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Resumo

São cada vez mais recorrentes as intrusões cibernéticas que afetam organizações e empre-
sas, resultando em falhas de infraestruturas crı́ticas, fuga de informação sensı́vel e perdas
monetárias. Com um aumento de ameaças à confidencialidade, integridade e disponibi-
lidade dos dados, as organizações procuram informações relevantes e atempadas sobre
potenciais ameaças cibernéticas à sua infraestrutura.

Esta aquisição de informação é normalmente feita por um Centro de Operações de
Segurança que tem por objetivo detetar e reagir a incidentes de segurança. Porém as suas
capacidades de reação dependem da informação útil e atempada que este recebe sobre
ameaças cibernéticas, atualizações de software urgentes e descobertas de vulnerabilida-
des. Para tal é necessário ter acesso a uma plataforma que seja ágil e capaz de agregar
diversas fontes de dados.

Ainda que a abordagem possa utilizar outras fontes de dados, o Twitter age como
agregador natural de informação, sendo possı́vel encontrar especialistas, companhias de
segurança e até grupos de hackers que partilham informação sobre cibersegurança. Este
fluxo de informação pode ser aproveitado por uma equipa de cibersegurança para obter
informação atempada sobre possı́veis ameaças cibernéticas.

No entanto, mesmo focando em contas de interesse, é necessário implementar um
sistema que consiga selecionar apenas os tweets que contêm informação relevante so-
bre a segurança de ativos presentes na infraestrutura que se quer monitorizar. Devido ao
elevado fluxo de dados, da necessidade de um algoritmo eficiente e escalável, e da capaci-
dade de adaptar o algoritmo a uma determinada infraestrutura, procurámos implementar
algoritmos de aprendizagem profunda, que pertencem ao subconjunto de algoritmos de
aprendizagem automática.

Aprendizagem automática (Machine learning) é uma área no domı́nio de Inteligência
Artificial que procura desenvolver algoritmos capazes de, sem intervenção direta de um
agente humano, ajustar os seus parâmetros para desempenhar com maior eficácia uma
determinada tarefa. Por vezes, estes algoritmos são capazes de alcançar desempenho
superior à de um agente humano que fosse efetuar uma mesma tarefa. Normalmente tais
tarefas são repetitivas e envolvem uma quantidade exuberante de dados.

Aprendizagem profunda (Deep learning) é uma subárea de aprendizagem automática
que tem vindo a receber atenção devido às suas capacidades. De forma geral esta é uma
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área, que recorrendo aos avanços no poder de computação e da quantidade crescente de
dados, é capaz de treinar redes neuronais que contêm várias camadas. Este tipo de redes
neuronais são usualmente chamadas de redes profundas (deep) e distinguem-se das redes
mais tradicionais que agora se consideram de rasas (shallow). Redes neuronais rasas
normalmente contêm apenas uma ou duas camadas escondidas e uma camada de saı́da.
Cada camada é composta por neurónios inter-conectados que normalmente possuem a
mesma funcionalidade. Por outro lado, as redes neuronais profundas tendem a possuir
mais camadas escondidas, com diferentes camadas funcionais.

Dois tipos de redes profundas que são frequentemente utilizadas são as redes neuro-
nais convolucionais e as redes neuronais recorrentes. Redes neuronais convolucionais são
frequentemente utilizadas para tarefas de visão computacional devido à sua capacidade
de processamento espacial. Dado uma tarefa e um conjunto de dados, este tipo de rede é
capaz de aprender automaticamente várias caracterı́sticas e padrões de uma imagem. Este
tipo de arquitetura também pode ser aplicado a tarefas de processamento de texto, sendo
capaz de captar relações entre diferentes sequências de palavras. O outro tipo de rede
neuronal que tem obtido excelentes resultados são as redes neuronais recorrentes. Estas
são frequentemente utilizadas para tarefas que envolvam uma dimensão temporal, como
por exemplo o processamento de voz ou de texto. Ao contrário das redes já descritas,
as redes neuronais recorrentes possuem um estado interno que age como a sua memória.
Este estado de memória é uma camada de neurónios que mantém a sua ativação ao longo
de uma determinada sequência. Por exemplo, na tarefa de processamento de texto, a rede
neuronal recorrente irá receber uma palavra de cada vez. Ao processar uma palavra o es-
tado dos neurónios que constituem uma camada da rede é mantido para o processamento
da próxima palavra.

O trabalho realizado nesta dissertação visa melhorar e estender as capacidades de um
sistema, atualmente em desenvolvimento, através de algoritmos de aprendizagem pro-
funda. O sistema atual é capaz de receber tweets e através de um classificador baseado em
máquinas de vetores de suporte, selecionar os que contêm informação relevante. Apresen-
tamos duas redes neuronais, sendo a primeira uma alternativa ao classificador existente
e a segunda um complemento que permite a extração de informação relevante de uma
tweet.

A primeira contribuição deste trabalho é a implementação de uma rede neuronal con-
volucional como alternativa ao classificador de máquinas de vetores de suporte. Ao in-
serir uma tweet na rede, cada palavra é convertida num vetor numérico que contem uma
representação semântica. Após a camada de conversão temos a camada convolucional.
Esta camada irá produzir mapas de caracterı́sticas que reportam sobre a existência ou
ausência de uma dada caracterı́stica na tweet através da ativação dos seus neurónios.
Depois, cada mapa de caracterı́sticas é reduzido ao seu valor mais elevado, este valor
refere-se às ativações dos neurónios que estão inseridos na camada convolucional. Esta
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operação permite reduzir a complexidade computacional e eliminar informação redun-
dante. Por fim, a camada de saı́da contem uma função de ativação do tipo sigmoide
(softmax) que permite classificar um tweet como sendo positivo (contem informação re-
levante sobre ameaças de segurança) ou negativo (não contem informação relevante). Em
comparação ao classificador baseado em máquinas de vetores de suporte, o nosso clas-
sificador mostra resultados superiores, nomeadamente na redução do número de falsos
positivos. A segunda parte deste trabalho envolve a implementação de um modelo de
reconhecimento de entidades nomeadas para extrair informação relevante dos tweets que
possa ser utilizada para o preenchimento de um alerta de segurança ou um indicador de
compromisso. Para este fim, utilizámos uma rede neuronal bidirecional de memória longa
de curto prazo, um tipo de rede neuronal recorrente, e definimos 5 entidades que quere-
mos encontrar (organização, produto, versões, ameaças e identificadores de repositórios
de vulnerabilidades) mais uma entidade para a informação não relevante.

A primeira camada desta rede é semelhante à do classificador. No entanto, este modelo
contém uma camada opcional, igual à camada de conversão, que usa os carateres das
palavras para criar uma matriz. Desta forma, cada palavra é representada por uma matriz
em que cada vetor representa o valor semântico de um caracter. Este conjunto de vetores é
enviado para uma rede neuronal bidirecional de memória longa de curto prazo secundária.
A rede recebe um vetor de cada vez e no final produz um vetor que corresponde ao estado
interno que representa o contexto da palavra com base nos carateres. Esta representação é
adicionada ao vetor numérico da palavra de forma a enriquecer a sua representação final.
Depois, os vetores são enviados para a rede neuronal bidirecional de memória longa de
curto prazo principal. Ao contrário da rede anterior em que apenas se extraiu o ultimo
estado, nesta rede extraı́mos o estado a cada intervalo de tempo (a cada palavra de uma
tweet). Por fim, temos a camada de saı́da onde uma matriz de pontuações n× k é criada.
Nesta matriz, n é o número de palavras que constituiem a frase e k o número de entidades
distintas que podem ser atribuı́das a uma palavra. A atribuição de uma entidade a cada
palavra é feita selecionando a entidade com a pontuação mais alta. Porém, este método
não considera as palavras vizinhas quando atribui uma entidade. Um módulo opcional
chamado campos aleatórios condicionais é capaz de calcular uma pontuação para uma
sequência inteira de entidades através da criação de uma matriz k×k, sendo k o número de
entidades, que automaticamente irá aprender pontuações para a transição de uma entidade
para outra. Este processo permite que o modelo seja capaz de tomar em conta não só o
contexto de uma palavra mas também o contexto das palavras vizinhas. O modelo obteve
bons resultados, ambas as métricas como a média harmónica F1 e a exatidão obtiveram
resultados superiores a 90%, apresentando-se como uma forma viável para um sistema de
extração de informação relevante sobre cibersegurança.

Palavras-chave: redes neuronais, aprendizagem profunda, deteção de ameaças de
segurança, redes convolucionais, redes neuronais recorrentes

vii





Abstract

The cyberspace is facing a challenge regarding the increasing security threats that tar-
get companies, organizations and governments. These threats cause the failure of critical
infrastructures, disclosure of private information and monetary losses.

In order to guard and be prepared against cyber-attacks, a security analyst ought to
be properly informed of the latest software updates, vulnerability disclosures and current
cyber-threats. This requires access to a vast feed of information from various sources.
One option is to pay for the access to such services. However Open Source Intelligence,
which is freely available on the internet, presents a valuable alternative, specifically social
media platforms such as Twitter, which are natural aggregators of information.

In this dissertation, we present a pipeline that aims to improve and expand the capa-
bilities of a cyberthreat discovery tool currently in development. This tool is capable of
gathering, processing, and presenting security related tweets.

For this purpose, we developed two neural networks. The first is a binary classifier
based on a Convolutional Neural Network architecture. This classifier is able to identify
if a tweet contains security related information about a monitored infrastructure. Once
a tweet is classified as containing relevant information, it is forwarded to a Named En-
tity Recognition model. This model is implemented by a Bidirectional Long Short-Term
Memory network and aims to locate and identify pre-defined entities in a tweet that may
be used for a security alert or to fill an Indicator of Compromise.

Our classifier achieves favourable results: comparing to the current Support Vector
Machine binary classifier it achieves equal or superior True Positive Rate and significantly
better True Negative Rate. On the other hand, our Named Entity Recognition model is also
capable of achieving great results, presenting an efficient method of extracting important
information from security related text, with results above 90%.

Keywords: neural networks, deep learning, threat detection, convolutional neural
networks, recurrent neural networks
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Chapter 1

Introduction

Threat intelligence is a matter of most importance for a Security Operations Centre (SOC)
which seeks to monitor, maintain and secure an infrastructure. The capabilities of a SOC
depend heavily on its ability to be informed about the most recent software updates,
patches, mitigation measures, vulnerability disclosures and current cyber-threats. Cur-
rently, Security Information and Event Management (SIEM) systems are used to collect
and analyse data from multiple sources, identify potential threats and take the appropriate
security measures. However, these processes are not efficient or optimized. SOC analysts
try to be up to date about cybersecurity through multiple Open Source Intelligence (OS-
INT) feeds, which may be a tedious and time-consuming endeavour, with no guarantees
that the information will be relevant to the infrastructure under the SOC’s concern.

Threat intelligence systems are still limited in their capabilities of collecting and pro-
cessing (OSINT). The European Network and Information Security Agency (ENISA) re-
leased a report on the opportunities and limitations of current threat intelligence plat-
forms [20]. Due to vast volumes of data, that currently lead to difficulties in finding
useful information, ENISA argues for the use of advanced analytic capabilities to gener-
ate complex relations, automatic tagging and classification of data. Current research has
shown that OSINT provides useful information to create security alerts and Indicators of
Compromise (IoC) [46, 48, 62].

