
Journal of Multivariate Analysis 100 (2009) 1398–1411

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Multivariate limited translation hierarchical Bayes estimators
Malay Ghosh a,∗, Georgios Papageorgiou a,∗, Janet Forrester b
a University of Florida, Department of Statistics, 103 Griffin/Floyd Hall - P.O. Box 118545, Gainesville, FL 32611-8545, United States
b Tufts University, School of Medicine, 136 Harrison Avenue, Stearns 203, Boston, MA 02111-1817, United States

a r t i c l e i n f o

Article history:
Received 14 September 2007
Available online 25 December 2008

AMS subject classifications:
62Hxx
62H12

Keywords:
Bayes risk
Frequentist risk
g-prior
Influence function
Relevance function

a b s t r a c t
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limited translation hierarchical Bayes estimators of the normal mean vector which serve
as a compromise between the hierarchical Bayes and maximum likelihood estimators. The
paper demonstrates the superiority of the limited translation estimators over the usual
hierarchical Bayes estimators in terms of the frequentist risks when the true parameter to
be estimated departs widely from the grand average of all the parameters.
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1. Introduction

Bayesianmethods are used quite extensively in the theory and practice of statistics. One appealing feature of the Bayesian
procedure is that the posterior inference, based on an approximately elicited prior alongwith the likelihood, usually leads to
more efficient inference than any classical frequentist inferential procedure. This is intuitively true since one is utilizing two
sources of information rather than one as in classical analysis. Such elicitation of priors has been possible in the presence of
extensive historical data. A very important application is in the medical area where constant updating of information leads
to successful prior elicitation. Also, people in Educational Testing Service (ETS) have been using Bayesian methods regularly
because they have in store a vast number of test scores from multiple tests that they administered. In particular, IQ test
scores are better calibrated when one uses a prior along with the sample data.
We are considering in this paper a hierarchical Bayesian (HB) scenario where the main objective is simultaneous

estimation of several multivariate normal means. The HB estimators shrink the individual maximum likelihood estimators
(MLEs) towards their grand average (see e.g. Lindley and Smith [1]). If the parameters are ‘exchangeable’, then the
componentwise HB estimators will perform very well both in terms of their Bayes and frequentist risks in comparison with
the corresponding MLEs. However, if a certain parameter departs widely from the grand mean, then the corresponding HB
estimator may perform poorly in terms of its frequentist risk.
Robust Bayesian methods have been proposed to guard against problems of this type. One such procedure, first

introduced by Efron and Morris [2–4], and referred to as ‘limited translation estimators’, is the subject matter of this paper.
The limited translation estimators are compromises between the HB and the ML estimators that slightly increase the Bayes
risk but guard against large frequentist risks.
One of the virtues of the limited translation estimators is that they do not fare too badly in their Bayes risk performance,

compared to the regular HB estimators, even if the assumed exchangeability among parameters holds true. While
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considering frequentist risks, the limited translation estimators do not perform too badly relative to the regular HB
estimators if an individual parameter is close to the mean. On the other hand, if the parameter to be estimated is far from
the mean, then the limited translation estimators do perform much better than the regular HB estimators.
Efron and Morris [2] developed limited translation estimators for the univariate normal case. The objective here is to

develop limited translation estimators for the multivariate normal case. Moreover, the present paper has brought in the
notion of predictive influence functions as introduced in Johnson and Geisser [5–7] in motivating the limited translation
estimators.
The organization of the remaining sections is as follows. In Section 2 of this paperwe review some of the properties of the

HB estimators. In Section 3 we introduce the notion of influence functions which is used to develop the limited translation
estimators in Section 4. In Section 5 we evaluate the Bayes risk performance under the assumed prior while in Section 6
we evaluate the frequentist risk of these estimators. In Section 6 we consider a specific form of prior, the g-prior originally
introduced by Zellner [8]. In Section 7 we apply the proposed inferential procedure to estimate the ‘long term average’
vitamin intakes of HIV-positive subjects. Some final remarks are made in Section 8. Some of the long algebraic derivations
are provided in the Appendix.

2. Hierarchical Bayes estimators

Consider the hierarchical Bayesian model where Xi|θ1, . . . , θn,µ
ind
∼ Np(θi,Σ), i = 1, . . . , n, where Σ (p.d.) is known.

Also, let θ1, . . . , θn|µ
iid
∼ ξ ≡ Np(µ,A), where A is known. Finally, suppose that µ ∼ uniform(Rp).

Then the HB estimator of θi is

θ̃
B
i = (Ip − B)Xi + BX̄n = Xi − B(Xi − X̄n), (2.1)

where X̄n = n−1
∑n
i= Xi and B = Σ(A+Σ)−1. The same estimator can also be given an empirical Bayes (EB) interpretation.

The HB estimator shrinks the MLE Xi of θi towards the grand mean, X̄n. In doing so it attains a lower Bayes risk than the
MLE, under the assumed prior. However, the HB estimator introduces high frequentist risk when θi is far from the grand
mean, θ̄n = n−1

∑n
i=1 θi. On the other hand, the MLE has constant risk.

We now quantify the statements of the previous paragraph concerning the Bayes and frequentist risks under the matrix
loss L1(θi, ai) = (θi − ai)(θi − ai)T. First, the Bayes risk of θ̃

B
i under prior ξ , denoted by r1(ξ , θ̃

B
i ), is calculated on the basis

of the joint distributions of Xi and θi, i = 1, . . . , n. Specifically, we have

r1(ξ , θ̃
B
i ) = E{(θi − θ̃

B
i )(θi − θ̃

B
i )
T
}

= E{(θi − θ̂
B
i + θ̂

B
i − θ̃

B
i )(θi − θ̂

B
i + θ̂

B
i − θ̃

B
i )
T
}

= E{(θi − θ̂
B
i )(θi − θ̂

B
i )
T
} + E{(θ̂

B
i − θ̃

B
i )(θ̂

B
i − θ̃

B
i )
T
}

= (Ip − B)Σ + BE{(X̄n − µ)(X̄n − µ)T}BT

= {Ip − (1− n−1)B}Σ. (2.2)

The Bayes risk of θ̃
B
i is less than that of the MLE, r1(ξ ,Xi) = Σ. This can be seen by noting that BΣ = Σ(A + Σ)−1Σ is

positive definite.
Further, the frequentist risk,R1(θi, θ̃

B
i ), is calculated on the basis of the conditional distribution ofXi given θi, i = 1, . . . , n,

assuming that θT = (θT1, . . . , θ
T
n) is fixed. We have

R1(θi, θ̃
B
i ) = Eθ{(θi − θ̃

B
i )(θi − θ̃

B
i )
T
}

= Eθ{(θi − Xi)(θi − Xi)T} + BEθ{(Xi − X̄n)(Xi − X̄n)T}BT

+ Eθ{(θi − Xi)(Xi − X̄n)T}BT + BEθ{(Xi − X̄n)(θi − Xi)T}. (2.3)

