (Mengersen and Robert, 1996). Based on (30), the posterior distribution

18 Dai H.

can be written as

f(Θ) ∝
n∏
i=1

[
K∑
k=1

pkhk(zi;Θ)

]
π0(Θ). (31)

Traditional methods treat the mixture models in a latent variable framework (Diebolt and
Robert, 1994) by assuming that there is a vector of i.i.d. latent variables ξ = (ξ1, · · · , ξn),
each element of which has the discrete distribution given by P (ξi = k) = pk, and such that the
conditional density of zi is hk(zi; θk, ν). Then Gibbs sampling method can be applied to sampling
approximately from (31). Traditional MCMC methods, however, are not satisfactory for mixture
models due to the challenge in diagnostic of the convergence of the Markov chain.

In recent years, various perfect sampling methods, which draw realisations exactly from the
target distribution, have been proposed for Bayesian analysis of mixture models. These methods
include: for the simple mixture models with components all having known parameters, the CFTP
method in Hobert et. al. (1999), the direct sampling method in Fearnhead (2005), the ‘catalytic
perfect sampling’ in Breyer and Roberts (2001) and the GAM method in Dai (2007); for mixture
models with components involving unknown parameters, the CFTP method in Casella et al.
(2002), the direct simulation method in Fearnhead (2005). However, all above methods are either
only valid for specific type of mixture models or not practical. Therefore there is a demand of
developing new perfect simulation method for the posterior of mixture models. In this section, we
will demonstrate how to use the proposed method in early sections to draw realisations exactly
from the posterior of normal mixture models.

5.1. Reparameterisation and density function decomposition
Consider the following transformation Θ = Θ(x), where x = (u, η, δ),

pk := pk(x) =
euk∑K−1

k=1 euk + 1
, k = 1, · · · ,K − 1,

ν := ν(x) = η, (32)

θk := θk(x) = δkη
−1, k = 1, · · · ,K.

We consider such a transformation to make the support of the posterior f(x) to be Rq .
Then using the change-of-variable formula and with the definition

}k(zi;x) = e−
1
2 (ziη−δk)

2

, }(zi;x) =
K∑
k=1

pk(x)}k(zi;x) (33)

the posterior distribution becomes

f(x) ∝ |η|n
n∏
i=1

[
K∑
k=1

pk(x)}k(zi;x)

]
π0(Θ(x)) · J(x) (34)

= |η|n
n∏
i=1

[
K∑
k=1

pk(x)e
− 1

2 (ziη−δk)
2

]{
|η|2a−1e−bη

2

[
K∏
k=1

e−
σk
2 (δk−ηµk)

2

pk(x)
ϱk

]}

where the Jacobin J(x) =
[∏K

k=1 pk(x)
]
· |η|−K (See Appendix A).

Rejection sampling without using hat function 19

5.1.1. A decomposition of f , which only works theoretically
To use the proposed method, one may consider to the following decomposition to a product of
two terms,

f(x) ∝
n′∏
i=1

[
K∑
k=1

pk(x)e
− 1

2 (ziη−δk)
2

]{
e−bη

2

[
K∏
k=1

e−
σk
2 (δk−ηµk)

2

pk(x)
ϱk

]}
(35)

·|η|n+2a−1
n∏

i=n′+1

[
K∑
k=1

pk(x)e
− 1

2 (ziη−δk)
2

]{
e−bη

2

[
K∏
k=1

e−
σk
2 (δk−ηµk)

2

pk(x)
ϱk

]}
.

The first term can be viewed as g1 and the second term can be viewed as g2. We here put
all the non-differentiable terms, related to |η|, into g2 to guarantee that the log-transformation
of the first term is differentiable. Although we can simulate x from g1 and y from g2, such a
decomposition will not work. The reason is that g1 is not close to g2 and the simulated x and
y are almost always far away from each other. This makes the probability AP1 very small. For
this reason we consider the following decomposition.