Twitter is a social media site, acting as a natural aggregator of information due to their
large and diverse pool of users, ease of accessibility, timeliness, and the large volumes of
data it produces. These properties remain true in regards to the network and information
security field. From security researchers, companies, enthusiasts, and hacker groups, there
is a rich and timely flow of security-related data. Recently, a Twitter user made public
a zero day vulnerability, providing a proof-of-concept exploit, in Microsoft Windows’
task scheduler.1 The exploit was only made officially public on the 9th of September but
the original tweet was posted on the 24th of August.2 Sabottke et al.[62] classified such

1https://www.zdnet.com/article/windows-zero-day-vulnerability-disclosed-through-twitter/
2https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8440
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Chapter 1. Introduction 2

events, when a vulnerability is disclosed ahead of time before the official disclosure or an
official patch, into three categories regarding their origin: disagreements about the panned
disclosure date, coordination of the response to vulnerabilities in open-source software,
and leaks from the coordinated disclosure process. Events like these, although not too
frequent, are a concern, as there is a window of opportunity for an informed attacker to
attempt the exploitation of a flaw.

The H2020 project Diversity Enhancements for Security Information and Event Man-
agement (DiSIEM) aims to tackle the challenges of collecting, processing and summa-
rizing threat-related information from OSINT [18]. In this project, there is a Twitter
cyberthreat detection framework currently in development which is capable of receiving
data from Twitter, select the tweets which potentially contain relevant information and
present these to a security analyst. The framework uses a binary classifier based on a
Support Vector Machine (SVM) [14] to identify security-related tweets about pre-defined
assets of an ICT infrastructure and then reduces the volume of information by clustering
the security-related tweets.

The work presented in this thesis was developed in the context of the DiSIEM project,
with the aim of exploring the potential of recent developments in Machine Learning
(ML) to improve the classifier’s performance and extend the end-to-end capabilities of
the framework. In this context, we report on the development of Deep Learning (DL)
neural network models to classify tweets as relevant or not to an ICT asset, and to per-
form Named Entity Recognition (NER) to extract useful information that can enrich IoCs.
Besides improving IoCs, this information could be employed to improve a clustering stage
that is currently used.

These neural network models are capable of computing features and patterns to solve
a given complex task without the need to be specifically programmed to. Such complex
tasks were previously done in part either by a human or by a long task-specific algorithm
or were simply too taxing and complex for either option. The work developed in this thesis
used a dataset related to an hypothetical ICT infrastructure and was further validated using
datasets related to three real ICT infrastructures specified by three industrial partners of
the DiSIEM project.

1.1 Motivation

The ability to efficiently collect and process OSINT is an important requirement for a
modern SIEM system. Security analysts strive for awareness of the most relevant threats,
security updates and adversarial campaigns that may be relevant for the ICT infrastructure
they desire to monitor and secure. In order to do this, we require scalable algorithms
capable of receiving large amounts of data and outputting timely, succinct and relevant
security alerts. Collecting and processing OSINT is a fundamental approach in order to
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be aware of the current threats in the cyberspace.

The tools and frameworks developed to aid in these endeavours should take advantage
of state-of-the-art algorithms that have achieved great results in other fields. The task of
collecting and processing text from OSINT and extracting relevant insight belongs to the
Natural Language Processing (NLP) field. Recently, this field has received a boost in its
capabilities thanks to the advances in DL.

The work described in this document is part of the DiSIEM project and as such shares
the same motivations. More specifically for our contribution, we seek to improve the
quality of the classifiers used to select tweets containing relevant information and provide
a valid option of extracting information from these relevant tweets.

1.2 Objectives

The purpose of this dissertation is to improve and expand the capabilities of a Twitter
cyberthreat detection system currently being developed in the DiSIEM project and to
evaluate the applicability of DL and NLP methods in the realm of cybersecurity intelli-
gence.

The system currently being developed is capable of receiving, processing and present-
ing tweets which contain relevant information regarding cyber-threats. It aims to provide
relevant information to an analyst while avoiding presenting irrelevant information. The
binary classifier being used in this framework is based on a SVM [14] algorithm and is
used to identify the tweets containing valuable information. We seek to provide a DL
alternative through the implementation of a Convolutional Neural Network (CNN) ar-
chitecture for sentence classification [41]. Overall, we aim to build a classifier which is
capable of selecting relevant tweets while achieving misclassification results as low as
possible.

Regarding the expansion of the framework’s current capabilities, we require a scalable
and efficient method for extracting information from relevant tweets. A popular subtask
of information extraction is NER, which seeks to locate and classify entities in a corpus of
text. For this purpose we developed a Bidirectional Long Short-Term Memory (BiLSTM)
neural architecture [45].

Besides fine-tuning the hyperparameters and design variables of both models, we
study several architectural variations in order to extract knowledge about the applica-
tions of DL in the information security field. This work aims to guide future research and
development of neural architectures for processing computer security-related text.
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1.3 Contributions

We present an overview of the implementation of DL algorithms for the tasks of text
classification and information extraction through named entity recognition. We explore
in detail the architectures of two neural networks, the CNN and the BiLSTM, evaluating
several configurable components, such as the design variables and hyperparameters. The
evaluation procedure included an experimental dataset that has been previously used to
train and evaluate a previous SVM classifier and a CNN classifier [4]. We use this dataset
to both explore the configurable parameters and to evaluate our classifier against the SVM
counter-part. Additionally, we manually labelled the experimental dataset such that we
could train and evaluate a NER model. Due to the lack of alternatives, we do not compare
this model with other approaches. However, we do perform a thorough exploration of
the design variables in order to demonstrate that our approach is efficient and a valuable
addition to the threat detection framework, namely in terms of IoC generation.

Besides the experimental dataset, we also present results obtained in three industrial
case studies where we have taken specifications of ICT infrastructures from three partners
of the DiSIEM project and demonstrate that our solutions are capable of obtaining great
results in a real-word based scenario.

Our main contributions can be summarized as an improvement and an extension of
a cyberthreat discovery tool through implementation of DL algorithms evaluated in the
context of three industrial case studies. The system developed in this work is capable of
receiving small pieces of text (e.g. a tweet), determine its relevance to an asset’s security
and, if deemed relevant, extract useful information in order to launch a security alert or
improve an IoC. Besides providing an efficient processing pipeline, the solution presented
in this dissertation is scalable and easily trainable. It only requires sets of labelled data,
thus not requiring any manual feature extraction.

The work developed in this thesis allowed for the elaboration of a poster presented
at the 3rd edition of the LASIGE Workshop where it received the best poster award3

and a publication of a regular paper [17] at the 10th INForum - Simpósio de Informática
(INForum 2018) with a nomination for best paper4.

1.4 Document Structure

Chapter 2 elaborates on some of the main ideas behind our research and how it compares
to similar work that has tackled security related information extraction from OSINT. We
also define several notions that surround the technological effort of this dissertation such
as artificial intelligence, machine learning, deep learning, neural networks, convolutional
neural networks, recurrent neural networks and long short-term memory networks. In the

3https://lasige.di.fc.ul.pt/node/3360
4http://inforum.org.pt/INForum2018/premios-inforum
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end, we provide an overview of the tools used for this project, namely the DL framework
used to implement the NN architectures.

Chapter 3 lays out the pipeline that has been implemented. The objective of this sec-
tion is to provide an overview of the overall architecture. We detail the flow of information
as it goes through each block of our solution and how data is processed and transformed
in each NN architecture.

In Chapter 4, we explore the architectural variations and fine-tune hyperparameters in
attempt to obtain the best performance possible. We display our experiments and discuss
the results. Then, we test our architecture on three different sets of data related to Infor-
mation and Communications Technology (ICT) infrastructures of three companies from
the DiSIEM project consortium. Closing the chapter, we discuss the results obtained and
summarize the knowledge extracted from our experimentation.

Finally, in Chapter 5 we elaborate on the results achieved in the previous sections, how
our solution performs and how viable it could be in a real world scenario. Furthermore,
we elaborate on our future plans regarding research, deployment and overall improvement
of the architecture’s capabilities.





Chapter 2

Background and Related Work

In this chapter we brief on the technology and algorithms that lay the foundation for the
work developed in this dissertation. We describe the basic architecture of the neural net-
works we developed for our tasks and we review and discuss previous work on cyberthreat
intelligence and the application of deep learning techniques for NLP tasks.

2.1 Artificial Intelligence

Throughout history there have been some ideas that could be interpreted as a desire to
create an artificial intelligent being, capable of advanced thinking, similar or superior to
that of a human being.

However, the actual birth of Artificial Intelligence as a research field is set in 1956 at
the Dartmouth Conference. One of the objectives of this field is to achieve the Artificial
General Intelligence (AGI), a machine capable of reasoning and performing any intellec-
tual task that a human being can, without being specifically programmed to do so. This
is the goal of many research-focused organizations that have made great advancements in
the field of AI [15, 54].

While the road to this goal has not yet been revealed, modern applications of AI fall
into the “Narrow Artificial Intelligence” category. These machines are capable of learning
to perform a specific task as well as humans or even better, when given enough examples
to train upon.

The algorithms used in this dissertation fall into this category. We intend to cre-
ate a system that, through labelled datasets, learns how to identify tweets which contain
information about a potential threat to the infrastructure and then extract some specific
elements to fill a security alert or an IoC.

2.1.1 Machine Learning

Machine Learning is currently the field of AI where most research is being done. As the
name suggests, the machine is meant to “learn” about a given task. In the case of NNs, this

7
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Figure 2.1: General Architecture of a Neural Network [37]. A 3-layer neural network
with three inputs, two hidden layers of 4 neurons each and one output layer.

learning process involves numerous training examples where the NN machine attempts to
perform a task, such as classification, and depending on how far its predictions were, it
will adjust its internal parameters in order to improve its accuracy. Once the machine is
trained, it is capable of classifying new data, making predictions and even generating new
samples. All of this without the need to write extensive code, detailing every routine or
set of instructions.

There are many approaches in this field, Decision trees [58], Support Vector Ma-
chines [14], Clustering techniques such as K-means [35], Bayesian networks [22], Ge-
netic Algorithms [24], Reinforcement Learning [68] but lately the big focus has been
towards Deep Learning and Neural Networks [63].

2.1.2 Neural Networks

Known as Artificial Neural Networks, these algorithms are partially inspired by the struc-
ture and functionality of the human brain. A general representation of a feed-forward NN
can be seen in Figure 2.1. They are usually organized in layers, each layer is made of a
number of neurons (also known as units) which are interconnected with other neurons of
the neighbouring layers, but not within the same layer. Notice that when addressing the
number of layers of the network we do not count the input layer.

The overall process in which a network receives an input and outputs a prediction
is called feed-forward. The data is fed through the input layer, then forwarded to the
hidden layers where each neuron processes the information and finally in the output layer
through an output function (e.g., a linear combiner or a Softmax function), an output is
computed.

Multi-Layer Perceptron is one type of NN. In such architecture the input layer is where
the data is fed to the network, the number of neurons present in this layer is equal to the
amount of input features. Following an input layer we have the hidden layers. The ma-
jority of the feed-forward computation happens inside these layers. The neurons from
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these layers receive the values from neurons of the previous layer, be it the input layer
or another hidden layer, and compute their state through weighted sum of the inputs and
addition of a bias value [6]. Both the weight and bias values are learnable parameters that
the training algorithm adjusts during training. Besides these operations, in order to pro-
vide non-linearity properties these neurons often use a non-linear activation function. The
most commonly used activation functions are the Sigmoid and Tahn. However, recently
in DL architecture the most commonly used activation function for simple feed-forward
networks is the ReLU [32]. These functions take a single number and perform a math-
ematical operation on it, offering non-linear properties to the NN, giving the capability
to model more complex features for the task. Normally, the hidden layers are followed
by a final layer meant to output a prediction. This layer is often called the output layer
and its computational process is similar to a hidden layer layer. The difference is that
in this layer the neurons do not perform an activation function, after their weighted sum
and bias addition. Instead, this layer applies a specific function depending on the task at
hand. In a classification problem, the most common function applied in this layer is a
Softmax function, which squashes the values of each neuron into a sort of probability of
how ”confident” a neuron is about a prediction. When outputting a prediction we simply
pick the one which corresponds to the highest value.

