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ABSTRACT 
This paper focuses on the study of the Collective and Bayes Premiums, under the Variance Premium Principle, in the 
classic Collective Risk Poisson-Exponential Model. A bivariate prior distribution is considered for both the parameter 
of the distribution of the number of claims and that of the distribution of the claim amount, assuming independence 
between these parameters. Furthermore, we analyze the consequences on these premiums of small levels of 
contamination in the structure functions, and find that the premiums are not sensitive to small levels of uncertainty. 
These results extend the conclusions obtained in Gómez-Déniz et al. (2000), where only variations in the parameter 
for the number of claims and its effects on premiums were studied. 

Keywords: Bayes; Modelo colectivo de riesgo; Principio de Varianza; Prima colectiva; Prima Bayes; contaminación.. 

Un aspecto deseable de la Prima Varianza en el Modelo Colectivo 
de Riesgo  

RESUMEN 
En este trabajo se estudia un modelo colectivo de riesgo con distribución primaria una distribución de Poisson y 
distribución secundaria una distribución Exponencial con perfiles de riesgo (los parámetros de las anteriores 
distribuciones) independientes. Se calculan la Prima Colectiva y la Prima Bayes y se analiza el rango de variación de 
las Primas indicadas frente a contaminaciones en las funciones estructura (distribuciones a priori). Los resultados aquí 
obtenidos extienden  los de Gómez-Déniz et al (2000), donde se consideraba un modelo solo para la variable número 
de reclamaciones. 

Palabras clave: Bayes, Collective Risk Model, Variance Principle, Collective Premium, Bayes Premium, 
contamination. 
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1. INTRODUCTION 

The Collective Risk Model (hereafter CRM) is described by a 
frequency distribution for the number of claims,  and a sequence of 
independent and identically distributed random variables representing the 
size of the single claims, 

K

iX . Frequency and severity K iX  are assumed 
to be independent. Note that the independence assumed here is 
conditional on the distribution parameters. There is an extensive body of 
literature on modelling the risk process, see McNeil et al. (2005), among 
others. In the actuarial framework the random variable of interest is the 
aggregate claim. The aggregate loss  is the sum of the individual claim 

sizes, i.e. , for  and 0 for 

S

1

K

ii
S X


 0K 0K  . It is well known (see 

Freifelder (1974); Rolski et al. (1999); Nadarajah and Kotz (2006a, 
2006b) and Klugman et al. (2008), among others) that the probability 

density function of the sum  is given by S   x |*| kf
0k

p k  


 , where 

 |p k   denotes the probability mass function of K  and *kf  is the k-th 

convolution of  |f x  , the probability density function of the claim size. 

For the random variable number of claims, a Poisson distribution with 
parameter 1  is considered, thus obtaining the compound Poisson 
distribution. For the claim size an exponential distribution with parameter 

2  is chosen, (hereafter CRM.PE). The excellent study by Panjer and 
Willmot (1983) shows that the compound Poisson distribution arises in 
many situations in risk theory and an extensive literature on the question 
is provided. There is an extensive body of literature about the distribution 
of the number of claims, primary distribution in the CRM, presenting 
diverse alternatives, see Grandell (1997), Nikoloulopoulos and Karlis 
(2008) or Hernández-Bastida et al. (2011), among others. 

An important problem in actuarial science is that of premium 
calculation. There are many different methods to calculate insurance 
premiums and Goovaerts et al. (1984) consider various classical premium 
calculation principles. A premium calculating principle is a function  
which assigns to a risk 

H
X  a real number ( )P H X , called the premium 

assigned to the risk X . Let  be a loss function, which assigns 
to each pair 

2:L R R
 , 2x P R  the loss supported by the person who takes action 

 and obtains result P x  in a random experiment (see Gerber (1979)). 
Consequently, the True Individual Premium is defined as follows: Given 
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a risk X  with distribution function ( )F x

P

 and a loss function, the True 
Individual Premium is the value  that minimizes the expected loss 

 ,FE L x P 


 (see Heilmann (1989)). Different loss functions lead to 

different premium calculation principles. For instance,  

leads to the Net Premium Principle and  leads to the 

Variance Principle, among others. 

