
 

IMPROVED SEQUENCE NETWORK FOR  

A GRID-TIED CURRENT CONTROLLED INVERTER 

 

 

 

 

 

 

 

 

by 

Thibaut Harzig 

B.S. in Electrical Engineering 

National Institute of Applied Sciences 2016 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

The Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of  

Master of Science 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2018 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/185272775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Thibaut Harzig 

 

 

 

It was defended on 

November 19, 2018 

and approved by 

Gregory F. Reed, Ph.D., Professor, 

Department of Electrical and Computer Engineering 

 

Alexis Kwasinski, Ph.D., Associate Professor, 

Department of Electrical and Computer Engineering 

 

Brandon M. Grainger, Ph.D., Assistant Professor, 

Department of Electrical and Computer Engineering 

Thesis Advisor: Brandon M. Grainger, Ph.D., Assistant Professor, 

Department of Electrical and Computer Engineering 

 

 

 



 iii 

Copyright © by Thibaut Harzig 

2018 



 iv 

 

 

 

The development of equipment for harvesting renewable energy has lead to an increase in the 

number of inverters connected to electric grid architectures. The power electronic inverter is a 

key element to interface most renewables with the grid. Often manufacturers will not provide the 

detailed schematics of the inverter control scheme that has been implemented. But, current 

control mode is one of the most common control strategies for inverter design. 

  The control design of such inverters is realized by assuming nominal operating 

conditions for the grid voltage. However, it is common to model a current-controlled inverter as 

a three-phase current source even under non-nominal conditions.  Therefore, the classical fault 

analysis tools, such as symmetrical components, needs to consider unbalanced condition impacts 

on control to make an accurate estimation of the fault current expected from the power electronic 

unit. The contribution of this work is to study the behavior of a grid-tied current controlled 

inverter when the grid is experiencing a single line-to-ground fault and to analytically develop a 

sequence network model that takes into account the control strategy implemented and the nature 
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 v 

of the fault. A PLECS simulation of a current controlled inverter is realized to prove that the new 

sequence network model, that takes into account the impact of the fault on the inverter’s control 

system behavior, is more representative of inverter behavior compared to a sequence network 

developed using classical assumptions. 
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1.0  INTRODUCTION 

1.1 BACKGROUND 

Historically, the electrical grid was built following a radial configuration where clients are 

supplied by large power sources. However, with the increasing penetration of renewables, more 

inverter-based generation were connected to the grid. The flow of power that was primarily 

unidirectional (from power source to clients) became bidirectional as it becomes possible to 

provide power to the grid at the distribution level. Those distributed generations decrease the 

efficiency of classical fault detection scheme as they can reduce and even shadow fault currents 

[1]. Therefore, detection algorithm based on phase shift measurement between line current and 

voltage was developed to improve the fault detection capability in an inverter-based generation 

distribution circuit [2]. However, this scheme was developed considering balanced faults. For 

unbalanced faults, symmetrical components are used for fault current predictions. Nevertheless, 

this fault assessment technic were developed for networks, where rotating machines were the 

dominant contributor to fault currents [1]. In fact, traditional generators behave differently 

compared to inverter-based generations under unbalanced conditions making the modeling if 

inverters into sequence networks challenging. In that context, this project aims at providing an 

accurate answer in the sequence network modeling of inverter. 
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1.2 CURRENT MODE CONTROL VERSUS VOLTAGE MODE CONTROL 

Most of the control schemes of an inverter aim at regulating the amount of active and reactive 

power injected into the grid. Two main strategies exist to control these parameters [3]. The first 

one is known as the voltage-mode control. In this mode the amount of active power delivered to 

the grid is controlled by acting on the phase angle of the converter output voltage while the 

amount of reactive power injected is controlled by acting on the converter output voltage 

amplitude with respect to grid voltage. The main advantage of the voltage-mode control is the 

simplicity of operation as only two independent control loops are required on the condition that 

the voltage amplitude and phase are closed to those of the grid voltage. However, this strategy 

suffers from a lack protection against overcurrent happening when the power references are 

changing too fast or when a fault occurs.  

The second strategy to regulate the real and reactive power is the current-mode control. 