During training, the probabilities that result from the Softmax function are used to
adjust the NN parameters according to the prediction error. This is done through a learn-
ing rule that allows it to know how to modify the weights and biases in order to im-
prove its accuracy. The most common rule used, which has had much success, is back-
propagation [61]. In short, when a NN is first presented with an input, given that the
weights and biases are randomly initialized, the network makes initial random predic-
tions. By looking at the real result, the network can compute an error through a loss func-
tion. This loss function uses the distances of the probabilities outputted by the network
and a representation of the correct prediction. Then, the back-propagation algorithm will
compute a gradient which provides the “direction” in which the NN parameters should be
adjusted. These gradients are used by optimization algorithms such as Stochastic Gradi-
ent Descent [40] or Adam Optimizer [42] which adjust the network’s weights and biases
through various iterations in order to reduce the prediction error. To better adjust the net-
work’s parameters, a common practice is to iterate through the training set several times.
Each full iteration over the training set is called an epoch.

Overfitting

Overfitting is an issue to be kept in mind when designing, implementing and training a
NN. It happens when a model includes more parameters than necessary and becomes too
complex for the available data [30].

There are several techniques used to prevent this problem from occurring. In the work
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described in this dissertation, it is important to address two of these techniques which we
have implemented: Dropout [66] and L2 Regularization [51].

Dropout is a common technique where the key idea is to randomly drop neurons and
their connections from the NN during training. In practice, we apply a dropout layer
which, given a pre-determined probability, shuts off the communication of some neurons.
This prevents neurons from co-adapting, meaning that neurons will not rely heavily on a
few specific neurons, and in turn prevent against overfitting.

Another method to prevent overfitting is through regularization of the weights. L2
Regularization, also known as weight decay in ML, works by adding a penalization to the
loss function. If we consider that the loss function measures how well the model performs,
then this regularization function measures the complexity of a model. This complexity is
usually calculated through the sum of the squares of all the weights. Meaning, weights
with a high absolute value are more complex than weights with low absolute values.
Through the optimization function, the model will adjust these outlier feature weights
and prevent overfitting.

2.1.3 Deep Learning

A perhaps naive, but simple way of describing DL is by describing it as the usage of
several (commonly a high number) hidden layers in a NN. Besides this increased depth
provided by the increment in the number of layers, in DL the functionalities and data pro-
cessing methods may also differ between the layers. In the past, the process of training
a NN was computationally too expensive to permit the use of many hidden layers. How-
ever, with the constant increase in Central Processing Unit (CPU) computational power
and employment of Graphics Procesing Units (GPUs) in ML tasks, training large NNs
is now possible in commodity computers. Such development opened the gate for more
complex neural architectures.

For instance, taking the example from Figure 2.1 we have three layers that process in-
formation. The first hidden layer contains 4 neurons, each connected to the neurons from
the input layer. Thus between these layers there are 4 × 3 weights plus 4 biases, adding
up to 16 learnable parameters. If we extend these calculations to the whole network we
have a total of 41 learnable parameters. When considering modern neural architectures,
we may be training up to several million parameters across multiple layers.

The architecture that we have been describing so far is often addressed as a fully-
connected neural network. However in DL there are other architectures that have attracted
a large amount of attention due to their improvement in real-world tasks, such as the
Convolutional Neural Network [47] and Long Short-Term Memory [31].
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Figure 2.2: Basic architecture of a Convolutional Neural Network [16].

2.1.4 Convolutional Neural Networks

Many of the advances brought by DL can be attributed to CNNs. The main domain where
these networks have been heavily deployed is computer vision. Large CNNs [43, 69] have
been applied to numerous tasks [23, 39], often surpassing the results of the state-of-the-art
at the time. Although these networks are most known for their applications in computer
vision, they perform reasonably well in the NLP tasks [41, 36].

CNNs are, for the most part, similar to NNs such that their layers are constituted
by neurons with trainable weights and biases. However, instead of each neuron from
a previous layer being connected to all neurons from the next layer, the convolutional
layer applies local connections to different groups of neurons, sharing the weight and bias
values. A CNN is composed of multiple types of layers as shown in Figure 2.2. Tradition-
ally, a CNN architecture for classification tasks starts with an input layer, a convolutional
layer, a pooling layer and a finally a output layer containing a Softmax function to output
a prediction.

Convolutional Layer

Not counting the input layer, the convolutional layer is usually the first layer in a CNN
and where most of the computationally expensive operations happen. A convolutional
layer consists of sets of learnable filters that perform operations upon an input matrix.

These filters can be thought of as sets of neurons, containing weights and biases, but
unlike the traditional fully-connected networks these neurons are not connected to every
neuron from the previous layer. These neurons are however connected locally to a sub-set
of input neurons which are contained in the receptive field. A receptive field is the portion
of the input being looked at by a filter.

When data is fed to the layer, usually in the form of a matrix, each filter is slid across
the width and height of the input, performing operations at each stride similar to those
from a hidden NN layer. The results obtained through the neurons’ activations at each
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Figure 2.3: Example of a convolution in a sliding window function applied to a matrix of
pixels [4].

stride are stored in a 2-dimensional feature map. These feature maps, also called activa-
tion maps, indicate how present a given feature is in the input. As we use more filters,
we stack these feature maps along the depth dimension. The convolutional operation here
described is exemplified in Figure 2.3.

Pooling Layer

A convolutional layer may result in a large amount of parameters, therefore increasing the
computational effort. To balance the convolutional layer’s output, it is a common practice
to apply a pooling layer.

The pooling layer usually operates using the Max operation, hence being often named
a Max-Pooling Layer. It takes a 2-dimensional window, similar to the receptive field in
the convolutional layer, and selects the maximum value from that section. This window is
slid across the width and height of the output feature maps from the convolutional layer,
reducing the spatial size of the representation, thus reducing the amount of parameters and
computation in the network. Besides helping with the computational effort, this operation
also helps to prevent overfitting as redundant parameters and features are removed.

Once the pooling operation is complete, we flatten the results into a 1-dimensional
array that is forwarded to the final fully-connected layer which will output a prediction.
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Figure 2.4: CNN architecture for sentence classification [41].

Sentence Classification

As our task does not involve computer vision, the network ought to be modified in order
to be applicable to a NLP task. An architecture adapted for this is proposed in Kim [41]
and is shown in Figure2.4.

In order to shape our sentences into a 2-dimensional matrix so that we may apply
convolution, we require an embedding layer between the input layer and the convolutional
layer. Through this layer we convert each word of a sentence into a numerical array called
an embedded vector [9, 3]. These vectors hold a word’s semantic value [49] and can be
randomly initialized or imported from a pre-trained language model (e.g., Google News
Word2Vec model [26]). The embedded word vectors are vertically stacked in order to
form a n× k matrix.

Thus, this matrix can be forwarded into the convolutional layer where, as previously
explained, through various filters the network will form feature maps. However, unlike
the filters used in computer vision, where there are no restrictions on the height or width,
the filters used in these architectures are usually bound in width to the length of the vector.
Intuitively this makes sense as a filter should contain the whole extent of word vector in
order to completely capture its semantic representation.

The resulting 1-dimensional feature maps are then sent to a Max-over-time-pooling
Layer [11, 41]. Unlike the max-pooling operation explained before, where we define
a window that will be slid through the feature maps dimensions, in this case the max-
pooling operation will encompass the whole feature map. And as such, for each filter we
extract one feature. All these features are then concatenated into a 1-dimensional vector
and fed to the output layer. This final layer contains a fully-connected network, just as in
the previous architecture, with a dropout function to prevent overfitting and the softmax
function to compute the final prediciton.
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Figure 2.5: Unrolled Recurrent Neural Network [53].

2.1.5 Recurrent Neural Networks

Another pivotal neural architecture in DL is the Recurrent Neural Network(RNN). This
kind of network has been achieving significant results in NLP tasks such as speech recog-
nition [28] and language translation [7, 72].

The main idea behind these networks spurs from the necessity to retain knowledge to
guide future decisions. Every time we read a document we associate value and meaning
to each word depending on the ones that preceded it.

Traditional neural networks can not do this. It is unclear how a neural network could
use its previous reasoning of an event to inform later ones.

Through the addition of loops into a network, we may allow information to persist. In
Figure 2.5 we can see that the cell A is presented with an input xt and outputs the value ht.
We can think of xt as a word being read by the cell A at time t. The cell contains a hidden
state, a vector of neurons, which receives an input xt at every time step t and performs
the traditional weight multiplication, bias addition and non-linear activation. Common
practice in RNNs is to use the tanh activation function. However, unlike the traditional
non-recurrent fully-connected networks, the result from each time step t is kept for the
next time step t+ 1, thus introducing memory.

However, these networks are faced with a particular challenge when they are required
to retain information that may not have appeared so recently. As the length of an input
sentence grows, a RNN may have difficulty in relating previous information with the most
recent one.

Thankfully, there is a specific kind of RNN, which is responsible for the majority of
the success behind RNNs, that does not suffer from this problem, the Long Short-Term
Memory (LSTM) networks [31].
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Long Short-Term Memory Networks

LSTM networks are quite complex when compared to regular NNs or CNNs and are
capable of learning these critical long-term dependencies [31].

In Figure 2.6 we lay out a LSTM architecture. Like standard RNNs, this network
can also be drawn as a loop or an unrolled chain as we have done. However, unlike the
RNN in Figure 2.5 where we only have one neural network layer using a tanh activation
function, the LSTM contains four different layers performing several different functions.

The horizontal line running through the top of the diagram is what is called the cell
state. The LSTM has the ability to either add or remove information from this cell state
through gates. These gates are a way to manipulate the information that is fed to the
LSTM cell state. Normally they are composed of a sigmoid NN layer that outputs values
between 0 and 1, which is used to describe how useful the information is and if it should be
let through. Intuitively, 0 will mean that nothing should pass whereas 1 means everything
should go through.

In short, the functionality of an LSTM can be described through three major steps [53].
The first step is often called the forget gate layer. Here the network decides which infor-
mation should be thrown away from the cell state. It takes into account the previous state
(ht−1) and the new input (xt) and outputs a number between 0 and 1. Then the follow-
ing step is to decide which new information should be added to the cell state. We will
have two components, the first is a sigmoid layer often called input gate layer that decides
which values should be updated. The second component is a tanh activation layer that
creates a vector of new candidate values which may be added to the cell state. These two
are combined in order to create an update which will be added to the cell state. Finally, in
the last step we have the output. The output will be based on the cell state but will suffer
a minor transformation. First, we run through a sigmoid gate that decides which parts of
the cell state should be in the output, then we pass the cell state through a tahn activation
layer to keep the values between -1 and 1 and finally multiply it by the output from the
sigmoid layer in order to output only the values we want.

In practice we tend to consider the LSTM to have two outputs at every time step, the
cell state and the hidden state. If we intend to extract as many outputs as there are time
steps, we usually retrieve the cell states which are unfiltered. On the other hand, when we
intend to extract only one representation for the whole input, we tend to extract only the
final hidden state.

2.2 Deep Learning Frameworks

With a surge in interest for DL and NNs, several companies and organizations have de-
veloped frameworks to ease the implementation of these techniques such as Google’s
TensorFlow [1], Facebook’s Pytorch [55] or Microsoft’s CNTK [64].
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Figure 2.6: Unrolled Long Short-Term Memory Network Architecture [53].

