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Abstract
Nanotubularmolecular self-aggregates are characterized by a high degree of symmetry and they are
fundamental systems for light-harvesting and energy transport.While coherent effects are thought to
be at the basis of their high efficiency, the relationship between structure, coherence and functionality
is still an open problem.We analyse natural nanotubes present inGreen Sulphur Bacteria.We show
that they have the ability to supportmacroscopic coherent states, i.e. delocalized excitonic states
coherently spread overmanymolecules, even at room temperature. Specifically, assuming a canonical
thermal state wefind, in natural structures, a large thermal coherence length, of the order of
1000molecules. By comparing natural structures with othermathematicalmodels, we show that
thismacroscopic coherence cannot be explained either by themagnitude of the nearest-neighbour
coupling between themolecules, whichwould induce a thermal coherence length of the order of
10molecules, nor by the presence of long-range interactions between themolecules. Indeedwe prove
that the existence ofmacroscopic coherent states is an emergent property of such structures due to the
interplay between geometry and cooperativity (superradiance and super-transfer). In order to prove
that, we give evidence that the lowest part of the spectrumof natural systems is determined by a
cooperatively enhanced coupling (super-transfer) between the eigenstates ofmodular sub-units of the
whole structure. Due to this enhanced coupling strength, the density of states is lowered close to the
ground state, thus boosting the thermal coherence length. As a striking consequence of the lower
density of states, an energy gap between the excitonic ground state and thefirst excited state emerges.
Such energy gap increases with the length of the nanotube (instead of decreasing as onewould expect),
up to a critical system size which is close to the length of the natural complexes considered.

1. Introduction

Coherent effects, as fragile as theymay seem,might be able to survive in complex systems even in presence of
strong noise induced by the coupling to an external environment. They are often related to functions in complex
chemical and biophysical systems [1–3]. Understanding under which conditions robust coherent effects can be
sustained even at room temperature is a central issue for designing efficient quantumdevices.

Molecular nanotubes are among themost interesting andmost investigated structures. They are present in
several natural photosynthetic complexes, for instance in theGreen Sulphur Bacteria [4–11]or inPhycobilisome
Antennas [12–15]. They are also present in other biomolecular systems, for instance inMicrotubules, which are
fundamental biological structures, showing interesting similaritieswith photosyntheticAntenna complexes
[16, 17]. Also artificialmolecular nanotubes are at the centre of research interest [18–21]. Nanotubularmolecular
aggregates are extremely efficient for light-harvesting and energy transport and theypresent a very ordered
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structurewith a highdegree of symmetry [6–8, 22–25]. The high degree of symmetry concerns both themolecule
positions and theorientation of their transitiondipoles.Despite all that, a clear understandingof how structural
features inmolecular aggregates can sustain coherent effects and explain their high efficiency is stillmissing.

Some of the primary coherent effects which are thought to be responsible for the high efficiency ofmolecular
nanotubes are induced by the delocalization of the excitation overmanymolecules. Since the sunlight is very
dilute, usually only one excitation is present in such complexes, so that single-excitation delocalized states are
usually investigated. Delocalized excitonic states can lead to cooperative effects, such as superradiance [9, 10, 22,
26–29] and super-transfer [30, 31], and they can be useful in both natural or artificial light-harvesting complexes
[19, 28, 32–43]. Specifically, coherently delocalized excitonic states can have a large dipole strengthwhich
strongly couples them to the electromagnetic field (EMF). Thus, these states are able to super-absorb light at a
ratemuch larger than the single-molecule absorbing rate, since the absorption rate of delocalized excitonic states
can increase with the number ofmolecules over which the excitation is delocalized [9, 10]. States with a large
dipole strength can also couple between themselves efficiently, inducing a super-transfer coupling between
distantmolecular aggregates [31] or different parts of the same aggregate aswe showhere. Delocalized single
excitonic states over a large number ofmolecules are calledmacroscopic coherent states and they are studied
both for applications and basic science [44–50].

Molecular nanotubes are composed by a network of self-assembled photo-activemolecules. Eachmolecule
can be treated as a two level system, characterized by both an excitation energy and a transition dipolemoment
which determines its couplingwith the EMF andwith the othermolecules. The interaction between the
molecules is often assumed to be dipole–dipole [22–25]which decays with the distance as 1/r3 or, in some
approximate scheme, as nearest-neighbour (NN) [21] only.While the results thus obtained are certainly very
interesting, care is needed to use such simplifications in largemolecular structures. Indeed, dipole–dipole
interaction is validwhen the distance between themolecules is sufficiently large and the overall system size L is
considerably smaller than thewavelengthλ0 connectedwith the excitation energy of themolecules (small
volume limit). Since nanotubular aggregates can be large, herewe consider amore accurateHamiltonian
interaction [51]which takes into account the interaction between oscillating charges in eachmolecule. Such
description reduces to the usual dipole–dipole interaction in the small volume limit.

Using such radiativeHamiltonian, we have analysed the existence ofmacroscopic coherent states at room
temperature in different, natural and artificial,molecular nonotubes. Since themolecules in such structures are
tightly packed, their interaction energy can be strong, of the order of several times k T 200 cmB

1» - with
T=300K. Such strong interaction is thought to be able to support excitonic delocalization even at room
temperature.While for smallmolecular aggregates, the existence of a large coupling compared to kB T can
explain the existence of delocalized excitonic states even at room temperature., for largemolecular aggregates,
usually themean level spacing between the states is very small andmany states aremixed by the external
environmental noise. For instance, at thermal equilibrium all the states between the ground state and kB T are
incoherentlymixed. This argument seems to suggest that in large aggregates it is very difficult to have large
coherence lengths. Nevertheless herewe show that the symmetric arrangement of themolecules is able to induce
excitonic delocalization at room temperature well beyondwhat one could expect from themagnitude of theNN
coupling between themolecules.Moreover, by comparing natural structures with fewmathematicalmodels of
self-aggregatedmolecular nanotubes we show that the degree ofmacroscopic coherence cannot be explained
even by the long-range nature of the coupling between themolecules.We connect such enhanced delocalization
to the super-transfer coupling present inside such structures, which decreases the density of states in the low
energy region of the spectrum, thus increasing themean level spacings between the excitonic eigenstates. Thus
ourmain result is thatmacroscopic coherence in naturalmolecular nanotubes is an emergent property
produced by specific cooperative effects which cannot be reduced either to the range of the interaction or to the
magnitude of the coupling between themolecules. The presence of a large coherence length at room
temperature inmolecular nanotubes suggests the possibility that such structures can exploit superabsorption of
light and supertransfer of excitation for efficient light-harvesting and energy transport. Superabsorption,
induced by giant dipoles, can enhance the absorption rate of sun-light [30, 52]while supertransfer can enhance
the diffusion coefficient for energy transfer [31]. Both such effects induced by excitonic delocalization are
thought to play an important role in natural photosynthetic complexes [4, 30, 31, 52].

Specifically, in this paper we investigate theChlorobiumTepidumAntenna complexes of Green Sulphur
bacteria. Green Sulphur bacteria are photosynthetic organismswhich live in deepwaterwhere the sunlight flux
is very low [5] and they are among themost efficient photosynthetic systems [6–8]. Similarly to other antenna
complexes present in nature [12–15], they present a high degree of symmetry being arranged in nontrivial
cylindrical structures with an ordered orientation of themolecule dipoles.We analyse both thewild type (WT)
and the triplemutant type (MT), which have been recently investigated in [53, 54].

Understanding the connection between functionality and structure in such complexes will enhance our
comprehension of natural photosynthesis and it could also inspire efficient bio-mimetic devices for energy
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transport and light-harvesting. Themechanismdescribed in this paper, which allows largemolecular aggregates
to sustainmacroscopic coherent states even at room temperature, could inspire the design of efficient
engineered nano-structures.

In sections 2 and 3we present the cylindricalmodels studied. In section 4.1 the existence of a delocalized SRS
close to the ground state for the naturalmodels is shown. In sections 4.2 and 4.3 the thermal coherence length is
introduced and analysed. Natural complexes are shown to be able to support the largest thermal coherence
lengthwith respect to the othermodels considered. The evidence produced in these sections allows to conclude
that the large thermal coherence length of natural aggregates cannot be explained by themagnitude of the
coupling or by the range of the interaction between themolecules. In section 5we explain that the origin of such
macroscopic coherent states found in natural complexes lies in their specific geometry which induces a
supertransfer coupling inside the complexes. Such supertansfer coupling strongly affects the lowest part of the
spectrum thus enhancing the thermal coherence length. In section 6, we analyse structures which aremore
complex than single cylindrical surfaces. Specifically, we consider tubular structuresmade of four concentric
cylindrical surfaces, as they appear in natural antenna complexes of Green Sulphur bacteria [53–56].We show
that these structures display an enhanced delocalization of the excitationwith respect to single cylindrical
surfaces. Finally in section 7we give our conclusions and perspectives.

2. Themodels

The natural Antenna complexes present inGreen Sulphur bacteria have lengths of 1000–2000Å, widths of
100–600Å and they can contain a number ofmolecules between 50 000 and 250 000, typically arranged into
concentric cylindrical surfaces [5, 57]. It is important to remark that, depending on the environment and on the
growing conditions [58], some samples could show an alternation between tubular aggregates and non-tubular
curved lamellae [59, 60]. Nevertheless, in spite of the heterogeneity of the structures experimentally observed, we
will consider here cylindrical surfaces only with a radius of 6 nm and length up to L=232nmcomposed of
16800molecules.