In this mode the real and reactive power regulations relies on controlling the phase angle and 

amplitude of the line current with respect to the grid voltage. Even if the regulation of dq 

parameters implies dynamics that need to be decoupled the advantages of this mode over the 

voltage mode are numerous. In fact, they include robustness against variations in parameters of 

the voltage sourced converter and a higher precision added to an inner protection from 

overcurrents.  

Consequently, the current mode control has been chosen in this project as it represents 

most of the existing voltage sourced converter control scheme for the regulation of the real and 

reactive power. Moreover, the voltage source converter control of this project doesn’t include a 

control loop of real and reactive power as it would bring more unexpected behaviors from the 

converter that are relevant to analyze but aren’t in the scope of this project. 
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1.3 PROJECT CONSTRAINTS 

The work presented in this report aims at realizing the sequence network of a grid-tied current 

controlled inverter system without any interfacing three-phase transformer and experiencing a 

single line-to-ground fault on phase A presented in figure 1. The goal is to predict accurately the 

fault current going through the fault resistance 𝑅𝐹 and to explain any unexpected behavior in the 

inverter’s output current that would appear under unbalanced conditions. 
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Figure 1: Schematic of a grid-tied current controlled inverter 
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1.4 CONTENT ROAD MAP 

As the system to model has been defined, the analysis of the problem is decomposed in three 

chapters. The chapter 2 aims at providing a pre-analysis of the problem, modeling basic elements 

of the distribution circuit using the symmetrical components. This chapter provides the technical 

background concerning symmetrical components and study the classical assumptions concerning 

the sequence network model of inverters in literature. The chapter 3 provides a detailed analysis 

of the Grid-tied current-controlled inverter design. This chapter includes the validation of a 

simulation model of Grid-tied current controlled inverter that is used in the next chapter. The 

chapter 4 constitutes the core of this project presenting a new sequence model of the Grid-Tied 

controlled inverter. This accuracy of the new model is compared to the sequence network using 

classical assumptions presented in chapter 2. A PLECS simulation is realized to validate the 

proper sequence network model for the Grid-Tied current controlled inverter. 
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2.0  PRELIMINARY FAULT ANALYSIS 

This chapter aims at providing the fundamentals of the existing tools to model fault events in the 

grid [4]. The use of symmetrical component theory is the basis to build sequence networks that 

are used to predict the fault current expected for a particular type of fault. The section 2 of this 

chapter will apply these principles to the voltage source and the series impedance of the system 

to start building the sequence network. However, as the sequence network of the inverter is the 

core of the problem in this project, the last section of this chapter presents the primary statements 

found in literature to model the sequence network of an inverter. The results of these classical 

assumptions will be compared in chapter 4 to a new sequence network model based on the study 

of the inverter’s control in chapter 3. 
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2.1 SYMMETRICAL COMPONENTS 

Thanks to the Fortescue transformation any set of three phasors can be expressed as a linear 

combination of sets of three-phasors as represented in figure 2. 

 

 

 
Figure 2: Decomposition of three phasors into sequence components  

 

 

 

The first set is the Zero sequence components, composed of three phasors with the same 

magnitude and with no phase difference between them and represented by the subscript 0 

(𝑉𝑎0, 𝑉𝑏0, 𝑉𝑐0). The second set is the Positive sequence components, composed of three phasors 

with the same magnitude with 120° phase difference between them, in a positive sequence and 

represented by the subscript 1(𝑉𝑎1, 𝑉𝑏1, 𝑉𝑐1). The last set is the Negative sequence components, 

composed of three phasors with the same magnitude, with 120° phase difference between them, 

in a negative sequence and represented by the subscript 2 (𝑉𝑎2, 𝑉𝑏2, 𝑉𝑐2). As in a set of phasors 

(zero, positive or negative) the magnitudes of the phasors are identical and the phase difference 

between each phasor is known, each set of phasors (zero, positive, negative) can be expressed by 

a single complex number (𝑉0, 𝑉1, 𝑉2 respectively). 
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 Relations between a set of phasors and its associate complex number are given in (2-1), 

(2-2) and (2-3), where 𝑎 = 𝑒𝑗
2𝜋

3  and 𝑎2 = 𝑒𝑗
4𝜋

3 = 𝑒−𝑗
2𝜋

3 . 