Device Average time per Fold (seconds)

i7-6850K 32.8
GTX 1080ti 2.8

Table 2.1: CPU vs GPU comparison.

In order to decide which framework would be best to use we took into account the
capabilities provided, the quality of the documentation, its flexibility and extensibility,
and finally, its official support and community activity. Thus, given the brief requirements
we described, we decided to select TensorFlow [1] for its popularity, documentation, the
numerous tools that come with it such as TensorBoard 1 and most importantly, given that
it is relatively low-level, the capability to perform any action we may require before, after
or between the layers of the model.

TensorFlow is an open source software library for numerical computation using data
flow graphs, created and maintained by Google [1], capable of operating at large scale
and in heterogeneous environments. The library is written in Python, C++ and CUDA,
offering extensive flexibility through its Python API.

TensorFlow uses a dataflow graph to represent computation in terms of dependencies
between operations [25] which are represented as nodes. These nodes contain tensors
which are a generalization of a multidimensional data structure: from vectors and matrices
up to any dimension [27].

A major advantage of using these frameworks is the ability to easily tap into the GPU’s
processing capabilities. Table 2.1 presents an experiment we conducted to demonstrate
how much faster the GPU is at training a model than a CPU. This experiment involved
the training of the same model described in Branco [4], using the same data, through a
10-fold cross validation method, which is detailed in Section 4.2.

1https://www.tensorflow.org/guide/summaries_and_tensorboard
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2.3 Machine Learning in Cyberthreat detection

As previously stated, the work developed for this dissertation is inserted in the H2020
DiSIEM project. We aim to provide improvements to a framework currently being devel-
oped through the implementation of DL techniques. This framework, currently unpub-
lished, proposes a methodology for collecting, processing and presenting security-related
tweets. The pipeline is composed of text filtering, text feature extraction, binary classifiers
and a novel clustering technique based on k-means. Our pipeline uses the same method
for extracting tweets. However, we perform different pre-processing methods, we provide
a DL alternative to the classifier and although we do not perform clustering, we present a
DL technique to extract information from security relevant tweets.

In this section we provide an overview of previous work done in regards to threat
intelligence from OSINT. A recent paper by Le Sceller et al. [46] presents SONAR, an
automatic, self-learned framework that can detect, geolocate and categorize cyber secu-
rity events in near real-time over the Twitter Stream. The framework makes use of the
Twitter API and a list of keywords to retrieve a continuous stream of tweets. Overall, the
architecture implemented is heavily keyword-based. The authors describe the framework
in three phases. The first phase is similar to ours, the framework queries Twitter for a
list of keywords in order to retrieve a continuous stream of tweets. However they query
Twitter as a whole instead of focusing on a pre-defined set of accounts that are more
likely to tweet security related content like we do. Moreover, the keywords that we use
are not cyber threat related (e.g., attacks and vulnerabilities) but rather we query for a list
of keywords related to assets from the infrastructure being monitored. The second phase
of SONAR is about event detection. It uses a clustering technique to aggregate similar
tweets that may be reporting about the same cybersecurity related event. These events are
geolocated, classified and displayed on a user interface. Given that the system relies on
its keywords being up-to-date, the third phase aims to find new keywords based on their
co-occurrence with other previously defined tweets. These two phases differ from our
scope since our aim is not to build a general information security news feed but rather a
tool to gather the most recent information about threats, configurations or updates related
to a pre-defined list of assets.

Sabottke et al. [62] implemented a Twitter-based exploit detector using a SVM classi-
fier. The detector is capable of extracting vulnerability-related information from Twitter,
augment it with additional sources and predict if the vulnerability is exploitable in a real-
world scenario. The paper states that the detection of zero-day attacks before their public
disclosure are not considered. Thus, as we have stated in our objectives before, our work
differs in the way that we only use Twitter as a source and our classifier retrieves every
security related tweet regarding a given asset. Meaning that we retrieve updates, con-
figurations, exploits and potential zero-day vulnerabilities. One interesting component
from this work that should be mentioned is the consideration of adversarial interference
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in order to fool the classifier. The authors developed a threat model with three types of
adversaries. These adversaries vary in their knowledge of the classifier and complexity of
their poison-attacks that attempt to fool the classifier. As it stands, our system uses sets of
pre-defined accounts that have been selected based on the likelihood that these users tweet
about the security of elements belonging to the information technology infrastructure be-
ing protected. We have not yet implemented a reputation system capable of fetching new
accounts, however the existence of adversarial agents should be kept in mind.

Regarding the task of information extraction in order to build IoC or security alerts,
Liao et al. [48] present iACE. This tool is capable of extracting IoC in a fully automated
way. However, one important difference is that it does so through the analysis of tech-
nical articles, which is a naturally richer information source than using Twitter alone.
Furthermore, a major difference is the technique applied for the task. The authors take
advantage of the predictability of some aspects from these articles such as a set of context
terms and their grammatical relations. Our approach intends to explore the usability of
DL techniques to extract these relations automatically. This capability aims to decrease
the necessity for manual feature engineering.

2.4 Deep Learning in tweet analysis

In order to complement our overview of the state-of-the-art of threat detection in OSINT
and given that our goal is to apply DL algorithms on tweets, in this section we provide
a summary of previous work that has extracted information from Twitter and applied DL
techniques in order to perform a given task.

A common application of DL algorithms in Twitter is sentiment analysis. Severyn et
al. [65] proposes a CNN architecture similar to Kim [41] to conduct two subtasks of the
SemEval 2015 Twitter Sentiment Analysis challenge.2 The authors compare their results
with the systems submitted to the tasks and show that their architecture was capable of
ranking the first two positions in both subtasks. Rozental et al. [60] also used a DL
method to perform sentiment analysis on Twitter data, this time in the proceedings of
SemEval 2017, through a RNN architecture.3

Badjatiya et al. [2] experiments with several classifiers including, but not limited to,
DL algorithms in order to detect hate speech in tweets. The authors report that the DL
techniques perform significantly better than other methods.

Regarding NER, Jimeno-Yepes et al. [33] implemented a LSTM architecture for the
annotation of medical entities mentioned in the Twitter stream in order to support tasks
such as public health surveillance. The architecture presented by the authors outperforms
the previous state-of-the-art and regarding future work, the authors plan on using the

2http://alt.qcri.org/semeval2015/task10/
3http://alt.qcri.org/semeval2017/task4/
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architecture proposed by Lample et al. [45], which is the same architecture that we have
based our own NER model on.

2.5 Final Remarks

In this chapter we have given a brief on the essential concepts of NN and DL that lay the
groundwork for the work presented in the following chapter which will provide a detailed
explanation of our system and how the data flows through the NN architectures. In this
work, we explore the implementation of a CNN for text classification and a LSTM for
information extraction, both of these architectures have been used for NLP tasks with
significant success rates.

As described in this chapter, there is previous work on obtaining security-related in-
formation in OSINT, some of these also use Twitter as a source of data. However, none
of these works explore the application of DL techniques in an end-to-end approach, form
tweets to IoCs. As shown in Section 2.4, there is previous work on the application of DL
techniques to Twitter data that often surpass the corresponding state-of-the-art methods.





Chapter 3

Architecture

In this chapter we describe our pipeline and the NN architectures that we have deployed.
We begin by elaborating on the general problem, describing the current solution and what
it seeks to achieve. Then, we establish where our pipeline will come into play, the ele-
ments it means to improve and the functionality it intends to add.

Furthermore, we describe in detail how the system processes a tweet, from the instant
it is collected until the information is extracted.

3.1 Problem Statement

The system currently being developed in the context of the DiSIEM project allows ana-
lysts to specify the assets (machines, software, services) in their infrastructure. Then, the
system will collect tweets related to such components, conduct the pre-processing that
it requires and then (through a SVM binary classifier) it will identify possibly relevant
tweets. To reduce redundancy a clustering algorithm is applied, once a cluster exceeds a
given threshold of tweets, the tweet closest to its cluster’s centroid is shown to the analyst.
This process is depicted in Figure 3.1.

Globally, the system has three main objectives:

1. Maximize the amount of relevant information presented to the analyst;

2. Minimize the amount of irrelevant information presented to the analyst;

3. Aggregate related information.

The pipeline developed in this work is shown in Figure 3.2. It aims to replace the
pre-processing, feature extraction and classifier stages in the original pipeline. Besides a
minor alternative to the pre-processing stage, our first contribution aims to substitute the
SVM classifier with a CNN. Our goal for this stage is simply to improve on the first two
original objectives.

For the NER module we describe our Bidirectional Long Short-Term Memory (BiL-
STM) network and its architectural variations. This part of our work adds a novel method

21
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Figure 3.1: Twitter threat detection pipeline

Figure 3.2: Deep Learning pipeline.

of information extraction to obtain security-related information that can be used to build
an IoC, which is a semi-structured document descibring a potential cybersecurity threat.

3.2 Data Collection

As described by Branco [4] and Correia [13], in the data collection stage we establish a
set of Twitter accounts. These accounts can be of security analysts, companies, hackers,
users or security researchers. From these accounts we will retrieve a stream of tweets
through Twitter’s public API [70, 71].

3.3 Pre-Processing

In this stage we normalize the tweet representation. Regarding the processing that goes
into cleaning a tweet we explore two options which we have named full and partial.
Then we explain the following tokenization process until a tweet is ready to be fed to the
network.

Another object of exploration is the padding, however this option is only relevant in
the training stages. We present two options regarding the padding scheme, we named
them as static and dynamic.

Further into this dissertation these options are object of experimentation and we eval-
uate if there is any benefit in choosing one over the other.
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Original Vuln: Oracle Java SE CVE-2015-2625 Remote Security Vulnerability
https://t.co/mNpDapXWz2

Partial vuln oracle java se cve-2015-2625 remote security vulnerability
Full vuln oracle java se cve hyphen two thousand and fifteen hyphen two thou-

sand and twenty-five remote security vulnerability

Table 3.1: Partial and Full tweet cleaning.

3.3.1 Representation

As stated before, we provide two options regarding the cleaning pipeline that a tweet
must go through. Afterwards, we provide some additional details regarding unknown
words that may appear in a testing or production setting.

Partial Cleaning

For the partial cleaning option we convert all characters in a sentence to lower case,
remove all hyperlinks and special characters except the “.” and “-” since these may be
important to detect version numbers or identifications from vulnerability repositories such
as the Common Vulnerabilities and Exposures (CVE) repository.

Full Cleaning

This second option is the one originally used in the DiSIEM project and it is similar to our
partial cleaning pipeline, however numbers are also converted to their text form (e.g., “2”
to “two”). This also applies to the punctuation that was spared previously, meaning “.”
and “-” are respectively converted to “dot” and “hyphen”. Table 3.1 displays an example
of both partial and full cleaning options.

Tokenization

After cleaning a tweet, we proceed to our tokenization process. Here we split the text
into an array of words and substitute each word by an index. This index is obtained
from our dictionary, which is built during the training process. Put simply, a new word
is registered along with its corresponding index when it appears in the training datasets.
When receiving an unknown word outside of the training process, we apply the index for
the token <UNK>, purposely created for this situation.

3.3.2 Padding

Besides normalizing each tweet regarding their content, when feeding a batch to the net-
work we require that each tweet contains the same length, this is specially important for
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the training process. As we should expect, the tweets received will not have the same
length and thus they should be padded with a token which we have defined as <PAD>.

There are two options for this: static or dynamic.

Static

In the static method we pad every tweet in the training dataset to the maximum length
found within the set. During testing or deployment stages, if a received tweet exceeds the
maximum value defined during the training stage then the text in excess is ignored.

