
Accepted Manuscript

What is the potential of tissue-engineered pulmonary valves in children?

S.A. Huygens, M.P.M.H. Rutten-van Mölken, A. Noruzi, J.R.G. Etnel, I. Corro Ramos,
C.V.C. Bouten, J. Kluin, J.J.M. Takkenberg

PII: S0003-4975(18)31867-8

DOI: https://doi.org/10.1016/j.athoracsur.2018.11.066

Reference: ATS 32255

To appear in: The Annals of Thoracic Surgery

Received Date: 28 September 2018

Revised Date: 25 November 2018

Accepted Date: 27 November 2018

Please cite this article as: Huygens SA, Rutten-van Mölken MPMH, Noruzi A, Etnel JRG, Ramos IC,
Bouten CVC, Kluin J, Takkenberg JJM, What is the potential of tissue-engineered pulmonary valves in
children?, The Annals of Thoracic Surgery (2019), doi: https://doi.org/10.1016/j.athoracsur.2018.11.066.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/185277665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.athoracsur.2018.11.066
https://doi.org/10.1016/j.athoracsur.2018.11.066


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 
 

What is the potential of tissue-engineered pulmonar y valves in children?  

Running Head: Early HTA tissue-engineered pulmonary valves 

S.A. Huygens1-3, M.P.M.H. Rutten-van Mölken2,3, A. Noruzi1, J.R.G. Etnel1, I. Corro Ramos3, C.V.C. 

Bouten4, J. Kluin5, J.J.M. Takkenberg1 

 

1. Department of Cardiothoracic Surgery, Erasmus University Medical Centre, Rotterdam 

2. Erasmus School of Health Policy and Management, Erasmus University, Rotterdam 

3. Institute for Medical Technology Assessment, Erasmus University, Rotterdam 

4. Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 

5. Department of Cardio-Thoracic Surgery, Academic Medical Centre, Amsterdam 

 

Corresponding author: 

S.A. Huygens 

Institute of Medical Technology Assessment 

Burgemeester Oudlaan 50 

3062PA Rotterdam 

Email: huygens@imta.eur.nl  

 

Word count: 4819 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

ABSTRACT 

BACKGROUND:  As a living heart valve substitute with growth potential and improved durability, 

tissue-engineered heart valves (TEHV) may prevent re-interventions that are currently often needed in 

children with congenital heart disease. We performed early Health Technology Assessment to assess 

the potential cost-effectiveness of TEHV in children requiring right ventricular outflow tract 

reconstruction (RVOTR). 

METHODS: A systematic review and meta-analysis was conducted of studies reporting clinical 

outcome after RVOTR with existing heart valve substitutes in children (mean age ≤12 and/or 

maximum age≤21 years) published between 1/1/2000-2/5/2018. Using a patient-level simulation 

model, costs and effects of RVOTR with TEHV compared to existing heart valve substitutes were 

assessed from a healthcare perspective applying a 10-year time horizon. Improvements in 

performance of TEHV, divided in durability, thrombogenicity, and infection resistance, were explored to 

estimate quality-adjusted life years (QALY) gain, cost reduction, headroom, and budget impact 

associated with TEHV.  

RESULTS: Five-year freedom from re-intervention after RVOTR with existing heart valve substitutes 

was 46.1% in patients ≤2 years old and 81.1% in patients >2 years old. Improvements in durability had 

the highest impact on QALYs and costs. In the ‘improved TEHV performance’ scenario (durability≥5 

years and -50% other valve-related events), QALY gain was 0.074 and cost reduction was €10,378 

per patient, translating to maximum additional costs of €11,856 per TEHV compared to existing heart 

valve substitutes. 

CONCLUSIONS:  This study showed that there is room for improvement in clinical outcomes in 

children requiring RVOTR. If TEHV result in improved clinical outcomes, they are expected to be cost-

effective compared to existing heart valve substitutes.  
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The pulmonary valve is the most commonly affected heart valve in congenital heart disease.(1) During 

2014-2017, 3,488 right ventricle outflow tract reconstructions (RVOTR) were performed in the US.(2) 