Now, Xi − X̄n ∼ N(θi − θ̄n, (1− 1/n)Σ). Thus,

Eθ{(Xi − X̄n)(Xi − X̄n)T} = Σ(1− 1/n)+ (θi − θ̄n)(θi − θ̄n)
T. (2.4)

Also,

Eθ{(θi − Xi)(Xi − X̄n)T} = θiθ
T
i − n

−1
n∑
k=1

θiθ
T
k − θiθ

T
i − Σ + n−1

(
n∑
k=1

θiθ
T
k + Σ

)
= −(1− 1/n)Σ. (2.5)
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Combining (2.3)–(2.5), we obtain

R1(θi, θ̃
B
i ) = Σ + 2(1/n− 1)BΣ + B

[
Σ(1− 1/n)+ (θi − θ̄n)(θi − θ̄n)

T] BT. (2.6)

Clearly, when θi is far from θ̄n, the frequentist risk associated with the HB estimator can be quite high. On the other hand Xi
has minimax risk equal to R1(θi,Xi) = Σ for all θ and thus its Bayes risk is alsoΣ which, however, is bigger than that of the
HB estimator, r1(ξ , θ̃

B
i ) = {Ip − (1− n

−1)B}Σ, if the assumed prior ξ is the true prior.
In order to combine the good properties of the HB estimators with those of the MLEs, we develop limited translation HB

estimators. To this end, we first introduce the concept of the influence functions.

3. Influence functions

The model assumptions are the same as in the previous section. We find the influence of observations Xi, i = 1, . . . , n,
on the posterior distribution of µ. The influence is measured using the general divergence formula introduced by Cressie
and Read [9].
Let f1 and f2 denote two density functions. Then the general divergence measure is given by

Dλ(f1, f2) = λ−1(λ+ 1)−1Ef1
{
(f1/f2)λ − 1

}
. (3.1)

Here, f1 and f2 denote the posterior densities of µ given X = (XT1 , . . . ,X
T
n )
T and X (−i) = (XT1 , . . . ,X

T
i−1,X

T
i+1, . . . ,X

T
n )
T

respectively. It is easy to show that

µ|X ∼ f1 ≡ Np(X̄n, n−1(Σ + A)), (3.2)

µ|X (−i) ∼ f2 ≡ Np(X̄
(−i)
n−1 , (n− 1)

−1(Σ + A)), (3.3)

where X̄ (−i)n−1 is the average of all the random vectors except the ith one.
For f1 = Np(µ1,Σ1) and f2 = Np(µ2,Σ2), the Dλ(f1, f2) divergence measure takes the following form

Dλ(f1, f2) = λ−1(λ+ 1)−1
[
|Σ2|

λ+1
2 |Σ1|

−
λ
2 |(1+ λ)Σ2 − λΣ1|−

1
2

× exp
{
λ(λ+ 1)
2

(µ1 − µ2)
T
[(1+ λ)Σ2 − λΣ1]−1(µ1 − µ2)

}
− 1

]
. (3.4)

If the variance–covariancematricesΣ1 andΣ2 are known,which is the case here, the divergencemeasure is a one-to-one
function with (µ1 − µ2)

T
{(1+ λ)Σ2 − λΣ1}−1(µ1 − µ2).

For the special case where the densities f1 and f2 are the ones given in (3.2) and (3.3), µ1 − µ2 = (n − 1)−1(Xi − X̄n)
and (1 + λ)Σ2 − λΣ1 = (Σ + A)(n + λ)n−1(n − 1)−1. It is now easy to see that the divergence measure is a one-to-one
function with

(Xi − X̄n)T
n(Σ + A)−1

(n− 1)(n+ λ)
(Xi − X̄n). (3.5)

Define D ≡ var(Xi − X̄n) = (1− 1/n)(Σ + A). Then, the expression in (3.5) can be written as

(n+ λ)−1{D−
1
2 (Xi − X̄n)}T{D−

1
2 (Xi − X̄n)}, (3.6)

which is a quadratic form in the standardized residuals D−
1
2 (Xi − X̄n). It can be recognized as (n + λ)−1 times the

Mahalanobis [10] distance between Xi and X̄n. Based on this result we will obtain some robust Bayesian estimators in the
next section.

4. Limited translation hierarchical Bayes estimators

The limited translation HB estimators are akin to the HB estimators but at the same time they put a limit to the amount
of shrinkage of theMLEs towards the grandmean. The goal of these estimators is to maintain low Bayes risk and at the same
time put a bound to the frequentist risk.
A modification of the HB estimators will give us the limited translation estimator. Since the influence of the random

vectors Xi, i = 1, . . . , n, depends on their standardized distance from X̄n, in the HB estimator we want to control the
standardized distance of Xi to X̄n. We thus write θ̃

B
i = Xi − BD

1
2D−

1
2 (Xi − X̄n).
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Definition. For the ith vector θi, we define the limited translation HB estimator of maximum translation c as

θ̃
LB
c,i = Xi − BD

1
2 hc{D−

1
2 (Xi − X̄n)}, (4.1)

where

hc(z) = zmin(1, c/‖z‖), z ∈ Rp, (4.2)

is the multidimensional Huber function, Hampel et al. [11], and c is a known constant.

The proposed estimator can equivalently be written as a weighted average of the MLE and HB estimator since

θ̃
LB
c,i = Xi − B(Xi − X̄n)ρc(‖D−

1
2 (Xi − X̄n)‖2)

= Xi{1− ρc(‖D−
1
2 (Xi − X̄n)‖2)} + θ̃

B
i ρc(‖D

−
1
2 (Xi − X̄n)‖2), (4.3)

where ρc(u) = min(1, c/
√
u) is termed the relevance function, Efron and Morris [2,3]. It is similar to the Huber function

hc(u) (Huber [12], p. 13, Hampel et al. [11], p. 104) in the sense that hc(u) = uρc(u).
The limited translation HB estimator follows the HB estimator as closely as possible subject to the constraint that the

distance of the observed Xi to the observed mean X̄n, as measured by the standardized norm ‖D−
1
2 (Xi − X̄n)‖, does not

exceed a certain value, c say. When this distance takes on a value bigger than c , the relevance function takes on a value
smaller than one, and by the second line of (4.3) we see that the limited translation estimator gives the MLE bigger weight
at the expense of the weight of the HB estimator. The idea is that as the distance of Xi to X̄n increases, the less relevant the
HB estimator is considered to be for estimation of the corresponding θi. In the next sections we show that this provides the
statistician with protection against large values of the frequentist risk, while slightly increasing the Bayes risk.