5.1.2. A practical decomposition for a hat function of f
We need to guarantee that the log-transformation of g1 is differentiable (Condition 2.1) and that
g1 and g2 are similar (for large AP1). In order to make g1 and g2 similar we need to put the
term |η|(n+2a−1)/2 into g1 and into g2 as well, but this will make log g1 not differentiable. This
makes it non-trivial to find a good decomposition for f . Therefore, to draw samples from (34),
we consider the following hat function

f̂(x) ∝ (η2 + c)
n+2a−1

2

n∏
i=1

[
K∑
k=1

pk(x)e
− 1

2 (ziη−δk)
2

]{
e−bη

2

[
K∏
k=1

e−
σk
2 (δk−ηµk)

2

pk(x)
ϱk

]}

for some value c > 0. We can always choose a very small value of c to make f̂ similar to f .
Clearly f̂ always bounds f and its log-transformation is differentiable.

Let 0 = n0 < n1 < · · · < nι = n be a sequence of positive integers. Let ml = nl − nl−1

for l = 1, · · · , ι. Then the posterior density can be decomposed as a product of ι terms, f̂(x) ∝∏ι
l=1 gl(x), with

gl(x) = (η2 + c)
ml
2 +

ml
2n (2a−1)

 nl∏
i=nl−1+1

}(zi;x)

{e−ml
n bη2

K∏
k=1

e−
σkml
2n (δk−ηµk)

2

pk(x)
mlϱk

n

}
,

l = 1, · · · , ι. (36)

5.2. Simulation from gl, a density based on the observations in the lth group
Let ξi be the latent allocation variables for the mixture model. Define the following statistics:
the number of observations in group l from component k,

n̆l,k =

nl∑
i=nl−1+1

I[ξi = k];

20 Dai H.

the first sample moment for the observations in group j from component k,

Z̄l,k = n̆−1
l,k

nl∑
i=nl−1+1

I[ξi = k]zi;

and

Z2
l =

nl∑
i=nl−1+1

z2i .

Then we can further write

gl(x) = (η2 + c)
ml
2 +

ml
2n (2a−1)e−

ml
n bη2

·
∑

n̆l,Z̄l,Z2
l

{
K∏
k=1

pk(x)
n̆l,k+

mjϱk
n exp

[
−1

2

∑
k

(
n̆l,k +

σkml

n

)[
δk −

n̆l,kZ̄l,k +
σkmlµk

n

n̆l,k +
σkml

n

η

]2]

· exp

[
−1

2

(
Z2
l +

∑
k

(
σkml

n
µ2
k −

(
n̆l,kZ̄l,k +

σkmlµk

n

)2
n̆l,k +

σkml

n

))
η2

]}
. (37)

Note that we can simulate from (37) directly when K and mj are small, i.e. when the number of
statistics (n̆l, Z̄l, Z

2
l) is not large. For example, when the mixture model has K = 2 components

and ml = 25, the number of different (n̆l, Z̄l, Z
2
l) is about 2

25 = 33554432 terms, which can be
dealt with by a standard desktop.

To simulate x from (37), the only challenge is to do the integration for η over gl(x). This can
be done via a recursive approach. The method of simulation from gl is given in the supplementary
file.

5.3. Simulate diffusions with invariant distribution gl(x)
To use Algorithm 5, we also need to simulate the multivariate diffusion, having gl as the invariant
distribution,

dX
(l)
t = α(l)(X

(l)
t)dt+ dB

(l)
t , (38)

where α(l)(x) = ∇A(l)(x) and A(l)(x) = log gl(x).
Note that from the definition of x = (u, η, δ), we have that the vector function α(l)(x) =

(α
(l)
u1 (x), · · · , α

(l)
uK−1(x), α

(l)
η (x), α

(l)
δ1
(x), · · · , α(l)

δK
(x)) is given by

α(l)
uk
(x) =

∂ log gl(x)

∂uk
=
∂gl(x)/∂uk

gl(x)
,

α(l)
η (x) =

∂ log gl(x)