Dynamic

On the other hand, the dynamic method pads the input tweets only after the batching
process. Independently of the stage a network is being used, when feeding a group of
tweets to the network, the padding process will use only the local maximum length and
pad the batch accordingly.

3.4 Classifier

This section describes the implementation of our approach to the binary classifier. The
architecture here described is based on the CNN for sentence classification by Kim [41].

3.4.1 Convolutional Neural Network

We describe the model by detailing the data flow during each step of the feed forward
process.

The general architecture of the CNN is displayed in Figure 3.3. In short, the network
receives a tweet in the input layer, then converts indexes to vectors in the embedding
layer, followed by the convolutional layer containing several different kernels with the
same number of filters, a max-over-time-pooling layer, and finally the output layer which
applies dropout and a softmax function for classification.

Input Layer

The network receives a tweet which can be represented as a sequence of n words.

Embedding Layer

In order to capture the semantic representation of a word we require an embedding stage.
Here, each token is converted into an embedded vector. These numerical vectors are
d-dimensional and can be initialized randomly or imported from a pre-trained language
model [49, 56, 34].
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Figure 3.3: CNN architecture for sentence classification

Furthermore, these representations can be fine-tuned automatically during the training
process, which allows even the randomly initialized vectors to capture some task related
semantic value.

Once every tokenized word from a tweet is converted into an embedded vector, we
have a n× d matrix representation of a tweet where n is the number of words and d is the
length of the embedded vectors.

However, to be compliant with the convolutional operation, we require to add a third
dimension which represents the number of channels. For example, in computer vision
this relates to the RGB channels of an image. In our case it will be similar to a greyscale
picture since we will only have one single channel. However, as we show further on, it is
possible to extend our architecture to use multiple channels.

Thus, the final output of this layer is a n × d × c matrix, where n and d have been
established before and c is the number of channels.

Convolutional Layer

This layer receives the n× d× c embedded matrix and applies a convolution operation.
The convolutional layer requires a set of k-kernels, each of these can be defined as a

h× d× f matrix. Each kernel is a group of filters where h is the height that corresponds
to the number of sequential words in its receptive field, d is the length of the embedded
vectors as defined before, and f is the number of filters contained in a kernel.

Kernels (k) can have different heights (h), thus all filters contained in a kernel have
the same height. However, every kernel has the same number of filters (f ) and all filters
have the same length (d).

Now, each kernel will stride down the matrix applying a dot product operation with
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every filter. This results in each h× d filter producing n−h+1 nodes. These nodes form
a feature map, where each node reports on how intensely a given feature is present.

As such, the output from this operation will be a k × (n− h+ 1)× 1× f matrix.

Using the example in Figure 3.3, we have 2 kernels with heights of 2 and 3 (h), a
length of 10 (d) and 3 filters (f ). The first kernel produces 3 feature maps (f ), with a
height of 8 (n - h + 1) and the second kernel also produces 3 feature maps (f ), with a
height of 7 (n - h + 1).

Max-over-time-pooling Layer

In order to reduce the computational effort and prevent overfitting, the max-over-time-
pooling layer will select the maximum value from each feature map. This means that the
resulting matrices from the convolutional layer will be reduced to k× f values, one value
per filter.

These are concatenated, forming a tensor to be forwarded to the output layer. Consid-
ering 3.3 once more, as result of the convolution operation we have 2 sets of feature maps,
with heights of 8 and 7 and both containing 3 feature maps. The max-over-time-pooling
operation will take the maximum value from each feature map, leaving 3 nodes per set.
Once concatenated, we will have a tensor of 6 values to be forwarded to the final layer.

Output Layer

Before performing a final computation and outputting a prediction, we apply a dropout
function. This allows the network to generalise better, by randomly eliminating a fraction
(according to a defined percentage) of nodes during the training process. Should be noted
that the dropout function is only used in the training phase.

Finally, these values enter a fully connected NN and then a softmax function outputs
the prediction, classifying if a tweet is (or not) mentioning a threat to the monitored ICT
infrastructure.

3.5 Named Entity Recognition

Once a tweet is classified as relevant, we forward it to the NER model. The goal in this
step is to extract some information from the tweet, such as the asset being targeted, the
vulnerability being exploited and other relevant information.

In order to conduct such a task we have implemented a neural architecture for NER
based on Lample et al. [45].
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Figure 3.4: NER neural architecture for sequence tagging.

3.5.1 Bidirectional Long Short-Term Memory

Similarly to the way we described our CNN, we will explain this network by detailing its
data flow, describing how the data is transformed during the feed-forward process, without
going into the recurrent part of the model. The overview of the architecture is presented
in Figure 3.4. To be noted that this architecture contains optional modules, presented as
dotted boxes.

The network begins in the same way as the CNN, a tweet is received at the input layer
and is sent to the embedding layer. The embedding layer is similar to the one from the
CNN where each word is converted into an embedded word vector. Optionally characters
can also be converted into embedded character vectors which are sent to a word BiLSTM
layer. The results are concatenated with the embedded word vectors in order to enrich
the representations. These numerical vectors are then sent to the sentence BiLSTM layer
and finally to the output layer. In the output layer we have two ways of processing the
prediction, we either use Conditional Random Fields (CRF) [44] or the traditional softmax
function.

Input Layer

The network receives a tweet which can be represented as a sequence of n words.
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Figure 3.5: Word BiLSTM architecture.

Embedding Layer

The overall process is identical to the embedding layer from the CNN in terms of word-
based embeddings. However, this layer can additionally produce embedded vectors for
each character of a word, thus providing character-based embeddings.

Every word is converted into an embedded vector, resulting in a n × dword matrix
representation, where n is the number of words and dword is the length of the embedded
word vectors. Besides each word having a corresponding embedded word vector, it may
optionally have a corresponding n× c× dchar matrix of numerical vectors. Here, c is the
number of characters in a word and dchar is the length of the embedded character vectors.

Word BiLSTM Layer

This is the first optional layer which is used when opting to use character-level embed-
dings in combination with the traditional word embeddings.

For each word n, the corresponding embedded character matrix c × dchar is fed to
a BiLSTM network. This network contains two cells which read the input sequence of
character vectors in opposite directions.

Both cells contain a hidden state hs, this state is represented by a numerical vector
which is updated at every time step (every character read). After reading every character
in the embedded character matrix, the cell states are extracted and concatenated.

This process is exemplified in Figure 3.5. The network receives six vectors which con-
stitute the word “denial”. These vectors are fed one by one to the LSTM cells, represented
by the L and R diamonds. Once the final character is read by the cells we extract their hid-
den state vectors (hR and hL) and concatenate them. These vectors hold a character-level
semantic representation from both left-to-right and right-to-left readings.

Regarding the data structure of the output, this layer outputs a n× (2× hs) matrix of
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Figure 3.6: Sentence BiLSTM architecture and Conditional Random Fields.

vectors that are meant to be concatenated with the vectors from the n× dword matrix.

Sentence BiLSTM Layer

The main BiLSTM network can either receive only the embedded word vectors from the
embedding layer or receive both embedded word vectors and the resulting character-level
representation vectors from the word BiLSTM layer. If the latter option is chosen, then
these vectors are concatenated.

This leads to the input being a matrix of shape n × d, where n is the number of
words and d can either be equal to dword in the case we only use word embeddings or
dword + (2× h) in case we use both word and character embeddings.

Similar to the process described for the word BiLSTM layer, we feed the sentence to
the sentence BiLSTM layer word by word. However, while in the previous BiLSTM layer
we only retrieve the final hidden state, in this BiLSTM we extract the cell state at every
timestep (every word read).

Thus, the output from this layer is a n× hsentence matrix, hsentence is the length of the
vector representing the BiLSTM’s cell state.

Output Layer

In the final layer of the NER model, we have a fully-connected layer and two options from
which the sequence prediction is going to be computed.

The fully-connected layer contains t neurons, with t being the number of possible
labels that our model can predict. As an input for this layer we have the result from
the previous sentence BiLSTM layer which is presented as a n × hsentence matrix. We
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perform the usual computational steps of a fully-connected neural network layer against
every word, computing as a result a n× t matrix.

This matrix can be thought of as a score matrix. The t neurons have “looked” at each
word, through the numerical values outputted in the sentence BiLSTM layer, and have
given a score through its activations.

Then, we use this score matrix to compute the final sequence. As mentioned before,
we have two options to perform this final computation.

The first option is a traditional softmax layer. For each word we have t neurons,
using a Softmax function we can retrieve the label corresponding to the highest activated
neuron. And thus, we output a sequence of n labels, one per each word. However, this
solution has a certain limitation since each prediction only accounts for the t values from
the word it aims to classify.

The second option is to use a conditional random fields layer. Instead of modelling
labelling decisions independently, the CRF allows us to model them jointly. Given a
sequence of words, a sequence of score vectors and a sequence of labels, a linear-chain
CRF defines a global score to the sequence.

Lets consider as our sequence of words: X = (x1, x2, x3, ..., xn), n being the number
of words in the sentence. Since we intend to extract n labels, one for each x, let y =

(y1, y2, y3, ..., yn) be the labels found for a sentence of n words. Let our n × t matrix,
outputted by the sentence BiLSTM layer, be represented by P , where Pi,j would refer to
the score of the jth label for the ith word.

In the CRF layer we will pick the sequence with the highest score, as such a prediction
takes into account the whole sequence instead of independently computing the prediction
for each word. A sequence’s score is computed as follows [44, 45]:

s(X, y) =
n�

i=0

Ayi,yi+1 +
n�

i=1

Pi,yi

A is a t × t transition score matrix, automatically learned during training, where Ai,j

contains the score of a label i being followed by a label j.
Finally, after computing the candidate sequences we apply a local softmax function

and retrieve the label sequence with the highest score.

3.6 Final Remarks

In this chapter we have described the existing system in the context of the DiSIEM project,
which we aim to improve. Besides this, we provide a clear problem statement and the
architecture of a processing pipeline based on DL models developed in this work. There-
fore, we explained in detail our NN architectures, including their hyperparameters and
design variables which will be thoroughly explored in the following chapter.
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Experimental Evaluation

Having defined our architecture, this chapter reports on the experimentations regarding
the architectural variations of both neural networks and the search performed in order to
find an adequate set of NN design variables and hyperparameters.

The training algorithm used to optimize the models was the TensorFlow’s implemen-
tation of the Adam Optimizer method [42]. Adam is an efficient stochastic optimization
algorithm that only requires first-order gradients with little memory requirement.

4.1 Datasets

To evaluate our models we used data that has been collected and manually labelled in
previous works[4, 13]. We used three datasets of tweets, one for training the models (D1)
and the remaining two for testing and evaluation (D2, D3). The training dataset D1 was
collected in a time period of six moths across a set of Twitter accounts defined as S1. For
the testing datasets, D2 e D3, a second set of accounts S2 was added. The testing set D2
was collected for one month after the conclusion of D1’s collection, while the set D3 was
collected for two months after D2. Table 4.1 shows the most relevant information about
these datasets, indicating the number of relevant (positive) and non-relevant (negative)
tweets found.

Datasets Time interval Accounts Positives Negatives Total
D1 01/11/2015 to 01/04/2016 S1 1697 2008 3705
D2 01/04/2016 to 15/05/2016 S1 + S2 536 4292 4828
D3 15/05/2016 to 10/07/2016 S1 + S2 1680 2153 3833

Table 4.1: Datasets used to train and test the models.
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4.2 Training and Evaluation methodology

Regarding training and evaluation, we have adopted a 10-Fold Cross Validation procedure
in order to increase the validity of the results obtained. This method consists in dividing
the training set (D1) into 10 sub-sets of equal size and use one of these sub-sets for testing
while using the remaining 9 for training. This training process occurs 10 times, alternating
the sub-set used for testing. In each iteration, we also test the model against the testing
sets (D2, D3). Finally, we average the testing results by dataset across all 10 folds.