5. Bayes risk of limited translation estimators

First, it is of interest to know how well the estimator θ̃
LB
c,i performs assuming that the normal prior Np(µ,A) is the true

one. We thus calculate its Bayes risk, r1(ξ , θ̃
LB
c,i) = E{(θi− θ̃

LB
c,i)(θi− θ̃

LB
c,i)
T
}. The calculations for the most part do not depend

on the choice of the relevance function ρc(.). The following theorem shows that the Bayes risk of the limited translation
estimator can be written as a weighted average of the Bayes risks of the ML and HB estimators.

Theorem 5.1. For any relevance function ρc(.) we have

r1(ξ , θ̃
LB
c,i) = r1(ξ ,Xi)(1− sc)+ r1(ξ , θ̃

B
i )sc, (5.1)

where 1− sc = E{1− ρc(U)}2 with U ∼ χ2p+2.

Proof. We write

r1(ξ , θ̃
LB
c,i) = E{(θi − θ̃

LB
c,i)(θi − θ̃

LB
c,i)
T
}

= E{(θi − θ̃
B
i + θ̃

B
i − θ̃

LB
c,i)(θi − θ̃

B
i + θ̃

B
i − θ̃

LB
c,i)
T
}

= r1(ξ , θ̃
B
i )+ E{(θ̃

B
i − θ̃

LB
c,i)(θ̃

B
i − θ̃

LB
c,i)
T
} + E{(θi − θ̃

B
i )(θ̃

B
i − θ̃

LB
c,i)
T
} + E{(θ̃

B
i − θ̃

LB
c,i)(θi − θ̃

B
i )
T
}. (5.2)

Noting that θ̃
B
i − θ̃

LB
c,i = B(Xi − X̄n){ρc(‖D−

1
2 (Xi − X̄n)‖2)− 1}, from the independence of Xi − X̄n and X̄n, and the fact that

E(X̄n) = µ, follows that

E{(θ̃
B
i − θ̃

LB
c,i)(θi − θ̃

B
i )
T
} = E{E(θ̃

B
i − θ̃

LB
c,i)(θi − θ̃

B
i )
T
|Xi}

= BE[{ρc(‖D−
1
2 (Xi − X̄n)‖2)− 1}(Xi − X̄n)(µ− X̄n)T]BT

= 0. (5.3)

Next,

E{(θ̃
B
i − θ̃

LB
c,i)(θ̃

B
i − θ̃

LB
c,i)
T
} = BE{(Xi − X̄n)(Xi − X̄n)T[ρc(‖D−

1
2 (Xi − X̄n)‖2)− 1]2}BT

= (1− 1/n)Σ(A+ Σ)−
1
2 E{ZZT[ρc(‖Z‖2)− 1]2}(A+ Σ)−

1
2Σ, (5.4)

where Z ∼ Np(0, Ip).

The following lemma simplifies the calculation of the Bayes risk.
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Lemma 5.2. Consider the random vector Y ∼ Np(0, τ 2Ip). Then the random scalar ‖Y‖2 and the randommatrix YY T/‖Y‖2 are
independently distributed.

Proof. First, ‖Y‖2 is complete and sufficient for τ 2. Noting that τ−1Y ∼ Np(0, Ip), the statistic YY T/‖Y‖2 is ancillary. The
independence of ‖Y‖2 and YY T/‖Y‖2 follows from the well-known theorem of Basu.
We now continue with the calculation of the expectation that appears in the last line of (5.4). By Lemma 5.2

E{ZZT[1− ρc(‖Z‖2)]2} = E
{

ZZT

‖Z‖2
‖Z‖2[1− ρc(‖Z‖2)]2

}
= E

(
ZZT

‖Z‖2

)
E{‖Z‖2[1− ρc(‖Z‖2)]2}. (5.5)

Again by Lemma 5.2

E(ZZT) = E
(

ZZT

‖Z‖2
‖Z‖2

)
= E

(
ZZT

‖Z‖2

)
E
(
‖Z‖2

)
, (5.6)

and thus

E
(

ZZT

‖Z‖2

)
=
E(ZZT)
E
(
‖Z‖2

) = p−1Ip. (5.7)

Since ‖Z‖2 ∼ χ2p ,

E{‖Z‖2[1− ρc(‖Z‖2)]2} = E{Y [1− ρc(Y )]2}

=

∫
∞

0
[1− ρc(y)]2 exp

(
−
y
2

) py
p+2
2 −1

2
p+2
2 Γ

( p+2
2

)dy = pE{[1− ρc(U)]2}, (5.8)

where U ∼ χ2p+2. From (5.5), (5.7) and (5.8) it follows that

E{ZZT[1− ρc(‖Z‖2)]2} = E{[1− ρc(U)]2}Ip. (5.9)

Hence, from (5.2), (5.3), (5.4) and (5.9) it follows that

r1(ξ , θ̃
LB
c,i) = r1(ξ , θ̃

B
i )+ E{[1− ρc(U)]

2
}(1− 1/n)BΣ

= r1(ξ , θ̃
B
i )+ (1− sc)(1− 1/n)BΣ, (5.10)

where 1− sc = E{[1−ρc(U)]2}. The second of the two terms can be thought of as the price in terms of increased Bayes risk
for, as we will show in the following section, limiting the frequentist risk of the HB estimator. Alternatively we can write

r1(ξ , θ̃
LB
c,i) = Σ − BΣsc(1− 1/n)
= Σ(1− sc)+ {Σ − (1− 1/n)BΣ}sc

= r1(ξ ,Xi)(1− sc)+ r1(ξ , θ̃
B
i )sc, (5.11)

thus completing the proof of the theorem. � �

Definition. For an estimator θ̂i of θi the generalized relative savings loss of θ̂ with respect to Xi is defined as

GRSL(θ̂i;Xi) = [r1(ξ ,Xi)− r1(ξ , θ̃
B
i )]
−1
[r1(ξ , θ̂i)− r1(ξ , θ̃

B
i )]. (5.12)

The term r1(ξ ,Xi) − r1(ξ , θ̃
B
i ) is the savings, in Bayes risk sense, that occurs when using the HB estimator instead of the

MLE, while r1(ξ , θ̂i)− r1(ξ , θ̃
B
i ) is the loss that occurs when one uses θ̂i instead of the HB estimator.

