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Abstract. Five initialization and ensemble generation methods are in-

vestigated with respect to their impact on the prediction skill of the German

decadal prediction system ”Mittelfristige Klimaprognose” (MiKlip). Among

the tested methods, three tackle aspects of model-consistent initialization

using the ensemble Kalman filter (EnKF), the filtered anomaly initialization

(FAI) and the initialization method by partially coupled spin-up (MODINI).

The remaining two methods alter the ensemble generation: the ensemble dis-

persion filter (EDF) corrects each ensemble member with the ensemble mean

during model integration. And the bred vectors (BV) perturb the climate

state using the fastest growing modes. The new methods are compared against

the latest MiKlip system in the low-resolution configuration (Preop-LR), which

uses lagging the climate state by a few days for ensemble generation and nudg-

ing toward ocean and atmosphere reanalyses for initialization. Results show

that the tested methods provide an added value for the prediction skill as

compared to Preop-LR in that they improve prediction skill over the east-

ern and central Pacific and different regions in the North Atlantic Ocean.

In this respect, the EnKF and FAI show the most distinct improvements over
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Preop-LR for surface temperatures and upper ocean heat content, followed

by the BV, the EDF and MODINI. However, no single method exists that

is superior to the others with respect to all metrics considered. In particu-

lar, all methods affect the Atlantic Meridional Overturning Circulation in

different ways, both with respect to the basin-wide long-term mean and vari-

ability, and with respect to the temporal evolution at the 26◦N latitude.

Keypoints:

• Five initialization and ensemble generation methods are tested with re-

spect to their impact on the skill of a decadal prediction system.

• Results show that the tested methods provide an added value for the pre-

diction skill as compared to the reference prediction system.

• The study deals with dynamical consistency during initialization and ocean

initial state uncertainty.
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1. Introduction

Over the last years, decadal climate prediction has matured substantially to the point

that it is now being developed into semi-operational applications [see, for example, Smith

et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Doblas-Reyes et al., 2011;

Kirtman et al., 2013; Meehl et al., 2014; Boer et al., 2016]. A recent example is the decadal

climate prediction system MiKlip [developed during the German project “Mittelfristige

Klimaprognose”, Marotzke et al., 2016] that within the near future will be taken over

by the German Meteorological Office (DWD). Despite this enormous success, however,

many important aspects need to be further improved to boost up the current level of

prediction skill of such a system to what can be expected from theoretical considerations

[e.g., Griffies and Bryan, 1997; Branstator and Teng , 2010, 2012; Boer et al., 2013].

It can be expected that among the candidates leading to further improvement are the

initialization as well as ensemble generation methods. With respect to initialization, we

know that present practices that imply using different models for generating initial states

and making predictions and/or using uncoupled data assimilation systems for initializa-

tion might be suboptimal due to presence of dynamic inconsistencies between the initial

state and the prediction system leading to initialization shocks [e.g., Mulholland et al.,

2016; Pohlmann et al., 2017; Kröger et al., 2018]. With respect to ensemble generation,

due to insufficient span of ensemble spread, some sources of prediction uncertainty are

underrepresented [Palmer , 2000; Germe et al., 2017]. In order to foster progress on both

fronts, the aim of this paper is to analyze novel initialization and ensemble generation

methods with respect to their potential effect on the skill of a decadal prediction sys-
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tem. The new methods are tested in the framework of the MiKlip prediction system, but

findings reported below should hold also for other systems.

Previously, the MiKlip prediction system, which is based on the Max Planck Institute

for Meteorology Earth System Model (MPI-ESM), has undergone several development

stages and evolved from the baseline system with ocean-only initialization to the pre-

operational system with initialized atmosphere, ocean and sea ice components. Overall,

the prediction system shows a robust skill for annual surface temperatures over large

areas of the world ocean and for seasonal temperatures over Europe [Müller et al., 2012;

Marotzke et al., 2016]. However, regions like the North Atlantic subpolar gyre, the central

and eastern Pacific Ocean are especially sensitive to initialization; in these regions, the

prediction system is swiftly losing prediction skill [Pohlmann et al., 2017; Kröger et al.,

2018].

The current study is performed in the framework of the pre-operational MiKlip predic-

tion system in low resolution configuration (Preop-LR). During the course of the study

we investigate whether the MiKlip system can further benefit from initialization and

ensemble generation methods such as an oceanic ensemble Kalman filter (EnKF), a fil-

tered anomaly initialization (FAI), an initialization method by partially coupled spin-up

(MODINI), an ensemble dispersion filter (EDF) and an oceanic bred vectors method

(BV). Using these methods, which are described in detail in Section 2, we will investigate

whether dynamically consistent initialization and improved representation of ocean initial

state uncertainty may further improve the prediction skill of predictable components. The

skill assessment is carried out on ten-member ensembles and covers the verification period

1962-2016 for all the initialization and ensemble generation methods.
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The remainder of the paper is organized as follows: In Section 2, we briefly describe

the MiKlip prediction system and give more details on the proposed initialization and

ensemble generation methods. In Section 3, we analyze prediction skill for surface air

temperature (SAT). Also, analyses of ocean heat content in the upper 700 meters (HC700)

and the Atlantic Meridional Overturning Circulation (AMOC) are provided to better

understand the performance of the different methods. Finally, Section 4 summarizes the

results and provides the conclusions.

2. Methodology

All the retrospective initialized decadal predictions (hereafter initialized hindcasts) and

the un-initialized historical simulations are based on the MPI-ESM version 1.2 [Müller

et al., 2018]. All simulations are performed in the low-resolution (LR) configuration MPI-

ESM-LR. The atmospheric component of MPI-ESM is ECHAM6 [Stevens et al., 2013]

configured with a T63L47 resolution. The oceanic component MPIOM [Jungclaus et al.,

2013] is implemented with 1.5◦ horizontal resolution and 40 vertical levels.

2.1. Preoperational MiKlip Prediction System (Preop-LR)

Preop-LR is used as a reference, against which the methods described in the following

Section 2.2 are compared. The Preop-LR assimilation is based on nudging the ocean to-

ward ORAS4 temperature and salinity (T&S) anomalies [Balmaseda et al., 2013] and the

atmosphere toward ERA-40/ERA-Interim temperature, vorticity, divergence and surface

pressure full-field values [Uppala et al., 2005; Dee et al., 2011]. ORAS4 anomalies are

calculated with respect to the 1961-2005 climatology. The full-field initialization based

on ORAS4 and GECCO2 reanalyses was tested earlier in the project [prototype systems
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described by Marotzke et al., 2016] and was dismissed at one of the development stages of

the prediction system after Kröger et al. [2018] has demonstrated that MPI-ESM shows

better skill for the North Atlantic when initialized from ORAS4 anomalies. Their study

showed that nudging toward temperature and salinity full fields from the reanalysis in-

duced ocean heat and mass transport changes, which triggered model adjustments through

artificial heat sources and sinks in the forecast mode.

The Preop-LR nudging run is started from the historical simulation and is carried out

over 1960-2016. The relaxation time in the ocean is 11 days, and in the atmosphere:

6 hours for vorticity, 24 hours for temperature and surface pressure, and 48 hours for

divergence. The sea-ice concentration is nudged to the NSIDC data [Fetterer et al.,

2016] with the relaxation time of 11 days. The initialized hindcasts are started from

the 1st of November over 1960-2016. Hindcast ensembles consist of 10 ensemble members

and are generated by lagging the climate state by 1-9 days after the initialization date.

The external forcing that is applied to initialized hindcasts is the same as for the un-

initialized historical simulations: the CMIP5 solar irradiance data, aerosol and greenhouse

gas concentrations over 1850–2005 [Taylor et al., 2012], and the RCP4.5 pathway over

2006–2025 [Giorgetta et al., 2013]. Further details concerning the Preop-LR experimental

setup and differences to it from the test-suite experiments are given in Table 1.

2.2. Details of the Test-Suite Setup

The MiKlip project is organized in four modules focusing on initialization, evalua-

tion, processes and regionalization and is concentrated around a single prediction system

[www.fona-miklip.de, Marotzke et al., 2016]. These modules provide tailored research for

the central prediction system to enable its further advancement. Hence, when performing
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the test-suite experiments for this study, initialization module followed the Preop-LR setup

as close as possible, i.e., used the same model setup, model version, forcing and nudging

fields and post-processing procedure to enable clean comparison. Finally, work-packages

which provided minimum requirement of 10 ensemble members, yearly initialization over

1960-2015 were qualified for the test-suite. The minimum requirement for ensemble size

and initialization period followed recommendations of the study by Sienz et al. [2016].