In terms of plotting our results, we often show the results related to the testing set
D3 due to the date of its retrieval being more distant to the training set D1. Furthermore,
in Section 4.5, the D3 test set is not only separated from D1 in terms of time but also
contains a different set of accounts which make it a more robust testing set to evaluate our
models.

4.3 Classifier

In this section we detail the experiments regarding our CNN classification model. We
elaborate on the metrics that will be used for evaluation, list all the training parameters
and hyperparameters of our model and finally report on all experimentations that we have
done.

4.3.1 Evaluation Metrics

Before we begin reporting on our experiments it is necessary to declare the metrics
through which we will evaluate the models performance.

For this task we sought to use the sensitivity (True Positive Rate TPR) and specificity
(True Negative Rate TNR).

These metrics are calculated as follows:

TPR =
TP

TP + FN
TNR =

TN

TN + FP

Where TP, TN, FP and FN represent, respectively, the tweets correctly classified as rel-
evant, the tweets correctly classified as non-relevant, the tweets incorrectly classified as
relevant and the tweets incorrectly classified as non-relevant.

A high TPR represents the model’s capacity to correctly identify tweets containing
relevant information. Given that we desire to retrieve as few non-relevant tweets as pos-
sible, we aim to obtain a high TNR which demonstrates the model’s capacity to correctly
identify non-relevant tweets.
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Learning parameters Description
learning rate Value that controls how much the weights are adjusted de-

pending on the loss gradient (Set to 0.01).
number of epochs How many times do we feed the training data to the network

(Set to 10).
batch size Maximum number of tweets that the network receives at

once (Set to 256).
Hyperparameters Description
dropout probability Probability to drop a neuron after the Max-over-time-

Pooling Layer (Section 2.1.2).
l2 regularization lambda L2 norm constrains on the weight vectors (Section 2.1.2).
Design variables Description
number of kernels Number of kernels to be used in the Convolutional Layer

(Section 3.4.1).
kernel heights Heights of the kernels to be used in the Convolutional Layer

(Section 3.4.1).
number of filters Number of filters in a kernel (Section 3.4.1).
word vector length Number of dimensions for the word vectors (Section 3.4.1).
number of channels Number of representations for the word vectors (Set to 1).
fully-connected layer Structure of the final fully-connected network in the Output

Layer (Section 3.4.1).
padding Padding method, as described before this can be either static

or dynamic (Section 3.3.2).
cleaning Cleaning method, as described before this can be either full

or partial (Section 3.3.1).

Table 4.2: List of hyperparameters and other configurable parameters.

4.3.2 Hyperparameters and model design variables

Here we lay out all the possible values that can be manually tweaked in order to fine-tune
the models. Table 4.2 lists these hyperparameters and other training parameters that will
be tuned in the experimentations that will follow.

4.3.3 CNN model design

Our first experimentation sought to explore the model variants proposed by Kim [41].
These variations are based on the architecture shown in Section 3.4 and are presented as
follows:

1. CNN-rand: Uses randomly initialized word vectors which are modified during
training.

2. CNN-static: Uses a pre-trained language model to initialize the word vectors which
remain unchanged during training.
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Models D1
TPR / TNR

D2
TPR / TNR

D3
TPR / TNR

CNN-rand-128 0.94 / 0.96 0.88 / 0.97 0.85 / 0.95
CNN-rand-300 0.96 / 0.96 0.91 / 0.96 0.88 / 0.94

CNN-static 0.95 / 0.95 0.91 / 0.95 0.87 / 0.92
CNN-non-static 0.95 / 0.96 0.92 / 0.98 0.89 / 0.95

CNN-multichannel 0.93 / 0.97 0.88 / 0.98 0.84 / 0.96

Table 4.3: CNN architectural variations results.

3. CNN-non-static: Uses a pre-trained language model to initialize the word vectors
and fine-tunes them during training.

4. CNN-multichannel: Uses two channels, two sets of word vectors, using a pre-
trained language model to initialize both sets. However, only one is fine-tuned
during training while the other one remains unchanged.

For this experimentation we used the same hyperparameters and design variables used
by Branco [4]: three kernels of sizes 3, 4 and 5, with each kernel containing 128 filters,
and a dropout probability of 50% in the output layer.

Another design variable is the word vector length, originally Branco only used the
CNN-rand variant and set the vector length to 128. For comparison sake, we trained two
CNN-rand variants, one with a vector length of 128 and the other one with a length of
300 (these variants will be labelled as CNN-rand-128 and CNN-rand-300). We have set
it to 300 in order to be equal to the 300-dimensional vectors from the pre-trained Google
News’ Word2Vec [26, 49, 50] language model which we use for the pre-trained language
model.

Regarding the pre-processing, we used the full cleaning option and static padding.
Furthermore, all models were trained for 10 epochs, this value was chosen with no specific
criteria other than a few trials.

The results are presented in Table 4.3. We can see a slight benefit in TPR when
increasing the word vector length as shown in the results from the CNN-rand variants.

Overall, the variant that showed the best results appeared to be the CNN-non-static
and as such we opted to use this architecture for future experimentation.

4.3.4 Grid Search

One of the foremost objectives when planning this dissertation was the necessity to find
an appropriate CNN model design. This design was made by means of two grid search
experiments using the evaluation metrics described.

Grid search is a common technique of hyperparameter optimization. Essentially it
works as a parameter sweep or an exhaustive search through several subsets of values the
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hyperparameters can take.

First Grid Search

In the first grid search we performed, we sought study the key design variables and hy-
perparameters of a CNN which we considered to be the number of kernels, kernel height,
number of filters and dropout probability. This exploration resulted in testing a total of
1945 models, whose design variables and hyperparameters were varied as described:

• Number of kernels: varied from 2 to 34;

• Kernel heights: to understand the advantages of using smaller or larger filter heights,
3 cases were considered, small, medium and large, where the heights depended on
the number of kernels:

– For the small case, if the number of kernels was 2 the heights would be [2, 3],
if the number of kernels was 3, the heights would be [2, 3, 4], and so on: [2,
3, 4, 5], [2, 3, 4, 5, 6], ... [2, 3, ..., 35];

– For the medium case, if the number of kernels was 2 the heights would be [18,
19], if the number of kernels was 3 the heights would be [17, 18, 19], if the
number of kernels was 4 the heights would be [17, 18, 19, 20], and so on: [16,
17, 18, 19, 20], [16, 17, 18, 19, 20 ,21], ..., [6, 7, 8, ..., 28, 29, 30];

– For the large case, if the number of kernels was 2 the heights would be [34,
35], if the number of kernels was 3 the heights would be [33, 34, 35], and so
on: [32, 33, 34, 35], ..., [11, 12, ..., 34, 35].

• Number of Filters: varied within the following set: 8, 16, 32, 64, 96, 128, 192,
256;

• Dropout Rate: varied within the following set: 0.33, 0.5, 0.66.

We summarize our findings in regards to how each of these design variables and hy-
perparameters influences the model’s performance. Regarding the TNR, there were no
conclusive results as to what could benefit this metric without decreasing the TPR, thus
we base our conclusions on the TPR analysis.

Regarding the kernel heights, the small case tends to have better results. This is shown
by the boxplot in Figure 4.1.

Although the number of kernels and number of filters do not appear to have a direct
impact in the models performance, if we consider their combination, meaning the number
of features, we may have a current cut-off, in terms of number of features, for which the
model begins to overfit. The number of features is calculated through the product of the
number of kernels and the number of filters. If we recall Section 3.4, this number relates
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Figure 4.1: Box plot of the regarding TPR of the test set D3 and the kernel heights.

to the nodes after the max-over-time-pooling layer that are concatenated and sent to the
final layer. As shown in Figure 4.3 the models appear to start decreasing in regards to
their TPR beyond the 1500 features.

The dropout rate appeared to have no obvious impact in the model’s performance as
shown in Figure 4.2. Nonetheless, the model that achieved the best TPR while keeping
an acceptable TNR used a dropout rate of 0.5.

Figure 4.2: Scatter plot of the TNR and TPR of the testing set D3. The blue dots represent
a dropout rate of 0.33, the grey dots represent 0.5 dropout rate, and the red dots represent
a dropout rate of 0.66.
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Figure 4.3: Scatter plot relating the TPR of the test set D3 and the number of features.

Second Grid Search

After the first grid search, we sought to evaluate additional design variables and hyperpa-
rameters.

For this second grid search we experimented with the padding methods, the cleaning
methods, and the L2 regularization lambda value. We performed further adjustments to
the number of kernels and their corresponding kernel heights, the structure of the fully-
connected layer, and we experimented with different pre-trained language models for
initializing the embedding vectors.

Just as before, we list how these variables were set:

• Padding: either static or dynamic;

• Cleaning: either partial or full;

• L2 Regularization Lambda: either 0 or 3;

• Number of Kernels and Kernel Heights:varied the number of kernels between
3 and 6. Kernel heights were varied incrementally either in a normal sequential
manner (e.g., 2,3,4) or by parity (e.g., ‘odd’ : 3,5,7 or ‘even’ : 2,4,6);

• Fully-connected Layer: we tested the option of inserting an additional hidden
layer at the fully-connected network; For this new layer we considered its neurons
to be 128 or 256 nodes;
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• Embedding Vectors: we tested another well-known language embedding model
GloVE [56] which provided three sets of pre-trained vectors trained using different
sources.

Regarding the padding and cleaning options, these showed to be irrelevant to the
model’s performance. However, it should be noted that the options dynamic padding
and partial cleaning greatly reduce the amount of time a model takes to train.

The L2 regularization appears to generally improve models performance as shown in
Figure 4.4. However, it should be noted that the best performing models did not use L2
regularization as can be observed in Table 4.4.

As per the number of kernels and kernel heights, although this experimentation pro-
vided improved results, we could not extract any tangible knowledge as to why these
settings would perform better.

The addition of a hidden layer proved to be inconclusive as the models showed a
significantly higher standard deviation in their results than the models that did not add
the new hidden layer. Furthermore, in Table 4.4 we can see that 2 out of the 10 best
performing models used an additional layer.

Finally, in the experimentations with the different pre-trained word vectors no model
appeared be consistently better even though in Table 4.4 most models used the GloVE
language model.

Figure 4.4: Scatter plot of the TPR and TNR of the testing set D3. The blue dots represent
models that did not suffer L2 loss regularization (lambda = 0) , whereas the red dots have
a L2 lambda of 3.0.
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Model L2
Lambda Kernels Number of

Filters
Fully connected

Layer
Embedding

Model
D3

Accuracy TPR TNR
1 0 [3,5,7,9,11] 256 NA GloVE 0.93± 0.01 0.90± 0.02 0.96± 0.02
2 0 [2,4,6] 128 NA GloVE 0.93± 0.01 0.91± 0.02 0.95± 0.03
3 0 [2,4,6] 128 256 Word2Vec 0.93± 0.03 0.91± 0.05 0.95± 0.04
4 0 [2,4,6] 128 NA GloVE 0.93± 0.00 0.90± 0.01 0.96± 0.02
5 0 [2,4,6] 256 NA GloVE 0.93± 0.01 0.90± 0.02 0.96± 0.03
6 3 [3,5,7,9] 128 256 Word2Vec 0.93± 0.02 0.90± 0.04 0.95± 0.04
7 0 [3,5,7,9] 128 NA GloVE 0.93± 0.01 0.91± 0.02 0.95± 0.02
8 0 [2,4,6,8] 256 NA GloVE 0.93± 0.00 0.91± 0.02 0.95± 0.02
9 0 [2,4,6,8] 256 NA Word2Vec 0.93± 0.01 0.89± 0.02 0.96± 0.02
10 0 [2,4,6] 256 NA GloVE 0.93± 0.01 0.89± 0.02 0.96± 0.02

Table 4.4: 10 best performing models in the second grid search, ordered by D3 accuracy
results.