Specifically, we analyse five different cylindricalmodels withfixed radius (R=60Å) and total number of
chromophoresN. Thesemodels differ for the geometrical arrangement of the chromophores along the
cylindrical surface. In details they are:

• ChlorobiumTepidum bchQRU triplemutant (MT),

• ChlorobiumTepidumwild type (WT),

• parallel dipoles cylinder (PD),

• tangent dipoles cylinder (TD),

• randomdipoles cylinder (RD).

While thefirst two are representative of natural systems, the others aremathematicalmodelswith a suitable
symmetric arrangements of chromophores (TDandPD)while the last one (RD) is characterized by a random
orientationof thedipolemoments. Themolecule positions anddipole orientations for thenaturalmodels have
been taken from literature [53, 54, 56] and they correspond to the values capable to reproduce experimental results.

A schematic view of the arrangement of the dipoles on the cylindrical surfaces for allmodels is shown in
figure 1, while all other technical details can be found in appendix A.Notice that all themodels but theWT share
the same basic structure: the cylinder ismade by a collection ofN1 rings composed ofN2=60molecules equally
spaced on each ring. The difference between the differentmodels liesmainly in the dipole orientation, while the
positions of the dipoles are the same in allmodels apart from an angular twist between rings in theMT:

• PDmodel: all dipoles are oriented parallel to the z axis

• TDmodel: all dipoles are perpendicular to the z direction and tangential to the cylindrical surface

• MTmodel: here the dipoles have afixed z component, but also a component perpendicular to the z direction,
see appendix A for details. Note that the component perpendicular to the z direction points inward and
outward alternatively with respect to the plane tangent to the cylindrical surface with a small angleα (see black
and red arrows infigure 1(A)).

• RDmodel: the position of the dipoles is the same of the PD andTDmodels but the orientation of the dipoles is
fully randomon the unit sphere.
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On the other hand theWTmodel, seefigure 1(B), is not composed of separated rings but instead it is arranged in
a complicated helical structure, see appendix A for details.

3. TheHamiltonian and the dipole approximation

Eachmolecule is represented as a two-level systemwith an excitation energy e0 and a transition dipolemoment
m

. The parameters of the aggregates considered here have been taken from literature [61, 62] to be the ones

characterizing the AntennaComplexes inGreen Sulphur bacteria. Specifically we set for the excitation energy of
all themolecules e 15390 cm0

1= - [62], corresponding to 650 nm0l » , so that

• k e2 10 9.670 100 0
8 4 1p= ´ = ´- - -Å .

• 30 Dm = [61] so that 151024 cm2 3 1m = -∣ ∣ Å (for the conversion, see5).

• k4 3 1.821 10 cm2
0
3 4 1g m= = ´ - -∣ ∣ , corresponding to the radiative lifetime τγ=29.15 ns (for the

conversion, see6).

Choosing the basis states in the single excitationmanifold, where the state iñ∣ refers to a state inwhich the
ithmolecule is excitedwhile all the others are in the ground state, the nanotubes can be described through a

Figure 1. Section of the differentmodels. In all panelswe showcylinderswith the same radius R 60= Å . For the sakeof claritywe show
only 30dipoles per ring instead of 60 aswe considered in this paper.Moreover the distances along the z‐axis are enhanced by a factorof 5
with respect to the distances on the x–y axes. The same factor and also a reductionof the numberof dipoles havebeenused forWT
model. In allmodels but theWT,where the dipoles are arranged in a helical structure, the dipoles are disposed intoN1=5 rings.

5
Let us recall that, in Gaussian units, the unit dipole–dipole interaction energy is E d2 3m= -[ ] [ ] [ ] , where [μ] is the unit dipole and d[ ] the

unit distance.We express the dipoles inD (Debye), the distance inÅ and the energy in cm 1- units (applying the standard conversion
[E]/(hc), with h being the Planck constant and c the speed of light), so that hc cm2 1 3m = -[ ] ( ) Å . Now, from the definition ofDebyewe have
1 D 10 cm g s18 5 2 1 2 1= - - fromwhich D1 10 cm gs2 12 2 2 3= - - Å . Recalling the Planck constant h 6.626 10 cm g s27 2 1´ - - and the
speed of light c 2.998 10 cm s10 1´ - , we have D hc1 5034 cm2 1 3-( ) Å . So, a transition dipole 30m = D results in 302m = ´∣ ∣
5034 cm 151020 cm1 3 1 3- -Å Å . Note that in these calculationswewrite explicitly where the energy is divided by hc for clarity, while in the
main text we always assume implicitly that any energy is divided by hc.
6
The lifetime related to an energywidth γ is defined as t g=g . Note that we implicitly divide each energy by hc (with h being the Planck

constant and c the speed of light), so that hc cm 1g = -[ ] ( ) ( ) . Therefore, the unit time is c2 cmh

2
1 1t p= =g p g

- -[ ] ( ( ) )
[ ]

, where
c;2.998×10−2 cmps−1. Thus, given awidth in cm 1-( ) units, its lifetime is obtained bymultiplying thewidth by c2 0.1884p  cmps−1

and taking the reciprocal of the result.
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non-HermitianHamiltonianwhich takes into account the interaction between themoleculesmediated by the
EMF. The effectiveNon-HermitianHamiltonian (also called radiativeHamiltonian) is commonly used to
model the interactionwith the EMF in different systems, such as natural light-harvesting complexes [51, 63] and
cold atomic clouds [64]. The radiativeHamiltonian has been derived bymany authors, see for instance [63, 65],
and it is accurate when the intensity of the EMF isweak so that the single excitation approximation is valid. Such
approximation is extremely good for sunlight absorption since sunlight is very diluted. The radiative
Hamiltonian reads:

H e i i i j
i

Q i j
2

. 1
i

N

i j
ij

i j

N

ij
1

0
, 1

å å å= ñá + D ñá - ñá
= ¹ =

∣ ∣ ∣ ∣ ∣ ∣ ( )

The termsΔij andQij derive from the interactionwith the EMF. The real and imaginary diagonal parts of the
intermolecular coupling are given respectively by

Q k0,
4

3
, 2nn nn

2
0
3m gD = = = ( )

with m m=
∣ ∣being the transition dipole, while the off-diagonal terms (n m¹ ) by

k r
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where n nm m m
ˆ ≔ is the unit dipolemoment of the nth site and r r rnm nm nm

ˆ ≔ is the unit vector joining the nth
and themth sites.

Diagonalizing theHamiltonian (1)we obtain the complex eigenvalues E in n 2
ne = - G whereΓn is the

radiative decay of the nth eigenstate. In general it differs from the radiative decay of the singlemolecule γ. In
particular, when the ratioΓn/γ?1wewill talk about a superradiant state (SRS), otherwise whenΓn/γ=1 the
state is called ‘subradiant’. In otherwords, a SRS can radiatemuch faster than a singlemolecule, while a
subradiant one radiates at a ratemuch slower than the singlemolecule radiative decay.

Within the range of parameters considered here, the imaginary partQij can be considered a small
perturbation of the real part of theHamiltonian (1), moreover the system size is small compared to the
wavelength associatedwith the optical transition of themolecules (themaximal size considered here is
L/λ0≈0.4). In such case, the optical absorption of an eigenstate of the aggregate can be estimated in terms of its
dipole strength, computed only from the real part of theHamiltonian (1). Denoting the nth eigenstate of the real
part of theHamiltonian (1)with Enñ∣ , we can expand it on the site basis, so that

E C i . 5n
i

N

ni
1

åñ = ñ
=

∣ ∣ ( )

Note that the site basis is referred to themolecules and is composed by the states iñ∣ , each of them carrying a

dipolemoment im

. IfN is the total number ofmolecules, thenwewill express the transition dipolemoment Dn



associatedwith the nth eigenstate as follows:

D C . 6n
i

N

ni i
1

å m=
=


ˆ ( )

The dipole strength of the nth eigenstate is defined by Dn
2


∣ ∣ (note that due to normalization D Nn

N
n1

2å ==


∣ ∣ ).

Under the approximation that the imaginary part of theHamiltonian (1) can be treated as a perturbation and
L/λ0=1we have Dn n

2 g» G


∣ ∣ , which is valid for states with a large radiative decay rate (see appendix B for a
comparison between dipole strengths and radiative decaywidths for allmodels).

Thus, in the followingwewill consider only the real part of theHamiltonian (1):

H e i i i j . 7r
i

N

i j
ij

1
0å å= ñá + D ñá

= ¹

∣ ∣ ∣ ∣ ( )

where i j,D is given in equation (3).
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Finally we note that for small systems, when k r 1ij0  , theHamiltonian (1) becomes

Q

r r

r

,

3
. 8

ij i j

ij
i j i ij j ij

ij
3

gm m

m m m m
D

-




   
ˆ · ˆ

· ( · ˆ )( · ˆ )
( )

In this limit, the real termΔij represents a dipole–dipole interaction energywith jm m=
∣ ∣and the radiative

decay k4

3
2

0
3g m= ∣ ∣ . The dipole approximation is widely used in literature tomodelmolecular aggregates which

are small compared to thewavelength of the absorbed light. Nevertheless when the dimension of the aggregate
becomes comparable with thewavelengthλ0 the dipole–dipole approximation fails. For themaximal sizes
considered here (L/λ0≈0.4) the dipole approximation can be considered good, even if there are already non-
negligible deviations in some quantities between the dipole–dipole interaction in equation (8) and the
Hamiltonian in equation (7), see appendix C. For this reason in the followingwewill use the expression given in
equation (7).