Most children who undergo RVOTR need multiple re-interventions later in life, because existing heart 

valve substitutes cannot accommodate patient growth.(3) In contrast, tissue-engineering provides a 

promising method to create living heart valves with growth potential that may last a lifetime.(4-7) In this 

approach, a valve-shaped scaffold is implanted in the patients’ heart that recruits cells from the 

bloodstream and surrounding tissues and gradually transforms into an autologous valve while the 

scaffold degrades.(7) Preclinical studies on the performance of tissue-engineered heart valves (TEHV) 

and clinical trials of tissue-engineered vascular grafts showed promising results, but results of the first-

in-man clinical trial of TEHV are not available yet.(5-8) It is difficult to define minimum performance 

requirements of TEHV, because reports on performance of existing pulmonary valve substitutes in 

children are predominantly based on small single-center studies. Furthermore, when TEHV are 

introduced in clinical practice, healthcare decision makers do not only need assurance that TEHV 

improve clinical outcomes, but also that they are cost-effective compared to existing options to ensure 

optimal allocation of the limited healthcare budget.(9) Generating information on cost-effectiveness in 

early development phases can help set research priorities that ensure that TEHV will meet needs of 

patients, professionals, and payers. In this early Health Technology Assessment (HTA) study, we 

performed a systematic review and meta-analysis of published outcomes of RVOTR with existing 

heart valve substitutes in children and we estimated the potential cost-effectiveness, headroom and 

budget impact of TEHV using a patient-level simulation model.  

PATIENTS AND METHODS 

Systematic review and meta-analysis 

Embase, MEDLINE, Cochrane Central, Google Scholar, and Web-Of-Science databases were 

systematically searched for studies reporting on outcomes after RVOTR with a heart valve substitute 

or valved conduit in children (mean age≤12 and/or maximum age≤21 years) published between 1-1-

2000 and 2-5-2018. Relevant data was extracted from included studies and pooled using the inverse 

variance method in a random-effects model. Pooled Kaplan-Meier time-to-event meta-analysis was 

conducted by extrapolating and pooling estimates of individual patient time-to-event data from 

published Kaplan-Meier curves. Detailed descriptions of these methods are provided in Supplement 1. 
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Patient-level simulation 

We used a patient-level simulation model to compare costs and effectiveness of TEHV with existing 

pulmonary valve substitutes. The patient-level simulation model was based on our previously 

published conceptual model (Figure 1).(10) The model simulation starts with creating a virtual patient 

population by random sampling (with replacement) 25,000 patients from a Dutch health insurance 

claims database comprising 338 children (mean±SD 4.5±5.8 years) who underwent RVOTR between 

2010-2013 (Supplemental Table S1).(11) The number of 25,000 sampled patients was required to get 

stable results. For each patient, mortality and events within thirty days after the intervention are 

determined. Subsequently, time to late events and death are calculated. The event with the lowest 

predicted time value is considered to occur after which the consequences for quality of life and costs 

are modelled. Then, time to late events and death are calculated again. The simulation stops when 

death has the lowest predicted time value of all events or when the patient dies directly after an event. 

This process is repeated for all patients (Supplemental Figure S1). By combining data of all simulated 

patients, the average difference in quality-adjusted life years (QALY) and costs between TEHV and 

existing heart valve substitutes is calculated. The model was implemented in R3.3.2 using RStudio 

1.0.136.  

Mortality and events 

The events included in the model are presented in Figure 1/Supplemental Table S2. Mortality was 

divided into early mortality (≤30 days after intervention), mortality directly related to valve-related 

events, background mortality, and excess mortality. Background mortality was obtained for the year 

2016 in the Dutch general population.(12) Excess mortality is ascribed to the potential excess risk of 

dying of patients who underwent heart valve interventions which can be explained by increased 

occurrence of sudden death, underreporting of valve-related events, and underlying associated 

cardiac pathology.(13) This excess mortality was expressed as hazard ratio relative to background 

mortality. 

 

Risks and rates of mortality and events after RVOTR, probabilities of re-intervention or death after 

events, and the hazard ratio of excess mortality were derived from our systematic review and meta-

analysis (see Results section; Supplemental Table S3). The pooled freedom from re-intervention curve 

was used to generate time to structural valve deterioration using a Weibull distribution and was 
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corrected for re-interventions due to endocarditis and valve thrombosis. We were unable to determine 

distributions for other events based on our meta-analysis, therefore we assumed a constant hazard 

rate by using exponential distributions. Different input parameters were included for patients aged 

below or above two years at time of surgery based on the respective subgroups in our meta-analysis. 