Classifier Comparison

Having completed our extensive hyperparameter and design variable experimentations,
we present the best performing model in Table 4.5. The model was selected as the best
performing model according to its D3 accuracy.

The comparison between the best performing model with the SVM currently deployed
is displayed in Figure 4.5. As we can see, the CNN model shows improvement on both
metrics. Furthermore, the model presents a much better TNR, which in practice means
there are fewer false positives which was also a declared objective of this work. This is
important because a system that has a considerable amount of false positives will seem
untrustworthy, making it more likely for a true positive to pass unnoticed by an analyst.

Hyperameters Value
dropout probability 0.5

L2 regularization lambda 0.0
Design variables Value
number of kernels 5

kernel heights 3, 5, 7, 9, 11
word vector length 300
embedding model GloVE

number of channels 1
fully-connected layer Not used

padding dynamic
cleaning partial

Learning parameters Description
learning rate 0.01

number of epochs 10
batch size 256

Table 4.5: List of hyperparameters, design variables and learning parameters used for the
best CNN classifier model.
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Figure 4.5: Comparison of the results of the Support Vector Machine and the best Convo-
lutional Neural Network.

4.4 Named Entity Recognition

This section describes the experimentation that we have done with our NER classifier
based on a BiLSTM network.

Similarly to what was done for the CNN classifier, we define our metrics of evaluation,
list the training parameters and the hyperparameters, evaluate the optional modules that
constitute the network and finally compare the obtained results.

4.4.1 Datasets

Unlike the classification task, we did not have access to prepared datasets to conduct our
research on NER. For this purpose, we took the positive tweets from the D1, D2 and D3
and manually labelled each word.

Table 4.6 displays the labels that have been considered. We have partially based our
entities on descriptions from the ENISA risk management glossary [21]. Given that this is
a first approach and we have limited data for training, we have left the label descriptions
broad enough so that the network is able to distinguish and learn to identify these entities
in a given corpus of text. Once more training data is available, the number of entities
could be extended, allowing for a more accurate taxonomy. For example, the label VUL
includes both vulnerabilities and threats, this is mostly due to the small pool of data that
we have available and partially due to Twitter being an informal source of data, meaning
the majority of users do not follow any international standard when referring to security
terms.

In Table 4.7 we present the number of labels in each dataset. Finally, we display in
Table 4.8 an example of how the output from this model is expected to be, given the
established labels.



Chapter 4. Experimental Evaluation 41

Label Description
O Does not contain useful information.
ORG Company or organization.
PRO A product or asset.
VER A version number, possibly from the identified asset or product.
VUL May be referencing the existence of a threat or a vulnerability.
ID An identifier, either from a public vulnerability repository (e.g., NVD) or from

an update or patch.

Table 4.6: Named entities to be extracted from a tweet.

Labels
Datasets No of Tweets O ORG PRO VER VUL ID Total

D1 1697 9104 1205 3322 1147 4420 607 19805
D2 536 2984 497 1117 304 964 213 6079
D3 1680 9238 1612 3456 1041 2791 774 18912

Table 4.7: Number of Labels per Dataset.

4.4.2 Evaluation Metrics

In order to evaluate our models, we require a metric just as we defined for the CNN
classifier. For this task, we have considered Precision, Recall, F1 measure, and accuracy.
Precision and Recall, P and R respectively, be calculated as follows:

P =
TP

TP + FP
R =

TP

TP + FN

For sake of simplicity when comparing models, we decided use the F1 measure and the
accuracy. In order to do this we averaged the precision and recall across all labels and
then computed F1 as follows:

F1 = 2× P ×R

P +R

Finally, we also considered the overall accuracy, which is simply the division between
the number of correctly labelled words and the total number of words.

We compute these metrics for all labels. For example, considering label O, TP is the
number of words correctly classified as O, FP is the number of words incorrectly classified
as O, and FN the number of words that were O but were not correctly classified.

4.4.3 BiLSTM design variables

The BiLSTM model has several design variables that have to be specified and experi-
mented with. Most importantly, this architecture has a set of optional modules that are
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Tweet vuln oracle java se cve-2015-2625 remote security vulnerability
Labelled Tweet O ORG PRO PRO ID VUL VUL VUL

Table 4.8: Example of a input tweet and the output expected from the NER model.

able to provide new functionalities to the network as detailed in Section 3.5.1. We list all
of the design aspects that will be object of study in Table 4.9.

Learning parameters Description
learning rate Value that controls how much the weights are adjusted

depending on the loss gradient. (Set to 0.01) .
number of epochs How many times do we feed the training data to the net-

work. (Set to 10).
batch size Maximum number of tweets that the network receives at

once during training. (Set to 256).
Design variables Description
pre-trained language model Initialization method of the embedded word vectors

(Section 3.5.1).
Use CRF Boolean value, indicating if we use the Conditional Ran-

dom Fields Layer (Section 3.5.1).
Use Characters Boolean value, indicating if we use the character-level

embeddings.
word vector length Length for the embedded word vectors. Note: If using

pre-trained vectors, this value will default to the pre-
trained vectors’ length (Section 3.5.1).

character vector dimension Length for the embedded character vectors (Section
3.5.1).

word BiLSTM cell state Length for the hidden cell state of the Word BiLSTM
(Section 3.5.1).

sentence BiLSTM cell state Length for the hidden cell state of the Sentence BiLSTM
(Section 3.5.1).

Table 4.9: List of design variables for the BiLSTM network.

4.4.4 Grid Search

Similar to the process conducted for the CNN binary classifier, we sought to explore
different configurations of the BiLSTM network for NER.

Architectural Variations

One of the main objects of interest of this our experiments is to evaluate the options of us-
ing character-level embeddings and the CRF. For such task, we define four architectures:
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• BiLSTM: Baseline model, does not use character-level embeddings nor the CRF
layer.

• BiLSTM-Char: Uses character-level embeddings, but does not use the CRF layer.

• BiLSTM-CRF: Uses the CRF layer, but does not use character-level embeddings.

• BiLSTM-Char-CRF: Uses both character-level embeddings and the CRF layer.

Design variables

For this section of our testing efforts, we focused on adjusting the main design variables
of the BiLSTM network within the following ranges:

• Word vector length: varied within the following set: 100, 200, 300 for the random
initialization cases.

• Character vector length: varied within the following set: 25,50,100

• Word BiLSTM hidden state: varied within the following set: 25,50,100

• Sentence BiLSTM hidden state: varied within the following set: 100, 200, 300

• Embedding vectors Initialization: we tested the same pre-trained language mod-
els that were used in the previous experimentations.

Unlike the grid searches performed for the CNN that used only one architecture
(CNN-non-static), we performed the above variations over all architectures of the BiL-
STM NER model.

Results

Here we report on our findings, after completing the grid search for the BiLSTM net-
work. Regarding the embedding vectors initialization, we found that for the NER model
the pre-trained vectors did not offer any improvement over the randomly initialization op-
tion. However, the word vector length appeared to be an important design variable since
the majority of the 10 models with the highest F1 results had their word vector length
set to 300. Although models seemed to benefit from larger word vectors, the length of
the character vectors did not display the same relation. Furthermore, the word BiLSTM
hidden state did not seem to favour any specific value while the sentence BiLSTM hidden
state appeared to favour a small hidden state (100). Table 4.10 presents the 10 models that
achieved the highest F1 values in regards to the testing set D3.

Besides this hyperparameter experimentation that we have reported on, our main goal
was to analyse how the optional modules of the network affected the NER classifier’s
performance. The scatter plots of Figures 4.6 and 4.7 show the relation between the
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Model Embedding
Model

Word vector
length

Character vector
length

Word hidden
state

Sentence hidden
state D3 F1

1 None 300 50 100 100 0.92193
2 GloVE 300 100 100 100 0.92094
3 None 200 50 50 100 0.92023
4 None 300 100 25 300 0.91995
5 None 300 100 50 100 0.91965
6 None 200 25 100 100 0.91935
7 None 200 100 25 100 0.91918
8 None 300 50 50 200 0.91897
9 GloVE 300 100 25 100 0.91893
10 None 300 25 50 200 0.91877

Table 4.10: 10 best performing models in the BiLSTM grid search, ordered by D3 F1

results.

accuracy and F1 metrics of the test sets and the four different architectures that our model
can have.

Figure 4.6: Scatter plot of the Models’ accuracy in the test sets D2 and D3. The
darker blue dots identify the BiLSTM baseline models, the lighter blue dots represent the
BiLSTM-Char variants, the orange dots represent the BiLSTM-CRF variants and finally
the red dots identify the BiLSTM-Char-CRF variants.

Both plots illustrate the BiLSTM baseline model as generally performing worse than
the variants. On the other hand, the BiLSTM-Char-CRF variant appears to generally
outperform all other variants and the baseline at both the F1 and accuracy measures.

An interesting aspect is that although the BiLSTM-CRF variant performs better in the
accuracy measure than the BiLSTM-Char, the latter performs better than the former in the
F1 measure.
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Figure 4.7: Scatter plot of the Models’ F1 score in the test sets D2 and D3. The darker blue
dots identify the BiLSTM baseline models, the lighter blue dots represent the BiLSTM-
Char variants, the orange dots represent the BiLSTM-CRF variants and finally the red
dots identify the BiLSTM-Char-CRF variants.

We picked the best performing models from each variant and plotted their results in
Figure 4.8. Besides the observations that we have made before about the variants and their
performance, which can also be identified in this image, we noticed a second property of
the usage of character-level embeddings. The two architectures that do not use character
vectors (BiLSTM and BiLSTM-CRF) appear to slowly decay their performance over the
datasets, from D1 to D3.

On the opposite side, the models that use character-level embeddings (BiLSTM-Char
and BiLSTM-Char-CRF) appear to be much more stable with an almost unnoticeable de-
crease between the training set and the testing sets. This may be due to the testing sets
containing unknown words, meaning words that never appeared in the training set. In
the case where the variants do not take advantage of character-level representations the
word will only be represented by the <UNK> token’s corresponding vector. Meanwhile,
the variants that take advantage of these character-level representations will have the un-
known words being represented by the <UNK> token’s vector and the concatenated vector
representation from the word BiLSTM layer which may be crucial to identify derivatives
of certain words.

Finally, Table 4.11 displays the configuration of the best performing NER model
which is labelled as BiLSTM-Char-CRF in Figure 4.8.
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Figure 4.8: Bar plot of the best BiLSTM NER models from each variant.

Design variables Value
word vector length 300

character vector length 50
word BiLSTM cell state 100

sentence BiLSTM cell state 100
embedding model GloVE

use CRF True
use characters True

Learning parameters Description
learning rate 0.01

number of epochs 5
batch size 256

Table 4.11: List of design variables and learning parameters used for the best NER model.

4.5 Case Study

This section shows the real-world application of the work that has been developed in this
dissertation. As part of the H2020 DiSIEM project [18], we have taken a sample of the
infrastructures from partners of the project to demonstrate the pratical application of our
solution.

Each infrastructure is defined by a set of assets, which in turn are defined by a variable
number of keywords. Table 4.12 presents the three infrastructures, denoted A, B and C,
by showing the asset name and the keywords used.