4. Single cylindrical structures: results

In this sectionwe analyse first the collective dipole strengths of the eigenstates of the differentmodels, showing
the emergence of a SRS close to the ground state in natural complexes, see subsection 4.1. The coherence length
is defined in subsection 4.2where also a newmodel with only nearest-neighbour couplings is introduced. Finally
in subsection 4.3 the results of our analysis about the thermal coherence length for the differentmodels is shown.

4.1. Collective dipole strength
As afirst goal let us analyse the dipole strengths associatedwith the eigenstates of theHamiltonianmodels
described in the previous section. For the fivemodels introduced previously we diagonalized theHamiltonian in
equation (7), andwe analysed in detail the dipole strengths Dn

2∣ ∣ of all eigenstates. Infigures 2(A)–(E)we plot
Dn

2∣ ∣ as a function of the energy En−e0 of the corresponding eigenstate. Allmodels but the randomone (E) are
characterized by the presence of SRSs in different positions of the energy spectrum. For instance for theMT
model the state having the largest dipole strength is the ground state while for theWTmodel it is very close to it.
Note that the position of the SRS is below the excitation energy of a singlemolecule. Since the dipole strength of
the eigenstates determines the absorption spectrum [9, 10], a superradiant ground state implies a red-shifted
absorption spectrumwhich is a typical behaviour formolecular J-aggregates [9, 10, 19, 22]. On the other hand
for both the TD and PDmodels the SRSs are in themiddle of the energy spectrum (C,D). Contrary to this
general trend, the absence of ordering characterizing the randommodel (RD) does not guarantee the presence of
SRSs. Indeed it is well known that in the small volume limit L/λ= 1 symmetry is necessary to preserve super-
and sub-radiance [65].

This is a clear indication that natural structures tend to push the SRS to the lowest energy region.Moreover,
as the comparisonwith the other symmetric structure shows, this is not a trivial consequence of the symmetric
arrangement. Other symmetric arrangements, such as the TD and PD, are still characterized by SRS but ‘living’
in an energy region far from the ground state.

SRSs are typically characterized by a collective dipole strengthwhich growswith the length of the cylindrical
structure. This is clearly shown infigure 2(F)where themaximal dipole strength Dmax

2∣ ∣ is shown as a function of
the length L of the cylinder. As one can see themaximal dipole strength grows Lµ for allmodels but the random
one forwhich it is independent of L.

4.2.Delocalized excitonic states at room temperature
Given a quantum state specified by the densitymatrix r̂ it is possible to define its coherence length in the single
excitationmanifold defined by the basis states iñ∣ [66, 67]:

L
N

1
. 9

ij ij

ij ij

2

2

å
å

r

r
=r

( )∣ ∣

∣ ∣
( )

The expression of Lρ in equation (9)measures howmuch a single excitation is spread coherently over the
molecules composing the aggregate. To give an idea of its physicalmeaning let us consider three different simple
cases:

• a pure localized state, i i ;r = ñáˆ ∣ ∣ then it is easy to see that the coherence length defined in equation (9) is given
by Lρ=1/N. This case represents theminimal value that Lρ can get.
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• A completely delocalizedmixed state characterized by the densitymatrix: N i i1 i
N

1r = å ñá=ˆ ( ) ∣ ∣. In this case
we have Lρ= 1. This state ismaximally delocalized in the basis, but it is completely incoherent.

• Lastly we consider the fully delocalized coherent state: N i j1 i j
N
, 1r = å ñá=ˆ ( ) ∣ ∣. In this case we have Lρ=N.

Note that any pure state with constant amplitude N1 over the sites and arbitrary phases would give the
same result.

Generally speakingwe can see that N L N1  r . The closer Lρ is toN, the higher a coherent delocalization
can be assigned to our state. In the sameway Lρ< 1 indicates an incoherent localized state. States characterized
by Lρ ∼ 1 have a little ambiguity (since both localization and coherence aremeasured on the same length scale).

Inwhat followswewill consider the previousmodels of cylindrical structures andwewill compare them
with an additionalmodel where the positions of themolecules are the same of theMTmodel, but their
interaction is onlyNN. In this waywewill be able to address the relevance of the range of the interaction to the
thermal coherence length. For this purpose, let us consider a variant of theMTmodel, inwhich theHamiltonian
matrix elements are defined as follows:

H
e i i i j r d

r d

if ,

0 if
, 10NN

i

N

i j ij ij

ij

1 0 å å
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ñá + D ñá
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¯
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wherewe have introduced the cut-off distance d 9=¯ Å andΔi,j is defined in equation (3, 7). In otherwords any
lattice point interacts onlywith its four nearest neighbours.

Figure 2. (A)–(D) Squared dipole strength Dn
2∣ ∣ as a function of the energy En−e0. Superradiance arises in all cylindricalmodels

characterized by a high degree of geometrical symmetry.However, in themathematicalmodelsmade up of parallel and tangent
dipoles (panels (C,D) ) the SRS does not coincide definitely with the ground state, nor it is close to it. On the other hand, in theMT
model (A) the ground state is superradiant while in theWTmodel (B) the SRS, even if it does not coincide with the ground state, it is
indeed very close to it. In panels (A, B, C, D) insets are shownwith amagnification of the energy spectrum close to the SRS. In the insets
the arrows indicate the position of the ground state. (E)Average squared dipole strength Dn

2á ñ∣ ∣ as a function of the eigenstate index.
The average has been computed over 10 disorder realizations. (F) Dmax

2∣ ∣ as a function of the cylindrical length L. A linear dependence,
as given by the dashed line D Lmax

2 µ∣ ∣ , emerges clearly from all structures except the RDmodel (brown). Different colours stand for
differentmodels :MT (red),WT (orange), PD (green), TD (blue) andRD (brown). In panels (A–E)we considered cylindrical
structuresmade of 6000 dipoles. In panel (F)we considered cylindrical structures with a number of dipoles varying from60 to 6000.
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For all themodels abovewe have computed the thermal coherence length at room temperature
(T 300 K= ), defined for a state at the canonical equilibrium andwhosematrix elements are given by:

E E j
e

Tr e
i , 11ij

n

E

H
n n

n

år = á ñá ñ
b

b

-

-( )
∣ ∣ ( )ˆ

where k T1 Bb = . A very important question to be answered is howmuch the symmetrical arrangements that
give rise to SRSs are also able to produce a large thermal coherence length at room temperature. Note that even if
we consider the coherence length at thermal equilibrium, this does notmean that out-of-equilibriumprocesses
are not important inmolecular nanotubes. Indeed in [68] strong evidence of ultra-fast transport in natural
structures with transfer times less than 100 fs have been discussed. Nevertheless thermal equilibrium can be
considered as aworst case scenario for coherences, see also discussion in the conclusions. For this reason
assuming thermal equilibrium can be considered a good starting point to assess the structural robustness of
quantum coherence to thermal noise.

In that regardwe calculate the coherence length Lρ according to equation (9), using a thermal densitymatrix
defined in equation (11), as a function of the cylindrical length L for each of the cylindricalmodels studied so far,
including theNNmodel described by equation (10).

As a final remark for this section, let us note that for zero temperature Lρ depends only on howmuch the
ground state is delocalized, while for infinite temperature we have a fullymixed statewith:

N i i1 i
N

1r = å ñá=ˆ ( ) ∣ ∣, so that Lρ= 1 as explained above even if all eigenstates are fully delocalized.On the other
hand atfinite temperature the thermal coherence length is determined by howmuch the energy eigenstates are
delocalized on the site basis and also on howmany eigenstates have an energy approximately within k TB above
the ground state (i.e. from the density of states within an energy k TB fromground state). For this reason, it is
important to study the delocalization properties of the eigenstates of the nanostructures considered here. This
analysis is shown in appendixD,wherewe show that the eigenstates of allmodels but the RDone have fully
delocalized eigenstates with a very similar degree of delocalization.

4.3. Analysis of the thermal coherence length
It is usually thought that natural photosynthetic structures can support delocalised states even at room
temperature because theNNcoupling between themolecules is larger than the room temperature energy
k T 200B » cm−1. In table 1we show theNNcoupling for the differentmodels considered here. As one can see
these couplings are larger than k TB , and themaximal value betweenΩ1,2 are of the same order among the
differentmodels.

Let us now consider the thermal coherence length of the structures analysed here at room temperature.
Figure 3(A) shows the dependence of Lρ on the cylinder length L (with a corresponding number of dipolesN
ranging from120 to 9600).

In allmodels but the RD, the coherence length Lρ increases quitemarkedly for small L until it reaches a
plateau for larger L values. Apart from the RD structure, that exhibits a coherence length Lρ≈1, the other
structures are characterized by L1 N r . Thismeans that the thermal state at room temperature of these
structures has a high degree of excitonic delocalization.Moreover it emerges clearly that the natural complexes
(MTandWT) show the highest values of thermal coherence length if comparedwith the othermathematical
structures. It is interesting to note that theMT complex supports a coherent delocalisation of the excitation over
hundreds ofmolecules even at room temperature, which is one order ofmagnitude larger than the delocalisation
supported by theNNmodel despite the fact that in theNNmodel themolecules have the same position and the
sameNNcoupling of theMTmodel. This shows that the ability of such structures to support large delocalised
excitation even at room temperature goes beyond the strength of theNNcoupling between theirmolecules.

Table 1.Absolute value of theNN
coupling for the differentmodels.Ω1:
azimuthal coupling forNN sites in
the same ring (or between two
adjacent chains for theWT).Ω2:
vertical coupling forNN sites
between rings (or in the same chain
for theWT).