 𝑉0 = 𝑉𝑎0 = 𝑉𝑏0 = 𝑉𝑐0 (2-1) 

 

 

{

𝑉𝑎1 = 𝑉1
𝑉𝑏1 = 𝑎

2𝑉1
𝑉𝑐1 = 𝑎𝑉1

 (2-2) 

 

{

𝑉𝑎2 = 𝑉2
𝑉𝑏2 = 𝑎𝑉2
𝑉𝑐2 = 𝑎2𝑉2

 (2-3) 

 

 

 

With the previous simplifications, the Fortescue transformation in (2-4) can be expressed 

as well as its inverse in (2-5) to obtain the sequence components of a set of three phasors. 

 

[
𝑉𝑎
𝑉𝑏
𝑉𝑐

] = [
1 1 1
1 𝑎2 𝑎
1 𝑎 𝑎2

] [
𝑉0
𝑉1
𝑉2

] (2-4) 

 

[
𝑉0
𝑉1
𝑉2

] =
1

3
[
1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
] [
𝑉𝑎
𝑉𝑏
𝑉𝑐

] (2-5) 
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2.2 PRELIMINARY SEQUENCE NETWORK OF THE SYSTEM 

2.2.1 Sequence network of the three-phase voltage source and its output impedance 

The goal of this part is to build the sequence networks of a three-phase voltage sources and its 

output impedance represented in figure 3. 

 

 

 
Figure 3: Schematic of the three-phase voltage source and its output impedance 

 

 

 

Using the notations of figure 3, each phase follows the relation given in (2-6): 

 

{
𝑉𝑠𝑎 = 𝐸𝑎 − 𝑅𝑣𝐼𝑣𝑎
𝑉𝑠𝑏 = 𝐸𝑏 − 𝑅𝑣𝐼𝑣𝑏
𝑉𝑠𝑐 = 𝐸𝑐 − 𝑅𝑣𝐼𝑣𝑐

 (2-6) 

 

 

 

From the relations in (2-6) it is possible to apply the inverse Fortescue transformation to 

have a relation linking zero sequence phasors in (2-7), positive sequence phasors in (2-8), and 

negative sequence phasors in (2-9). 

 
𝑉𝑠0 =

𝑉𝑠𝑎 + 𝑉𝑠𝑏 + 𝑉𝑠𝑐
3

=
𝐸𝑎 + 𝐸𝑏+ 𝐸𝑐

3
− 𝑅𝑣

(𝐼𝑣𝑎 + 𝐼𝑣𝑏 + 𝐼𝑣𝑐)

3
 

𝑉𝑠0 = 𝐸0 − 𝑅𝑣𝐼𝑣0 = −𝑅𝑣𝐼𝑣0 

(2-7) 
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𝑉𝑠1 =

(𝑉𝑠𝑎 + 𝑎
2𝑉𝑠𝑏 + 𝑎𝑉𝑠𝑐)

3
=
𝐸𝑎 + 𝑎

2𝐸𝑏+𝑎𝐸𝑐
3

− 𝑅𝑣
(𝐼𝑣𝑎 + 𝑎

2𝐼𝑣𝑏 + 𝑎𝐼𝑣𝑐)

3
 

𝑉𝑠1 = 𝐸1 − 𝑅𝑣𝐼𝑣1 

(2-8) 

   

 
𝑉𝑠2 =

𝑉𝑠𝑎 + 𝑎𝑉𝑠𝑏 + 𝑎
2𝑉𝑠𝑐

3
=
𝐸𝑎 + 𝑎𝐸𝑏+𝑎

2𝐸𝑐
3

− 𝑅𝑣
(𝐼𝑎 + 𝑎𝐼𝑏 + 𝑎

2𝐼𝑐)

3
 

𝑉𝑠2 = 𝐸2 − 𝑅𝑣𝐼2 = −𝑅𝑣𝐼2 

(2-9) 

 

 

 

As the three-phase voltage provides a balanced set of voltages in a positive sequence only     

𝐸1 ≠ 0. Thanks to the equations in (2-7), (2-8) and (2-9), it is possible to draw the equivalent 

zero sequence network (a)), positive sequence network (b)) and negative sequence network (c)) 

in figure 4. 