∂η
=
∂gl(x)/∂η

gl(x)
,

α
(l)
δk
(x) =

∂ log gl(x)

∂δk
=
∂gl(x)/∂δk
gl(zi;x)

. (39)

According to

div α(l)(x) =
K−1∑
k=1

∂α
(l)
uk(x)

∂uk
+
∂α

(l)
η (x)

∂η
+

K∑
k=1

∂α
(l)
δk
(x)

∂δk
(40)

Rejection sampling without using hat function 21

we further have

||α(l)(x)||2 + div α(l)(x) =
K−1∑
k=1

∂2gl(x)/∂u
2
k

gl(x)
+
∂2gl(x)/∂η

2

gl(x)
+

K∑
k=1

∂2gl(x)/∂δ
2
k

gl(x)
(41)

whose expression can be found in Appendix B. We also show that (41) is bounded below in
Appendix B.

Note that we also need to find the upper bound (required by Algorithm 2) and lower bounds
(required by (24)) for ||α(ωt)||2 + div α(ωs) under each layer Qi. This is also straightforward
and the details are provided in the supplementary file.

5.4. Simulation results for mixture models
5.4.1. Justification of the correctness of the new algorithm

We consider a mixture model with 2 components, h(zi;Θ) =
∑2
k=1 pkN (θi, ν

−2), with the means
θ1 = 1.0, θ2 = 0.0, p1 = 0.6 and the variance ν−2 = 0.22. We consider a small sample size n = 20
since when n = 20 we can easily sample directly from the posterior distribution. The results of
using direct simulation can be compared with the results of the new method and we can then
justify the correctness of the proposed algorithm. We use the prior distribution in (30) with
a = 1.5, b = 1.0, σ1 = σ2 = 1, µ1 = 1.0, µ2 = 0.0 and ρ1 = ρ2 = 2.0.

To use the new method, we partition the 20 samples into two groups. By doing this, the
hat function f̂ of the posterior can be decomposed into a product of g1g2 where gk is a density
based on the kth group of data (see (36) for example). We partition the samples into two groups
in the following way: first we order the samples to z(1), z(2), · · · , z(19), z(20) and then the first
group is {z(2k−1), k = 1 · · · , 10} and the second group is {z(2k), k = 1, · · · 10}. By doing this, the
two functions g1 and g2 will be similar and this can increase the acceptance probability AP1.
See Lemma 3.3 and the arguments in Section 3.3. This is also demonstrated by the simulation
results in Section 5.4.2, where we found that the algorithm would not work if we simply randomly
allocate the samples into two groups but it works well if we do the sample allocation as above.

For the hat function in (36) we choose c = 0.05. and a layer value ai = 0.1 and T = 0.03.

For both methods, the proposed new method and the direct simulation method, we simulate
5000 realisations. Then we plot the marginal empirical distribution functions for each parameter,
based on the two simulation methods. The results are shown in Figure 2. We can see that the
new method and the direct simulation method output almost identical empirical distributions.
Note that the outputs are based on raw realisations simulated from the posterior distribution
and label switching is not considered here. Stephens (1997) and Stephens (2000a) can be used
to deal with the label switching problem. We here did not consider it as this is not a main aim
of this paper.

5.4.2. Running time comparisons; two-component mixture models and n = 40

For the same model and priors as that in Section 5.4.1, now we choose sample size n = 40 and
compare the running times taken by the algorithm under different grouping of samplings and
under different choices of T , c and ai, which are all parameters governing the efficiency of the
algorithms.