Ω1 (cm
−1) Ω2 (cm

−1)

MT 618 248

WT 115 629

PD 610 528

TD 1218 264
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Fromfigure 3(A)we can also deduce that the large coherence length of the natural systems cannot be explained
by the presence of long range interactions. Indeed long-range interactions are present also in the PD andTD
models, but their thermal coherence length is one order ofmagnitude smaller. By comparing the different
cylindrical structures, onemay also observe that the further the SRS is from the ground state, the lower is Lρ. One
could argue that natural structures concentrate themost radiative states (states with the largest dipole strength)
close to the ground state in order tomaximize their thermal coherence length.Wewill discuss the relationship
between the presence of the SRS close to the ground state and a large coherence length in the next section.

The presence of a large thermal coherence length can be related to the structural properties of the energy
spectrum. To this endwe consider themean density of states k TBd ( ) defined as the number of states contained
in a unit of thermal energy k TB divided by kBT, i.e.

k T
k T

N E E
1

d , 12B
B E

E k TB

1

1

òd =
+

( ) ( ) ( )

where E1 is the ground state andN(E) is the density of states (number of states per unit energy). In particular, we
would like to study the dependence of the average density of states, equation (12) on the cylindrical length L.
Results are shown infigure 3(B) and clearly indicate that not only, in general, the average density increases
proportionally to L, butmore importantly, natural structures are characterized by the smallest average densities
(approximately one order ofmagnitude less than the other structures). Such a low density of states in the lower
part of the spectrum induces, seefigure 3(B), an enhanced thermal coherence length. Indeed, if all the eigenstates
have approximately the same degree of delocalization, asmeasured by their PR for instance (see appendixD),
then for a smaller number of states within an energy kBT from the ground state, the thermal coherence length is
larger, as explained above. In order to explain the origin of the low density of states, let us observe that : (i) it
cannot be due to the intensity of theNNcoupling. Indeed theNNmodel, which has the sameNNcoupling as the
MTmodel, has amuch higher density of states and a smaller thermal coherence length; (ii) it cannot be due to
the range of interaction since also the TD andPDmodel are characterized by the same interaction range but they
display a higher density of states and as a consequence a smaller thermal coherence length. Belowwe propose an
explanation of the connection between the presence of a SRS close to the ground state and a lowdensity of states,
implying a large thermal coherence length.

5. Relationship between structure andmacroscopic coherence

In this sectionwe propose an explanation of why such a low density of states is connected to the presence of SRSs
close to the ground state of the system. Aswewill showbelow the low energy part of the spectrum for both the
MT andWTmodels arises from a super-transfer coupling between states with a large (giant)dipole belonging to
some sub-unit of thewhole cylinder. In the case ofMTwewill show that the super-transfer coupling arises
between giant dipole eigenstates of single rings, while in the case ofWT the super-transfer arises between
eigenstates belonging to different sub-units of thewhole cylinder. The presence of super-transfer induces a large
coupling energy which decreases the density of states. As a clear signature of this, we show below that super-
transfer is also able to induce the emergence of an energy gap between the ground state and the first excited state.

Specifically in subsection 5.1we analyse cylindersmade of a sequence of rings andwe show that the
symmetry present in the system implies that each eigenstate of a ring couples only to a correspondent eigenstate
of the other rings.We also show that the dipole strength of the eigenstates of each ring is concentrated in few
SRSs. In subsection 5.2we show that the coupling between SRSs in each ring displays a super-transfer effect,

Figure 3. (A)Thermal coherence length Lr as a function of the cylindrical length in the 6 cylindricalmodels atT=300K. The total
number ofmoleculesN varies from120 to 9600. (B) k TBd ( ), as given by equation (12), as a function of the cylindrical length L at a
fixed temperatureT=300K. Allmodels have a total number of dipoles ranging from 120 to 9600.Note that since energy ismeasured
in cm 1-( ) , themean energy density in the thermal energywidth k TB ismeasured in (cm), see equation (12).
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while the coupling between the subradiant states is characterized by a sub-transfer effect. Finally in
subsection 5.3we showhow in natural structures the super-transfer coupling produces a depressed density of
states close to the ground state, thus enhancing the thermal coherence length.

5.1. Structure of ring eigenstates coupling
In order to analyse the super-transfer effect, let us consider the properties of the eigenstates of the single rings
composing three different nanotubes:MT, TD and PD.All the abovementionedmodels are composed of a
sequence of rings, each containing 60molecules, as explained in section 2. The case of theWTmodel will be
discussed later since its structure ismore complicated. Infigure 4 the dipole strength of few eigenstates (ordered
from low to high energy) of a single ring, containing 60 dipoles, is shown for the different structures. Note that
the sumof all the dipole strengthsmust be equal to the number of the dipoles in the ringN2=60 as explained in
section 3. As one can see in theMT case thewhole dipole strength is concentrated in the lowest three eigenstates,
each having a dipole strength approximately equal toN2/3. Each dipole strength is oriented in a different spatial
positionwith the ground state having a dipole strength along z corresponding to the direction of the cylinder axis
and the other two states perpendicular to it in the ring plane, see inset infigure 4(A). In the TDmodel in
figure 4(B), the dipole strengths are concentrated in the first and second excited state (which are degenerate and
having D N 2n

2
2=∣ ∣ each) and their direction lies in the plane perpendicular to the direction of the cylinder

axis. Finally for the PDmodel infigure 4(C), thewhole dipole strength is concentrated in themost excited state
and it is directed along the z-axis (cylinder axis).

A common feature of these structures is their invariance under a N2 2p rotation around the cylinder axis.
Strictly speaking, in theMTmodel such symmetry is slightly broken due to the presence of alternatingα angles,
see appendix A.Nevertheless sinceα is very small the change due to the symmetry breaking is negligible. As a
consequence theHamiltonian for each ring is a circulantmatrix, i.e. each row can be obtained by a cyclic
permutation of the previous one. Circulantmatrices are diagonalized by the Fourier basis, so that the
components of the eigenstates of each ring qj ñ∣ on the site basis jñ∣ are given by

j
N

q N
1

e for 1, , . 13q
jq N

2

i2
2

2já ñ = = ¼p∣ ( )

Due to the rotational invariance the couplingmatrix between two rings is also circulant.
Tomake explicit this point, let uswork out a specific example of two rings. TheHamiltonian reads:

H D V
V D

, 14r =
⎡
⎣⎢

⎤
⎦⎥ ( )

whereD refers to theHamiltonian of a single ring (which is diagonal in the Fourier basis given in equation (13))
andV represents the interaction between two rings. The totalHamiltonianmatrixHr can bemade block diagonal
by thematrix

Figure 4.Dipole strength of few eigenstates (in the lowest or highest part of the energy spectrum) versus the eigenstate index n, for a
single ring composing three different nanotubular structures:MT, TD and PD. Lateral panels indicate the spatial direction of the giant
dipoles of the SRSs. Each ring of the three structures considered (A, B, C) is composed byN2=60 dipoles.
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where the elements ofU are given by equation (13):U jj q q, j= á ñ∣ . In other words, each ring eigenstate is coupled
onlywith one corresponding eigenstate of any other ring. This is clearly shown infigure 5(B), where thematrix
elements of theHamiltonian of a small cylinder composed of two rings of 6 sites each, are represented in the
basis given by the tensor product of the Fourier basis of each ring. As one can see, this results in a block structure
where each block has only diagonal elements.

As a consequence of the symmetric structure of the nanotubes considered above, all the eigenstates of the
whole cylinder can be ‘generated’ by the coupling between the eigenstates of single rings, see also discussion
in [69]. Specifically, the SRS of thewhole cylinder is generated by the coupling of the SRSs of the single rings.
In order to prove that, we show infigure 6(A)–(C) themost SRS for the differentmodels projected along
the eigenstates of the single rings. In thefigurewe considered cylindersmade ofN1=160 rings, withN2=
60molecules per ring, for a total number of dipoles ofN=9600. Let us analyse the singlemodels individually.

(i) For the MTmodel, one can see that the most SRS (having a dipole along the cylinder axis) has components
only on the ground states of the single rings (indicated by arrows in the inset offigure 6(A)) that are also
SRSswith a dipole strength along the z‐axis, see figure 4(A).

Figure 5. (A)Graphical representation of the coupling between the sites of two rings, each formed by sixmolecules. Same colours
indicate the same couplings. The circulant couplingmatrixV, see equation (14), generated by the symmetric coupling is represented
below. (B)Modulus of theHamiltonianHr(14)matrix elements for theMTmodel, for the case sketched in (A) in the Fourier basis.
Each ring eigenstate ismainly coupled only to one corresponding eigenstate in all the other rings.

Figure 6. Left panels: projections of themost SRS of thewhole cylinder ESRñ∣ over the single ring eigenstates nj ñ∣ as a function of the
eigenstate index n. In each case we selected a total number of dipolesN=9600 (then n=1,K, 9600), which corresponds to
N1=160 rings andN2=60molecules in each ring. (A)MTmodel, (B)PDmodel, (C)TDmodel (in the insets the corresponding
blow up of the low energy part of the energy spectrum). Arrows refer to the SRS of the single rings. Right Panels: energy spectrumof
the three different cylindrical structures: (D)MTmodel, (E)PDmodel, (F)TDmodel. Coloured symbols represent the exact
numerical spectrum,white lines stand for the spectrumobtained from the analytically approximated eigenstates, see equation (16).
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(ii) In the PDmodel, figure 6(B), the most SRS, E2814ñ∣ , projects itself on themost excited state in the single ring
spectrum, which corresponds to the only SRS of the PD ring, see figure 4(C). Note that E2814ñ∣ indicates the
2813rd excited state.