When patients underwent a re-intervention during the simulation at an age above 2 years, the 

corresponding input parameters were applied for the rest of the simulation. 

Costs 

Healthcare costs included intervention, treatment of events and other healthcare use costs 

(Supplemental Table S3). Most costs were dependent on patient and intervention characteristics using 

(multilevel) generalised linear models ((M)GLM)(Supplemental Table S4; supplemental material 

reviewers only).(11) We assumed most complications had a permanent influence on healthcare use 

(e.g. lifelong follow-up with cardiologist after pacemaker implantation), except for prosthetic valve 

related events and re-intervention to avoid double counting of follow-up costs for the initial heart valve 

implantation. Other healthcare costs were calculated with the MGLM regression formula within three 

years after the intervention (Supplemental Table S5). Beyond three years, these costs were adjusted 

to patient age using relative increases in total healthcare costs by age and sex of the general 

population.(14)  

Health-related quality of life  

Health-related quality of life was expressed in utilities. Utility of patients after RVOTR without events 

was 0.852 (Supplement 2).(15) The utility was corrected for events using utility multipliers for a specific 

time duration after the event based on literature or assumptions (Supplemental Table S3).  

Tissue-engineered heart valves 

Exact costs and performance of TEHV are unclear, because they are not used in clinical practice as 

yet. Therefore, we made the following assumptions on TEHV performance. We assumed that safety 

will be established before TEHV are introduced in clinical practice, for this reason we did not include 

higher risks of early mortality or valve-related events. The procedure to implant TEHV is expected to 

be comparable to surgically implanting existing heart valve substitutes. Hence, we assumed that early 

mortality and event risks, which are mainly procedure-related and not valve-related, are comparable 

for TEHV and existing heart valve substitutes. Further, we assumed that probabilities to die or undergo 
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re-intervention after events were comparable to existing heart valve substitutes. To assess long-term 

performance of TEHV, three aspects of their potential benefits were considered important: (1) 

Improved durability  due to growth potential and lower rates of structural valve deterioration (SVD) and 

non-structural valve dysfunction resulting in longer time to re-intervention; (2) Reduced 

thrombogenicity  resulting in lower rates of prosthetic valve thrombosis and reduced need for 

anticoagulation treatment. (3) Improved infection resistance  resulting in lower rates of endocarditis 

and subsequent hospitalization and/or re-intervention.  

Analyses  

Cost-effectiveness analyses were performed from a healthcare perspective applying a 10-year time 

horizon with costs expressed in 2016 Euros and effects in QALYs. Future health benefits and costs 

were discounted with 1.5% and 4%, respectively, according to Dutch HTA guidelines.(16)  

Several scenario analyses were performed to estimate the impact of variations in TEHV 

performance on costs, effects, and cost-effectiveness assuming that the price of TEHV is equal to that 

of existing heart valve substitutes (allograft/Contegra≈€5.000; other bioprostheses≈€2.500). First, we 

performed scenario analyses where performance components were varied separately with varying 

rates compared to existing heart valve substitutes. In the durability scenarios, the minimum durability 

of TEHV was 2.5, 5, 7.5, or 10 years. In the thrombogenicity and infection resistance scenarios, the 

occurrence of events was 25%, 50%, 75% and 100% less than with existing heart valve substitutes. 

Further, three scenario analyses where performance components of TEHV were varied simultaneously 

were performed. In the first combined scenario, we assumed ‘perfect performance’  of TEHV in which 

the occurrence of prosthetic valve-related events was equal to the level in the general population 

(≈zero). In the second combined scenario, we assumed ‘improved performance’  of TEHV in which 

the durability of TEHV was assumed to be ≥5 years and the rates of other prosthetic-valve related 

events were reduced with 50% compared to existing heart valve substitutes. In the final combined 

scenario, we assumed ‘partial improved performance’  of TEHV in which occurrence of events 

related to thrombogenicity and infection resistance were reduced with 50%, but prosthetic valve 

dysfunction increased with 50% due to shorter durability than existing heart valve substitutes. In 

addition, subgroup analyses were performed for patients aged ≤2 and >2 years for the ‘improved 

performance’ scenario. For all scenarios, we calculated the differences in costs andeffects, and the 
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incrementalcost-effectiveness ratio (ICER; difference in costs divided by difference in effects) of 

RVOTR with TEHV compared to existing heart valve substitutes.  