From Theorem 5.1 it follows that the generalized relative savings loss of θ̃
LB
c,i is given by

GRSL(θ̃
LB
c,i;Xi) = (1− sc)Ip, (5.13)
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Fig. 1. (a) Plot of 1− sc as a function of c and (b) Risk as function of the non-centrality parameter.

and for the special case where ρc(u) = min(1, c/
√
u),

1− sc = E{1− ρc(U)}2 = E[(1− c/
√
U)2I(U > c2)]

= E[I(U > c2)] − 2cE[U−
1
2 I(U > c2)] + c2E[U−1I(U > c2)]

= P(χ2p+2 > c
2)− c

√
2Γ

(
p+ 1
2

)
Γ −1

(
p+ 2
2

)
P(χ2p+1 > c

2)+ p−1c2P(χ2p > c
2), (5.14)

which, for fixed p, depends only on c and it is independent of the model parameters.
The Bayes risk of the limited translation estimator is aweighted average of the Bayes risk of theHB and theML estimators,

the weights being sc and 1− sc respectively. This causes a loss in the generalized savings of (1− sc)Ip. However, the weight
of the Bayes risk of the MLE, 1 − sc , for fixed p, is a decreasing convex function of c , see Fig. 1(a). Thus, the choice of c
is equivalent to deciding by what proportion it is worth increasing the Bayes risk of the HB estimator in order to receive
protection against large frequentist risks.

6. Frequentist risk of limited translation estimators

We now turn our attention to the frequentist risk of θ̃
LB
c,i, a function of θ denoted by R1(θi, θ̃

LB
c,i), to show that the limited

translation estimator, in return for the increased Bayes risk, does not allow the frequentist risk to be very large, in contrast
with the HB estimator. The calculation of the frequentist risk of the limited translation estimator was feasible only under the
simplifying assumption that the population variance–covariance matrix is a multiple of the sampling variance–covariance
matrix, that is A = gΣ, where g > 0 is a known positive scalar. We thus consider the case where Xi|θi ∼ Np(θi,Σ) while
the prior distributions are taken to be θi ∼ ξ ≡ Np(µ, gΣ), i = 1, . . . , n. Such priors, originally introduced by Zellner [8],
are called g-priors.
Under the assumed model, the HB estimator of θi is given by θ̃

B
i = Xi − (1 + g)−1(Xi − X̄n), and the frequentist risk

associated with it is obtained by simplifying (2.6),

R1(θi, θ̃
B
i ) = (1+ g)

−2(θi − θ̄n)(θi − θ̄n)
T
+ Σ{1− (1− 1/n)(1+ 2g)(1+ g)−2}. (6.1)

Also, the limited translation estimator is given by θ̃
LB
c,i = Xi − (1 + g)−1(Xi − X̄n)ρc(‖D−

1
2 (Xi − X̄n)‖2), where D =

(1− n−1)(1+ g)Σ.
We would like to compare the frequentist risk of the HB estimator to the frequentist risk of the limited translation

estimator. An expression of the latter is provided in the following theorem.

Theorem 6.1. Under the assumption that A = gΣ, where g > 0 is a known scalar and for the relevance function ρc(u) =
min(1, c/

√
u), the frequentist risk of the multivariate limited translation estimator is given by

R1(θi, θ̃
LB
c,i) = Eθ{(θi − θ̃

LB
c,i)(θi − θ̃

LB
c,i)
T
} = R1(θi, θ̃

B
i )

+ (θi − θ̄n)(θi − θ̄n)
T
[(1+ 2g)(1+ g)−2P[χ2p+4(λi) > c

2(1+ g)]

+ 2(1+ g)−1P[χ2p+2(λi) > c
2(1+ g)] + c2(1+ g)−1Eλi{[χ

2
p+4(λi)]

−1I[χ2p+4(λi) > c
2(1+ g)]}



1404 M. Ghosh et al. / Journal of Multivariate Analysis 100 (2009) 1398–1411

+ 2c(1+ g)−
1
2 Eλi{[χ

2
p+2(λi)]

−
1
2 I[χ2p+2(λi) > c

2(1+ g)]}

− 2c(1+ g)−
1
2 Eλi{[χ

2
p+4(λi)]

−
1
2 I[χ2p+4(λi) > c

2(1+ g)]}]

+Σ(1− 1/n)[(1+ 2g)(1+ g)−2P[χ2p+2(λi) > c
2(1+ g)]

+ c2(1+ g)−1Eλi{[χ
2
p+2(λi)]

−1I[χ2p+2(λi) > c
2(1+ g)]}

− 2c(1+ g)−
1
2 Eλi{[χ

2
p+2(λi)]

−
1
2 I[χ2p+2(λi) > c

2(1+ g)]}] (6.2)

whereλi = 2−1(1−1/n)−1(θi−θ̄n)
TΣ−1(θi−θ̄n) andχ2k (λi) denotes the non-central chi-square distributionwith non-centrality

parameter λi and k degrees of freedom.

The proof of the theorem is given in the Appendix.
From the general matrix valued risks in (6.1) and (6.2), we obtain scalar versions of them. Specifically, we consider the

quadratic loss function L2(θi, ai) = (θi − ai)TΣ−1(θi − ai).
First, it is easy to show that the risk of the HB estimator, under the loss function L2, is equal to

R2(θ, θ̃
B
i ) = p+ 2(1− 1/n)(1+ g)

−2λi − (1− 1/n)(1+ 2g)(1+ g)−2p. (6.3)

Corollary 6.2. Under the loss function L2, the risk of the limited translation estimator is given by

R2(θi, θ̃
LB
c,i) = Eθ{(θi − θ̃

LB
c,i)
TΣ−1(θi − θ̃

LB
c,i)} = tr[Σ

−1R1(θi, θ̃
LB
c,i)]

= R2(θi, θ̃
B
i )− (1− 1/n)P[χ

2
p+2(λi) > c

2(1+ g)]
{
4λi

(1+ g)
−
p(1+ 2g)
(1+ g)2

}
+ 2λi(1− 1/n)(1+ 2g)(1+ g)−2P[χ2p+4(λi) > c

2(1+ g)]

+ c2(1− 1/n)(1+ g)−1P[χ2p (λi) > c
2(1+ g)] + 2c(1− 1/n)(1+ g)−

1
2

×

[
2λiEλi{[χ

2
p+2(λi)]

−
1
2 I[χ2p+2(λi) > c

2(1+ g)]} − Eλi{[χ
2
p (λi)]

1
2 I[χ2p (λi) > c

2(1+ g)]}
]
. (6.4)

The proof is provided in the Appendix.
The bracketed term in the last line of (6.4) can be calculated as

√
2
∞∑
k=0

e−λλk

k!
Γ
( p+1+2k

2

)
Γ
( p+2k
2

) P[χ2p+1+2k > c2(1+ g)]( 2λ
p+ 2k

− 1
)
. (6.5)

The risk of θ̃
LB
c,i, for fixed p, n and g , quite conveniently, is a function only of the non-centrality parameter λi = 2

−1(1 −
1/n)−1(θi − θ̄n)

TΣ−1(θi − θ̄n) and so is the risk in (6.3).
Let us now consider the hypothetical scenario where the statistician is given n observations of dimension p = 3. We also

suppose that n is large enough to ignore the 1/n terms in the risks in (6.3) and (6.4). Also, suppose that g = 2 and that the
statistician is willing to have a generalized relative savings loss of 1− sc = 10% in order to receive protection against large
frequentist risks.
In Fig. 1(a) we see how 1− sc decreases as c increases for three different values of p = 3, 5 and 10 and for fixed g = 2.