(iii) In the TDmodel there are two most SRSs which are degenerate with a different polarization: one along the
x direction and one along the y direction. Infigure 6(B)we considered only the SRSwith a polarization
along the y direction, which corresponds to the state E1083ñ∣ . Such state has non zero projections only onto
the second excited states of the single ringwith the same dipole direction of the SRS of thewhole cylinder,
see figure 4(B). Correspondingly the other SRSwith a polarization along the x directionwill have projection
only on the SRS of the single ringwith the same polarization.

These findings allow for a further approximate scheme for the eigenstates of the cylindrical structures
considered above. Indeed, since each eigenstate of any single ring is coupled only to a corresponding eigenstate
of the other rings, we can decompose thewhole cylinder into independent chains where each site of the chain
corresponds to a single ring eigenstate. For a chain havingNs sites andNN interactions the eigenstates are
independent of the coupling and given by:
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where k represents the site index and r=1, ..,Ns. Clearly when the interaction range is notNN, the above
expression for the eigenstates is no longer valid. Nevertheless for the natural structures considered in this paper
the interaction is short-range, decaying as 1/r3 for the realistic cylinder length considered here, so that in a first
schemewe can consider theNNeigenstates as a good approximation. Note however that care should be taken to
generalize such approximation since the interaction between themolecules ismuchmore complicated than a
simple dipole–dipole one. For instance the coupling is also affected by the dipole strength of the ring eigenstates
involved aswewill see below.Nevertheless we can assume that the chain of eigenstates is diagonalized by the
same eigenstates of a chainwithNNcoupling for the parameters and the realistic system sizes considered here.
Building the eigenstates as a tensor product between the Fourier basis for the ring(13) and the one for the
chain(15)
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(with j, q=1,K,N2 and s, r=1,K,N1)wecandiagonalize theHamiltonian of thewhole cylinder in order to
obtain an approximationof the actual spectrum for thewhole structures. The results are shown infigures 6(D)–(F)
where the spectrumobtained fromexact numerical diagonalization is comparedwith the spectrumobtainedby
diagonalizing thematrixwith the eigenbase in equation (16). As one can see, theproposed analytic basis gives an
excellent approximationof the spectrumobtained by exact numerical diagonalization.

5.2. Super and sub-transfer
In the previous sectionwe have shown that each eigenstate of a single ring couples only with a corresponding
eigenstate of the other rings (apart for a small symmetry breaking factor present in theMTmodel). Here wewill
show that the coupling between the eigenstates with a large dipole strength is enhancedwith respect to the
coupling between the singlemolecules within each ring by a factor proportional to the number ofmolecules
placed on each ring. Such effect is known in literature as super-transfer [31]. At the same timewewill show that
the coupling between the eigenstates of the single rings with a small dipole strength is suppressedwith respect to
the coupling between the singlemolecules, giving rise to another collective sub-transfer effect, which has not
been fully addressed in literature.

In order to prove the previous statements, let us compute the coupling strength between two eigenstates of
two rings, say 1 and 2. Let us indicate the two corresponding qth eigenstates of the two rings as

C k ,s q

k
k
s q, ,åy ñ = ñ∣ ∣

where the states kñ∣ represent the site basis of a ring and s=1, 2. The coupling between two single ring
eigenstates belonging to two different rings can bewritten as:
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Using equations(3, 7)we have thatV f r g r r rk k k k k k k k k k k k k k k k, , , , , ,m m m m= D = +¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
   ( ) · ( )( · ˆ )( · ˆ ), where the

functions f and g are implicitly defined by equation (3).When the distance between the two rings ismuch larger
than their diameter we can approximate r Rk k, 12»¢ whereR12 is the distance between the centres of the two
rings. In this limit, equation (17) becomes
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which can be expressed in terms of the dipole strengths using equation (6)
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As a result, we obtainV D Nq
q12

2
2µ µ∣ ∣ . In other words the eigenstates with a large dipole strengthwill have

a coupling enhanced by a factor proportional to the number ofmoleculesN2 in the ring.
The above expression represents the interaction between the giant dipoles of the eigenstates of each ring.

Therefore states with a large dipole strengthwill have a super-transfer coupling, (proportional to the dipole
strength of the eigenstates) increasing linearly with the number ofmoleculesN2 in each ring. At the same time,
the coupling between two eigenstates with zero dipole strengths will be suppressed, leaving only higher order
multipole terms to contribute to the coupling. This will lead to a sub-transfer coupling. The super and sub-
transfer effects for theMTmodel are shown infigure 7wherewe compare: (i) the coupling between the
superradiant ground states (which have a large dipole strength) of two rings as a function of their rescaled
distance (open circles); (ii) themaximal coupling between singlemolecules of each ring as a function of the
distance between the two rings (red squares); (iii) the coupling between themost excited states (with a very small
dipole strength) of each ring as a function of their distance (blue triangles).

Let us comment in detail this figure. First of all we note that the coupling between the states with a large
dipole is clearly larger (by a factor∼N2=60) than themaximal coupling between the singlemolecules thus
showing the super-transfer effect.Moreover, the coupling between the eigenstates with a small dipole strength is
much smaller than themaximal coupling between singlemolecules: this shows the sub-transfer effect.

In the samefigure, as a continuous green curvewe show the coupling between the ground states as given by
equation (19). As one can see, at sufficiently large distance, the couplings arewell approximated by equation (19)
thus confirming that the coupling is enhanced by a factor proportional to the number ofmolecules in each
ringN2.

Another important observation concerns the dependence of such couplings from the distance r h 0l= and
how it ismodified by the super and sub-transfer effect.We can distinguish three different regimes: at small
distances, at intermediate distances and at distances comparable with thewavelength of the optical transition. At
large distances, when h∼λ0 an oscillatory behaviour arises due to the presence of oscillatory terms in the
Hamiltonian of the system, see equation (7). At intermediate distances the super-transfer coupling decays with
1/r3 as the coupling between singlemolecules, consistently with the dipole–dipole nature of the interaction.On
the other hand, the sub-transfer coupling decays as 1/r5 which is consistent with high ordermultipole expansion
of the coupling since the dipole interaction is suppressed. At small distances the behaviour of the couplingwith
distance is less trivial: while the singlemolecule coupling still behaves as 1/r3, the sub-transfer coupling decays
much faster and then it goes as 1/r5 as explained above.On the other hand the super-transfer coupling decays as
1/r2, which ismuch slower than the dipole coupling. Since all the couplings start from the same intensity at very
small distances and the superradiant one has to go above the singlemolecule coupling, itmakes sense that its
decay is slower than 1/r3, but further analysis is needed to understand the origin of such slow decay of the
interaction between giant dipoles.

Figure 7.Coupling between ring eigenstates as a function of their distance hnormalized to thewavelength 650 nm0l  . Open circles
represent the couplingVq

12 (see equation (17)) between the ground states of two rings for theMTmodel. Red squares stand for the
maximal coupling between individualmolecules in the two rings. Blue triangles represent the coupling between themost excited
eigenstates of the two rings. The green curve represents the coupling between the giant dipoles of the ground states as given by
equation (19). The three lines represent respectively the behaviours 1/r2 (dashed), 1/r3 (dotted–dashed), 1/r5 (dotted).
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5.3. Super-transfer and density of states
From the discussion abovewe can conclude that all the SRSs belonging to each ringwill couple between
themselves through a super-transfer coupling. For instance, in the case of theMTmodel, also the other two SRSs
of the single rings corresponding to the first and second excited states will couple between themselves by super-
transfer, see figure 4(A).While for the PD and the TDmodel the coupling between the SRS of the rings gives rise
to the SRS of thewhole cylinder, which lies far away from the ground state, for theMTmodel the coupling
between the SRSs of the single rings determines completely the lowest part of the spectrum. In order to prove the
last sentencewe consider the 3N1 eigenvalues generated by the super-transfer coupling of the three SRSs for each
ring of theMTmodel. The spectrum generated by the three SRSs is shown infigure 8(A) togetherwith the exact
spectrumof theMTmodel. As one can see this simple approximation allows to computewith high accuracy the
lowest energy part of the spectrum. The presence of super-transfer induces a large coupling energy in the lowest
part of the spectrum, which in turn diminishes the density of states. This is also signalled infigure 8(A) by the
change of slope seen in the lower part of the spectrum. A further evidence of such decreased density of states
induced by the super-transfer coupling of the SRS of each ring is shown infigure 8(B). Here the energy gap
between the ground state and thefirst excited state for theMTmodel is shown as a function of the length of the
nanotube. Contrary towhat can be expected for generic systems, the energy gap increases with the system size
instead of decreasing, up to a critical system size, abovewhich it decreases. Themaximal energy gap occurs at a
distance of∼182.6 nmwhich is compatible with the typical length of such nanostructures found in nature,
ranging between 100 and 200 nm.Note that it would be interesting to understand the critical system size at
which the gap has amaximum.We intend to study this problem in a future work.

The results obtained so far can be generalized tomore complicated structures, such as theWTmodel, as
the preliminary results shown in appendix E show. Indeed, even for theWTmodel, where the disposition
of dipoles ismuchmore complicated than in the previousmodels, one can show that the SRS close to the
ground state emerges from the supertransfer coupling between the SRSs of cylindrical sub-units of the whole
cylinder.