22 Dai H.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p_1

F
n(

x)

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν

F
n(

x)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ_1

F
n(

x)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ_2

F
n(

x)

Fig. 2. Comparison with direct sampling; two methods output almost the same results

Rejection sampling without using hat function 23

Table 1. Running times in seconds for simulation
of one realisation from the posterior and acceptance
probabilities: (i) AP1 and (ii) AP2; c = 0.05 which gives
AP3 ≈ 0.8

c = 0.05 T = 0.01 T = 0.02 T = 0.03

(i) AP1, time 7.8e-5 3.0e-4 0.0006

ai = 0.15 244s 246s 284s
ai = 0.15, (ii) 0.821 0.421 0.331

ai = 0.60 337s 310s 474s
ai = 0.60, (ii) 0.738 0.409 0.268

Running time comparisons under for different sample partitions
To use the new method, we partition the 40 samples into two groups in the following way: first
we order the samples and then the first group is the ordered statistics with odd ranks and the
second group is the ordered statistics with even ranks. Clearly such a partition will make the
two samples very similar and thus make g1 and g2 similar. We therefore suggest such a partition
of samples based on ordered statistics as a general approach. Without doing this (for example
just randomly allocate samples into two groups) we found that the new algorithm will not work
due to low acceptance probability AP1.

Running time comparisons under different values of c
Note that when dealing with mixture model, we actually use the proposed algorithm to sample
from f̂ first and then use acceptance/rejection sampling method to decide whether the proposal
is a sample from f . Therefore there is an extra acceptance/rejection step involved here. Suppose

that the acceptance probability, for x ∼ f̂ in (36) to be accepted as x ∼ f in (34), is denoted as
AP3. The value c is used in (36) governs the acceptance probability AP3 and the smaller value
of c the larger AP3. However, it does not mean an algorithm with smaller values of c will be
more efficient. From the lower bound (47) in Appendix B, we can see that the smaller values of
c, the smaller lower bound for (||α||2 + α′)(·) i.e. the smaller acceptance probability AP2. This
is shown by the simulation results summarised in Table 1 and Table 2. By comparing the results
in both tables, we can see that it is more efficient to choose c = 0.05 than to choose c = 0.03, for
all different choices of ai and T .

Note that AP1 will be larger if g1 and g2 have smaller variation. The value c = 0.03 gives
smaller variances for g1 and g2 therefore we expect that AP1 should be larger with c = 0.03.
This is confirmed by the simulation results: The acceptance probability AP1 slightly increases
by changing c = 0.05 to c = 0.03.

Running time comparisons under different values of T
As we discussed in early sections, the value of T is very important for the efficiency of the
algorithm. In practice, we can always roughly estimate a value of T . To do this, we need to
roughly estimate the order of (||α||2 +α′)(ωt)/2− li, which actually depends on the sample size
n, the layer parameter ai and the value c. In some pilot simulation studies, we found that the
value of this function is roughly between 60 and 65 with ai = 0.15 and c = 0.03. This means that
if we choose value T around (0.01 ∼ 0.03), the acceptance probability AP2 is roughly around
[exp(−65 · 0.03) = 0.14, exp(−65 · 0.01) = 0.52] (or an even larger value), which is not a very tiny

24 Dai H.

Table 2. Running times in seconds for simulation of
one realisation from the posterior and acceptance prob-
abilities:: (i) AP1 and (ii) AP2; c = 0.03 which gives
AP3 ≈ 0.9

c = 0.03 T = 0.01 T = 0.02 T = 0.03

(i) AP1 8.3e-5 3.5e-4 0.0007

ai = 0.15, time 284s 275s 503s
ai = 0.15, (ii) 0.656 0.357 0.211

ai = 0.60, time 355s 375s 589s
ai = 0.60, (ii) 0.564 0.334 0.171

acceptance probability. This is confirmed by the acceptance probability estimates (based on the
Monte Carlo simulations) in tables 1 and 2.

If we choose T = 1, the algorithm never returns a value in a realistic time period, since AP2

is too small. On the other hand, the efficiency of the algorithm also depends on AP1, which will
be very tiny if T is very small. For example, if we choose T = 0.001, the algorithm is not efficient
either, since AP1 is too small. We choose T ranges from 0.01 to 0.03 in our simulation studies,
as it makes AP1 and AP2 both in an acceptable range. In our simulation studies, we found that
with T = 0.02 the algorithm is the most efficient.