We begin by describing the datasets that we have collected, then we display the results
we have obtained by using the best architectures from the previous section and training
these networks on the case study datasets.
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4.5.1 Datasets

We have used the same system to collect and label tweets over a period of 4 months for
the 3 different ICT infrastructures described in Table 4.12.

Similarly to the process conducted in the previous chapter, we have split these datasets
into 3 sub-sets. These sub-sets have been seperated by time interval and set of monitored
accounts as shown in Table 4.13.

Datasets Time Interval Accounts Positives Negatives Total
A1

21/11/2016 to 27/01/2017

S1

1074 694 1768
B1 1201 638 1839
C1 1293 1473 2766
A2

27/01/2017 to 27/02/2017
282 767 1049

B2 387 671 1058
C2 325 592 917
A3

27/02/2017 to 27/03/2017 S1 + S2
219 313 532

B3 250 247 497
C3 289 358 647

Table 4.13: Datasets corresponding to companies A, B and C.

4.5.2 Classifier

Using the architecture that achieved the best results, with the hyperparameter and design
variables shown previously in Table 4.5, we trained three models, each with its corre-
sponding training set (A1, B1 or C1) and tested them against the corresponding testing
sets (A2 and A3, B2 and B3, C2 and C3). The results are presented in Figure 4.9.

Figure 4.9: Bar plot showing the results of 3 models, trained on 3 different sets of training
data and evaluated against their corresponding testing sets.

All models achieved slightly worse results when compared to the results obtained
with the test datasets used before. This can be due to the limited amount of data available,
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as well as to the sub-optimality of the architecture to the new datasets. This could be
circumvented by modifying the design variables and build a model which is able to better
fit the data. Thus, similarly to what was done previously to find the best architecture, we
performed a grid search where we varied the following variables:

• Kernels: varied the number of kernels between 3 and 6. Kernel heights were varied
incrementally either in a normal sequential manner (e.g., 2,3,4) or by parity (e.g.,
’odd’ : 3,5,7 or ’even’ : 2,4,6);

• Number of Filters: varied within the following set: 64, 128, 192, 256;

• Fully-connected Layer: either None (no additional layer), 128 or 256;

• Embedding Model: either None (vectors are randomly initialized), Word2Vec or
GloVE;

• L2 Regularization Lambda: either 0 or 3.

Figure 4.10 presents the results of the best models that were found in this grid search.
Generally, we can see an improvement across all classifiers for TPR, with little modifi-
cation to the TNR. Table 4.14 displays the architectures of all best models, including the
experimental set and the case study datasets.

Figure 4.10: Bar plot showing the best resulting models obtained through Grid Search
and 10-fold Cross Validation training.

Dataset Kernels Number of Filters L2 lambda Fully-connected Layer Embedding Model
Experimental [3,5,7,9,11] 256 0.0 None GloVE

A [3,5,7] 64 0.0 None Word2Vec
B [3,5,7] 256 3.0 None GloVE
C [3,5,7,9] 256 0.0 None Word2Vec

Table 4.14: Architectures of all the best performing models of each dataset.
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The models from the case study datasets have fewer parameters compared to the model
from the experimental dataset. Since the case study datasets have less training data than
the experimental dataset, the architecture that best performed in the experimental grid
search may in fact overfit when used to train smaller datasets. And as such, we can see
that in the case of the infrastructure A, the best model used fewer kernels and fewer filters
than the experimental architecture.

4.5.3 Named Entity Recognition

We tested our NER model through the same process of picking the best performing archi-
tecture and using it to train a model for each dataset in the case study. The configuration
used for the training of these models is displayed in Table 4.11.

In order to conduct such task, we had to manually label these datasets. The number of
labels per dataset is displayed in Table 4.15.

Labels
Datasets O ORG PRO VER VUL ID TOTAL

A1 3006 149 1364 479 1280 529 6807
B1 4855 478 2292 567 2465 974 11631
C1 7305 1367 2737 1408 2755 851 16423
A2 1531 36 554 208 388 207 2924
B2 2080 144 778 285 540 265 4092
C2 1957 231 522 199 487 131 3527
A3 1087 38 486 119 496 135 2361
B3 1134 77 591 96 535 194 2627
C3 1387 286 437 145 604 217 3076

Table 4.15: Distribution of labels per Dataset.

The results are presented in Figure 4.11. In comparison to the results obtained with the
experimental datasets, these models display equally good results, capable of identifying
around 90% of valuable information in a tweet.

However, as discussed before, these datasets are smaller than the original datasets
used for the model evaluation. With an increment in the size of these datasets we could
extract more accurate and reliable results. Nonetheless, these results are sufficient in order
to show that our approach to extract security related information from a tweet may be in
practice a valuable addition to the Twitter threat detector framework’s capabilities.

4.6 Discussion

Taking into account all the experimentation conducted in this chapter, we ought to assess
if our results are in line with the main objectives of this work.
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Figure 4.11: Bar plot showing the results of the 3 NER models, trained on 3 different sets
of training data and evaluated against their corresponding testing sets.

First, we sought to improve the binary classifier’s performance through a DL tech-
nique known as a CNN. As shown in Figure 4.5, our model either matched or surpassed
the current SVM classifier’s performance in regards to both TPR and TNR. Furthermore,
the latter metric showed a significant improvement, confirming that our binary classifier
substantially reduces the number of false positives which is an important objective of the
work. In regards to the architecture exploration, including both the hyperparameters and
other design variables, we believe that we have conducted a thorough search of the CNN
capabilities for this task. We have observed that some settings appear to be optimal for
these models, such as the usage of a pre-trained language model to initialize the word vec-
tors and the usage of small sized filters. Depending on the data available, it is important to
adjust some design variables in order to obtain a model that achieves satisfactory results.
The most important design variables to adjust are the number of kernels, their distinct
heights and the number of filters. This is supported by the results of Figures 4.9 and 4.10.
The first figure illustrates the results obtained using the same architecture to train three
different models, one for each infrastructure. This architecture’s design variables are the
result from the various experimentation conducted throughout Section 4.3. Additionally,
the second figure shows the results of the best models found through an individual grid
search for each of the case study datasets. As observed, the results from the latter models
generally show an improvement. This leaves us to conclude that some form of model
optimization process (e.g., grid search) should be conducted whenever the datasets are
expanded or whenever the architecture is being applied to a different dataset.

Regarding the expansion of the Twitter threat detector framework’s current capabil-
ities, we explored the possibility of using a NER model to extract relevant information
from a pool of relevant tweets. For such task, we required datasets to be manually la-
belled. Due to the limited amount of data, we had to limit the specificity of these labels
and kept a general description for each of them in order to have a reasonable amount of
entities to train from. Overall, the results were highly favourable, being over 90% in both
evaluation metrics (accuracy, F1 score). In the architectural exploration we tested the us-
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age of optional modules such as the addition of character-level representations and a CRF
Layer. According to Figure 4.8, besides both of these modules improving the model’s
performance, the character-level representations appear to provide stability across the
training and testing sets. Although we did not conduct a grid search in the case study,
the results were satisfactory enough in order to justify the efficiency of this architecture
to extract information from a corpus of text.



Chapter 5

Conclusion

This work explored the implementation of DL algorithms to improve and extend the ca-
pabilities of a Twitter-based cyberthreat detection framework. We implemented a CNN
binary classifier to provide an alternative to the current SVM binary classifier which
aims to identify tweets containing relevant information regarding the cybersecurity of
pre-determined assets of an ICT infrastructure. A second major contribution from this
work was a BiLSTM neural network model for NER. This model is capable of locating
and identifying relevant chunks of security related information from a corpus of text (e.g.,
a tweet).

We experimented with the architectural components of both networks, their hyper-
parameters, and design variables in order to extract knowledge from their relations and
to justify the final configurations for our models. We found that in regards to the CNN
classifier, the models usually saw better results when using pre-trained word vectors and
small heights for the kernels. Other design variables, such as the number of kernels and
filters, appear to be heavily related to the amount and the quality of training data avail-
able. Although the usage of pre-trained vectors did not seem to affect theBiLSTM NER
models’ results, their optional architectural modules appeared to be the most important
setting to be configured. We concluded that the usage of character-level representations
and the addition of the CRF Layer improved a model’s performance.

Both our contributions were successful in regards to the established goals. Regaring
the experimental datasets, the CNN classifier shows better results in comparison with
the SVM, specially in regards to the number of false positives which have substantially
decreased. This allows to reduce the amount of irrelevant information that would have
been presented to an analyst. On the other hand, our BiLSTM NER model revealed to be
highly accurate, with both accuracy and a F1 measure of 90%. Furthermore, with the case
study datasets we confirmed that our solution is effective. The CNN classifiers achieved
TPRs and TNRs of 90% on almost all test sets and the NER models also showed great
performance, achieving 90% in both accuracy and F1 on almost all the test sets.

With these results, we conclude that our binary classifier is a valuable alternative to

53



Chapter 5. Conclusion 54

the current SVM classifier and that our NER architecture is capable of extracting relevant
information from tweets. This information could be used to fill an IoC or a security alert
which in turn would be presented to a SOC.

5.1 Future Work

Through this work, we have shown the possibility of integrating state-of-the-art DL algo-
rithms to improve the capabilities of cyberthreat detection tools in OSINT and to provide
SOC analysts with relevant information about a given threat.

Nonetheless, there are still several research opportunities that can help further improve
and extend the capabilities of our pipeline. In this work we have explored the usage of
CNNs for a binary classifier and a BiLSTM neural network for a NER model. However,
we did not explore the possibility of using RNNs for the binary classification task. This
type of NNs are often deployed in NLP related tasks, as we have shown with our NER
model, and can provide better results as shown in the comparative study by Yin et al. [73].

Regarding alternative architectures for the NER, Strubell et al. [67] proposes an ar-
chitecture based on CNNs that provides equivalent results in comparison with a BiLSTM
architecture equal to the one we have deployed, but with better training speeds. As we
desire these models to be efficient and scalable, this alternative should be analysed as well
as other types of RNNs which tend to be perform as well as LSTM networks, such as the
Gated Recurrent Unit [8].

Another interesting route regarding the architecture of these classifiers is to find ways
to combine our models. For example, through techniques such as transfer learning [57]
which focuses on using a trained model and retrain it on a different but similar task. An-
other alternative is the implementation of a Multi-Task Learning model [5], an approach
that seeks to train the binary classifier and the NER model at the same time. Collobert et
al. [10] proposes such an architecture to tackle NLP tasks, in this case the authors only
share the embedding layers across models which leads to a better generalization of the
semantic relations between vectors.

Regardless of neural architecture, we explored the usage and benefit of pre-trained
word vectors. Through such language models we can extract vectors which contain se-
mantic representations of given words. In our experimentations, we used vectors which
were trained on common corpora of text. However, a valuable addition to our architecture
could be the usage of word vectors that have been trained on information security related
text, such as entries in the National Vulnerability Database [52] or information security
blogs. To our knowledge, there is no publicly available source from which we can retrieve
such vectors from. Thus, future work could focus on choosing an existing language model
(e.g., Word2Vec [49] or GloVE [56]), collecting security related text and training a model
that would be used for several information security related tasks.
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Furthermore, once the system is ready to be deployed we will require a procedure
through which we can monitor the model’s performance. As we collect new data and use
it to evaluate the deployed model, if the model’s performance appears to be degrading
over time, then future research should focus on a procedure through which we can train a
new model and substitute the deployed one. There are several challenges that will have to
be considered such has the method through which we substitute the deployed model. One
possibility is to take down the currently deployed model and upload the new one, but the
system will be unavailable while the transition occurs. Another possibility is to load the
new model alongside the deployed model and then take the latter down which would keep
the system online. However, this method would require more memory resources, since
there would be an instance where both models would be loaded in memory.
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