Summarizing, the analysis both for theMTand theWTmodels shows how a precise ordering of the dipoles
in these systems can favour the emergence of super-transfer between the eigenstates of sub-units of thewhole
structure, producing an enhancement of the thermal coherence length. This represents a clear example of the
interplay between structure and functionality.Moreover, let us notice that even if the othermodels (TD, PD)
have a super-transfer coupling between the ring eigenstates with the largest dipole strength, the resulting SRS lies
in themiddle of the spectrum and its effect on the thermal coherence length is less relevant (since the latter is
sensitive to the density of states only in the lowest part of the energy spectrum). This argument strongly supports
the relationship between the presence of a SRS close to the ground state and the thermal coherence length
discussed above. As a last remark, wewould like tomention that in order to assess the ability of such structures to
sustain a largemacroscopic coherence length, also the effect of other sources of noise should be considered. A
preliminary study of the effect of static energetic disorder on the thermal coherence length of the different
models considered here is shown in appendix F. The results of our analysis clearly show that natural structures
are able to protectmacroscopic coherence up to values of the static disorder strengthmuch larger than the
typical disorder present in natural systems.

Figure 8. (A)The lowest part of the energy spectrum for aMTnanotubewith 220 rings (open circles) comparedwith the spectrum
generated by the super-transfer coupling between the the threemost SRSs of each ring (crosses). Note the presence of a consistent
energy gap between the ground state and thefirst excited state. (B)Energy gap (distance between the ground and thefirst excited state)
for theMTmodel as a function of the nanotubular length. As one can see there is a regionwhere the gap increases with the system size.
Maximal gaps occurs at L = 1826 Å. The yellow vertical strip indicates the regionwhere natural complexes operate.
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6.Natural concentric structures

Natural antenna complexes inGreen Sulphur Bacteria are notmade by a single cylindrical surface. In order to
take this into account, in this sectionwe investigate amore complex configuration of dipoles on four concentric
rolls as found inGreen Sulphur bacteriaChlorobiumTepidum. Such structures have been extensively considered
in literature (see for example [4, 54, 70, 71]). Inspired from these studies we considered here amodel of
ChlorobiumTepidumTriplemutant (bchQRU) formed by four concentric cylindrical surfaces, as shown in
figure 9(A). Our aim is to investigate whether concentric cylindrical aggregates can support delocalized excitonic
states at room temperaturemore efficiently than single cylindrical structures.

The distribution of the dipoles on each cylindrical surface is the same as theMTmodel of the previous
section. In table 2we report all parameters for thismodel.

The coupling between the EMF and the dipoles of the aggregate has been taken into account as in the
Hamiltonian (7). As in the previous sections let usfirst analyse the dipole strengths associatedwith the
eigenstates of theHamiltonian (7).

Results are shown infigure 10(A) for a complexmade of 80 layers of 4 concentric rings. As one can see the
maximal dipole strength is concentrated in an energy region close to the ground state (the 43rd eigenstate has the
maximal dipole strength, see inset infigure 10(A)).

Such dipole strength is associatedwith eigenstates having a high degree of delocalization along the cylinders.
A further evidence is given infigure 10(B)wherewe show that themaximal dipole strength increases
proportionally with the length L of the cylinders.We also note that themaximal dipole strength for concentric
cylinders is between twice and 3 times larger than themaximal dipole strength of a single cylindrical surfacewith
the same geometry, see figure 10(B)where the same data offigure 2(F) for theMTmodel have been reported for
comparison.Note that the fact that concentric cylindrical surface can cooperate to create a larger SRS is not
trivial since the interaction betweenmolecules in different cylinders is veryweak, equal to about 16 cm−1 which
is one or two orders ofmagnitude smaller than the coupling betweenmolecules inside each cylinder, see table 1.

Finally, we have studied the effect of thermalization by putting the system in a thermal bath at room
temperatureT=300 K. As before, we studied the thermal coherence length Lρ , see equation (9).

Results are shown infigure 11(A) and comparedwith the same results obtained for theMTmodel. Afitting
with the function

Figure 9. (A) Structure of an aggregate of Bchlmolecules on four concentric rolls. The radius of the innermost roll is 30 Å, while the
distance between consecutive layers is equal to 21 Å. (B) Single layer of the structure formed by four concentric rings. Thewhole
aggregate has been obtained by overlying up to 100 layers [5].

Table 2.Main parameters used to engineer the structurewith four
concentric rolls.

Number of surfaces 4

Radius of the innermost roll 30 Å
Distance between concentric rolls 21 Å
Radii of the cylinders 30 51 72 93- - - Å
Number of dipoles on each ring 30 51 72 93- - -
Density (number of dipoles over radius

of the ringÅ)
1Å−1
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shown infigure as dashed lines, gives for the asymptotic coherence length L 532.9=¥ for the 4 cylinders and
L 249.8=¥ for theMTmodel. Keeping inmind that the radius of the cylinder for theMTmodel is an average of
the four radii of the structure composed of 4 concentric cylinders, it is remarkable that the asymptotic coherence
length ismore than twice larger than the single cylindrical structure. This is highly non trivial, since for the
concentric cylinders we havemanymore states and the density of states is larger than that for the single cylinder
having the same length. For a discussion on this point see appendixG.

The results in this section show that packing symmetrical structures in concentric cylinders as it is found
in natural photosynthetic complexes produces, at room temperature, a larger thermal coherence length
than a single cylinder. In the future it would be important to study the robustness of the thermal coherence
length of such aggregate of concentric cylinder to other sources of noise, such as static disorder, as it has
been done for the single cylinders in appendix F. Even if the coupling betweenmolecules belonging to
different cylinders is quite weak, supertransfer coupling between sub-structures of the different cylinders
might help to protect the coherence length of the whole aggregate to disorder.More analysis is needed to
assess this point.

Figure 10. (A)Dipole strength associatedwith each eigenstates of the system composed of 80 layers of 4 concentric rings for a total
length of L = 65.57 nm, as a function of the eigenvalues. Inset : the low energy part of the spectrum. Arrows indicate the ground state
(GS) and the state withmaximal dipole strength (the 43rd one). (B)Maximal dipole strength as a function of the rescaled length of the
aggregate L/λ0 whereλ0≈650 nm.Dashed line represent the linearfits.Maximal length considered in this panel is L=65.57 nm,
corresponding to 80 layers of 4 concentric rings.

Figure 11.Thermal coherence length as a function of the number of layers in the cylinder for the systemwith four concentric cylinders
(green circles) and theMTmodel with one cylinder only (red squares). Dashed lines are thefit with the expressions(20)whose
parameters are L 249.8=¥ andNc=19.9 for the dashed green curve and L 523.9=¥ andNc=25.2 for the dashed red curve.
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7. Conclusions and perspectives

Wehave analysed realistic structures of self-aggregatedmolecular nanotubes of chlorophyllmolecules as found in
AntennaComplexes ofGreen SulphurBacteria. By taking into account positionanddipole orientationof
chlorophyllmoleculeswhich agreewith experimental datawehave shown that natural structures are able to support
macroscopic coherent states even at room temperature. Indeed innatural complexeswehave founddelocalized
thermal excitonic stateswith a coherence length extending over hundreds ofmolecules.We showthat such thermal
coherence length ismuch larger thanone could expect from themagnitudeof theNNcoupling and it cannotbe
explained evenby the long-range nature of the interactionbetween themolecules. Instead, the ability of natural
structures to support a large coherence length canbe tracedback to their specific geometric features.

In order to explainhow this is possible, wefirst considered cylindrical structuresmadeof a sequenceof rings,
each containing afixednumber ofmolecules equally spaced on the ring itself. Since the disposition of thedipoles is
highly symmetric, in each ringwehave few superradiant eigenstates (towhichwe associate a giant dipole)where
most of the dipole strength of the system is concentrated, andmany subradiant stateswith zerodipole strength.
Moreover, due to thediscrete rotational symmetry of thewhole cylinder around its axis, each eigenstate of the ring
sub-unit is coupledonlywith the correspondent eigenstate in the other rings. The coupling between the
superradiant eigenstates in each ring gives rise to the super-transfer effect, i.e. a couplingwhich is enhancedby a
factor proportional to the number ofmolecules in the ring.At the same timewehave shown that the coupling
between the subradiant states in each ring induces a sub-transfer effect, i.e. a suppressed coupling compared to the
singlemolecule coupling.Wehave also demonstrated that innatural complexes the super-transfer coupling
between the SRSs in each ring generates the lower part of the energy spectrumof thewhole cylinder. Since the
spectral energywidth of a system is proportional to the intensity of the coupling between its parts, the enhanced
super-transfer coupling is able to increase the spectralwidth close to the ground state. This creates a depressed
density of states in the lower part of the spectrum, allowing for a larger thermal coherence length. Indeed the latter
increases as the number of states in an interval kBT above the ground state decreases.We also gave evidence that
similarmechanisms are responsible for the large thermal coherence length thatwehave found inother natural
structures (WTmodel)where the disposition of thedipoles is less simple than theone described above.

Fromour results we can predict that symmetry in cylindricalmolecular nanotubes is essential to have robust
structures, not only to thermal noise, as we have demonstrated here, but also to other sources of noise such as
static disorder, as our preliminary results have shown. The structural requirement is to create a super-transfer
coupling between the superradiant eigenstates of cylindrical sub-units able to generate the lower part of the
spectrumof thewhole structure.

Molecular nanotubes are fundamental structures in biological systems and they are among themost
promising structures to be used in quantumdevices. Themost importantmessage which can be extracted from
our analysis is the fact that specific geometric features, connected to symmetries, allow to control the cooperative
effects inmolecular aggregates. Indeed it is due to the presence of such cooperatively enhanced coupling (super-
transfer) inside themolecular aggregates thatmacroscopic coherent states are allowed to survive at room
temperature. This is an emergent property of such structures which cannot be reduced either to the intensity of
the coupling between themolecules, or to their interaction range.