For p = 3 and 1 − sc = 10% the corresponding value of c is 1.52. In Fig. 1(b) we see how the risks in (6.3) and (6.4)
behave as the non-centrality parameter, λi increases. For small values of λi, i.e. when θi is close to θ̄n, the HB estimator has
slightly smaller frequentist risk than the limited translation HB estimator. However, the frequentist risk of the HB estimator
increases linearly with the non-centrality parameter which clearly means that the HB estimator has high risk when the θi
is far from θ̄n. On the contrary, the frequentist risk of the limited translation HB estimator becomes flat after λi exceeds a
certain value. That is, the limited translation estimator does not allow large frequentist risks even if θi is far from θ̄n.
Returning to (6.4), we write R2(θi, θ̃

LB
c,i) = R2(θi, θ̃

B
i ) + ep,c,g,n(λi). The proposed estimator, θ̃

LB
c,i, does better than the HB

estimator when the function ep,c,g,n(λi) takes on negative values. This, in general, happens when attempting to estimate a
parameter θi which departs widely from the mean θ̄n, that is, when the non-centrality parameter λi takes on large values.
The question of interest is what values must λi take, for fixed values of p, c , g and n, in order for the function ep,c,g,n(λi) to
become negative, and how likely these values are.
We attempt to partly answer this question by providing in Tables 1, 2 and 3 the minimum values, k, of λi needed in order

for ep,c,g,n(λi) to take negative values, for fixed p, c , n and g . We also provide the probabilities that λi takes a value as big or
bigger than k. These probabilities are calculated assuming that prior ξ = Np(µ, gΣ) is the true one, i.e.

P(λi ≥ k) = P{2−1(1− 1/n)−1(θi − θ̄n)
TΣ−1(θi − θ̄n) ≥ k}

= P(χ2p ≥ 2 kg
−1). (6.6)
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Table 1
Minimum values, k, of λi and P(λi ≥ k) for p = 3.

g
0.5 1 2 5 10

c = 2.466 1.79 3.81 8.27 22.14 44.94
1− sc = 1% 6.70% 5.45% 4.07% 3.13% 2.95%
c = 1.840 1.72 3.32 6.72 16.96 33.60
1− sc = 5% 7.58% 8.43% 8.14% 7.91% 8.14%
c = 1.521 1.76 3.21 6.23 15.21 29.84
1− sc = 10% 7.06% 9.29% 10.09% 10.76% 11.32%

Table 2
Minimum values, k, of λi and P(λi ≥ k) for p = 5.

g
0.5 1 2 5 10

c = 2.806 2.49 5.12 10.80 28.31 57.11
1− sc = 1% 7.64% 6.87% 5.55% 4.53% 4.36%
c = 2.144 2.51 4.69 9.24 22.88 45.19
1− sc = 5% 7.41% 9.48% 9.99% 10.32% 10.76%
c = 1.797 2.63 4.68 8.88 21.38 41.98
1− sc = 10% 6.17% 9.55% 11.39% 12.83% 13.57%

Table 3
Minimum values, k, of λi and P(λi ≥ k) for p = 10.

g
0.5 1 2 5 10

c = 3.490 4.17 8.24 16.82 42.98 86.05
1− sc = 1% 8.18% 8.70% 7.84% 7.02% 6.98%
c = 2.757 4.41 8.03 15.42 37.57 74.21
1− sc = 5% 6.13% 9.79% 11.75% 13.10% 13.79%
c = 2.352 4.77 8.33 15.53 37.10 73.01
1− sc = 10% 3.93% 8.22% 11.39% 13.80% 15.72%

Table 1 shows the values k and the corresponding probabilities P(λi ≥ k) for the case where the dimension is p = 3, for five
different values of the prior parameter g and for three values of c . For the sake of simplicity, we take n to be large enough to
be able to ignore the n−1 terms in (6.4). We may recall that c and 1− sc are one-to-one functions and thus Table 1 provides
the generalized relative savings loss, 1− sc , along with the corresponding c .
From the first row of Table 1, it is clear that for all values of g , P(λi ≥ k) is bigger than 1%, the generalized relative savings

loss. That is, by sacrificing 1% of the Bayes risk, we have fairly big returns in terms of the frequentist risk. Similar are the
results displayed on the second row of Table 1. The generalized relative savings loss is 5% while the returns in frequentist
risk are bigger than 5% for all values of g . For the case where 1 − sc = 10%, the returns in frequentist risk are bigger than
10% for g = 2, 5 and 10 and smaller than 10% for g = 0.5 and 1. This, however, is not discouraging because the reported
percentages, P(λi ≥ k), are calculated assuming that the prior ξ is the true one. We can expect the probabilities P(λi ≥ k)
to increase with the increasing distance of ξ from the true prior.
The results of Tables 2 and 3, where p = 5 and 10 respectively, are similar. We have fairly big returns in frequentist risk

when sacrificing 1− sc = 1% and 5% of the Bayes risk. The returns in frequentist risk when sacrificing 1− sc = 10% of the
Bayes risk are bigger than 10% for g = 2, 5 and 10 but they are smaller than 10% for g = 0.5 and 1.

7. Application

In this section we apply the proposed inferential procedure in order to estimate the ‘long term average’ vitamin intakes
of HIV-positive subjects. We will be using the baseline data from a prospective study of the role of drug abuse in HIV/AIDS
weight loss and malnutrition conducted in Boston, Massachusetts, USA. This study gathered data on both HIV-positive and
HIV-negative subjects. However, here we will only be concerned with the 127 HIV-positive subjects. A similar data-set, that
includes information on vitamin intakes on 70 HIV-positive subjects, will be used in order to elicit the prior distribution.
Each of the 197 subjects completed 3-day food records, recording type and amount of food, including supplements and

vitamins. Dietary analysis was performed on the 3-day food records and daily nutrient intakeswere determined. The intakes
of several nutrients were determined but here, for the sake of simplicity, we will be analyzing only two of those nutrients,
specifically, vitamins B6 and B12.
The observed distribution of the intakes of the two vitamins, on all 197 subjects, is not close to a realization from a

bivariate normal distribution. This indicates the need of transforming the data before applyingmethods that require normal
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Fig. 2. Average of the transformed intakes of vitamins B6 and B12 .