 

 

 
Figure 4: Sequence networks of the three-phase voltage source and its output impedance 
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2.2.2 Single line-to-ground fault on phase A modeling 

As the sequence network of the current controlled inverter, in parallel with the three-phase 

voltage source and its output impedance, is subject to study, the sequence networks in figure 5 

are modeled to consider the inverter as a black box that will be modeled later on. 

 

 

 

Figure 5: Sequence network of the system with unknown contribution of the inverter 

 

 

 

The fault condition modeled is a short-circuit between phase A and the ground with a 

fault impedance 𝑅𝐹. Considering that the pre-fault current (IA, IB, IC before the fault occurs) is 

negligible then it is possible to state some fault conditions in (2-10) 

 
{
𝐼𝐵 = 𝐼𝑐 = 0 𝐴
𝑉𝑠𝑎 = 𝑅𝐹𝐼𝐴

 (2-10) 

 

 

 

From the first relation of (2-10) and the transformations in (2-4) and (2-5) it is possible to 

express relations linking sequence components of load currents and grid voltage. 

  

{
𝐼0 = 𝐼1 = 𝐼2 =

𝐼𝐴
3

(𝑉𝑠0 + 𝑉𝑠1 + 𝑉𝑠2) = 3𝑅𝐹𝐼1

 (2-11) 
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From the relations in (2-11), it is possible to connect the zero, positive and negative 

sequence networks to get the sequence network model in figure 6. 

 

 

 
Figure 6: Sequence network modeling the single line-to-ground on phase A with unknown 

contribution of the inverter 

 

 

 

To compute the fault current, the circuit figure has to be solved to express 𝐼0 = 𝐼1 = 𝐼2, as 

the fault current expected is given by computing 𝐼𝐴 = 3𝐼1. 
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2.2.3 Literature review on Inverter’s fault contribution  

This part will summarize two reference documents to establish the classical assumptions made to 

model the fault contribution of Inverters. The first document [5] is a technical report from the 

IEEE Power & Energy society analyzing the Fault Current Contributions from Wind Plants. The 

report realizes the assessment of each type of wind turbine generator (type I, type II, type III, 

type IV and type V) for the design of protecting equipment. The type IV wind turbine generators 

presented in figure 7 is composed of an electrical machine interconnected with a full-scale back-

to-back frequency converter. 

 

 

 

Figure 7: WTG type IV topology [5] 

 

 

 

The report mentions that the fault response of this type of wind plant is highly dependent 

on the control strategy implemented. However, the inverter of this type of wind plant is assumed 

to only inject a symmetrical current under balanced and unbalanced faults. In other words, the 

wind turbine is not injecting any Negative or Zero-sequence current during a fault.  
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The second paper [6] presents a fault current and overvoltage calculations of a typical 

distribution circuit with solar photovoltaic (PV) in figure 8 creating a sequence network model 

shown in figure 9. 

 

 

 
Figure 8: Distribution circuit under study [6] 

 

 

 

 

 

 
Figure 9: Sequence network of the distribution circuit [6] 
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In figure 9 the inverter is modeled as a current source that provides only a positive 

sequence of current. It is important to notice that the inverter is interfaced with a Wye-Delta 

three-phase transformer that acts, in zero sequence, as an open circuit across the zero sequence 

network of the inverter. Therefore, even if the inverter provides a zero sequence of current, this 

current would not flow throughout the rest of the zero sequence network of the distribution 

circuit.  

As a conclusion, a current controlled inverter is assumed to provide only a positive 

sequence of current under balanced and unbalanced conditions. In [6], this assumption is 

accurate because the inverter is interconnected with a Delta-Wye three-phase transformer that 

acts as an open circuit in the Zero-sequence domain and will prevent any Zero-sequence current 

from flowing to the distribution circuit. Hence, the scope of this work is to prove that the case 

study in [6] is a particular case and that an inverter without interfacing Delta-Wye three-phase 

inverter can’t be modeled as providing only a Positive-sequence of current under unbalanced 

conditions. 
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3.0  GRID-TIED CURRENT CONTROLLED INVERTER ANALYSIS 

The purpose of this chapter is to highlight key elements in the design of the inverter described as 

a Two Level, Three Phase Voltage-Sourced Converter. The first section describes the steps to 

obtain the averaged model of the converter, The second section introduces the Park 

Transformation used to simplify the design of its current control loop presented in section 3 [3]. 