The relevanceof geometry inmolecular aggregates and the emergent properties arising from it are fundamental
to understand evenmore complicated structures. For instance, structuresmade of few concentric cylinders as they
are found inGreenSulphur bacteria.Our preliminary studyof such structures has shown that these aggregates have
an enhanced thermal coherence length compared to the single cylindric surfaces.Wewould like tomention that
recently by someof the authors of this paper, excitonic states havebeen analysed also inmicrotubules [17], which
aremolecular nanotubes thought to be involved inmany cellular functions. The analysis has confirmed the role of
symmetry and geometry in such structures too. In the future it wouldbe important to understand the general
structural requirements necessary to inducemacroscopic coherent states in genericmolecular networks.

Finally, few clarifications are in order. Experimentally the presence ofmacroscopic coherence inmolecular
nanotubes can be verified by studying the absorption spectrum at room temperature. Also the role of super and
sub-transfer can be detected experimentally analysing the dynamics of exciton transfer. Super and subtransfer
could be detected either by controlling the initial state or by studying the long-time dynamics of the excitation
transfer. In particular this study should reveal the presence of two different time scales (super and sub-transfer)
in a similar way as the study of long-time excitation decay reveals super and sub-radiance, where sub-radiance
implies a change of slope in the decay of the survival probability. For instance a time dependent diffusion
coefficientmight be an experimental signature of super and sub-transfer.

Even if we assumed thermal equilibrium in our structural analysis, it is possible that out-of-equilibrium
processes can have an important role inmolecular nanotubes. Indeed cooperative effects can induce time scales
in a systemwhich are faster or comparable with thermal relaxation time scales.We believe that the assumption
of thermal equilibriummade in our analysis is adequate to assess the structural robustness ofmolecular
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nanotubes. Indeed thermal equilibrium represents theworst case scenario for coherence and out-of-
equilibriumprocesses should be characterized by even larger excitonic coherence lengths. For instance the initial
state after the absorption of light is characterized by a very large coherence length due to the largewave-length
(≈700 nm) of the absorbed light with respect to the size ofmolecular nanotubes (≈200 nm ). After absorption
the coherence lengthwill decrease due to thermal relaxation, reaching itsminimal value at thermal equilibrium.
Thus processes which occurs out-of-equilibriumwill be characterized by a larger coherence length.

The analysis presented in thismanuscript is structural, and it has beenmadeunder the assumption of thermal
equilibrium.The emergence of amacroscopic coherence length inmolecular nanotubes even at room temperature
is likely to have important consequences at the functional level. Indeed a large coherence length allows for excitonic
giant dipoles to superabsorb light and to supertransfer excitations, thus enhancing the excitondiffusion coefficient.
These effects have been studied in several realistic systems andare thought to play an important functional role in
natural photosynthetic complexes. The results presented in this paper could explain the large efficiency of some
natural photosynthetic complexes and they could inspire the engineering of efficientmolecular aggregates for
energy transport and light-harvesting. In perspectiveweplan to assess the functional role ofmacroscopic
coherence inmolecular aggregates both in equilibriumandout-of-equilibriumprocesses.
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AppendixA. Geometry of themodels

Weanalysedfive different cylindricalmodels withfixed radius (R=60Å) and total number ofmoleculesN, as
shown infigure A1(A). Thesemodels differ for the geometrical arrangement of the chromophores (dipoles)
along the cylindrical surface.

In order to describe how the dipoles are placed on the cylindrical surface let us unwrap it on a rectangular
plane. In this plane the dipoles are disposed on the vertices of a lattice. The unit cell of the lattice in all structures
is created starting from two lattice parameters a and b arranged in such away that the angle between them is γ,
see figure A1(B). Depending on the particular arrangement of the unit cell in the lattice the dipoles can be
arranged into vertical chains or placed onto equal horizontal and coaxial rings.We assume that, in each of these
structures, the shortest distance between two chromophores located on the same ring is r1=6.28Å. In our
scheme all chromophores can be treated as dipoles with a constant squared dipolemoment 30 D2 2m =∣ ∣ [61].
This corresponds to a dipole length Ld=1.14Å7. The ratio L r 0.18d 1  is relatively small so that the dipole
approximation can be successfully applied for the nearest-neighbour coupling.

In the following subsectionswewill analyse in detail the geometrical structures associatedwith eachmodel.

A.1.MTmodel
TheMTmodel proposed here coincides with theChlorobiumTepidumbchQRU triplemutant investigated in
other studies ([53, 54, 56]).

In theMT cylindrical structure, the total numberN of chromophores is organized intoN1 equal, horizontal
and coaxial rings, see figure 1(A) in themain text. Each ring containsN2=60 chromophores and two
consecutive rings are separated by a vertical distance h=8.3Å. In the unit cell, shown infigure A2(A), h is
parallel while a is perpendicular to the cylindrical axis z


. Any chromophore along the surfacewill be labelled as

the n th2 dipole on the n th1 ring (where n N1, ,1 1= ¼ and n2=1,K,N2). Sincewe keep the radiusRfixed, the
density of chromophores along each ring is alsofixed: 2s

1r p= -( Å) . The position of each dipole onto the
cylindrical surface is characterized by two cylindrical coordinates. Nevertheless it is useful to introduce three
angles (the latter being dependent on the first and second):

• N360 62j =  =  is the azimuthal angle between two adjacent dipoles in the same ring,

• h Rtan 4.956x e=  is the twist angle between two successive dipoles located onto neighbour rings,

• n n1 2q x j= + is the angle between the position r

of the dipole and the x axis.

7
In terms of ESU-CGS andGaussian units onemay observe that D1 10 cm g s6 1 2 1 3 2= - - Å and the elementary charge is

e 4.803 204 25 10 cm g s10 3 2 1 2 1= ´- - -∣ ∣ . From the relation L ed m= -we obtain L 1.14d = Å.
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In this waywe have :
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The components of the dipolemoment m

can be expressed through two angles:

• α =4°, between the projection of the dipolemoment onto the plane of the ring and the plane tangent to the
cylindrical surface, seefigure A2(B).

• β=55°, is the angle created by the single dipolemoment with the cylindrical axis.

Assuming the n th2 dipole with an angleα=+4°, the n 1 th2 +( ) dipole will have 4a = - , the n 2 th2 +( )
dipoleα=+4° and so on. This alternation is valid along the a direction andmakes consecutive dipoles to point
inward (α=+4°) and outward (α=−4°) respectively. Generally, we have that the generic dipolemoment m



has the following normalized components expressed in terms of spherical coordinates:
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A.2.WTmodel
TheWTmodel [53, 54, 56] shows a deep structural difference compared to the other structures. Indeed it can be
thought as organized intoN1 vertical chains and each of themwithN2molecules. So one can talk about the n th2

Figure A1. (A) Schematic cylindrical structure of eachmodel. The cylindrical axis corresponds to the z

axis and the radius is

R=60 Å. (B) Fundamental unit cell of the analysed aggregates. Onemay obtain each of themodels varying the three parameters a, b
and γ. In ourmodels we consider only the cases inwhich a and z


are orthogonal or parallel.

Figure A2. (A)Unit cell for theMTmodel. Here h=8.3 Å is the vertical distance between two consecutive rings. The cylindrical axis
z

is represented by the green arrow on the left and is perpendicular to the a side. Note that the alternation between the colours of two

consecutive dipoles along the a and the b sides is due to the alternationα=±4°. (B)View from above of the single ring of theMT
type. xym


is the projection in the xy plane of the dipole m


.
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chromophore on the n th1 chainwith n1=1,K,N1 and n2=1,K,N2. Dipolesmoments on adjacent chains do
not have the same height but they are shifted by a quantity k n b sinn 11

e= to originate a helical structure, as
shown infigure 1(B) of themain text. The lattice has the following parameters: a=12.5Å, b=7.4Å, γ=122°
and ε=32°. The unit cell of theWT type is similar to that of theMT, but it is rotated by an angle 90° around the
z

direction, see figure A3, so the vertical distance between two dipoles on the same chainmeasures h=a/2=

6.25Å.Moreoverj=360°/N1=6°will be intended as the azimuthal angle between adjacent chains, and
θ=n2j as the angle between the position vector r


and the x axis. The position of the generic dipole on the

surface can be expressed in cylindrical coordinates as follows:

r R
r R

r h k

cos
sin

n 1 . A.3

x

y

z n2 1

q
q

=
=
= - +( ) ( )

The components of each dipolemoment are given by equation (A.2)with 4a = ,β=35°. Also in theWT
model there is the alternationα=+4° andα=−4° between consecutive dipoles.

A.3. PD, TD andRDmodels
Thesemodels, shown infigures 1(C)–(E) of themain text do not exist in nature and they have been introduced
only for comparisonwith the natural systems. They exhibit a different lattice compared to the natural
complexes, since the unit cell is a rectangle. As shown infigure A4we have γ=90°, a=12.5Åand
b=h=8.3Å. The cylindrical axis z


is perpendicular to the a side and one could build each of the three

Figure A3.Unit cell for theWTmodel.Here kn1 refers to the vertical shift of two dipoles belonging to two nearest-neighbour chains,
while d is the distance between two chains. Two consecutive dipoles on the same chain are separated just by a quantity equal to a/2.
One can notice that this unit cell is the rotation by 90° around z


of the previous unit cell for theMTmodel (figure A2), butwith

different parameters. The alternation of two colours of two consecutive dipoles along the a and the b direction represents the typical
alternationα=±4°.