Running time comparisons under for different values of ai

The value of ai is used to defined the layers for the layered Brownian motion. Theoretically, the
smaller value of ai will give a larger acceptance probability AP2. We compare the simulation
results under two scenarios ai = 0.15 and ai = 0.60. The simulation results in tables 1 and 2
confirm that smaller values of ai give larger acceptance probability AP2. However, as Dai (2013)
pointed out, to sample a reweighted layered Brownian motion the algorithm will do a search from
layer 1 to the layer to be sampled. Suppose that when choose ai = 0.6, the algorithm is likely
to sample a layer value, say I = 4. Then if we choose ai = 0.15, the algorithm will be likely
to sample a layer value ranges from I = 13 to I = 16. Clearly the algorithm takes more time
to search until finding the target layer. Therefore, choosing very tiny values for ai will not be a
good choice.

5.4.3. The challenges: mixture models with more than two components or with larger sample
sizes

The new method still works, although the running time is much longer, if the mixture model has
two components and n = 60, for which no existing methods can handle. When n = 60, we cannot
partition the samples into two groups (each having thirty samples) since most existing desktops
cannot deal with the expanded posterior for a 2 component mixture with 230 terms. However,
the new method in Section 4 works if we partition the samples into three groups (each has 20
samples). If we consider the same mixture model and priors used in the previous subsection and
if we choose T = 0.02, ai = 0.15 and c = 0.05, Algorithm 5 (together with Algorithm 3) takes
8.7e+4 seconds (24 hours) to draw a single sample from the posterior.

Rejection sampling without using hat function 25

5.4.4. Summary for simulations
In our simulation studies, we try to choose the values of T , ai and c to give a large acceptance
probability of AP2 (about 0.5), which means having a low acceptance probability of AP1 (only
about 0.0001). This is because it usually takes a long time to sample the proposal diffusion
processes (then decide whether it should be accepted; AP2 is involved), but it is easy to sample
ω0 ∼ g1 and ωT ∼ g2 (then decide whether they should be accepted; AP1 is involved).

The proposed method still cannot efficiently handle a mixture with more than 2 components
or a 2-component mixture model with more than 60 samples. The reason is that in such a
case both AP1 and AP2 will be very small. Therefore although it is more efficient than existing
method, it is still far from being practical. The new method, however, surely provides a possible
direction and brings new insights for drawing exact realisations from the posterior of mixture
models. In the next section, we will discuss the possible directions of improving the proposed
method.

6. Discussion

This paper proposes a new rejection sampling method, which does not require a hat function
to bound the target function f but to decompose f into a product of density functions which
are easy to simulate from. The new method is more efficient than existing rejection sampling
methods when a good hat function for f is not readily available. The new method proposed
in this paper transfers the difficulty of finding the hat function to finding the lower bounds of
||α||2(ωs) + α′(ωs). We can always partition the space of Brownian bridges into many layers
and find the lower bound for each layer, which makes the new method practical for complicated
target distributions.

In practice, many complicated distribution densities may not have support in Rq which is
required by the new method, but we can usually find a transformation and use change-of-variable
formula to obtain the new target density with support in Rq. We achieve this even for the very
complicated posterior of the mixture of normal densities. Therefore, such a constraint will not
limit the application of the method.

The new method brings new insights for rejection sampling and coupling from the past, but
it still faces many challenges which could limit its applications. The main challenge is that
to simulate the starting and ending points (ω0,ωT) from h(·, ·), we have to simulate ω0 ∼ g1
and ωT ∼ g2 and accept (ω0,ωT) with probability exp(−||ω0 − ωT ||2/(2T)). This acceptance
probability will be small if we choose small value of T . To solve this problem, we have to choose a
larger value of T , but large T will make the acceptance probability AP2 very small. Although we
proposed a method to partition the space of Brownian bridges into many layers, which increase
AP2 significantly, it is still not practical to run an algorithm with large T . Therefore there is a
demand to develop an efficient exact simulation algorithm for diffusion bridges with large T . We
are currently working on this.