To reflect the uncertainty in input parameters of the patient-level simulation model (second-

order uncertainty) and to describe what this means for uncertainty in outcomes, we performed 

probabilistic sensitivity analyses (PSA; Supplement 3). PSA was performed for the ‘improved 

performance’ scenario and was implemented as a double loop: an inner loop, in which 500 patients 

were sampled with replacement, and an outer loop in which 500 sets of input parameters of the model 

were randomly drawn (Supplement 4). For each set of input parameters, mean outcomes over all 

patients were recorded and the mean and credible interval (i.e. 2.5% and 97.5% percentile) over all 

500 mean values for each outcome were calculated. PSA results were plotted in a cost-effectiveness 

plane reflecting the uncertainty around cost-effectiveness estimates. 

To estimate the maximum price of TEHV to remain cost-effective compared to existing heart 

valve substitutes, the headroom was calculated. The headroom was calculated with the following 

formula: (difference in QALYs*cost-per-QALY threshold)+cost savings. The cost-per-QALY threshold 

was €20,000/QALY (Supplement 3).  

Budget impact reflects the difference in total population-level costs of RVOTR with existing 

heart valve substitutes compared to TEHV. Budget impact analysis was performed for the ‘improved 

performance’ scenario for the first 10 years after introduction of TEHV. Differences in population-level 

costs were calculated by multiplying the differential total costs per patient with the expected number of 

candidates for RVOTR with TEHV, assuming substitution rates of 25, 50, 75 or 100% of existing heart 

valve substitutes by TEHV. The expected number of annual RVOTR candidates was assumed to be 

85, based on the average number of patients who underwent RVOTR in the Netherlands in the years 

2010-2013.(11)  

RESULTS 

Systematic review and meta-analysis of clinical outcomes 

The systematic literature search identified 12,233 studies. After applying inclusion and exclusion 

criteria, 62 studies were included (Supplemental Figure S2, references in Supplementary Material) 
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encompassing 7,358 patients (age at surgery ≤2 years:n=1,270; >2 years:n=6,088) with a pooled 

mean follow-up of 6.1±3.5 years (Table 1).  

Pooled estimates of patient and procedural characteristics, mortality, valve-related events and 

re-intervention risks and rates after RVOTR are presented in Supplemental Table S5. Five-year 

survival was 86.5% and 85.7% and freedom from re-intervention was 46.1%, and 81.1%, in patients 

aged below and above 2 years, respectively (Figure 2). Mortality not directly related to valve-related 

events (i.e. background mortality and excess mortality) was 2.5 times higher after RVOTR in patients 

≤2 years and 10 times higher after RVOTR in patients >2 years than in the general population 

(Supplement 5). 

Supplemental Table S3 presents the clinical input parameters of the patient-level simulation 

model derived from the meta-analyses. Early events besides stroke, re-exploration for bleeding, early 

RVOT re-intervention, valve thrombosis and endocarditis were reported too inconsistently and stroke 

and bleeding did not occur in any of the included studies and were therefore excluded from the 

analysis. 

Early Health Technology Assessment 

Table 2 presents cost-effectiveness results of the scenario analyses. Of the three TEHV performance 

components, durability had the highest impact on cost-effectiveness. This is emphasized by results of 

the ‘partial improved scenario’ where the consequences of reductions in durability of TEHV for the 

cost-effectiveness could not be offset by reduced thrombogenicity and improved infection resistance of 

TEHV. The ‘perfect performance’ scenario provides insight in the maximum QALY gain and cost 

savings of TEHV compared to existing heart valve substitutes: 0.107 QALYs and almost €21,000. In 

the ‘improved performance’ scenario, the assumed durability of TEHV of at least five years resulted in 

a reduction of occurrence of prosthetic valve dysfunction of 40%. In this scenario, RVOTR with TEHV 

resulted in a QALY gain of 0.058 and costs reduction of €10,378. Subgroup analyses showed QALY 

gains and cost reductions were higher in patients ≤2 years than in patients >2 years old at RVOTR 

(Supplemental Table S6-7). 

PSA of the ‘improved performance’ scenario showed that the difference in costs and effects 

varied, but all data points suggested QALY gains at lower costs. Consequently, the probability that the 

cost-effectiveness of TEHV would fall under the maximum cost-per-QALY was 100% for all thresholds.  
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Depending on improvements in clinical outcomes with TEHV, the price of TEHV can be higher 

while remaining cost-effective compared to existing heart valve substitutes. When applying a cost-per-

QALY threshold of €20.000, this headroom varied from €12 if TEHV would only result in a small 

reduction in thrombogenicity to €23,041 if there would be no prosthetic valve related events at all 

using TEHV.  