   2
,L x P x P 

2
P  ,L x P x x

This paper focuses on the Variance Premium, whose True Individual 
Premium is given by  2

F FE XP E X     although it can also be written 

as    ( )F F FE X V ar X E X  . If F  is specified except for a parameter   

with prior distribution (structure function)    , the Collective Premium 

is defined as the value CP  that minimizes the expected loss 

 ,E L P CP  , where  is the True Individual Premium. If claim 

observations are available, the posterior distribution 

P

 | x   can be 

obtained and the Bayes Premium is then defined as the value BP  that 
minimizes the expected loss    |x ,E L P BP     , with  the True 

Individual Premium. Under the Variance Premium Principle, the 
following expressions for the Collective and Bayes Premiums are 
obtained, respectively: 

P

   2C  and P  E P E P        2
| |x xBP E P  E  P . 

When a premium calculating principle is used and the structure 
functions are specified for the parameters, the Bayes Premium is the best 
possible estimation of the True Individual Premium. Of course, there is 
always a certain level of uncertainty in the structure functions specified, 
and so if a given premium calculating principle presents dramatic 
variations in the premiums obtained when there are only low levels of 
uncertainty, this principle will not be considered suitable in practice. 

The aim of this paper is to obtain the Collective and Bayes Premiums 
under the Variance Premium Principle, and to analyze the consequences 
of small levels of uncertainty in the structure functions on the Collective 
and Bayes Premiums. A similar analysis for the Net Premium Principle 
was carried out by Hernández-Bastida et al. (2009) and a special case 
was developed in Gómez-Déniz et al. (1998). Gómez-Déniz et al. (2000) 
analyzed the Variance Principle in the unimodal model, which is 
considered exclusively to the number of claims. 
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The paper is organized as follows: Section 2 sets out the model 
presented. In Section 3 the Collective and the Bayes Premiums in the 
CRM for the Variance Premium Principle are determined and analyzed 
the consequences when small levels of contamination in the structure 
functions are considered. Section 4 summarizes the main conclusions 
obtained.  

Henceforth,  1 2 1 2, ,..., ; , ,..., ;p q p kF a a a b b b z represents the hypergeometric 

function (see Yakubovich and Luchko (1994); Mathai (1993) or 
http://functions.wolfram.com). 

2. SETTING OUT THE MODEL  

In the CRM, the likelihood for the Poisson-Exponential pair is well known 
and is given by    1 2

11 2 1 2 2 1 2| , 1;2,1;sL s e e F s         for 0s   and 1e   for 

. Observe that the usual discontinuity of the CRM at 0s  0s   is presented. 

In Bayesian analysis, it is necessary to specify a prior distribution for each 
parameter, and these are normally termed the structure functions. Here, a 
Gamma distribution is elicited for each one (which in both cases is the 
conjugate prior distribution)    1 ,G a b    and    2 ,G c d   . Therefore, 

considering the hypothesis of independence between the parameters, the joint 
prior distribution is given by  0 1 2, 1 2      , where the hyper-parameters 

, ,  and  are positive, known constants and we assume , to ensure 
the unimodality and the existence of the Collective Premium. 
a b c d 2c 

The following expression is obtained by direct integration for the marginal 
distribution of s  given the prior 0  

 

    
   

1

2 1

1 1

0

1, 1;2; 1
0

1
|

0
1

a c

a c

a

ab cd F a c s b s d
s

b s d
m s

b
s

b





 

       
 

     



 

Figure 1 shows the marginal distribution for two different sets of hyper-
parameters  
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Figure 1. 