Thus, it is expected that differences between the performance of the proposed meth-

ods and Preop-LR are attributable to a particular initialization and ensemble generation

method.

2.2.1. Ensemble Kalman Filter (EnKF)

The oceanic EnKF analyzed in this study is the first attempt to directly insert ocean

data into the MiKlip prediction system for initialization of decadal predictions. This

method assimilates full values (i.e. not corrected for any model bias as for instance in

Counillon et al. [2016]) of the monthly subsurface temperature and salinity profiles from

the EN4 data [Good et al., 2013]. Thus, in contrast to using nudging of reanalysis as in

Preop-LR, another ocean model’s biases do not enter the prediction system. The EnKF

represents a weakly coupled data assimilation system. While the oceanic component of

each ensemble member is updated by the oceanic EnKF once a month, the atmospheric

component of each member is nudged towards ERA-40/ERA-Interim at every time step

(10 min). The fluxes between the atmosphere and ocean are exchanged during coupling

every hour. The EnKF in its local variant as used in this study is a follow up of the global

variant approach described by Brune et al. [2015, 2018]. The method is based on the

Parallel Data Assimilation Framework PDAF [Nerger and Hiller , 2012] with the localized
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singular evolutive interpolated ensemble Kalman filter LSEIK [Pham, 2001].

The EnKF assimilation involves two spin-up phases to allow MPI-ESM adapting its cli-

mate and oceanic overturning circulation to the observed climate and to mitigate initial-

ization shocks. Theses spin-ups 1) and 2) are followed by the actual coupled assimilation

3):

1) The first spin-up phase accounts for 300 years of atmospheric nudging in MPI-ESM

toward a monthly climatology from ERA-40 calculated over the period 1958-1967 (1 en-

semble member). No explicit restrictions are applied to the oceanic component. The

atmospheric nudging methodology is similar to that in Preop-LR (see Section 2.1).

2) The second spin-up phase represents a 50-year coupled assimilation with atmospheric

nudging and the oceanic EnKF. 16 ensemble members are generated from the last 16

years of the spin-up phase 1. The oceanic EnKF assimilates once per month full-value

EN4 monthly climatological temperature and salinity profiles calculated by aggregating

all available profiles over the period 1950-1959 in monthly bins. The technical details of

the EnKF assimilation are described in step 3). The atmospheric nudging uses the same

monthly climatology from ERA-40 as in spin-up phase 1.

3) The coupled assimilation, which serves as a pool of initial conditions for decadal

predictions, is started at the end of spin-up phase 2 and covers the period 1958-2016, over

which the full-value EN4 temperature and salinity profiles are assimilated into MPI-ESM

through the oceanic EnKF, and ERA-40/ERA-Interim through nudging. In this set-up,

no atmospheric nudging is applied near the air-sea boundary in the lower 5 atmospheric

layers. Also no satellite data are assimilated in the EnKF. The main differences between
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the EnKF assimilation with the localized variant as in this study and the assimilation with

the global variant as in Brune et al. [2015, 2018] are horizontal localization (here, 5 degree

radius), vertical localization within a single layer, parameter localization (parameter-wise)

and an artificial inflation of the ensemble spread (between 1 and 1.01). The observation

error is 1 K for temperature and 1 psu for salinity; it is uniformly applied at all grid

cells similar to Brune et al. [2015, 2018]. Overall, the current EnKF setup leads to a

stronger impact of oceanic observations as compared to the former EnKF setup with the

global variant; with that we aim for a stronger impact of the oceanic component on the

prediction skill. In contrast to Preop-LR, sea-ice nudging to NSIDC is not used because in

the EnKF it leads to a degeneration of the oceanic state estimate near the ocean surface

in regions close to the ice edge.

Hindcasts are initialized every year from the 1st of November over 1959-2016 and run

for 10 years and 2 months (Table 1). Every hindcast member is a direct continuation of

the corresponding assimilation member without any further assimilation applied. For the

intercomparison in this study, we use the first 10 EnKF ensemble members.

2.2.2. Filtered Anomaly Initialization (FAI)

Filtering variability from the non-native reanalysis that cannot be predicted by the

MiKlip prediction system is implemented in FAI by projecting ocean reanalysis anomalies

onto the modes of variability inherent to the prediction system. Similar methodologies

have been implemented to eliminate the effect of higher frequency components (noise)

on the numerical weather forecast skill, to obtain a correctly balanced initial state for

data assimilation procedures, and to initialize long-lived stable modes for seasonal predic-
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tions [e.g., Williamson, 1976; Ballish, 1981; Branstator et al., 1993]. To this end, FAI is

implemented as follows:

1) First, we derive modes of variability using the bivariate empirical orthogonal function

(EOF) analysis applied to 15 ensemble members of the un-initialized historical simulations

[from Giorgetta et al., 2013]. The multivariate 3D-EOF methodology is similar to that in

Hawkins and Sutton [2007]. Potential temperature and salinity October-anomalies used

for the EOF analysis are calculated with respect to the period 1958-2005, for which the

historical simulations and the ORAS4 ocean reanalysis overlap. Before the EOF analysis,

anomalies are weighted by their contribution to density (i.e., thermal and haline expansion

coefficients) and the grid-box area.

2) Next, we truncate the set of EOF-modes and project ORAS4 potential temperature

and salinity anomalies onto the truncated set of EOFs. The truncation threshold is picked

at an arbitrary point, at which the reconstruction loses a small amount (∼3 %) of variance

explained, retaining half of the EOF modes (360 out of 720). After the truncation, the

reconstruction retains 40 % of variance explained as compared to the original ORAS4

reanalysis.

3) Assimilation and initialization of hindcasts: To produce coupled initial conditions

for decadal hindcasts, the assimilation runs are performed for Octobers over the period

1960-2015. Here, potential temperature and salinity fields are nudged toward the re-

constructed ORAS4 anomalies added to the climatology from a historical simulation.

The ERA-40/ERA-Interim October states are nudged into the atmospheric component

of MPI-ESM using the methodology described for Preop-LR (see Section 2.1). Different

to Preop-LR, the FAI assimilation run requires restarts from a historical simulation on
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the 30th of September of each year over the whole initialization period. The feasibility of

1-month assimilation as compared to conventional 12-months assimilation has previously

been tested in that non-filtered Preop-LR-like experiments (nudging run and ensembles

of initialized hindcasts) were carried out with 1-month nudging similar to FAI setup. En-

sembles of the FAI hindcasts are started every year over 1960-2015, and are 10 years and

2 months long with 10 ensemble members (Table 1). As with Preop-LR, FAI uses lagged

initialization to generate an ensemble of predictions. However, there are some differences

in detail: Because the FAI assimilation runs are one-month long, initial conditions are

sampled from 9-days long free runs following each assimilation.

2.2.3. Model Initialization by Partially Coupled Spin-up (MODINI)

MODINI is proposed considering the importance of dynamically balanced ocean-

atmosphere initial conditions in the equatorial oceans. In contrast to a 3-D initialization

of the ocean and atmosphere, this method only uses surface wind-stress anomalies from

the reanalysis to drive the ocean and the sea ice. All other feedbacks are maintained as

in the fully coupled model. The merits of MODINI for the equatorial Pacific skill have

earlier been shown by Thoma et al. [2015] and used as a benchmark to understand the

initialization shock in the first generation of the MiKlip prediction system by Pohlmann

et al. [2017]. These studies emphasize the importance of using high quality wind products

for initialization of decadal predictions. The MODINI experiments are carried out in three

phases:

1) The pre-initialization phase before 1958 consists of three historical simulations

[Müller et al., 2018].

c©2018 American Geophysical Union. All Rights Reserved.



2) Three assimilation runs are initialized from the different historical simulations. Dur-

ing assimilation phase, the ocean and sea ice components of MPI-ESM are forced by the

wind stress anomalies from the atmospheric reanalyses. For the period 1958-1989, the

wind-stress anomalies are estimated from ERA-40 [Uppala et al., 2005] and for 1990-2016

from ERA-Interim [Dee et al., 2011]. Using the bulk formulae of Large and Yeager [2009],

10 m wind velocities from the reanalysis are converted into wind stress. In particular, the

wind stress τττ seen by the ocean model during the initialization is

τττ = τττ(urean)− τττ(urean)clim + τττ(umodel)clim, (1)

where u = (u, v) indicates the horizontal wind velocity from the model, umodel, and from

the reanalysis, urean. Index τ()τ()τ()clim stands for wind stress climatology, which is for the

combined reanalyses computed over the period 1958-2016 and for the model over 1958-

2005. The model climatology is based on the three historical simulations used to initialize

the assimilation runs. All climatologies are seasonally varying monthly means.