The voltage sourced inverter is said “grid-tied” as the inverter picks up the frequency the 

electrical network to produce AC voltages that have the same frequency. Therefore, the design of 

the Phase-Locked Loop (PLL), aiming at extracting the electrical grid frequency, is described in 

section 3. Finally, the section 4 describes the validation of the model with a PLECS simulation. 

3.1 GRID-TIED CURRENT CONTROLLED INVERTER ANALYSIS 

3.1.1 Three Phase Voltage Sourced Converter Switched Model 

The Three-Phase Voltage Sourced Inverter in figure 10 is composed of three half-bridge 

converter that will each convert the input DC voltage into an AC voltage on each phase. The 

converter is called “Voltage Sourced” because the input of the converter is composed of DC 

voltage sources. Furthermore, this Three-Phase Voltage Sourced Inverter is called “Two-level” 

as voltages Vta, Vtb, Vtc can be only –VDC/2 or VDC/2. The first step to get the averaged model of 
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the converter is to mathematically describe the functioning of one phase, that is to say, one half-

bridge converter. 

The single phase DC/AC half bridge converter in figure 11 produces an AC voltage 

alternating the switch of two “switch cells”. A switch cell is composed of a unidirectional switch, 

such as an IGBT, and a diode connected in antiparallel to make a fully controllable reverse 

 

 

 

Figure 10: Three-Phase Voltage Sourced Converter 
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Figure 11: DC/AC Single-Phase Half Bridge Converter 

 

 

 

conducting switch. The main feature of such a switch is that it can be considered as a unipolar 

switch that is able to conduct in the opposite direction when reverse biased by a small voltage. 

The converter is controlled through the gates of the IGBT in each switch cell thanks to 

“switching functions”. A switching function can be defined by the following statement: 

 
𝑠1,4(𝑡) = {

1,   𝑡𝑢𝑟𝑛 𝑜𝑛 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑤𝑖𝑡𝑐ℎ 
 

0,   𝑡𝑢𝑟𝑛 𝑜𝑓𝑓 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑤𝑖𝑡𝑐ℎ 
 (3-1) 

 

 

 

Let s1(t) and s4(t) be the switching function of the switch cell 1 and switch cell 4 

respectively. Then it is possible to describe the waveform of the output voltage considering two 

cases related to the direction of the output current.  
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This analysis requires to state several assumptions to obtained the switched model of the 

Half-Bridge converter: 

 The diodes and IGBT are considered as perfect switch 

 Transition from a conduction state to a blocking state takes place instantaneously  

Q1 and Q4 can’t be commanded to conduct in the same time as it would short-circuit the DC 

input voltage. 

Referring to figure 2, in the case of a positive current i: 

 If s1(t)=0 then Q1 is blocked. The current i can’t flow through D1 because iD1 

can’t be negative. As iQ4 can’t be negative, Q4 is blocked even if s4(t)=1 and the 

current can only flow through D4. 

 𝑉𝑡 = 𝑉𝑛 = −𝑉𝐷𝐶 2⁄  (3-2) 

 

 

 

 If s1(t)=1 then s4(t)=0 then Q1 conducts and Q4 is blocked. The current i still can’t 

flow through D1 because iD1 can’t be negative. The diode D4 is reverse biased and 

is blocked. 

 𝑉𝑡 = 𝑉𝑛 = −𝑉𝐷𝐶 2⁄  (3-3) 

 

 

 

In the case of a negative current i: 

 If s4(t)=0 then Q4 is blocked. The current i can’t flow through D4 because iD4 

can’t be negative. As iQ1 can’t be negative, Q1 is blocked even if s1(t)=1 and the 

current i can only flow through D1.  
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 𝑉𝑡 = 𝑉𝑝 = 𝑉𝐷𝐶 2⁄  (3-4) 

 

 

 

 If s4(t)=1 then s1(t)=0 then Q1 conducts and Q4 is blocked. The current i still can’t 

flow through D4 because iD4 can’t be negative. The diode D1 is reverse biased and 

is blocked.  