The marginal distribution for 0 for two sets of hyper-parameters 

  

(a) a=2; b=7;c=4;d=2 and (b) a=3; b=1;c=3;d=3. 

When prior distributions for the parameters are elicited there is always a 
certain level of uncertainty in the elicitation chosen. The structure functions 1  

and 2  specified above are no exception to this, and so it is essential to first 
analyze the variation in the quantity of interest, the Bayes Premium, when is 
caused by a certain level of imprecision in the structure functions. In practice, it 
is very important that the variation in the Bayes Premium is low enough to 
prevent a little imprecision in the structure functions from producing dramatic 
effects on the Bayes Premium. The analysis carried out is based on 
contamination classes (see Sivaganesan and Berger (1989); Ríos and Ruggeri 
(1999) and Gómez et al. (2002), among others) in which it is assumed that the 
prior distribution of the parameter, denoted  , belongs to a class of possible 
distributions of probability defined by the contamination of a singular prior 
distribution, considering various contaminant classes. Specifically, this 
approach consists in assuming that a singular prior distribution     is 

specified for the parameter   but that there exists a degree of uncertainty 
concerning this specification. This uncertainty is quantified by the amount 

 in other words, it can only be specified that the prior distribution of 0,1    

belongs to a class of probability distributions taking the following form: 

          , 1 ;cG q q Q              where     is the single 

prior distribution for  ;  1  0,  is the degree of contamination and Q  is the 

class of contaminant distributions of probability, the definition of which 

Estudios de Economía Aplicada, 2011: 1-18   Vol 29-1 



AGUSTÍN HERNÁNDEZ BASTIDA; Mª DEL PILAR FERNÁNDEZ SÁNCHEZ Y EMILIO GÓMEZ DENIZ 6 

incorporates essential aspects of the prior distribution of  . We shall consider 

the class of all distributions, denoted as , and the class of all unimodal 

distributions with a fixed, known mode, denoted as . 
1Q

2Q

If      1 1 1 1 1 11c q 1         and     2 2 2 21 q 22 2c        then 

 0 1 2 1 2, c
1c       is the bivariate distribution in which the uncertainty is with 

respect to the distribution elicited for 1 ;  2,2c
0 1 2c1       is the bivariate 

distribution in which the uncertainty is with respect to the distribution elicited 
for 2 , and  12

0 1 2 1 2,c
c c       is the case in which the contamination is 

considered with respect to the distribution for both parameters 1  and 2 . 

By direct integration we obtain the marginal distribution of the prior 12
0

c , 

which is obtained by a linear combination of the marginal distribution for 0  
and the expected values of hypergeometric functions, given by: 

For , 0s 

      

 
 

  

 
 

  
 

2

2

1

1

1 2

12
0 1 2 0

2E e

E e











1

1 2 21

1

1 2 1 21

1 2 1 2

| 1 1 |

;2; 1
1

1 1;2; 1

| ,

c

a
s

qa

c

qc

q q

m s m s

ab
s b

b

cd
c s b

s d

E L s





  

  

  

   









  

1 1

1 1

F

F

1 1a   
 

   


 



  

And, for 0s  ,       1

1

12
0 10 | 1c

qm m   0 1
0 | E e    .  

3. THE VARIANCE COLLECTIVE AND BAYES PREMIUM  

In this section, we obtain the Collective Premium and the best estimation for 
the True Individual Premium, i.e the Bayes Premium. 

By direct calculus, the True Individual Premium in the CRM.PE model, 
under the Variance Premium Principle, is equal to  1 22P    . 

3.1. The Collective Premium without and with contamination 

With a little algebra the Collective Premium in this model for the prior 0  
distribution is shown to be equal to a quotient of constants, denoted as  
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  1 2
0

3 4

C C
CP

C C
  , 

where 
  

2 2

1 22

( 1) 4 4 2
; ;

1 2

a a ab b d a b
C C

b c c 3C
   

 
  b

  and 4 1

d
C

c



. 