When sampling from the posterior of finite mixture model, we actually applied the new
method to the hat function (36), since the log-transformation of the target function is not dif-
ferentiable. By using the hat function (36) Condition 2.1 is satisfied, but we need an extra
acceptance/rejection step to draw a sample from the target function (34). Therefore to improve
the efficiency of the algorithm for the posterior of mixture models, it is important to develop a
new algorithm for exact simulation of diffusions with piecewise differentiable drift coefficient α.
If such an method is available, we can apply the new method directly on the target distribution
(34). We also leave this as a future work.

26 Dai H.

A. Derivation of J(X) in (34)

We have

∣∣∣∣∣∣∣∣∣∣

∂p1
∂u1

· · · ∂p1
∂uK−1

...
. . .

...
∂pK−1

∂u1
· · · ∂pK−1

∂uK−1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
p1 − p21 −p1p2 · · · −p1pK−1

−p1p2 p2 − p22 · · · −p2pK−1

...
...

. . .
...

−p1pK−1 −p2pK−1 · · · pK−1 − p2K−1

∣∣∣∣∣∣∣∣∣ =
K∏
k=1

pk(u) (42)

since according to (32) we have

∂pk/∂uk = pk − p2k,
∂pj/∂uk = −pjpk, j ̸= k. (43)

Therefore it is obvious that

J(X) =
K∏
k=1

[pk(u)] |η|−K .

B. Lower bound for (41)

B.1. Lower bound for
∑K−1
k=1

∂2gl(x)/∂u
2
k

gl(x)

From the formula (36), we have

∂gl(x)/∂uk = gl(x)

 nl∑
i=nl−1+1

}(zi;x)−1 ∂}(zi;x)
∂uk

+
K∑
υ=1

pυ(x)
−mlϱυ

n

∂
(
pυ(x)

mlϱυ
n

)
∂uk

 .

Using the results in Appendix A, we have
∂

(
pυ(x)

mlϱυ
n

)
∂uk

=
mjϱυ
n

(
pυ(x)

mlϱυ
n

)
(1− pυ), if υ = k;

and
∂

(
pυ(x)

mlϱυ
n

)
∂uk

= −mjϱυ
n

(
pυ(x)

mlϱυ
n

)
pk, if υ ̸= k. We also have ∂}(zi;x)

∂uk
= pk(x)}k(zi;x) −

pk(x)}(zi;x). Therefore, we can further write ∂gl(x)/∂uk as

∂gl(x)/∂uk = gl(x)

 nl∑
i=nl−1+1

(
pk(x)}k(zi;x)

}(zi;x)
− pk(x)

)
+

(
mlϱk
n
−

K∑
υ=1

mlϱυ
n

pυ(x)

) .

Rejection sampling without using hat function 27

Then we have the following equation, where for simplicity we denote pk := pk(x) and }k(zi) :=
}k(zi;x) and }(zi) := }(zi,x),

∂2gl(x)/∂u
2
k

= gl(x)

 nl∑
i=nl−1+1

(
pk}k(zi)
}(zi)

− pk
)
+

(
mlϱk
n
−

K∑
υ=1

mlϱυ
n

pυ

)2

+gl(x)

 nl∑
i=nl−1+1

(
(pk − p2k)}k(zi)}(zi)− pk}k(zi)(pk}k − pk}(zi))

}(zi)2
− (pk − p2k)

)

−

(
mlϱk
n

pk − pk
K∑
υ=1

mlϱυ
n

pυ

)]
, (44)

Therefore we have

K−1∑
k=1

∂2gl(x)/∂u
2
k

gl(x)

=
K−1∑
k=1

 nl∑
i=nl−1+1

(
pk}k(zi)
}(zi)

− pk
)
+

(
mlϱk
n
−

K∑
υ=1

mlϱυ
n

pυ

)2

(45)

+
K−1∑
k=1

 nl∑
i=nl−1+1

(
pk}k(zi)}(zi)− (pk}k(zi))2

}(zi)2
− (pk − p2k)