3) Initialization of hindcasts: 4 daily lagged ensemble members are generated for each of

the 3 assimilation runs to construct 12 ensemble members in total. Initialized hindcasts are

started yearly from 1960-2015, each hindcast covers 5 years and 2 months (Table 1). The

ensemble members r1(i1–i4)p2, r2(i1–i4)p2 and r3(i1–i2)p2 are used for the comparison

with Preop-LR and the rest of the test-suite.

2.2.4. Ensemble Dispersion Filter (EDF)

The EDF builds on the fact that an ensemble-mean prediction usually has a better skill

than individual realizations. Considering that ensemble members contain predictable sig-

nals and evolved noise from initial perturbations, the ensemble mean will average out

this noise, retaining the predictable component which leads to increased prediction skill
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[Kalnay et al., 2006]. Thus, during model integration, the EDF performs periodic ensem-

ble mean resampling in order to control the ensemble spread. The ensemble resampling

approach in EDF is close to that of jackknife resampling [Quenouille, 1956]. The EDF was

shown to lead to more accurate predictions than those from the MiKlip prediction sys-

tem in terms of global mean and regional temperature, precipitation and winter cyclones

[Kadow et al., 2017].

In more detail, the EDF initialized hindcasts are started from the Preop-LR assimilation

run and are re-initialized every three months. Therefore, the first three months of Preop-

LR and the EDF are identical. Before the fourth month gets started in the EDF, ten new

ensemble members are calculated by ensemble-averaging the full-depth ocean temperature

and the surface air temperature (SAT) from different combinations of 9 ensemble members

chosen from the total set of 10 members. Thereby the temperature spread is largely

reduced, while a certain spread is maintained. The procedure is repeated every three

months over the necessary prediction range (in this study, 5 years; Table 1). Since the

EDF is an add-on procedure, it depends on the underlying initialization strategy, for

which it shifts climate predictions towards the in-run ensemble mean. Within this study,

the EDF is carried out for the above outlined Preop-LR system (see Section 2.1). The

decadal experiments are started on the 1st of November every year over the period 1960-

2015 (Table 1).

2.2.5. Bred Vectors (BV)

Several advanced ensemble generation methods based on oceanic singular vectors and

anomaly transform have earlier been tested for the MiKlip prediction system in a low

resolution configuration by Marini et al. [2016] and Romanova and Hense [2017], respec-
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tively. These studies show that, in the first few lead years, perturbations induced by

the atmospheric noise grow faster than oceanic perturbations, eventually dominating the

contribution to the total ensemble spread in the later lead years. It is also demonstrated

that large-scale ocean perturbations have lower growth rates. Among those, temperature

perturbations have a larger effect on the error growth than salinity perturbations. The

BV method discussed in this study is a follow-up of the method proposed by Toth and

Kalnay [1993] and Keller et al. [2008]. It is designed to represent the dynamical modes in

the variability-active regions and the regions of deep water formation. The advantages of

the BV method are (i) reasonable instability patterns on the climatic timescales in per-

turbation sensitive regions and (ii) energy conservation as no additional energy sources

or sinks are introduced to the perturbation fields. Thus, 10 oceanic bred-vector pertur-

bations for each initialization date are calculated in parallel. For each perturbation, the

following algorithm is implemented:

1) The BV routine starts with a random-noise perturbation applied to the unperturbed

ocean state sampled from the Preop-LR nudging run (see Section 2.1) at a particular

initialization date. Fastest growing errors resulting from the initial perturbation are bred

over 5 iteration steps.

2) At each iteration a one year simulation is carried out, at the end of which the metric

based on a total energy norm is applied to evaluate perturbation growth rates and to

re-scale the perturbation to be used in the following iteration. The total energy norm

contains the zonal and meridional contributions of the oceanic flow to the kinetic energy

(the sum in the first parentheses) and the available potential energy (the term in the

second parentheses):
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∫
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wρ
2ρ0

∫
ρ′2

ρz
dV ), (2)

where, u′ = ui − un, v′ = vi − vn, and ρ′ = ρi − ρn are the velocity and density anomalies,

and indices i, n indicate the two different oceanic state vectors which are compared by

the norm. The weighting coefficients wu, wv and wρ are calculated such that zonal and

meridional kinetic and potential energy components have equal contributions to the total

energy [Keller et al., 2008]. The perturbation is rescaled based on the ratio between the

total energy growth at the initial and the final state of each iteration (a breeding cycle).

The norm constrains initial perturbation to the geographical locations of the total energy

growth. By definition, the norm conserves the energy and does not allow sinks or sources

on global scale, i.e., the total energy is not changed, when the perturbation is added to the

initial state. At the end of the fifth iteration, a further re-scaling coefficient is applied,

which keeps perturbation amplitudes in the range of anomalies from the unperturbed

state.

3) Initialization of hindcasts: Perturbations are added to the ocean potential tempera-

ture, salinity, zonal and meridional velocity fields (u&v) from the Preop-LR nudging run,

from which the initialized hindcasts are started every year on the 1st of November over

1960-2016 and are 10 years and 2 months long (Table 1).

2.3. Verification Metrics and Data

The prediction skill of the test-suite is estimated for surface air temperature (SAT),

sea surface temperature (SST) and ocean heat content in the upper 700 meters (HC700).

To get some insight into the test-suite performance for the Atlantic Meridional Overturn-

ing Circulation (AMOC), we analyze the basin-wide long-term mean, standard deviation
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and the time series at 1000 m depth, 26.5◦N latitude. As verification data sets, we use

HadCRUT4 for SAT [Morice et al., 2012], HadISST1.1 for SST [Rayner et al., 2003], the

NOAA/NODC product for HC700 [Levitus et al., 2012] and RAPID for AMOC at 26◦N

[Smeed et al., 2016].

Within the MiKlip project, a verification tool (www-miklip.dkrz.de/plugins/) was de-

veloped for an ad-hoc evaluation of the MiKlip experiments and their comparison to the

central MiKlip prediction system [plugins from Illing et al., 2014; Kadow et al., 2015;

Stolzenberger et al., 2015, and others]. Prediction skill in terms of correlation and mean

squared error and an assessment of significance level follows the verification framework

proposed by Goddard et al. [2013]. The EnKF is based on full-value initialization and

requires a lead-time dependent bias correction. For a consistent analysis, the same bias

correction procedure is applied to all test-suite experiments. The metrics are applied to

calculate skill at lead years 1 and 2-5, covering the verification period 1962–2016. Thus,

initialized hindcasts started in 1961-2015 are used for lead year 1 analysis and hindcasts

started in 1960-2011 for lead years 2-5. The first two lead months (November and Decem-

ber) of all the initialized hindcasts are not part of the comparison. The skill assessment

is carried out on 10-member ensembles for all the initialization and ensemble generation

methods.

Thus, the following prediction skill metrics are analyzed:

1) The correlation skill, rHO is used, where index O stands for the observational data,

H for the initialized hindcasts at a particular lead time.

2) The mean squared error skill score (MSESS) compares the mean squared error (MSE)

from the test-suite experiment to either the observed climatology or Preop-LR. MSESS
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is derived as 1 − (MSEH/MSER), where index R stands for the reference hindcasts.

The skill score has a range from -∞ to +1 and indicates improvements for the test-suite

hindcasts (or the reference) in case of positive MSESS (or negative MSESS) values.

3) Evaluating ensemble prediction systems, it is common to compare the mean squared

error of the ensemble mean prediction, MSEH , with the average ensemble variance, σ2
H

[Fortin et al., 2014, and references therein]. If the ensemble variance is smaller (larger)

than the mean squared error, the ensemble is considered to be underdispersive (overdis-

persive). As predictions are known to struggle accounting for all sources of uncertainties

(due to initial state, model formulations and external forcing), they might show under-

dispersive ensemble spread. If an ensemble prediction has a perfect spread-to-error ratio

(i.e., it equals one), this means that the ensemble spread is as large as the typical error

between a single ensemble member and observations (
√
σ2
H =

√
MSEH). In this case,

the ensemble spread is considered to be representative of uncertainties in the prediction.