Fig. 3. Plot of the residuals Xijk − X̄i.k versus X̄i.k of the transformed intakes of vitamins (a) B6(k = 1) and (b) B12(k = 2).

distributions. We thus start our analysis by considering a bivariate Box–Cox [13,14] transformation. It turns out that the
values of λi, i = 1, 2, for the transformation are λ1 = 0.017 and λ2 = 0.023 for vitamins B6 and B12 respectively.
The average intakes, based on the 3-day food records, of the two vitamins of the 127 subjects in the main data set, after

the transformation, are displayed in Fig. 2. Notice that some of these averages are negative. Further, it is clear that even
after the transformation the assumption of normality is not exactly met. The presence of outliers indicates that a robust
procedure, like the limited translation estimators, would be more appropriate than the regular HB estimators.
For i = 1, . . . , n = 127 and j = 1, 2, 3, let Xij1 and Xij2 denote the intake of vitamins B6 and B12 of the ith subject in day j

respectively. Further, Xij = (Xij1, Xij2)T is the response vector of subject i on day j. Additionally, θi1 and θi2 denote the ‘long
term average’ daily intakes of vitamins B6 and B12, respectively, of subject i. The vector θi = (θi1, θi2)T is accordingly defined.
There are reasonable grounds to believe that patients with higher average vitamin intake have higher variability. In order

to test this assumption, we plot the residuals Xijk − X̄i.k, i = 1, . . . , n = 127 and k = 1, 2, where X̄i.k denotes each patients
average 3-day intake, after transformation, of vitamins B6 and B12 for k = 1 and k = 2, respectively. These plots are shown
in Fig. 3. It appears as if the bivariate Box–Cox transformations has solved the suspected problem of unequal variances.
Note that the average intakes, of the n = 127 subjects, after transformation, are X̄n = (0.73, 1.40)T. The prior

variance–covariance matrix, A, is obtained from the 70 observations in the second data set, A =
[
0.744 0.740
0.740 1.290

]
. Also, to

get an idea about the entries of the sampling variance–covariance matrix Σ, we use the main data set, Σ =
[
0.189 0.140
0.140 0.452

]
.

Finally, note that for the limited translation estimator, we have chosen c = 1.36which corresponds to a generalized relative
savings loss of 1− sc = 0.10.
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Fig. 4. Estimated ‘long term average’ intakes of vitamins B6 and B12 on the transformed scale.

Fig. 5. Estimated ‘long term average’ intakes of vitamins B6 and B12 on the original scale.

Fig. 4 displays the estimated transformed ‘long term average’ intakes of the two vitamins for 25 of the 127 subjects in our
sample. The estimates were obtained using the ML, HB and limited translation estimators. The estimates that correspond to
the same subject are connected by a line. For those subjects that the HB and LT estimators provide the same estimate, the
LT estimates are not displayed. A few points are worth noting. The HB estimator pulls the ML estimates towards the grand
mean. For those ML estimates that are close to the grand mean, the HB and the limited translation estimates are identical
while for those that are far from the grand mean, the limited translation estimates are somewhere between the ML and HB
estimates. The difference between the Euclidean and Mahalanobis distance is well displayed in this graph. For instance, the
ML estimator at approximately (−0.3, 0) is far from themean in the Euclidean but not in theMahalanobis sense, and for this
reason the limiting translation does not kick in. The opposite holds true for the ML estimate that is marked with an asterisk.
The latter displays another interesting point. Componentwise speaking, the HB (or the LT) estimator does not necessarily
pull the ML estimator closer to the grand mean. The bivariate point under consideration corresponds to to an ML estimate
of the ‘long term average’ intake of vitamin B6 of 0.55, while the HB estimate is 0.54. As noted earlier, however, the grand
mean that corresponds to the intake of vitamin B6 is 0.73.
In order to complete the proposed purpose of the application, we back-transform the estimates to the original vitamin

intake scale. These estimates, for the same 25 subjects as those that we saw in Fig. 4, are displayed in Fig. 5. The comparison
of the estimates in the original scale is very similar to the one we saw for the estimates that were obtained based on the
transformed data.
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Table 4
Comparison of the estimates from the bivariate and univariate approaches.

Q0.05 Q0.25 Q0.50 Q0.75 Q0.95 Mean Stdev

HB B6 (mg) −0.029 −0.007 0.004 0.031 0.087 0.015 0.040
LT B6 (mg) −0.028 −0.007 0.004 0.030 0.086 0.015 0.036
HB B12 (mcg) −0.113 −0.026 0.039 0.116 0.449 0.089 0.245
LT B12 (mcg) −0.112 −0.026 0.039 0.113 0.319 0.076 0.200

It should be pointed out that the limiting of translation kicked in for 17 subjects, that is for 13.4% = 17/127 of the
subjects. We may also note that For c = 1.67 which corresponds to a generalized relative savings loss of 5%, the limiting of
translations kicks in for 5.5% = 7/127 of the subjects.
When treating the problem of the estimation of the ‘long term average’ intake of the two vitamins as two univariate

problems and for 1 − sc = 0.10 (corresponding c = 1.18) the limiting of translation kicks in for 7.9% = 10/127 of the
subjects for vitamin B6 and for 10.2% = 13/127 of the subjects for vitamin B12. Again for the two univariate problems and
for 1 − sc = 0.05 (corresponding c = 1.46) the limiting of translation kicks in for 3.1% = 4/127 and 2.4% = 3/127 of the
subjects for vitamins B6 and B12, respectively. It should also be noted that in the marginal approach, we used two univariate
Box–Cox transformations and it turned out that the values of λi, i = 1, 2, were λ1 = −0.021 and λ2 = −0.029 for vitamins
B6 and B12 respectively.
In order to compare the marginal HB and LT estimates from the multivariate and univariate treatments, we begin by

transforming the obtained estimates back to the original scale. We then calculate the differences θ̂mi − θ̂
u
i , where θ̂

m
i is

the estimate of the ‘long term average’ intake of subject i for any of the two vitamins, using any of the two estimators,
that results from the multivariate treatment of the estimation problem. Similarly, θ̂ui is the estimate that results from the
univariate treatment. We then summarize these differences by reporting the 5th, 25th, 50th, 75th and 95th percentiles,
denoted by Q0.05, Q0.25, Q0.50, Q0.75 and Q0.95, as well as the means (Mean) and the standard deviations (Stdev). These are
shown in Table 4.
Noting that the average of the observed intakes of vitamin B6 is 2.4 mg, while for vitamin B12 is 5.6 mcg, we see

that the differences between the estimates are relatively small. The means, however, of these differences are always
positive, indicating that themultivariate treatment of the problem provides, on average, bigger estimates that the univariate
treatment. The medians of the differences are also positive. By inspecting the provided quantiles, it can be seen that the
distributions of these differences are skewed to the right.
The reported results for the LT estimates are based on a generalized relative savings loss of 1− sc = 10%. We have also

compared the LT estimates that resulted by setting 1− sc = 5% but this comparison was very similar to the one presented,
that is for 1− sc = 10%, and was thus omitted.