For the prior 12
0

c  distribution, the Collective Premium is given by the 
following fraction where the numerator and the denominator include the 
numerator and the denominator of the Collective Premiums for 0 , 
respectively. 

    
    

1 2 1 2 1 2 112
0

1 2 3 4 1 2 1

1 1 , , ,

1 1 , , ,
c C C NCP q q

CP
C C DCP q q

   


   
  

      
2

2

, 

where the term in the numerator is given by 

       
2 1 1 2

222
1 2 1 2 1 2 2 1 1 2 1 21 1 1 2 2q q q qNCP C E C E E                   

 

and, the denominator is given by 

         
2 1 1 21 2 3 2 1 2 4 1 1 2 1 21 1 1 2 2q q q qDCP C E C E E .                   

The range of variation of the 12
0

cCP    , when 1 2 1,q q Q , can be calculated 

by determining the infimum and the supremum of the following function of two 
real variables, (see Sivaganesan and Berger (1989) and Gómez-Déniz et al. 
(2002)). 

    
  

1 2 1 2
12 1 2

1 2 3 4

1 1
, ,

1 1

C C NR
R

C C DR

 
 

 
  


  

12

12

2 ,

 

where 

       2 22 2
12 1 2 1 2 1 2 2 1 1 2 1 21 1 2NR C C                   

and, 

       1 1
12 1 2 3 2 1 2 4 1 1 2 1 21 1 2DR C C 2 .                  

It is verified that,  
1

12 1 2lim ,R


 


   and  
2

12 1 2
0

lim ,R


 


  . Accordingly, 

the superior of the function will be infinity for whatever values 1 2,   strictly 
positive. As a consequence, the Collective Premium, under the Variance 
Premium Principle, is extremely sensitive to the structure functions, even if the 
level of imprecision is small. 
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3.2. The Bayes Premium without and with contamination 

When there is experience of sinistrality, the most appropriate premium is the 
Bayes Premium. Under the Variance Premium Principle, the Bayes Premium 
for the 0  distribution is obtained directly from its definition and is given by 

the following fraction where, for the sake of simplicity, the argument s  is 
omitted, 

  0
0

0

,
N

BP
D

   

where, the numerator, for 0s  , is a linear combination of absolutely 
convergent hypergeometric functions because the independent variable is 
always less than 1. Specifically, 

      
      
      

11

0 1 2 1

11

2 2 1

11

3 2 1

3, 1;2; 1

2, 1;2; 1

1, 1;2; 1 ;

c

c

c

N k s d F a c s b s d

k s d F a c s b s d

k s d F a c s b s d

 

 

 

     

     

     

 

and, for it is equal to  0s 

    22 2
2 04 4 5 8 4 1 0 |a b ab a b C b m .     

 

Analogously, the denominator, for 0s  , is also a combination of 
hypergeometric functions 

      
      

1

0 7 2 1

1

8 2 1

2, ;2; 1

1, ;2; 1 ;

c

c

D k s d F a c s b s d

k s d F a c s b s d





    

    
 

and, for it is equal to  0s    1

4 02 2 1 0 |a b C b m    . 

The constants  are given by ik
  
   

 
  

8 8
1 22

1 2 2 1
; ;

1 12 1 1

a a k a k
k k

b cb c

  
 

  
 

 
 
 

88
3 7

12
; ,

1 2 1

a kk
k k

c b


 

 
 and 

   8 0

2
0 |

1

cad
k m

b



. 