Figure 4/Supplemental Table S8 shows that national cost savings in the next 10 years range 

from €1.9 million when 25% of RVOTR was performed with TEHV to €7.5 million when all RVOTR 

were performed with TEHV instead of existing heart valve substitutes.  

Extensive internal validation was performed to check the model’s performance using the 

TECH-VER checklist.(17) Further, Kaplan-Meier curves of survival and time to re-intervention derived 

from our meta-analysis that were used as input were comparable to curves derived from the model 

(Supplemental Figures S3-4). 

COMMENT 

In this study, we presented a virtual approach to assess the potential of the use of TEHV in children 

requiring RVOTR. The results of our meta-analysis indicated that there is room for improvement in the 

outcomes of existing pulmonary heart valve substitutes in children. If TEHV are associated with 

improved clinical outcomes, they are expected to be cost-effective compared to existing pulmonary 

heart valve substitutes in children. These results can be useful for different stakeholders.(10) First, this 

study informs patients and clinicians about expected outcomes after RVOTR with existing heart valve 

substitutes and potential outcomes of TEHV and therefore can support current and future treatment 

decision-making. Furthermore, raising awareness among clinicians about TEHV as future treatment 

option may result in faster adoption in clinical practice.(18) Second, our systematic review and meta-

analysis of outcomes after RVOTR with existing heart valve substitutes informs biomedical developers 

about minimum performance requirements of TEHV. Furthermore, we showed that developers should 

especially aim at optimizing durability of TEHV, as this was associated with the highest QALY gains 

and cost savings. In children, the real durability issue with existing heart valve substitutes is the one of  

patients outgrowing their conduit. This is illustrated in this study by the low freedom from re-

intervention in children who received a pulmonary valve substitute under 2 years of age. Considering 
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the low occurrence rates of valve-related events in this patient group, this can only be explained by 

patients outgrowing their pulmonary valve substitute. Therefore, developers should focus on realizing 

the growth potential of TEHV.  Depending on improvements in clinical outcomes, the price of TEHV 

can be higher than that of existing heart valve substitutes while remaining cost-effective. Finally, this 

study informs healthcare payers about potential upcoming market introduction of TEHV and its 

associated consequences for the healthcare budget, which may result in more timely decisions about 

reimbursement.(18) Although the annual number of children undergoing RVOTR in the Netherlands is 

small (85/year), large cost savings may be realized in the first decade after adoption of TEHV, varying 

from €1.9 million when 25% of RVOTR are performed with TEHV to €7.5 million when all RVOTR are 

performed with TEHV.  

Inherent to any early Health Technology Assessment, we had to make assumptions regarding 

the costs and clinical performance of TEHV. Therefore, this study presents a theoretical exercise and 

the results are a prediction of the potential cost-effectiveness of TEHV. This also implies that, although 

this study was aimed at TEHV, our results can be applied to any new technology that will improve 

durability, reduce thrombogenicity, and/or decrease infection risk of existing pulmonary heart valve 

substitutes used for RVOTR in children. It is uncertain if and when TEHV will be introduced in clinical 

practice and whether the performance will indeed be improved compared to existing heart valve 

substitutes. Preclinical and first-in-man clinical trials of tissue engineered heart valves and vascular 

grafts showed promising results and recently  a small-scale first-in-man clinical trial of tissue-

engineered pulmonary valved conduits for children with complex congenital heart disease was 

initiated.(6, 8) However, there are still several unresolved challenges regarding in-situ tissue 

engineering of heart valves, including finding the optimal material for the scaffold(19), the induction 

of regeneration of functional tissue(5), and finding the optimal balance between scaffold degradation 

and the formation of new tissue.(5)  