8. Summary and conclusions

The paper has developed limited translation HB estimators of the multivariate normal mean by extending the work of
Efron and Morris [2] and by utilizing the notion of influence functions of Johnson and Geisser [5–7]. We have demonstrated
the usefulness of such estimators from the criteria of frequentist risks when the true parameter to be estimated departs
widely from the grand average of all the parameters.

Appendix. Proof of Theorem 6.1

We first prove two basic lemmas useful to the proof of Theorem 6.1.

Lemma A.1. Let Y ∼ Np(η, aΣ)where a > 0. Then, for any fixed scalars b and d and any fixed p-dimensional vector φ, we have

E

{
Y − η

‖(aΣ)−
1
2 (Y − φ)‖2d

I[‖(aΣ)−
1
2 (Y − φ)‖2 ≤ b]

}
= (η− φ)

×
[
Eλ{[χ2p+2(λ)]

−dI[χ2p+2(λ) ≤ b]} − Eλ{[χ
2
p (λ)]

−dI[χ2p (λ) ≤ b]}
]
. (A.1)

Proof. Wewrite Q = a−1(Y −φ)TΣ−1(Y −φ) and observe that Q ∼ χ2p (λ)where λ = (η−φ)T(aΣ)−1(η−φ)/2. In what
follows we repeatedly use the result that if X ∼ χ2p (λ), then the density function of X is an infinite sum of χ

2
p+2k variables,

k = 0, 1, 2, . . ., with Poisson weights (e−λλk)/(k!).
We begin with the equality
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∫
[‖(aΣ)−

1
2 (Y−φ)‖2≤b]

e−
1
2 ‖(aΣ)

−
1
2 (Y−η)‖2

‖(aΣ)−
1
2 (Y − φ)‖2d(2π)

p
2 |aΣ|

1
2
dY = E{‖(aΣ)−

1
2 (Y − φ)‖−2dI[‖(aΣ)−

1
2 (Y − φ)‖2 ≤ b]}

= Eλ{[χ2p (λ)]
−dI[χ2p (λ) ≤ b]}

=

∞∑
k=0

e−λλk

k!
E{(χ2p+2k)

−dI[χ2p+2k ≤ b]}. (A.2)

We now differentiate both sides of (A.2) with respect to η. First note that

∂

∂η
(Y − η)T(aΣ)−1(Y − η) = 2(aΣ)−1(η− Y ). (A.3)

Hence,∫
[‖(aΣ)−

1
2 (Y−φ)‖2≤b]

(aΣ)−1(Y − η)e−
1
2 ‖(aΣ)

−
1
2 (Y−η)‖2

‖(aΣ)−
1
2 (Y − φ)‖2d(2π)

p
2 |aΣ|

1
2
dY

= (aΣ)−1E

{
Y − η

‖(aΣ)−
1
2 (Y − φ)‖2d

I[‖(aΣ)−
1
2 (Y − φ)‖2 ≤ b]

}

=

∞∑
k=0

(k!)−1Eλ{(χ2p+2k)
−dI[χ2p+2k ≤ b]}

∂(e−λλk)
∂η

. (A.4)

Now,
∂(e−λλk)
∂η

= −
∂λ

∂η
e−λλk + e−λkλk−1

∂λ

∂η

= (aΣ)−1(η− φ)e−λλk−1(k− λ). (A.5)

Combining (A.4) and (A.5) we obtain

E

{
Y − η

‖(aΣ)−
1
2 (Y − φ)‖2d

I[‖(aΣ)−
1
2 (Y − φ)‖2 ≤ b]

}
= (η− φ)

∞∑
k=0

e−λλk−1(k− λ)
k!

E{(χ2p+2k)
−dI[χ2p+2k ≤ b]}

= (η− φ)

[
∞∑
k=0

e−λλk

k!
E{(χ2p+2+2k)

−dI[χ2p+2+2k ≤ b]} −
∞∑
k=0

e−λλk

k!
E{(χ2p+2k)

−dI[χ2p+2k ≤ b]}

]
= (η− φ)

[
Eλ{[χ2p+2(λ)]

−dI[χ2p+2(λ) ≤ b]} − Eλ{[χ
2
p (λ)]

−dI[χ2p (λ) ≤ b]}
]
. (A.6)

This completes the proof of Lemma A.1. �

Lemma A.2. Consider the same settings as in Lemma A.1. Then

E

{
(Y − η)(Y − η)T

‖(aΣ)−
1
2 (Y − φ)‖2d

I[‖(aΣ)−
1
2 (Y − φ)‖2 ≤ b]

}
= (η− φ)(η− φ)T

×
[
Eλ{[χ2p (λ)]

−dI[χ2p (λ) ≤ b]} + Eλ{[χ
2
p+4(λ)]

−dI[χ2p+4(λ) ≤ b]} − 2Eλ{[χ
2
p+2(λ)]

−dI[χ2p+2(λ) ≤ b]}
]

+ aΣEλ{[χ2p+2(λ)]
−dI[χ2p+2(λ) ≤ b]}. (A.7)

Proof. We start by differentiating twice both sides of (A.2) with respect to η. Note that
∂2

∂η∂ηT
exp{−(Y − η)T(aΣ)−1(Y − η)/2} = (aΣ)−1(Y − η)(Y − η)T(aΣ)−1

× exp{−(Y − η)T(aΣ)−1(Y − η)/2} − (aΣ)−1 exp{−(Y − η)T(aΣ)−1(Y − η)/2}. (A.8)

Thus,

(aΣ)−1E

{
(Y − η)(Y − η)T

‖(aΣ)−
1
2 (Y − φ)‖2d

I[‖(aΣ)−
1
2 (Y − φ)‖2 ≤ b]

}
(aΣ)−1

− (aΣ)−1E{‖(aΣ)−
1
2 (Y − φ)‖−2dI[‖(aΣ)−

1
2 (Y − φ)‖2 ≤ b]}

=

∞∑
k=0

(k!)−1E{(χ2p+2k)
−dI[χ2p+2k ≤ b]}

∂2(e−λλk)
∂η∂ηT

, (A.9)
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where

∂2(e−λλk)
∂η∂ηT

=
∂

∂ηT
{(aΣ)−1(η− φ)e−λλk−1(k− λ)} = (aΣ)−1e−λλk−1(k− λ)

+ (aΣ)−1(η− φ)(η− φ)T(aΣ)−1e−λλk−2{λ2 + k(k− 1)− 2kλ}. (A.10)