)
−

(
mlϱk
n

pk − pk
K∑
υ=1

mlϱυ
n

pυ

)
which is surely bounded below by some constant. The constant can be evaluated explicitly. For
example, if we choose a uniform prior for p (ϱυ = 1, υ = 1, · · · ,K) the above formula can be
further simplified as

K−1∑
k=1

∂2gl(x)/∂u
2
k

gl(x)

=

K−1∑
k=1

 nl∑
i=nl−1+1

(
pk}k(zi)
}(zi)

− pk
)2

+

nl∑
i=nl−1+1

(
pk}k(zi)}(zi)− (pk}k(zi))2

}(zi)2
− (pk − p2k)

)
≥ −mj

4
(46)

B.2. Lower bound for
∑K
k=1

∂2gl(x)/∂δ
2
k

gl(x)
From the formula (36), we have

∂gl(x)/∂δk = gl(x)

 nl∑
i=nl−1+1

}(zi;x)−1 ∂}(zi;x)
∂δk

− σkml

n
(δk − ηµk)

28 Dai H.

and

∂2gl(x)/∂δ
2
k = gl(x)

 nl∑
i=nl−1+1

pk}k(zi)[ziη − δk]
}(zi)

− σkml

n
(δk − ηµk)

2

+gl(x)

 nl∑
i=nl−1+1

pk}k(zi){[ziη − δk]2 − 1}}(zi)− p2k}k(zi)2[ziη − δk]2

}(zi)2
− σkml

n
µk

Therefore

K∑
υ=1

∂2gl(x)/∂δ
2
υ

gl(x)

≥
K∑
υ=1

nl∑
i=nl−1+1

pυ}υ(zi){[ziη − δυ]2 − 1}}(zi)− p2υ}υ(zi)2[ziη − δυ]2

}(zi)2
−

K∑
υ=1

συml

n
µk

≥ −ml −
σkml

n

∑
k

µk

B.3. Lower bound for
∂2gl(x)/∂η

gl(x)
From the formula (36), we have

∂gl(x)/∂η = gl(x)

 nl∑
i=nl−1+1

}(zi;x)−1 ∂}(zi;x)
∂η

− 2
mlb

n
η +

K∑
k=1

σkml

n
(δk − ηµk)µk

+
(ml

2
+
ml

2n
(2a− 1)

) 2η

η2 + c

]
and

∂2gl(x)/∂δ
2
k

= gl(x)

 nl∑
i=nl−1+1

∑k
k=1 pk}k(zi)(δk − ziη)zi

}(zi)
− 2

mlb

n
η +

K∑
k=1

σkml

n
(δk − ηµk)µk

+
(ml

2
+
ml

2n
(2a− 1)

) 2η

η2 + c

]2
+gl(x)

 nl∑
i=nl−1+1

∑K
k=1 pk}k(zi){[δk − ziη]2z2i − z2i }}(zi)− (

∑
k pk}k(zi)[δk − ziη]zi)

2

}(zi)2
− 2

mlb

n

−
K∑
k=1

σkml

n
µ2
k −

(ml

2
+
ml

2n
(2a− 1)

) 2(c− η2)
(η2 + c)2

]
.

Rejection sampling without using hat function 29

Therefore

K∑
υ=1

∂2gl(x)/∂η
2

gl(x)

≥
nl∑

i=nl−1+1

z2i − 2
mlb

n
−

K∑
υ=1

συml

n
µ2
υ −

(ml

2
+
ml

2n
(2a− 1)

) 1

c
. (47)

References

Beskos A., Papaspiliopoulos O., Roberts G. O. and Fearnhead P. (2006). Exact and computation-
ally efficient likelihood-based estimation for discretely observed diffusion processess. Journal
of Royal Statistical Society, B, 68: 333–382.

Beskos A. and Roberts G. O. (2005). Exact simulation on diffusions. The Annals of Applied
Probability, 15: 2422–2444.