At the same time, the spread-to-error ratio does not indicate that the prediction error

is small (for accurate prediction). For instance, the spread-to-error ratio can also equal

one if a prediction system is characterized by large errors and large spread. Because of

the latter, additionally to the common spread-to-error ratio, it is suggested to consider

the metrics that describe characteristics of the predictions systems based on actual and

potential prediction skill. The spread-to-error ratio in some studies is also known as the

ensemble spread score [ESS, Keller et al., 2011]. The ESS for the standardized variables

can be defined as a function of the correlation coefficient (actual prediction skill) and

the common variance of ensemble predictions, p (a measure of sharpness or potential
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prediction skill):

ESS =
1− p

p+ 1− 2 · rHO ·
√
p
. (3)

Details to the ESS follow the procedure described by Glowienka-Hense et al. [2018] and

are briefly summarized in the Appendix A Ensemble Spread Score Derivation. An ESS

of 1 indicates an optimal ensemble spread (with a flat analysis rank histogram) with the

correlation being equal to
√
p. Values less than 1 suggest that the ensemble is too sharp

(ensemble members evolve close to each other), which might be due to the ensemble

generation procedure or due to model deficiencies. It is expected that a reduction in

sharpness must lead to a reduction of correlation. Then reliability of an ensemble spread

is inferred from a balance between the two terms. Also for this metric, there can be the

case of ESS = 1 when an ensemble shows no potential predictability (p = 0).

3. Results

3.1. Prediction Skill for Surface Air Temperature (SAT) and the upper-ocean

heat content (HC700)

The SAT prediction skill from the reference system Preop-LR in terms of correlation

coefficients and MSESS with respect to HadCRUT4 climatology for lead years 2-5 is

shown in Figs. 1-2. A comparison of correlation and MSE skill from the test-suite versus

Preop-LR is shown in terms of correlation skill differences to Preop-LR (Fig. 1) and

MSESS (Fig. 2), respectively. Apart from the eastern and central Pacific Ocean and the

frontal area of the western-boundary currents, Preop-LR correlates well with SAT from

the HadCRUT4 verification data set (Fig. 1). In the Pacific Ocean, there is an area

of reduced skill in lead years 2-5 resembling a characteristic oscillation pattern, i.e., the

Pacific Decadal Oscillation. Though all the test-suite methods show significant correlation
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differences to Preop-LR in this area of the Pacific Ocean as estimated with the bootstrap

method (Fig. 1), the correlation skill itself becomes significant only in the EnKF and FAI

over the northern North Pacific and the central tropical Pacific and in the EnKF over the

North Atlantic (Fig. S1).

A reduction of MSE as compared to Preop-LR accompanies correlation skill improve-

ments in the eastern tropical Pacific (Fig. 2). Here, FAI, the EnKF and MODINI have

the highest impact on the MSE as compared to Preop-LR. Further improvements are

shown by FAI in the Gulf of Alaska and in the subtropical North Atlantic. Over the con-

tinents, the EnKF shows overall better MSE skill than Preop-LR. However, there are also

large areas in the extratropics where the EnKF hindcasts are significantly outperformed

by Preop-LR, which might be associated with an overestimation of variability strength

in the EnKF ensemble as discussed by Brune et al. [2018]. In comparison with Preop-

LR, MODINI shows large areas with reduced MSE skill, in particular in the tropics and

the North Atlantic. The BV and EDF show some modest improvements in the eastern

tropical Pacific and the subpolar North Atlantic as well.

Due to slow dynamics of the ocean and its large thermal capacity, the ocean is widely

recognized as the memory of the climate system on decadal timescales [Meehl et al., 2009;

Yeager and Robson, 2017; Yeager et al., 2018]. In the following, we would like to evaluate

whether the test-suite shows an impact on the predictability of ocean heat content in

the upper 700 meters (HC700; Fig. 3). Overall, in comparison to Preop-LR, the EnKF

and FAI reveal better agreement with the NOAA/NODC heat content in the eastern and

central Pacific Ocean. However, the EnKF shows negative correlation along the Canary

Current and the Indian Ocean. In the Arctic Ocean, Preop-LR shows negative correlation
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already in the first lead year (not shown). Also small areas of reduced skill in the first

lead year grow in size in the following lead years in the central Pacific, the North Atlantic

between 40◦N and 50◦N latitudes and the tropical Atlantic. The EDF and the BV, which

build on the Preop-LR assimilation, inherit low skill areas of Preop-LR.

From the comparison of the prediction skill for SAT and HC700, two regions stand

out where several test-suite methods bring the highest improvements: the North Atlantic

Ocean and the central Pacific Ocean. In the following sections we take a closer look at

these regions.

3.2. Skill for the Nino3.4 Region

Even though there are indications of temperature skill improvements in the tropical Pa-

cific at lead years 2-5 (Fig. 1), the skill itself passes the significance test only in few places

from the EnKF and FAI (Fig. S1). As the equatorial Pacific Ocean is characterized by

strong interannual variability, we consider whether the test-suite also shows improvement

for this timescale. The El Niño-Southern Oscillation (ENSO) is the dominant source of

predictability at seasonal-to-interannual timescales. Various studies report that surface

temperature anomalies in the tropical Pacific associated with ENSO have prediction skill

up to one lead year [Kumar et al., 2017, and the references therein].

We show sea surface temperature (SST) time series of the Nino3.4 region for the first

lead year in Fig. 4. Though visually Preop-LR seems to follow closely HadISST1.1, the

correlation coefficient amounts only to 0.56. Initialized hindcasts seem sometimes to lag

the verification data set by one year. MODINI, which specifically targets to improve skill

in the equatorial Pacific, shows larger amplitude of the ocean surface temperature response

as compared to other procedures. Here and in the next section, we prefer to show the
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accuracy skill in terms of the root-mean-square error (RMSE) rather than MSE, as the

former has same units as the variable shown in the time series. Also to get an impression

about the tolerable range of RMSE, it is compared with the standard deviation in the time

series of the verification data set (STDobs). Overall, the range of correlation coefficients

varies from 0.42 to 0.65. The correlation coefficients are higher and RMSE are smaller

than in Preop-LR for FAI, the EnKF and the EDF, whereas the reverse is true, i.e. the

skill is worse than in Preop-LR for BV and MODINI. This result shows a potential for

the former methods at improving initialization of seasonal-to-interannual forecasts.

3.3. Skill for the North Atlantic Ocean

The North Atlantic subpolar gyre (SPG) is one of the key regions where initialization

brings the most of improvements for the prediction skill at decadal timescales [Hermanson

et al., 2014; Kröger et al., 2018; Yeager and Robson, 2017]. We analyze the time series

of SAT and HC700 for the North Atlantic SPG (50◦-60◦N and 65◦W-10◦E). Here we use

the same region as in Kröger et al. [2018] to enable comparison with previous MiKlip

systems. At lead year 1, Preop-LR shows rather high correlation for the SPG SAT, with

the smallest RMSE that cannot be beaten by the other test-suite experiments (Fig. 5).

For lead years 2-5, correlation coefficients for the SPG SAT from the test-suite experi-

ments range from 0.80 to 0.90 (Fig. 6). Preop-LR shows a correlation value of 0.85. The

FAI hindcasts follow closely the trend from historical simulations (not shown), also the

multi-decadal variability in FAI is smaller than in the other initialized experiments. The

variability from MODINI, evolving on top of the upward trend, provides relatively high

correlation skill. The EnKF overestimates the SPG SAT changes in the 1970s and the
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2000s. Overall, EnKF, BV and EDF slightly increase correlation for the North Atlantic

SPG SAT as compared to Preop-LR.

Previous MiKlip systems showed some disagreements in the prediction skill over the

North Atlantic SPG [based on full field versus anomaly initialization methods, Marotzke

et al., 2016]. Later Kröger et al. [2018] demonstrated that this region is sensitive to

the initialization strategy and initial conditions which can cause an initialization shock

of different extent. The authors also suggest that, in the case of a severe initialization

shock, the problem can be detected in the assimilation run alone by analyzing time series

of the regional ocean heat budget. In the first lead year, all the test-suite hindcasts

demonstrate a cooling trend before the 1990s and a warming trend thereafter suggesting

realistic HC700 changes (not shown). For lead years 2-5 (Fig. 7), all but the EnKF

underrepresent the 1970s cooling. The EnKF simulates stronger variability than what is

shown in the verification data set. FAI shows variations evolving on top of the upward

trend, which is similar to the trend of historical simulations (not shown). MODINI shows

large RMSE and no correlation for the SPG HC700, but, with a lag of about 3 years, has

an evolution similar to the NOAA/NODC product with cooling in the 1970s and warming

after 2000. Preop-LR and the EDF and to a smaller extent BV and FAI show a “spike”

around 2005. A similar “spike” is also present in the study by Marotzke et al. [2016] for

sea surface temperature and by Kröger et al. [2018] for HC700 for the previous MiKlip

systems. It comes from hindcasts started in 2000 and 2001. For these initialization cases,

the BV and FAI hindcasts show cooler SPG HC700 than in the verification data set,

and Preop-LR and the EDF show a decrease of the SPG HC700 (Fig. S3). The EnKF

hindcasts show an increase in HC700 for these start cases. Since Preop-LR, the EDF,
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the BV and FAI are built on the ORAS4 anomaly nudging, in contrast to the EnKF and

MODINI, this outlier event might be associated with the ORAS4 ocean initialization.