Substituting the last expression in (A.9), we obtain
∞∑
k=0

(k!)−1E{(χ2p+2k)
−dI[χ2p+2k ≤ b]}

∂2(e−λλk)
∂η∂ηT

= (aΣ)−1(η− φ)(η− φ)T(aΣ)−1

×

∞∑
k=0

e−λλk−2

k!
{λ2 + k(k− 1)− 2kλ}E{(χ2p+2k)

−dI[χ2p+2k ≤ b]}

+ (aΣ)−1
∞∑
k=0

e−λλk−1

k!
(k− λ)E{(χ2p+2k)

−dI[χ2p+2k ≤ b]}

= (aΣ)−1(η− φ)(η− φ)T(aΣ)−1

×
[
Eλ{[χ2p (λ)]

−dI[χ2p (λ) ≤ b]} + Eλ{[χ
2
p+4(λ)]

−dI[χ2p+4(λ) ≤ b]} − 2Eλ{[χ
2
p+2(λ)]

−dI[χ2p+2(λ) ≤ b]}
]

+ (aΣ)−1
[
Eλ{[χ2p+2(λ)]

−dI[χ2p+2(λ) ≤ b]} − Eλ{[χ
2
p (λ)]

−dI[χ2p (λ) ≤ b]}
]
. (A.11)

Combining (A.9) and (A.11) and collecting terms we obtain Lemma A.2. �

Remark. The results of Lemmas A.1 and A.2 hold even if we change the inequalities from ≤b to >b with obvious
modifications.

Proof of Theorem 6.1. Let Q = (Xi − X̄n)TΣ−1(Xi − X̄n) and recall that B = (1 + g)−1. Also, recall that Xi − X̄n ∼
Np(θi − θ̄n, (1− 1/n)Σ) and thus (1− 1/n)−1Q ∼ χ2p (λi)where λi = 2

−1(1− 1/n)−1(θi − θ̄n)
TΣ−1(θi − θ̄n). Further, for

any k > 0, we write

ρkc (‖D
−
1
2 (Xi − X̄n)‖2) = ρkc {B(1− n

−1)Q } = I[(1− n−1)Q ≤ c2(1+ g)]

+ckB−
k
2 (1− n−1)−

k
2Q−

k
2 I[(1− n−1)Q > c2(1+ g)]. (A.12)

We write

R1(θi, θ̃
LB
c,i) = Eθ(θi − θ̃

LB
c,i)(θi − θ̃

LB
c,i)
T

= Eθ
[
θi − Xi + B(Xi − X̄n)ρc{(1− n−1)BQ }

]
×
[
θi − Xi + B(Xi − X̄n)ρc{(1− n−1)BQ }

]T
= Eθ{(θi − Xi)(θi − Xi)T} − BEθ

[
{(Xi − θi)(Xi − X̄n)T + (Xi − X̄n)(Xi − θi)

T
}ρc{(1+ n−1)BQ }

]
+ B2Eθ[(Xi − X̄n)(Xi − X̄n)Tρ2c {(1+ n

−1)BQ }]. (A.13)

Now,

Eθ
[
(Xi − θi)(Xi − X̄n)Tρc{(1+ n−1)BQ }

]
= Eθ

[
{(Xi − X̄n)− (θi − θ̄n)}(Xi − X̄n)Tρc{(1+ n−1)BQ }

]
= Eθ

[
{(Xi − X̄n)− (θi − θ̄n)}(Xi − X̄n)TI[(1− 1/n)−1Q ≤ c2(1+ g)]

]
+ c(1+ g)

1
2 Eθ

[
{(Xi − X̄n)− (θi − θ̄n)}(Xi − X̄n)T × {(1− 1/n)−1Q }−

1
2 I[(1− 1/n)−1Q > c2(1+ g)]

]
, (A.14)

and the first of the two expectations in the last three lines of the above equation is calculated by applying Lemmas A.1 and
A.2 with Y = Xi − X̄n, η = θi − θ̄n, a = 1 − 1/n, b = c2(1 + g), φ = 0 and d = 0, while the second one is calculated by
setting d = 1/2, keeping the rest of the specifications same as before and reversing inequalities.
Similarly,

Eθ[(Xi − X̄n)(Xi − X̄n)Tρ2c {(1+ n
−1)BQ }] = Eθ[(Xi − X̄n)(Xi − X̄n)TI[(1− 1/n)−1Q ≤ c2(1+ g)]]

+c2(1+ g)Eθ
[
(Xi − X̄n)(Xi − X̄n)T × {(1− 1/n)−1Q }−1I[(1− 1/n)−1Q > c2(1+ g)]

]
, (A.15)

and these two expectations are calculated using Lemmas A.1 and A.2 exactly as we did in Eq. (A.14), with the only difference
being that in the second of the two expectations of the above equation we set d = 1 instead of d = 1/2. The result follows
from combining Eqs. (A.13)–(A.15), and collecting the coefficients ofΣ and (θi − θ̄n)(θi − θ̄n)

T separately. �
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Proof of Corollary 6.2. We obtain an expression for R2(θi, θ̃
LB
c,i) by directly using the result of Theorem 6.1 to calculate

R2(θi, θ̃
LB
c,i) = tr[Σ

−1R1(θi, θ̃
LB
c,i)]. The resulting expression is simplified by making use of the two equalities that follow.

First,

pEλ{[χ2p+2(λ)]
−1I[χ2p+2(λ) > c

2(1+ g)]} + 2λEλ{[χ2p+4(λ)]
−1I[χ2p+4(λ) > c

2(1+ g)]}

= p
∞∑
k=0

e−λλk

k!
Γ
( p+2k
2

)
2Γ

( p+2+2k
2

)P[χ2p+2k > (1+ g)c2] + 2λ
∞∑
k=0

e−λλk

k!
Γ
( p+2+2k

2

)
2Γ

( p+4+2k
2

)P[χ2p+2+2k > (1+ g)c2]

= p
∞∑
k=0

e−λλk

k!
Γ
( p+2k
2

)
2Γ

( p+2+2k
2

)P[χ2p+2k > (1+ g)c2] + 2
∞∑
k=0

e−λλkk
k!

Γ
( p+2k
2

)
2Γ

( p+2+2k
2

)P[χ2p+2k > (1+ g)c2]

=

∞∑
k=0

e−λλk

k!
Γ
( p+2k
2

)
2Γ

( p+2+2k
2

) (p+ 2k)P[χ2p+2k > (1+ g)c2]

= P[χ2p (λ) > c
2(1+ g)], (A.16)

and similarly

pEλ{[χ2p+2(λ)]
−
1
2 I[χ2p+2(λ) > c

2(1+ g)]} + 2λEλ{[χ2p+4(λ)]
−
1
2 I[χ2p+4(λ) > c

2(1+ g)]}

= Eλ{[χ2p (λ)]
1
2 I[χ2p (λ) > c

2(1+ g)]}. (A.17)

This completes the proof of the corollary. �
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