For the prior 12
0

c  distribution, the Bayes Premium under the Variance 
Premium Principle is given by the following fraction where the numerator and 
the denominator include the numerator and the denominator of the Bayes 
Premium for 0 , respectively. 
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    
    

1 2 0 1 2 1 212
0

1 2 0 1 2 1 2

1 1 , , , ,

1 1 , , , ,
c N NBP q q s

BP
D DBP q q s

   


   
  

      
 

where the term in the numerator can be written as 

        
2 1 1 21 2 1 2 1 2 2 1 1 2 3 1 21 1q q q qNBP E N E N E N ,                          

and, the term in the denominator can be written as 

        
2 1 1 21 2 1 2 1 2 2 1 1 2 3 1 21 1q q q qDBP E D E D E D                   ,       , 

respectively. For the sake of simplicity the argument s  is omitted in the 
functions iN  and , which are given by the following expressions involving 
hypergeometric functions which are absolutely convergent. For each function its 
value is shown at the point of discontinuity 

iD

0s  . 

The following three iN  functions that appear in NBP  are: 

The function  1 2N   given by, for 0s  , 

       
  

2
1 11

1 2 2 4 1 1 2 5 1 1 2

1

6 1 1 2

3;2; 1 2;2; 1

1;2; 1

sN e k F a s b k F a s b

k F a s b

   



  



    

  


 

and, for  it is 0s  1 2
0 2 2N C   . Notice that when 2  tends to zero, the term inside 

the curly brackets converges to the constant value 4 5k k k6   and, accordingly, 

the  21N   function diverges to infinity. 

The function  2 1N  , given by, for 0s  , 

   
  

  
1

2
11 1

2 1 1 1 11

2
1;2;

1

c

c

d e
N F c

c s d

  
 







 

 
s s d



 

and, for  it is . It can be shown that when 0s  1
2

2 1 2C e    1  tends to 

infinity, the function  2 1N   converges to zero. 

Finally, the function  3 1 2,N    is given by, for 0s  , 

    1 2
2 1

3 1 2 1 1 2 1 2 1 2, 2 1;2,1;s N e e F  s          

and, for  it is 0s    1
2 2

1 2 e 
2   . It is verified that when 2  tends to zero, the 

3 1,N 2   function diverges to infinity and when 1  tends to infinity, the 

function  , 23 1N    converges to zero. 

The three functions appearing in DBP are given by the following 
expressions: 
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The function  1 2D   is given by, for 0s  , 

        2
1 1

1 2 9 1 1 2 10 1 1 22;2; 1 1;2; 1D e k F a s b k F a s b        



 

and, for it is equal to 0s     1 1
0 22 2 1 0 |ab a b b m      . Observe that 

when 2  tends to zero, the function  1 2D   converges, for 0s   to a constant 

value given by 9 1k k 0 . 

The function  2 1D  is given by, for 0s  , 

        1
2 1

2 1 1 1 1 1 12 ;2;
ccD d s d e F c s s d         

and, for it is equal to0s    1
4 1 2C e   . It is verified that when 1  tends to 

infinity the function  2D 1  converges to zero. 

The function  3 1 2,D    is given by, for 0s  , 

     1 2
3 1 2 1 1 2 1 2 1 2, 2 1;2,1;sD e e F s           

and, for it is equal to0s    1 1
1 22 e    . 

The constants  are given by ik
  

 
 
 

10 10
4 52

1 2 2 1
; ;

12 1

a a k a k
k k

bb

  
 


 

 
 

10
6 10 9

1
2 ; ,

2 1

a k
k k k

b


 


 and 

   10 0

2
0 |

1

a
k m

b



. 

3.3.  The variation of the Bayes Premium for the classes Q1 and Q2 

As previously, (see Sivaganesan and Berger (1989) and Gómez-Déniz et al. 

(2002)), the range of variation of the Bayes Premium 12
0

cBP    , when 

, uncertainty about the distributions for 1 2 1,q q Q 1  and 2 , can be calculated 
by determining the range of variation of the following function of two real 
variables 

    
  

1 2 0
12 1 2

1 2 0

1 1
, ,

1 1
12

12

N NB
B

D DB

 
 

 
  


  

 

where, the term in the numerator is given by, 

         12 1 2 1 2 1 2 2 1 1 2 3 1 21 1NB N N N ,              , 
and, the term in the denominator is given by, 

         12 1 2 1 2 1 2 2 1 1 2 3 1 21 1DB D D D ,              . 