The AMOC variability is one of the important mechanisms for climate variability over

the Atlantic Ocean and Europe [e.g., Delworth et al., 2007; Griffies and Bryan, 1997].

Smith et al. [2013] show that some initialization approaches used for decadal predictions

can distort the AMOC evolution. This could in turn reduce the skill of other climate

variables such as sea surface temperature. We analyze the time series of the AMOC at

26.5◦N latitude (Fig. 8). For all but the EnKF and MODINI experiments, ORAS4 is the

source of the initial states. The ORAS4 AMOC is 3 SV weaker than that of the test-

suite experiments and has a very strong downward trend. Balmaseda et al. [2013] also

suggest that the AMOC in ORAS4 is substantially lower than in the observational data

set RAPID. The EnKF shows a somewhat weaker AMOC than the other experiments

but comparable magnitude of variability and a slight downward trend. MODINI shows

a comparable magnitude of interannual variability and, in contrast to other experiments,

a decrease of the AMOC before the 1990s and an increase thereafter. The AMOC from

Preop-LR, the BV, and the EDF evolves closely in lead year 1. They adopted the major

decadal variability and the downward trend from ORAS4. These are the experiments that

share the same assimilation run. FAI and the historical simulations show less temporal

variability in the ensemble mean than the other experiments. The historical simulations

by design are not constrained with the observational estimates of ocean and atmosphere

state parameters. And it seems that FAI in the North Atlantic does not sufficiently

constrain the ocean state either. This variety of results shows once again how sensitive

hindcasts are in this region to initialization strategies.
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With the increased lead time (lead year 5 in lower panel in Fig. 8), all the test-suite

experiments show less trend and less variability for the ensemble mean AMOC (also

in the basin-wide AMOC variability in Fig. S5). The EDF and Preop-LR show some

intensification of variability after 1990. In terms of the basin-wide long-term mean AMOC,

Preop-LR, the BV, FAI and MODINI show similar AMOC structure including deep-water

and bottom-water cells (Fig. S4). The EnKF and the EDF somewhat deviate from the

expected structure: the EnKF shows a North Atlantic overturning cell that extends to

the ocean bottom. For EDF, the deep-water cell is fractured into isolated cells, which

extend to the bottom (Fig. S4).

We do not estimate any prediction skill for AMOC as observational record appears to

be too short/sparse for a robust skill assessment. Also the ORAS4 ocean reanalysis used

in this study is not an original source of initial states for all of the test-suite experiments,

in order we could use it as the verification data set. Rather, the current AMOC analysis

is carried out to make sure that new initialization methods do not disturb the overturning

circulation into an unusual state. In fact, it shows that (i) the basin-wide AMOC mean

differs in EDF and EnKF from that in other test-suite experiments, and (ii) the test-suite

experiments seem to result in a variety of variability patterns with different strength of

variance, which at 26.5◦N latitude tends to decrease to the level of historical simulation

by lead year 5.

3.4. Ensemble Spread Performance

The spread-to-error diagnostic, which is commonly used to test ensemble spread in

predictions, suggests that Preop-LR and the test-suite largely underestimate the spread of

surface temperature at the beginning of the forecast (lead year 1; Fig. S6). The advanced
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ensemble generation methods such as BV and EnKF increase the first-year spread along

the western-boundary currents and the extratropics. MODINI increases the spread in the

North Atlantic as compared to Preop-LR. The EnKF seems to generate too large spread,

which remains excessive for the later lead years, especially in the extratropics. FAI does

not have impact on the first-year spread but has smaller RMSE than Preop-LR. The EDF

by design reduces spread, but the RMSE is close to that of Preop-LR. For later lead times,

the spread approaches the level of the errors; this feature is common to all the initialized

hindcasts in the test-suite (lead year 5, Fig. S7) except in the EDF. As the spread grows

and catches up with the errors, the spread-to-error ratio approaches optimal (∼ 1) values.

At the same time, we know that the prediction skill diminishes with lead time. In the

following, we attempt to interpret spread skill and prediction skill in parallel.

The ensemble spread score (ESS) for SAT for lead years 2-5 is shown as a function of

the correlation skill and the ensemble sharpness in Fig. 9. The ESS and its components

are calculated for standardized SAT (subtracting the mean and dividing by the standard

deviation) as only then the ESS can be decomposed into these two terms. The Preop-

LR hindcasts at lead years 2-5 are largely underdispersive (ESS < 1) over the ocean

and overdispersive over some parts of the continents. Over large areas of the ocean,

the system is characterized by relatively high sharpness and high correlation skill. If

accurately estimating the first moment rather than the second moment is higher priority,

then an underdispersive ensemble might not be a drawback as long as the system is

characterized by high prediction skill in the region of interest. In Preop-LR, the regions in

the central Pacific and along the western-boundary currents show relatively high sharpness

but low prediction skill. This means that the hindcasts have a relatively high confidence,
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although they do not predict the events seen in observations. In the northeast of the North

Pacific, Preop-LR has rather low sharpness (high ensemble variance and low potential

predictability) and low prediction skill.

Comparing the ESS and its components for the test-suite and for Preop-LR shows

that (i) except for the North Atlantic, the ESS suggests an underdispersive ensemble

over the ocean for all test-suite experiments, (ii) different test-suite experiments modify

somewhat sharpness patterns, and (iii) as already described in Section 3.1 significant skill

improvements are obtained from several test-suite methods in the North Atlantic and

central and eastern Pacific Ocean. In detail, the spread scores of the test-suite experiments

are closer to optimal values than for Preop-LR in the North Atlantic. In this region, the

correlation skill from the test-suite is slightly improved compared to Preop-LR and the

sharpness slightly reduced (ensemble variance increased). The EDF globally and MODINI

in the tropics show increased sharpness. The EDF in the current setup reduces ensemble

spread by design, which might make the method unsuitable for probabilistic forecasts.

However, atmospheric variables such as precipitation and extra-tropical cyclones, which

are not directly modified by EDF, show ensemble spread comparable to Preop-LR [Kadow

et al., 2017]. It is expected that post-processing or in-run methods using more than one

independent bundle of members can improve temperature spread as compared to the

current EDF setup.

Overall, with ESS < 1 the prediction system has larger potential than actual prediction

skill [Glowienka-Hense et al., 2018]. This suggests that the initial ensemble spread from

the current ensemble generation methods is too small or that the overconfidence of the

prediction system comes from the underrepresentation of some real-world processes. The
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result of ESS > 1 as over some parts of the continents might suggest noisy system and

lack of potential predictability. In addition, as was shown by Marini et al. [2016], the

spread diagnostic can erroneously indicate overdispersiveness for ensemble predictions

when spread skill assessment is carried out with respect to a verification data set with

underrepresented variability resulting for instance from smoothed observations.

The reliability analysis is sensitive to the sample size. We boost the ensemble size for the

ESS assessment through the “multi-initialization” ensemble of the test-suite accounting for

50 members (Fig. 9). Expectedly, the “multi-initialization” ensemble reduces sharpness

and increases the ensemble variance. Interestingly, the ESS still suggests that over large

areas of the ocean, the underdispersiveness remains. The exception is the North Atlantic,

where the ensemble becomes notably overdispersive. The deterministic skill which is based

on the ensemble mean further benefits from the large ensemble: as compared to a 10-

member ensemble of Preop-LR, the “multi-initialization” ensemble mean shows globally

increased correlation skill with the biggest improvement over the central and eastern

Pacific Ocean and reduced MSE with the biggest improvement over the North Atlantic

Ocean (Fig. S8).