 𝑉𝑡 = 𝑉𝑝 = 𝑉𝐷𝐶 2⁄  (3-5) 

 

 

 

Therefore, independently from the current i sign: 

 If s1(t)=1 and s4(t)=0 then  𝑉𝑡 = 𝑉𝑝 = 𝑉𝐷𝐶 2⁄  

 If s4(t)=1 and s1(t)=0 then  𝑉𝑡 = 𝑉𝑛 = −𝑉𝐷𝐶 2⁄  

The switched model of the half-bridge converter is therefore given by: 

 𝑉𝑡(𝑡) = (
𝑉𝐷𝐶

2⁄ ) 𝑠1(𝑡)− (
𝑉𝐷𝐶

2⁄ ) 𝑠4(𝑡) (3-6) 

 

 

 

To establish a simpler switched model of the half-bridge converter it is assumed that the 

switching functions satisfy the following condition. 

 𝑠1(𝑡)+ 𝑠4(𝑡) = 1 (3-7) 

 

 

 

Finally, the switched model of the half-bridge converter can be expressed by (3-8). 

 𝑉𝑡(𝑡) =
𝑉𝐷𝐶

2⁄ (2𝑠1(𝑡) − 1) (3-8) 
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To get a more accurate expression of the switched model, it is necessary to take into account the 

process used to issue the turn on/off commands for switches. The pulse-width modulation 

(PWM) is a classical method to build switching functions. This method consists in comparing a 

modulating signal acting as the command with a triangular waveform of period Ts to create a 

square waveform. As shown by the figure, if the modulating signal, also called modulation index 

is higher in amplitude than the carrier then the switching function value is set to 1 otherwise the 

value is set to 0. The result is a square waveform with a duty cycle that vary from a switching 

interval 𝑇𝑠̂ to another. 

 

 

 
Figure 12: Comparison of a triangle waveform with a modulating signal to realize a PWM on a 

switching function [3] 

 

 

 

If the modulating signal m is constant over the switching interval 𝑇𝑠̂, the resulting duty 

cycle d for this interval follows the relation below. 

 𝑑 =
𝑚

2
+ 0.5 (3-9) 



 21 

 

Let’s study the particular case where the modulating signal is a sinusoidal function of the 

time: 

 𝑚(𝑡) = 𝑀cos (ωt) (3-10) 

 

 

 

To continue the analysis, it has to be assumed that 
2𝜋

𝑇𝑆
≫ 𝜔. Therefore, at the scale of a 

switching interval 𝑇𝑠,  𝑚(𝑡) is a constant value. The value of duty cycle during a switching 

interval 𝑇𝑠̂ is labeled 𝐷|𝑇𝑠̂. Yet, it is important to note that 𝐷|𝑇𝑠̂ will change from a cycle to 

another. 

The switching function s1(t) can be expressed by: 

 
𝑠1(𝑡) = 𝐷|𝑇𝑠̂ +

2

𝜋
∑

sin (𝑛𝜋𝐷|𝑇𝑠̂)

𝑛
cos (𝑛𝜔𝑠𝑡 − 𝑛𝜑𝑠)

+∞

𝑛=1

 (3-11) 

 

 

 

Plugging the expression above into (3-8), it is possible to give a new expression including 

harmonics for the switched model of the Half-Bridge converter in (3-12) 

 
𝑉𝑡(𝑡) =

𝑉𝐷𝐶
2⁄ (2𝐷|𝑇𝑠̂ − 1)+

2𝑉𝐷𝐶
𝜋

∑
sin (𝑛𝜋𝐷|𝑇𝑠̂)

𝑛
cos (𝑛𝜔𝑠𝑡 − 𝑛𝜑𝑠)

+∞

𝑛=1

 (3-12) 
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3.1.2 Three-Phase Voltage Sourced Converter Average Model 

The dynamic equation of the output current of the converter is represented by (3-13) 

 
𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) = 𝑉𝑡(𝑡) − 𝑉𝑠(𝑡) (3-13) 

 

 

 

𝑉𝑠(𝑡) = 𝑉𝑠cos (𝜔𝑡) corresponds to the voltage of the grid in figure 10. This voltage is 

considered as constant during a switching interval  𝑇𝑠 as  
2𝜋

𝑇𝑆
≫ 𝜔. 