Figure A4.Unit cell for the PD, TD andRDmodels. Here the parameter b coincides with the vertical distance h between two
consecutive rings. The cylindrical structure is obtainedwrapping this rectangular unit cell around the direction of z


, which is

perpendicular to the a side.
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structures wrapping up the lattice around it. The three cylinders have again the same radiusR=60Å and the
same number ofmoleculesN. Also, they are arranged intoN1 equal, horizontal and coaxial rings such that each
of them carriesN2 dipoles. Once again a particular dipolemoment will be indicated as the n th2 chromophore on
the n th1 ring (n1=1,K,N1 and n2=1,K,N2 ). The threemodels differ for the values ofα,β in the
followingway:

• in the PD structure,β=0° andα=0°,

• in the TD structure,β=90° andα=0°,

• in the RD structure, the angles are uniformly distributed such that 0, 360a Î [ ] and 0, 180b Î [ ].

Appendix B. Comparison between dipole strengths and radiative decaywidths

Infigure B1 the comparison between the dipole strengths Dn
2∣ ∣ (obtained using theHamiltonianHr (7)) and the

rescaled radiative widthsΓn/γ (obtained diagonalizing theNon-HermitianHamiltonianH (1)) is shown for all
the eigenstates of theMT,WT, TD and PDmodels forN=6000 dipoles. As one can see the two quantities can
be considered to be the same (compare symbols with the dashed lines, which represent the
behaviours Dn n

2 g= G∣ ∣ ).

Figure B1. (A)–(D) Squared dipole strength Dn
2∣ ∣ obtained using the real HamiltonianHr(7) as a function of the radiative decayΓn/γ

obtained diagonalizing the non-HermitianHamiltonianH(1), for a total number of dipolesN=6000. The trend ismanifestly linear
in eachmodel as it can be noticed from the superpositionwith the line Dn n

2 g= G∣ ∣ . Thismatter of fact confirms that the imaginary
part of theHamiltonian given in equation (1) of themain text is perturbative indeed. Using the real Hamiltonian equation (7) of the
main text would not result in any significant difference.
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AppendixC. Comparison between radiative and dipole approximations

In order to understand the validity of the dipole approximation in the range of sizes of the natural systems
considered, we have compared the dipoleHamiltonian, see equation (8) in themain text, with the radiative
Hamiltonian, see equation (7) in themain text, whichwe used in our paper. For instance comparing the dipole
strength and the energy of the SRSwe have found that the dipole approximation is good for both quantities, with
a relative errorwhich increases with the system size, but it remains small up to the value of L/λ0≈0.3where the
relative error of the dipole strength is 0.1% and the relative error of the energies is 0.02%.Nevertheless in other
quantities, such as the energy gap between the ground state and the first excited state, the error can be as large as
20%, seefigureC1. Thus, we can say that while the dipole approximation seems to bewell justified for the typical
sizes of natural nanotubes, nevertheless non-negligible deviations can be found in some relevant quantities. For
this reason herewe used the radiativeHamiltonianwhich ismore accurate.Moreover, one should not forget that
the errors increase with the system size.

FigureC1. Energy gap between the ground state and thefirst excited state, computed for the radiativeHamiltonian (black squares), see
equation (7) in themain text, and the dipoleHamiltonian (red triangles), see equation (8) in themain text.
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AppendixD. Participation ratio (PR) of the eigenstates

As ameasure of delocalization of the eigenstates of the different nanotubular structures, we analyse the PR of the
eigenstates. Let us take into account the expression (5) of the nth energy eigenstate on the site basis: the
coefficientCni indicates its component on the ith site. The PRof the nth eigenstate is defined as follows:

C
PR

1
. D.1n

i

N
ni1

4å
=

=
∣ ∣

( )

Generally speaking, o NPRn ~ ( ) stands for a suitable degree of delocalization of the nth eigenstate, while we
have PR=1 for a state fully localized on a single site. FigureD1 shows how the PRof each eigenstate depends on
the eigenstate index in the six cylindricalmodels examined so far. Allmodels but the RD (E) exhibit a PR of the
same order, such that o NPRn ~ ( ). Onemay observe indeed a difference of about one order ofmagnitude
between the RD aggregate and the other structures. The presence of low degree of delocalization in the RD
model is expected since the random couplingmatrix elements betweenmolecules can induce Anderson
localization [72].

Note that the expression of Lρ in equation (9) is not equivalent to the PR even for the case of a densitymatrix
describing a pure state. Nevertheless both Lρ and the PR are ameasure of delocalization.

FigureD1. (A)–(F)PRof the eigenstates as a function of the eigenstate index.Most structures, both natural and artificial, show aPR of
the same order ofmagnitude of the total number of dipolesN. An exception to this trend is represented by the RDmodel (panel (E)),
in which the PR is smaller of about one order ofmagnitude.Note that in this case we speak of PRá ñ, since the PR has been calculated for
10 disorder realizations. In all cases we consideredN=6000 dipoles.
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Appendix E. Super-transfer in theWTmodel

TheWTmodel ismore complicated than the othermodels since the dipoles are not arranged into rings, but
rather into helical structures. Nevertheless a very highly symmetrical disposition of the dipoles is also present in
this case and one can think that the super-transfer coupling between the eigenstates of sub-units of thewhole
cylindermight influence the lowest part of the spectrum even for thismodel. In order to show this fact, we have
split thewhole cylinder along the axis direction (the zdirection) into smaller cylindrical structures. Each smaller
cylinder contains a variable number of dipolesNU. The projection of the SRS of a cylinder of 9600 dipoles on the
eigenstates of these sub-units is shown infigure E1 for different valuesNU=240, 480, 960. For aWT cylinder of
9600 dipoles the SRS lies in the lowest part of the spectrum and it corresponds to the second excited state with a
dipole strength directed along the z-axis. As one can see from figure E1 the SRS of thewhole cylinder has
componentsmainly on one eigenstate for each sub-unit.We checked that such eigenstate corresponds to a SRS
of each sub-unit with a dipole strength directed along the z-axis. Since the SRSs of each sub-unit have a giant
dipole strength they couple by super-transfer. This shows that also for theWTmodel the super-transfer
coupling inside the cylindrical structuremight be responsible for the low density of states close to the ground
state energy, see figure 3(B). Nevertheless further analysis is needed to confirm this conjecture for theWTmodel.
Let us note that the fact that the decomposition in sub-units of different sizes shows a similar pattern is a
signature of the self similar behaviour present in such structures, which has been observed also in other
molecular nanotubes [17]. Clearly if one chooses too small subunits the self-similar behaviour disappears. For
instance in our case if we take a block of 60molecules the SRS of thewhole structure is not concentratedmostly
on one eigenstate of the block.

Figure E1.Projections of themost SRS of thewhole cylinder ESRñ∣ for theWTmodel composed of 9600 dipoles over the eigenstates

nj ñ∣ of smaller cylinders composing thewhole one. The smaller cylinder has been obtained by dividing thewhole cylinder in smaller
sub-units along itsmain axis length. The length of the sub-units has been varied as follows:NU=240 (A),NU=480 (B) and
NU=960 (C). In the case considered in thisfigure the SRS corresponds to the second excited state E3ñ∣ . Panels (D, E, F) are
enlargements of (A, B, C) respectively. The vertical dashed lines indicates where each sub-unit ends.
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Appendix F. Robustness to static disorder

In order to study the robustness of the thermal coherence length as defined in equations (9) and (11) to other
sources of noise, here we consider the effect of static disorder i.e. time-independent and space-dependent
fluctuations of the excitation energies of themolecules comprising themolecular nanotube. Specifically, we
consider that the excitation energies are uniformly distributed around the initial value e0, between e W 20 -
and e W 20 + , so thatW represents the strength of the static disorder. It is well known that static disorder
induces localization of the system eigenstates, a phenomenon known asAnderson localization [72]. Due to this
effect, for large disorder, the probability tofind the excitation is concentrated on very few sites, eventually on one
site only, for extremely large disorder. Anderson localization usually occurs in presence of short-range
interactions, which is not our case, since interaction results from a complicated power law, see equation (1).
Therefore the results of our analysis are in principle not obvious. Infigure F1 the thermal coherence length for
T=300K is shown as a function of the static disorder strength, normalized to k TB withT=300K. As one can
see the naturalmodels (MTandWT) retain their larger thermal coherence length even in presence of static
disorder up toW k T10 B» . This energy scale ismuch larger than the static disorder expected in natural systems
which is of the order of k TB . Thus, our preliminary results, even if cylinders with only 6000 dipoles have been
considered, show that such structures are able to sustain a large thermal coherence length even in presence of
static disorder.

Figure F1.Thermal coherence length versus the normalized strength of static disorder W k TB , withT=300K for differentmodels
as indicated in the legend. In allmodels we consideredN=6000 dipoles. An average of over 20 realizations of disorder has been done
for each disordered strength.
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AppendixG. Concentric cylinders

Let us emphasize that the fact that the thermal coherence length for the four concentric cylinders is larger than
the thermal coherence length of the single cylinder. This is highly non trivial. Indeed, in the case of four
concentric cylinders we havemanymore states and the density of states is larger than that of a single cylinder
having the same length. In order to explain better this point, let us compute the density of states k TBd ( ) in a unit
of thermal energy k TB for different numbers of dipolesN, see equation (12) in themain text. This is shown in
figureG1 for both the concentric cylindersmodel and theMT, see figureG1(A). As one can see the density of
states is exactly the same for the twomodels as a function of the number of dipolesN. Nevertheless for the same
fixed length, the density of states for the four concentric cylinders is larger than the density of the single cylinder.
Despite this, a large thermal delocalisation length for the concentric cylinder case can be explained by the fact
that the eigenstates for the 4 concentric cylinders are delocalised over a larger number ofmolecules as it is shown
infigureG1(B).
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