4. Discussion and Summary

In this paper, through an intercomparison of several initialization and ensemble gener-

ation methods, we intrinsically address challenges that are fundamental for any decadal

prediction system:

(i.) Identifying the importance of dynamical consistency for assimilation/ initialization

methods.

(ii.) Enhancing forecast skill of a predictable component.
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(iii.) Quantifying the impact of uncertainties in the ocean initial state on the skill of

the prediction system.

To this end, five initialization and ensemble generation methods are investigated with

respect to their impact on the skill of decadal prediction in the framework of the German

decadal prediction system “Mittelfristige Klimaprognose” (MiKlip) in form of its low-

resolution configuration (Preop-LR). Three tested methods, the ocean ensemble Kalman

filter (EnKF), the filtered anomaly initialization (FAI) and the initialization using a par-

tially coupled spin-up (MODINI), aim to improve prediction skill by a dynamically con-

sistent assimilation/initialization. Whereas the EnKF and FAI address dynamical consis-

tency between the model and the 3D ocean initial state, MODINI addresses the role of

dynamically balanced initialization at the air-sea interface. The remaining two methods

alter the ensemble generation approach: the ensemble dispersion filter (EDF) shifts the

ocean state toward the ensemble mean during model integration. In contrast, the oceanic

bred vectors (BV) perturb the climate state using the fastest growing modes.

(i.) Results presented above suggest that the EnKF shows the highest correlation skill

improvements for surface air temperature (SAT) predictions. The EnKF skill for the

ocean heat content in the upper 700 meters (HC700) is ambivalent: high skill in the

North Pacific but low skill in the eastern tropical Atlantic and the Indian Ocean. For

the North Atlantic subpolar gyre (SPG), where previous MiKlip initialization attempts

showed that the prediction system is particularly sensitive to initialization [Marotzke et al.,

2016; Kröger et al., 2018], the EnKF hindcasts are able to capture cooling and warming

periods better than the other methods. However, the EnKF shows too strong variability

and overshoots cooling and warming periods, which results in higher mean squared error
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(MSE) than the other test-suite experiments. Thus, further work would be needed on

tuning the EnKF variability. Increasing the horizontal and vertical localization in the

EnKF assimilation scheme increases spatial distribution of information from ocean obser-

vations. In addition, decreasing observational error increases the impact of observations

in comparison to the background model state. Both these sensitivities can be used to

steer the impact of oceanic observations, at the same time ensuring model stability. How-

ever, when increasing localization, the ensemble size has to be increased as well. Another

important aspect is treatment of biases (i.e., difference between model and observations).

In this study, no bias-correction has been applied prior to the EnKF analysis. It is thus

expected that the EnKF method could further benefit from the assimilation of unbiased

observations and larger localization.

The FAI method improves SAT and HC700 correlation and reduces SAT MSE in the Pa-

cific basin, but apparently filters too much of the variability in the North Atlantic Ocean.

In the current experiment, we consider the explained variance in the filtered initial condi-

tions to be rather low (40%). This may suggest that modes of variability of the reanalysis

are not exactly compatible with the modes from the prediction system or that they are

not yet sufficiently sampled by the available data used to construct the EOFs. In this

respect, FAI might benefit from attempting to capture better the variability modes in the

North Atlantic using a larger EOF-basis, using a different weighting method to determine

better the structure of the modes in this region, or using regional (per-basin) EOFs, which

have been shown to perform significantly better in e.g. reconstructing Atlantic sea level

variability [Meyssignac et al., 2012] in comparison to using global EOFs [Carson et al.,

2017]. Apart from this, the FAI-hindcasts show the highest skill for the ENSO region at
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interannual timescales which is associated with the improved zonal momentum balance

in the equatorial Pacific as compared to Preop-LR (not shown) and appear to have a

substantial potential for further improvements in the future.

Given that MODINI only uses the wind stress data for initialization, it compares reason-

ably well with the other initialization methods that are tested here. This holds especially

near the equator where the Coriolis force goes to zero and the balance between the pres-

sure gradient and the wind stress is dominant. In terms of SAT, there is some hint of

an improvement in the eastern Pacific. However, MODINI is outperformed in terms of

the MSE skill, in particular over the tropics and the North Atlantic. This contrasts with

Thoma et al. [2015], who show that MODINI has considerable potential as an initialization

scheme, especially when hindcasting the eastern Pacific, the Pacific Decadal Oscillation

(PDO) and global SAT. The relatively poor performance here is found even when con-

sidering the same hindcast period analyzed by Thoma et al. [2015], that is 1990-2006.

The only differences to the previous study are (i) the wind stress product used for the

initialization [they used the NCEP product from Saha et al., 2010] and (ii) the time pe-

riod over which MODINI initialization is carried out [here 1961-2011 and in Thoma et al.,

2015, 1980-2006]. The former points to the sensitivity of decadal hindcasts to the wind

stress product used for initialization [see also Pohlmann et al., 2017]. Although beyond

the scope of the present study, it would be interesting to test the improved forcing data

set based on ERA-40 described in Brodeau et al. [2010] for the hindcasts started between

1961 and 2000, where the wind speed is rescaled, especially in the tropics, using satellite

measurements.
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(ii.) Enhancing the forecast skill of a predictable component is generally a goal of

all initialization methods. The ensemble dispersion filter (EDF) tested here specifically

attempts to improve an ensemble mean prediction by reducing ensemble spread during

integration. This method is an add-on procedure and thus its performance depends on

the underlying initialization strategy (which is, in this study, same as in Preop-LR). For

SAT and HC700, the EDF is largely mimicking Preop-LR, with some improvements in

terms of correlation and MSE skill in the North Atlantic and the central Pacific Oceans.

To a certain degree (in particular, in the North Atlantic), the EDF experiment is able to

reproduce the results of the predecessor study by Kadow et al. [2017], who implemented

the EDF with 5 ensemble members and 39 start dates. The EDF uses an assumption that

an ensemble-mean prediction usually has a better skill than individual realizations, thus

by averaging out the noise from the ensemble, the predictable component becomes more

visible. However, the ensemble mean might not be a valid prediction in the sense that it

cannot be compared to the single realization that is represented by observations. In addi-

tion, the applicability of the method for predicting extreme events is to be demonstrated,

as rare extreme events could be smoothed out by the ensemble averaging. On the other

hand, spread adjustment implemented during integration could be useful for a prediction

system that suffers from an overdispersive spread. The EDF spread could be rescaled in

the post-processing by the calibration techniques. Also using more than one independent

bundle of members could further be tested to improve the current EDF spread.

(iii.) Two procedures tested here use advanced ocean perturbation methods to account

for ocean initial state uncertainty. The ensemble generation method based on bred vec-

tors (BV) perturbs the ocean state with the fastest growing modes. The EnKF uses an
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assimilation ensemble, from which an ensemble of initialized predictions is started. In the

MiKlip system, throughout all the development stages, the ensembles of decadal predic-

tions were generated by perturbing the initial state using lagged initialization. Though,

several advanced ensemble generation methods based on oceanic singular vectors and

anomaly transform have earlier been tested for the MiKlip prediction system by Marini

et al. [2016] and Romanova et al. [2017], respectively. A recent study by Germe et al.

[2017] reports that lagging the ocean state by a few days might not be sufficient to prop-

erly represent the ocean initial state uncertainties, especially in the deep ocean. There has

been a discussion that underdispersive ensembles (with an underestimated spread) lead

to overconfident climate predictions indicating a necessity to increase ensemble spread

[Palmer , 2000]. Other studies, on the other hand, demonstrate that decadal climate pre-

dictions might only be underdispersive in the first lead years, while thereafter ensembles

actually become overdispersive [Ho et al., 2013; Marini et al., 2016]. In this respect,

the MiKlip prediction system Preop-LR shows narrow spread at the beginning of sur-

face temperature forecasts, but the ensemble spread grows relatively fast as compared to

the root-mean-square error. Both ensemble generation methods, the EnKF and the BV,

increase the spread. However, the EnKF tends to generate too large spread for surface

temperature, especially in the extratropics. The BV in addition shows improvements over

Preop-LR regarding the correlation skill and MSESS for lead years 2-5. In terms of the

computational costs, the BV method requires additional resources for the iterative block,

which depends on the number of iterations. A large number of iterations is required to

obtain a good agreement between the bred vector growth rate and the forecast error, as

shown in the statistical analysis of Yang et al. [2008] for the 1997-98 El-Nino event fore-
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casts. By contrast, we aim at reduction of the computational costs. One way to reduce

the costs is to use orthogonal BV rotation [Wei et al., 2008]. In this case, the iterative

block could be performed only once for one bred vector and the other perturbation pat-

terns could follow the orthogonalization procedure. The excessive spread in the EnKF

can possibly be adjusted through tuning the spread inflation coefficient.