Estudios de Economía Aplicada, 2011: 1-18  Vol. 29-1 



A DESIRABLE ASPECT IN THE VARIANCE PREMIUM IN A COLLECTIVE RISK MODEL 11 

It is verified that for a fixed 1  the function 12B  diverges to infinity when 2  

tends to zero. Hence, the superior of the function 12B  is infinity for any positive 

1  and 2 . In summary, the Variance Bayes Premium is extremely sensitive to 
contamination in the prior distributions. On examining the cases of 
contamination in 1  or in 2 , separately, it can be seen that: 

(i) For 2 0  , contamination only in 1 , the function 12B  is reduced to a 
single real variable function with a finite supremum and infimum, in accordance 
with Gómez-Déniz et al. (2002). 

(ii) For 1 0  , contamination only in 2 , the function 12B  is reduced to a 
single real variable function with a infinite supremum. 

Figure 2 illustrates these cases: 

Figure 2. 
The functions 1B  and 2B  for two sets of hyperparameters  

  

  

(a),(c): a=2; b=7;c=4;d=2; s=0.5; 1 0.1   and (b),(d): a=3; b=1;c=3;d=3;s=0.5; 2 0.1   
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Accordingly, we conclude that the extreme sensibility of the  is 

caused by the contamination in the 

12
0

cBP  

2  distribution. 

It is clear that the class of the contaminations  is fairly broad and contains 
non-reasonable distributions. Hence, we shall consider the class of unimodal 
contaminations , with a fixed mode, and study the parameter 

1Q

2Q 2 . 

The 2  distribution with , is unimodal with the mode at 2c   1m c d  . 

 denotes the class of unimodal distributions with the mode at . To analyze 

the problem of contamination in the 2

2Q m

  distribution with the class 2 , we use 
the following characterization for the unimodal distributions in accordance with 
Khintchine (see Feller (1971), for details). 

Q

Let  be a unimodal distribution with the mode at  and where 2q Q 2 m

 2h   is a function of 2 . Then, it is verified that    
2q F

*E h E zh     where 

 F z  is a distribution function and    2 2

m z

m

h d* 1
h z

z
 



 0z  , for , and 

 for  *h z  h m 0z  . 

Using the above characterization the range of variation of the Variance 
Bayes Premium for the 2

2
0 1

c
c     distribution when 2 2q Q  can be 

determined (see Sivaganesan and Berger (1989) and Gómez-Déniz et al. 
(2002)), evaluating the supremum and the infimum of the following one real 
variable function, 

     
   

*
2 0 2 1*

*
2 0 1 1

1
,

1

N N z
B z

D D z

 
 

 


 
 

where the functions  *
1N z  and  *

1D z  are obtained from the functions  1 2N   

and  1 2D   using Khintchine´s characterization. For this determination the 

following affirmations are useful. 

The first affirmation refers to a straightforward integration by parts by means 
of induction, allow us to affirm that, when  and  are real numbers with 

, and  is a positive integer, it is verified that 
m z

0z 
m z

m

e 




n

   2
2 2

s n
n nd U m U m z     , where     1

0

!

!

n kn
rse

nU r
k

k

n r

n k s







 . 

The second and third affirmations refer to the integrals that include an 
exponential and a hypergeometric function, which, when  and  are positive 
and real numbers, are given by the following: 

m z
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    
 

 

       
   

2 2
1

1 1 2 2 2
2 2

1

;2; 1
2 1

( 1)
,

( ) 1 2 ! 1 ! 1

m z smsm z m zs s

m m

n

n nn
n

e ee e
I z F s b d d

b

s n s
U m U m z

b n n b

 




   

 




   






     


  
       

 

  

 

and, 

    
 

     
   

2
1

1 1 2 2

1

;2; 1

1 ( )
.