This study has several limitations. First, relationships between occurrence rates of valve-

related events after RVOTR on the one hand and patient and intervention characteristics and history 

of previous valve-related events on the other hand remains poorly defined and could, thus, not be 

incorporated in detail into our model. Instead, we used age subgroup-specific clinical input parameters 

to account for differences in these groups. Secondly, utility of patients after RVOTR was not based on 

patient-reported EQ-5D questionnaires in children. However, it is unlikely that possible inaccuracies in 
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estimations of the start utility had a large impact on cost-effectiveness results because the start utility 

was equal for the intervention and comparator. Thirdly, we did not apply a lifetime horizon because of 

limited follow-up of clinical outcomes after RVOTR with children. Further extrapolation of clinical 

outcomes would lead to substantial uncertainty. However, it is expected that a longer time horizon 

would only reflect higher cost savings due to more prevented re-interventions in adulthood. Further, 

we could not perform external validation of the results because of unavailability of an external dataset 

on outcomes after RVOTR in children. Finally, this study was performed from a Dutch perspective and 

may therefore not be generalizable to countries with other health care systems. 

In conclusion, this early HTA showed that TEHV developers should mainly focus on realizing 

the growth potential of TEHV because preventing patients from outgrowing their conduit and reducing 

the subsequent need for re-interventions was associated with the largest QALY gains and cost 

savings compared to existing heart valve substitutes in children requiring RVOTR. When biomedical 

developers succeed in realizing the growth potential, TEHV have the potential to be cost-effective 

compared to existing heart valve substitutes, commercially viable, and result in substantial savings for 

the national healthcare budget. 
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TABLES 
Table 1. Pooled estimates of patient characteristic s and outcomes after RVOTR. 

  ≤2 years >2 years 

  Meta-analysis 
Included 

studies(n) 
I2, %(χ2  
P-value) Meta-analysis 

Included 
studies(n) 

I2, %(χ2  
P-value) 

Study characteristics   
No. of studies 19   37 
No. of patients 1270 19   6088 37 
Mean follow-up, years±SD 8.0±3.8 22   5.7±3.5 41 
Patient and intervention characteristics   
Mean age, years±SD 0.5±0.3 22   7.3±8.2 41 
Male, n(%) 248(51.4) 10   2110(57.4) 28 
Mean weight, years±SD 5.4±1.7 20   22.5±15.1 23 
Etiology 

 
22   40 

Tetralogy of Fallot(TOF)  183(14.6)   2235(42.5) 
Trucus arteriosus communis(TAC)  836(66.5)   687(13.1) 
Transposition great arteries(TGA)  15(1.2)    245(4.7)   

TGA + ventricular septal defect(VSD) + pulmonary stenosis(PS)  11(0.9)    182(3.5)   

Double outlet right ventricle(DORV)  13(1.0)    159(3.0)   

PS  2(0.2)    97(1.8)   

Previous cardiac intervention 
 

  
TOF repair 4(7.7) 1   183(40.3) 4 
Prior valved RVOTR  76(23.8) 5   1122(33.3) 22 
Palliative shunt  37(24.3) 3   242(22.8) 10 
Pulmonary valvuloplasty  4(2.6) 3   50(5.6) 8 
Valve prosthesis 

 
19   37 

Allograft  836(61.2) 19   2707(42.1) 30 
Bioprosthesis  529(38.7) 21   2590(40.3) 34 
Polytetrafluoroethylene(PTFE) - 16   1098(17.1) 27 
Early mortality and events,%             
Mortality 10.98(8.19-14.70) 20 55(0.002) 4.74(3.42-6.56) 29 74(0.000) 
RVOT reintervention 1.51(0.54-4.28) 4 0(0.768) 1.19(0.48-2.98) 7 26(0.227) 
Re-exploration for bleeding 6.22(1.10-35.11) 3 81(0.005) 3.54(1.70-7.37) 7 70(0.003) 
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Stroke - 0 - 1.69(0.76-0.00) 3 0(0.563) 
Valve thrombosis - 0 - 3.87(0.77-19.36) 4 78(0.003) 
Endocarditis 1.80(0.45-7.09) 2 0(0.878) - 1 - 
Late events,%/year             
Structural valve deterioration - 1 - 2.66(1.06-6.69) 3 76(0.014) 
Non-structural valve dysfunction - 0 - 0.60(0.23-1.57) 2 33(0.221) 
Endocarditis - 1 - 0.37(0.20-0.68) 12 58(0.006) 
Thromboembolism - 0 - 0.14(0.05-0.41) 7 45(0.092) 
Valve thrombosis - 0 - 0.11(0.02-0.78) 2 0(0.333) 
Bleeding - 0 - - 1 - 
Stroke - 0 - - 1 - 
Re-intervention             
RVOT re-intervention,%/year 8.05(5.44-11.90) 18 93(0.000) 4.65(3.67-5.88) 28 92(0.000) 
 - Surgical,% 72.4 13   68.8 15 
 - Percutaneous,% 27.6 13   31.2 15 
Conduit valve replacement,% of total reinterventions   
 - Surgical 94.2 16   94.9 22 
 - Percutaneous 2.6 7   26.7 9 
Late mortality, %/year             
Total mortality 1.39(0.99-1.95) 19 44(0.023) 0.75(0.58-0.97) 33 59(0.000) 
Cardiac mortality 0.49(0.27-0.86) 12 0(0.876) 0.38(0.27-0.53) 23 11(0.311) 
Valve-related mortality 0.59(0.28-1.28) 11 0(0.920) 0.28(0.17-0.47) 23 27(0.115) 
Sudden unexplained death 0.45(0.19-1.07) 10 0(0.992) 0.14(0.08-0.24) 22 0(0.783) 
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Table 2. Cost-effectiveness results of scenario ana lyses. 