As large portions of the world ocean including the abyss and ice covered regions remain

coarsely sampled by observations and sampling prior to the early 2000s was coarser glob-

ally, ensemble generation for decadal predictions are expected to reflect this uncertainty

in the ocean initial state. In this respect, the test-suite experiments at the beginning

of surface temperature forecasts are largely underdispersive. While the ensemble-spread

growth in decadal predictions might not be as serious an issue as in numerical weather

predictions and seasonal predictions. For instance, the ensemble spread in the test-suite

temperature predictions for the North Atlantic grows relatively fast. Another point is that

decadal prediction studies, attempting to show usefulness to societal needs, often analyze

”user-relevant“ variables like surface temperature and precipitation. For these variables,

the spread is largely dominated by the atmospheric noise [Kleeman et al., 2003; Marini

et al., 2016]. The deep-ocean perturbations at the timescales that are relevant for decadal

predictions are likely to have more effect on the ocean subsurface and the AMOC [Zanna

et al., 2011, 2012]. But these are the variables for which the decadal prediction skill is

still treated with a special caution as the observational records for them are too sparse or

too short to be used for verification [Karspeck et al., 2015].

Also for ensemble reliability diagnostics, the importance of ensemble size should not be

forgotten. In numerical weather predictions, the ensemble consists of about fifty realiza-
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tions [Bauer et al., 2015], while decadal predictions are often carried out with ten or even

fewer ensemble members [Taylor et al., 2012]. For decadal predictions, the experimental

details are often a compromise between the ensemble size, the number of initialization

dates, the length of the prediction and recently model resolution. Ferro et al. [2012];

Sienz et al. [2016]; Benestad et al. [2017]; Yeager et al. [2018] address this trade-off issue

to find solutions for a more effective use of climate information given limited resources

or/and allocating future resources. These studies suggest that with respect to each of the

parameters a saturation level for prediction skill exists beyond which we do not necessarily

gain new information from, for instance, increasing ensemble size or model resolution. A

recent study by Yeager et al. [2018] suggests that about 20 and more members might be

needed to detect robust differences between initialized and un-initialized hindcasts. Sienz

et al. [2016] and Yeager et al. [2018] point out on the relationship between the optimal

ensemble size and signal-to-noise ratio, meaning that some regions and variables might re-

quire larger ensembles. For the EnKF system, a thorough analysis of the unstable-neutral

subspace, e.g. following Carrassi et al. [2018], would help to determine the minimum

number of ensemble members which has to be used for decadal predictions. Alternatively

to a large ensemble from a single model, DelSole et al. [2014] explain why multi-model

ensembles might provide a complementary skill to that obtained from a single model. In

this study we follow recommendations of Sienz et al. [2016] who advises to use at least 10

ensemble members and a verification period long enough to capture complete cycle of the

decadal variation for decadal prediction experiments.

Overall, the comparison of the test-suite experiments leads to the following conclusions

and future work:
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• With respect to goals, all test-suite methods address different issues of the prediction

system; with respect to prediction skill, several test-suite methods show added value for

skill as compared to the reference method. As none of the tested methods is superior

to others with respect to all points, it appears natural therefore to attempt to combine

several methods in a future attempt to further improve the skill of decadal predictions.

• Considered advancements in initialization and ensemble generation show potential to

further improve the prediction skill of the reference Preop-LR system for SAT and HC700

at lead years 1 and 2-5 in the central and eastern Pacific Ocean and the North Atlantic

Ocean.

• It is expected that coupled data assimilation is a potential solution that combines

improving dynamical consistency between model and initial state as well as balanced

initialization between model components [Penny et al., 2017]. Although assimilation in

Preop-LR and the test-suite is carried out within the coupled framework, dynamical con-

sistency in the initialized experiments is still not guaranteed. The EnKF is the first

attempt to initialize the predictions within the MiKlip system with the native data as-

similation system. We recall that the EnKF is the only method here that assimilates ocean

temperature and salinity profiles directly into the prediction system, while still nudging

the atmospheric reanalysis. While the EnKF allows for the transfer of atmospheric infor-

mation into the ocean, it also may introduce biases from the atmospheric reanalysis. All

the other initialization methods utilize ocean and atmosphere reanalyses obtained with a

different model than that used for predictions. MODINI assimilates atmospheric variabil-

ity from the reanalysis into the ocean model by partial coupling. The EnKF and FAI show

the largest differences in the performance to the rest of the methods, both show benefits
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and pitfalls, and are attractive with respect to tackling model consistency. Linking statis-

tical improvements from these methods to concrete physical improvements is still needed

to better understand their performance. Currently, the EnKF is being further tested for

a potential implementation in the operational MiKlip system.

Appendix A: Ensemble Spread Score Derivation

Ensemble Spread Score (ESS) dependence on Pearson’s anomaly correlation and sharp-

ness in terms of analysis of variance (ANOVA) is described in detail by Glowienka-Hense

et al. [2018]. Thus, the ESS can be rationalized as an analytic function of the correlation

coefficient and the common variance of the ensemble members. The total variance in the

ensemble predictions over the whole verification period for a particular lead time can be

expressed as:

σ2
t =

1

M · T

T∑
t=1

M∑
i=1

(Hit −H00)
2 = σ2

e + σ2
a, (A1)

where index t = 1...T stands for the time-point in the verification interval, and i = 1...M

represents the ensemble members of the test-suite experiment. Index 0 indicates that the

variable represents the average value, either over ensemble members or over the verification

interval, or over both (index 00).

The mean of the ensemble variance over the verification interval is calculated as:

σ2
e =

1

M · T

T∑
t=1

M∑
i=1

(Hit −H0t)
2, (A2)

and the variance of the ensemble mean predictions is:

σ2
a =

1

T

T∑
t=1

(H0t −H00)
2. (A3)
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As model sharpness is associated with potential predictability, we use notation p for

the former term. Glowienka-Hense et al. [2018] use the notation ANOV A for p. Further

derivations based on the terms presented above allow finding an expression for the common

variance of the ensemble members, p, and mean squared error, MSE:

MSE = 1
T

∑T
t=1(H0t −Ot)

2 = σ2
a + σ2

o − 2 · rHO · σo · σa + (H00 +O0)
2,

p = σ2
a

σ2
t

=
σ2
t−σ2

e

σ2
t

= 1− σ2
e

σ2
t
,

(A4)

where σ2
o represents variability in the time-series of the verification (observational) data

set and, respectively, O0 represents the long-term mean value.

Standardizing variables with the total long-term mean H00 and O0 and variances σ2
t

and σ2
o results in Ĥ and Ô with:

Ĥ00 = Ô0 = 0,

σ2
t (Ĥ) = σ2

O(Ô) = 1,

σ2
e(Ĥ) = 1− p,

MSE(Ĥ, Ô) = p+ 1− 2 · rHO ·
√
p.

(A5)

Finally, ESS for the normalized variable can be found as:

ESS =
σ2
e

MSE
=

1− p
p+ 1− 2 · rHO ·

√
p
. (A6)

In this relationship, the lower values of sharpness, p, correspond to a broader band of

acceptable balance between model and observations. Whereas, to achieve same statisti-

cal balance with higher values of sharpness, closer correspondence between rHO and p is

required. If ESS < 1, the prediction system has higher potential than actual prediction

skill. If ESS > 1, the prediction system is overdispersive. The approximation based on
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second moment is sensitive to sample size and is valid for large values of T and M . Other-

wise, correction factors for sampling should be used as e.g. in studies by Ho et al. [2013];

Fortin et al. [2014]; Sospedra-Alfonso et al. [2016]. More detail on the ESS dependence

on correlation and sharpness are given by Glowienka-Hense et al. [2018].
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Carson, M., Köhl, A., Stammer, D., Meyssignac, B., Church, J., Schröder, J., Wenzel,

M. and Hamlington, B. (2017), Regional sea level variability and trends, 19602007: A

comparison of sea level reconstructions and ocean syntheses, Journal of Geophysical

Research: Oceans, 122 (11), 9068–9091.

Counillon, F., Keenlyside, N., Bethke, I., Wang, Y., Billeau, S., Shen, M. and Bentsen, M.

(2016), Flow-dependent assimilation of sea surface temperature in isopycnal coordinates

with the Norwegian Climate Prediction Model, Tellus A, 68, 32437.

c©2018 American Geophysical Union. All Rights Reserved.