Beskos A., Papaspiliopoulos O. and Roberts G. O. (2008). A factorisation of diffusion measure
and finite sample path constructions. Methodol Comput Appl Probab, 10: 85–104.

Breyer L. A. and Roberts G. O. (2001). Catalytic perfect simulation. Methodology and Computing
in Applied Probability, 3: 161–177.

Casella G. and Mengersen K. L. and Robert C. P. and Titterington D. M. (2002). Perfect samplers
for mixtures of distributions. Journal of the Royal Statistical Society, B, 64: 777–790.

Celeux G. and Hurn M. and Robert C. P. (2000). Computational and inferential difficulties with
mixtures posterior distributions. Journal of the American Statistical Association, 95: 957–970.

Diebolt J. and Roberts C. P. (1994). Estimation of finite mixture distributions through Bayesian
sampling. Journal of the Royal Statistical Society, B, 56: 363–375.

Dai H. (2007). Perfect Simulation Methods for Bayesian Applications, D.Phil Thesis, University
of Oxford, supervisor: Peter Clifford.

Dai H. (2008). Perfect sampling methods for random forests, Advances in Applied Probability,
40:897-917, 2008.

Dai H. (2011). Exact Monte Carlo simulation for fork-join networks, Advances in Applied
Probability, 43:483-503, 2011.

Dai H. (2013). Exact simulation for diffusion bridges – an adaptive approach, in revision.

Fearnhead P. (2005). Direct simulation for discrete mixture distributions. Statistics and Com-
puting, 15(2):125-133.

Fearnhead P. and Meligkotsidou L. (2007). Filtering methods mixture distributions. Journal of
Computational and Graphical Statistics, 16(3):586-607.

Gilks W. R. and Wild P. (1992). Adaptive rejection sampling for Gibbs Sampling. Applied
Statistics, 41(4):337-348.

30 Dai H.

Hansen. N. R. (2003). Geometric ergodicity of discrete-time approximations to multivariate
diffusions. Bernoulli, 9(4):725-743.

Hobert J. and Robert C. and Titterington D. (1999). On perfect simulation for some mixture of
distributions. Statistics and Computing, 9:287-298.

Huber M. (2004). Perfect sampling using bounding chains. The Annals of Applied probability,
14:734-753.

Leydold J. (1998). A rejection technique for sampling from log-concave multivariate distributions.
Modeling and Computer Simulation, 8(3):254-280.

Mengersen K. L. and Robert C. P. (1996). Test for mixtures: A Bayesian entropic approach.
Bayesian Statistics 5, J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith eds.,
255-276.

Mira A. and Moller J. and Roberts G. O. (2001). Perfect slice samplers. Journal of the Royal
Statistical Society, B, 63:593-606.

Potzelberger K. andWang L. (2001). Boundary crossing probability for Brownian motion. Journal
of applied probability, 38:152-164.

Propp J. G. and Wilson D. B. (1996). Exact sampling with coupled Markov chains and applica-
tions to statistical mechanics. Random Structure and Algorithms, 9:223-252.

Richardson S. and Green P. J. (1997). On Bayesian analysis of mixtures with an unknown number
of components. Journal of the Royal Statistical Society, B, 59:731-792.

Roberts G. O. and Stramer O. (2001). On inference for partially observed nonlinear diffusion
models using the Metropolis-Hastings algorithm. Biometrika, 88:603-621.

Stephens M. (1997). Bayesian Methods for Mixtures of Normal Distributions, D.Phil. thesis.
Department of Statistics, University of Oxford.

Stephens M. (2000a). Dealing with label switching in mixture models. Journal of the Royal
Statistical Society, B: 62:795-809.

Stephens M. (2000b). Bayesian analysis of mixture models with an unknown number of compo-
nents - an alternative to reversible jump methods. The Annals of Statistics, B: 28:40-74.

Wilson D. B. (2000). How to couple from the past using a Read-Once source of randomness.
Random Structures and Algorithms, 16:85-113.