  LY QALYs Costs ∆LYs ∆QALYs ∆Costs ICER Headroom 
Existing pulmonary valve substitutes 9.086 6.959 99,944 

     
Separate improvements in TEHV performance component s* 

Durability         
No prosthetic valve dysfunction events 9.170 7.065 79,377 0.083 0.106 -20,568 TEHV dominates 22,688 

Durability of TEHV≥7.5 years (-67% events) 9.163 7.055 85,017 0.076 0.096 -14,927 TEHV dominates 16,847 

Durability of TEHV≥5 years (-40% events) 9.144 7.032 89,741 0.058 0.073 -10,203 TEHV dominates 11,673 

Durability of TEHV≥2.5 years (-19% events) 9.117 6.994 94,254 0.031 0.036 -5,691 TEHV dominates 6,405 

Thrombogenicity         
No VT events 9.086 6.959 99,901 0.000 0.000 -43 TEHV dominates 47 

75% less VT events 9.086 6.959 99,911 0.000 0.000 -33 TEHV dominates 37 

50% less VT events 9.086 6.959 99,922 0.000 0.000 -23 TEHV dominates 27 

25% less VT events 9.086 6.959 99,934 0.000 0.000 -10 TEHV dominates 12 

Infection resistance         
No endocarditis events 9.087 6.960 99,539 0.001 0.001 -406 TEHV dominates 428 

75% less endocarditis events 9.087 6.959 99,655 0.001 0.001 -289 TEHV dominates 303 

50% less endocarditis events 9.087 6.959 99,762 0.000 0.000 -183 TEHV dominates 193 

25% less endocarditis events 9.087 6.959 99,832 0.000 0.000 -113 TEHV dominates 123 

Combined improvements in TEHV performance component s* 

Perfect performance (no prosthetic valve related ev ents) 9.171 7.066 79,042 0.084 0.107 -20,903 TEHV dominates 23,041 
Improved performance (durability ≥5 years and 50% less 
other prosthetic valve related events) 9.144 7.033 89,567 0.058 0.074 -10,378 TEHV dominates 11,856 

Partial improved performance (decreased durability with 50%, 
50% less other prosthetic valve related events) 8.976 6.931 123,741 -0.111 -0.028 23,796 

Existing heart valve 
substitutes dominate 

-24,356 

*Results of subgroup analyses can be found in table S6-7. 
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FIGURE LEGENDS 

Figure 1. Conceptual model 

Figure 2. Pooled Kaplan-Meier survival and freedom from re-intervention (both surgical and percutaneous re-

intervention) curves. Survival curve of general population was based on weighted survival tables from Europe, United 

States, and Asia for the pooled median year of intervention among included studies (2001) at the same mean age and 

proportion of males imported in the microsimulation model with valve-related mortality and events set to zero. (20, 21) 

Figure 3. Probabilistic sensitivity analyses of RVOTR with TEHV (‘improved performance’ scenario) compared to 

existing heart valve substitutes. Incremental: difference between RVOTR with TEHV and existing heart valve 

substitute. QALY: quality-adjusted life year. 

Figure 4. Cumulative cost savings in the first 10 years after introduction of RVOTR with TEHV (‘improved 

performance’ scenario) compared to existing heart valve substitutes. 
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