Dee, D. P., S. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,

M. Balmaseda, G. Balsamo, P. Bauer, et al. (2011), The ERA-Interim reanalysis: Con-

figuration and performance of the data assimilation system, Quarterly Journal of the

Royal Meteorological Society, 137 (656), 553–597.

DelSole, T., Nattala, J., and Tippett, M. K. (2014), Skill improvement from increased

ensemble size and model diversity, Geophysical Research Letters, 41 (20), 7331-7342.

Delworth, T. L., R. Zhang, and M. E. Mann (2007), Decadal to centennial variability of the

Atlantic from observations and models, GEOPHYSICAL MONOGRAPH-AMERICAN

GEOPHYSICAL UNION, 173, 131–148.

Doblas-Reyes, F., M. Balmaseda, A. Weisheimer, and T. Palmer (2011), Decadal climate

prediction with the European Centre for Medium-Range Weather Forecasts coupled

forecast system: Impact of ocean observations, Journal of Geophysical Research: At-

mospheres, 116 (D19).

Fetterer, F., K. Knowles, W. Meier, and M. Savoie (2016), Sea ice index, ver-

sion 2, Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, doi:

http://doi.org/10.7265/N5736NV7.

Ferro, C. A., Jupp, T. E., Lambert, F. H., Huntingford, C., and Cox, P. M (2012),

Model complexity versus ensemble size: allocating resources for climate prediction,

Phil. Trans. R. Soc. A., 370 (1962), 1087–1099.

Fortin, V., M. Abaza, F. Anctil, and R. Turcotte (2014), Why should ensemble spread

match the RMSE of the ensemble mean?, Journal of Hydrometeorology, 15 (4), 1708–

1713.

c©2018 American Geophysical Union. All Rights Reserved.



Germe, S. F., J. Mignot, A. Fedorov, S. Nguyen, and D. Swingedouw (2017), The impacts

of oceanic deep temperature perturbations in the North Atlantic on decadal climate

variability and predictability, Climate Dynamics, doi:10.1007/s00382-017-4016-z

Giorgetta, M. A., J. Jungclaus, C. H. Reick, S. Legutke, J. Bader, M. Böttinger,

V. Brovkin, T. Crueger, M. Esch, K. Fieg, et al. (2013), Climate and carbon cycle

changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercom-

parison Project Phase 5, Journal of Advances in Modeling Earth Systems, 5 (3), 572–597.

Glowienka-Hense, R., A. Hense, T. Spangehl, and M. Schröder (2018), Common metrics
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Kröger, J., H. Pohlmann, F. Sienz, J. Marotzke, J. Baehr, A. Köhl, K. Modali, I. Polkova,
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Table 1. Summary of experiments.

Experiment
Assimilation

Initialized hindcasts* Ensemble generation*

Ocean Atmosphere Sea ice

Preop-LR
Nudging to

ORAS4 T&S
anomalies

Nudging to
ERA40/

ERA-Interim
full field

NSIDC
anomalies

yearly started
over 1960-2016,
10-years long

Lagging
by 1-9 days

after the start date,
10 members

Bred Vectors
(BV)

yearly started from the
Preop-LR assimilation

over 1960-2016,
10-years long

BV-based
perturbations

for T&S, and u&v,
10 members

Ensemble
Dispersion

Filter (EDF)

yearly started from the
Preop-LR assimilation

over 1960-2015, 5-years long.
Re-initialization every 3 months

from the ensemble mean
for T and SAT

EDF,
10 members

Ensemble
Kalman
Filter

(EnKF)

EN4 T&S
full value

no
yearly started

over 1960-2016,
10-years long

EnKF,
16 members

Filtered
anomaly

initialization
(FAI)

1-month nudging to
filtered

ORAS4 T&S
anomalies

1-month nudging to
ERA40/

ERA-Interim
full field

1-month nudging to
NSIDC

anomalies

yearly started
over 1960-2015,
10-years long

Lagging
by 1-9 days

after the start date
10 members

Model
initialization
by partially

coupled
spin-up

(MODINI)

Reanalysis
wind-stress

anomalies seen
by MPIOM

ECHAM6
response

to MPIOM using
the coupled

model dynamics

as for
the ocean

yearly started
over 1960-2015,

5-years long

Lagging
by 1-4 days

from 3 assimilation runs
12 members

*Across the methods, the skill assessment is carried out on 10-member ensembles and the verification period 1962-2016.
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Figure 1. Correlation skill for SAT w.r.t. HadCRUT4 for lead years 2-5 from Preop-LR (top

left panel) and the correlation skill difference between a particular test-suite experiment and

Preop-LR (first, second and third rows). Hindcasts initialized from 1960 to 2011 are evaluated.

Stippling indicates statistical significance estimated with the bootstrap method that the value is

positive at the 95 % confidence level. Areas are masked where time series from the observational

data set contain missing values.
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Figure 2. MSESS for SAT w.r.t. the HadCRUT4 climatology for lead years 2-5 from Preop-LR

(top left panel). MSESS for SAT w.r.t. Preop-LR for the test-suite experiments (first, second

and third rows). Hindcasts initialized from 1960 to 2011 are evaluated. The range of MSESS is

from -∞ to +1. Stippling indicates significant MSESS values as estimated with the bootstrap

method at the 95 % confidence level.
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Figure 3. Correlation skill for HC700 w.r.t. the NOAA/NODC product for lead years 2-5

from Preop-LR (top left panel) and the correlation skill difference between a particular test-suite

experiment and Preop-LR (first, second and third rows). Hindcasts initialized from 1960 to 2011

are evaluated. Stippling indicates statistical significance estimated with the bootstrap method

at the 95 % confidence level.
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Figure 4. Time series of SST anomalies (◦C) averaged over the Nino 3.4 region (5◦S-5◦N

and 170W◦-120◦W) from HadISST1.1 (red) and the ensemble mean hindcasts at lead year one

(blue). Shaded is the range between the minimum and maximum ensemble members. Empty

(filled) circles indicate even (odd) years. ACC is the anomaly correlation coefficient and RMSE

– root mean squared error for the ensemble mean hindcasts which are initialized over the period

1961-2015. STDobs represents variability in the observational data set (in ◦C). ACCsign95%

gives a threshold for significant correlation coefficients. It is assessed using the t-test at 5% level,

using the autocorrelation of the time series to estimate the degrees of freedom.
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Figure 5. Same as in Figure 4 for the North Atlantic subpolar gyre (SPG) SAT in ◦C (50◦-60◦N

and 65◦W-10◦E) from HadCRUT4 (red) and the ensemble mean hindcasts at lead year 1 (blue)

initialized over the period 1961-2015.
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Figure 6. Same as in Figure 4 for the North Atlantic SPG SAT in ◦C from HadCRUT4 (red)

and the ensemble mean hindcasts at lead years 2-5 (blue) initialized over the period 1960-2011.

4-year running mean is applied to the HadCRUT4 data.
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Figure 7. Time series of the North Atlantic SPG OHC (1e+21 J) from NOAA/NODC (red)

and the initialized hindcasts at lead years 2-5 (blue). In bold solid is the ensemble mean and

shading indicates the range of the ensemble members. ACC is the anomaly correlation coefficient

and RMSE – root mean squared error for the ensemble mean initialized hindcasts started over

the period 1960-2011. 4-year running mean is applied to the NOAA/NODC data. STDobs

represents variability in the observational data set. ACCsign95% gives a threshold for significant

correlation coefficients, it is estimated using the t-test at 5% level, using the autocorrelation of

the time series to estimate the degrees of freedom.
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Figure 8. The time series of the Atlantic meridional overturning circulation (in SV) at 26.5◦N

latitude 1000 m depth from the initialized hindcasts (Preop-LR - black, the EnKF - blue, the BV

- yellow, FAI - cyan, MODINI - magenta and the EDF - green) in the 1st (upper panel) and 5th

(lower panel) lead years and the un-initialized historical simulation (green dashed), the ORAS4

reanalysis (red dashed) and the RAPID observations (red solid).
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Figure 9. Correlation (rHO×|rHO|; first column) and sharpness (p, second column) according to the
decomposition of ESS (third column) for standardized SAT at lead years 2-5 from Preop-LR and the
test-suite experiments. Skill is assessed w.r.t. HadCRUT4 for hindcasts initialized from 1960 to 2011.
Stippling on correlation patterns indicates statistical significance at the 95 % confidence level.
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