( ) 1 ! ! 1

m z m z sms
s

m

n

n nn
n

e e
J z e F s b d

s

n s
U m U m z

n n b


   




  







  

 
       




 

Using the above affirmations, the term of the numerator in  *B z  can be 

written as           *
1 1 2 2 4 3 5 2 6 1

1 1m z

a a a

m

N z N d k I z k I z
z z

 


     z k I  for 

 and, 0s     *
1 10N N m  and, the term of the denominator in  *B z  as 

        1 1 2 2 9 2 10 1

1 1m z

a a

m

D d k J z k J z
z z

 


   *D z  and,  1 1  * 0D D m . 

It can be verified that the variation in the function  *B z  is bounded, i.e., 

the superior and the inferior are finite. Accordingly, we do not obtain the same 
conclusion than in the class of contamination  of all distributions. When, the 

class of contamination is 2Q , that maintains the essential aspect of the 
unimodality in the prior information, the behavior of the Bayes Premium is 
reasonable with respect to a certain level of uncertainty of the structure 
function. 

1Q

Figure 3 illustrates the values of the function  *B z  for two sets of hyper-

parameters and two levels of uncertainty. 

Estudios de Economía Aplicada, 2011: 1-18   Vol 29-1 



AGUSTÍN HERNÁNDEZ BASTIDA; Mª DEL PILAR FERNÁNDEZ SÁNCHEZ Y EMILIO GÓMEZ DENIZ 14 

Figure 3. 
 The functions  *B z  for two sets of hyperparameters and levels of contamination (a):  

  

  

a=2; b=7;c=4;d=2; m=1.5; s=0.2; ; (b): a=2; b=7;c=4;d=2; m=1.5; s=0.2; ;(c): a=3; 

b=1;c=3;d=3; m=0.67; s=0.6; 

1 0.1 

0.1
1 0.3 

2   and (d): a=3; b=1;c=3;d=3; m=0.67; s=0.6; 2 0.3   

Finally, to illustrate the amount of variation of the Variance Bayes Premium, 
when the class of contamination is Q , we determine the RS factor of 
Sivaganesan (Sivaganesan (1991)), which is given by 

2

   
 

2 22 2

0 0

0

100%
2

q Qq Q

BP 
 

12 12sup infc cBP BP 
. 

Figure 4 shows the values of this factor for two sets of hyper-parameters, as 
a function of the aggregate loss and the level of contamination. 
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Figure 4 

The RS factor as a function of the aggregate loss ( 2 0.15  ) and the level of 

contamination (s=0.2), for two sets of hyperparameters. 

  

 

The left side of the Figure 4 shows that for a level of contamination of 15%, 
the RS factor is around 6% when 0.2s  . The right side of the figure examines 
this desfavorable case, when 0.2s   for several levels of contamination, and 
the RS factor, which increases as it was expected, reaches values around 12% 
when a notable level of contamination (30%) is presented. 

4. CONCLUSIONS 

The Collective Risk model with Poisson and exponential distribution as the 
primary and secondary distributions, respectively, is developed, assuming that 
the risk profiles 1  and 2  are independent. The Bayes Premium (BP) under the 
Variance Premium Principle is determined and its range of variation is analyzed 
when the marginal prior distributions for 1  and 2  present levels of 

contamination with contaminant classes given by  (class of all distributions) 

and  (class of the unimodal distributions with the same mode as the prior 

marginal distributions).When the contaminant class is 1Q  the Variance 
Premium is extremely sensitive to uncertainty in the prior specification in 
opposite to the Net Premium Principle, see Hernández-Bastida

1Q

2Q

 et al. (2009). 

1  is extremely large and contains several unreasonable distributions, hence 

2  is considered, which means to conserve the property of unimodality (and the 
value of the mode), and in this case, the Variance Principle is very robust, 
extending the conclusions obtained in Gómez-Déniz et al.(2000). 

Q

Q
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