By superposition it is possible to consider the dynamic of the output current as the 

summation of the response of the DC component of 𝑉𝑡(𝑡) labeled 𝑖(𝑡)̅̅ ̅̅ ̅ and the response of the 

AC component of 𝑉𝑡(𝑡) labeled 𝑖(𝑡)̃ 

 𝑑𝑖(𝑡)̅̅ ̅̅ ̅

𝑑𝑡
+ 𝑅𝑖(𝑡)̅̅ ̅̅ ̅ =

𝑉𝐷𝐶
2⁄ (2𝐷|𝑇𝑠̂ − 1) − 𝑉𝑠(𝑛𝑇𝑠) 

𝐿
𝑑𝑖(𝑡)̃

𝑑𝑡
+ 𝑅𝑖(𝑡)̃ =

2𝑉𝐷𝐶
𝜋

∑
sin (𝑛𝜋𝐷|𝑇𝑠̂)

𝑛
cos (𝑛𝜔𝑠𝑡 − 𝑛𝜑𝑠)

+∞

𝑛=1

 

𝑖(𝑡) = 𝑖(𝑡)̅̅ ̅̅ ̅ + 𝑖(𝑡)̃ 

(3-14) 

 

 

 

The dynamic equation of the output current represents a low-pass filter with a cut-off 

frequency 𝜔𝑐 =
𝑅

𝐿
. Therefore if 

2𝜋

𝑇𝑠
≫ 𝜔𝑐, the impact of 𝑖(𝑡)̃ on 𝑖(𝑡) is negligible and the dynamic 

equation for the current can be expressed in (3-15). 

 
𝐿
𝑑𝑖(𝑡)̅̅ ̅̅ ̅

𝑑𝑡
+ 𝑅𝑖(𝑡)̅̅ ̅̅ ̅ =

𝑉𝐷𝐶
2⁄ (2𝐷|𝑇𝑠̂ − 1) − 𝑉𝑠(𝑡) 

(3-15) 
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It is important to notice that the response of the DC component (3-15) can be extracted 

from the dynamic equation of current in (3-13) by applying the average operator to the two sides 

of the equation. As the average of a variable can vary from one switch cycle to another, the 

average operator is given by the equation below. 

 
𝑥(𝑡)̅̅ ̅̅ ̅̅ =

1

𝑇𝑠
∫ 𝑥(𝑡)𝑑𝑡
𝑡−𝑇𝑠

𝑡

 (3-16) 

 

 

 

This operator can only be applied if the frequency of the carrier signal 
1

𝑇𝑠
 is higher than 

the frequency of the modulating signal (10 times higher). Moreover, as 𝑇𝑠 can be considered to 

be very small, the averaged model of the output current of the single phase half-bridge converter 

is given by the equation (3-4) by expressing the varying duty cycle as a function of the 

modulation index. 

 
𝐿
𝑑𝑖(𝑡)̅̅ ̅̅ ̅

𝑑𝑡
+ 𝑅𝑖(𝑡)̅̅ ̅̅ ̅ =

𝑀𝑉𝐷𝐶

2
cos (𝜔𝑡) − 𝑉𝑠(𝑡) (3-17) 

 

 

 

The modulation index 𝑚(𝑡) represents therefore the ratio between the input voltage (
𝑉𝐷𝐶

2
) 

and the output voltage of the converter. As the duty cycle of the switching function can’t be 

superior to 1 over a switching interval the amplitude of 𝑚(𝑡) can’t go above 1 otherwise the 

converter will start to saturate. 
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Going back to the three-phase voltage sourced converter, it is possible to consider the 

system with three dynamic equations (3-18), one per phase, with three inputs represented by the 

modulation indexes in (3-19) applied to each phase of the converter. Each phase voltage of the 

grid can be seen as a disturbance while the current of each phase represent the output of the 

system. 

 

{
  
 

  
 𝐿

𝑑𝑖𝑎(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+ 𝑅𝑖𝑎(𝑡)̅̅ ̅̅ ̅̅ =

𝑉𝐷𝐶

2
𝑚𝑎(𝑡) − 𝑉𝑠cos (𝜔𝑡)

𝐿
𝑑𝑖𝑏(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+ 𝑅𝑖𝑏(𝑡)̅̅ ̅̅ ̅̅ =

𝑉𝐷𝐶

2
𝑚𝑏(𝑡) − 𝑉𝑠cos (𝜔𝑡 −

2𝜋

3
)

𝐿
𝑑𝑖𝑐(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+ 𝑅𝑖𝑐(𝑡)̅̅ ̅̅ ̅̅ =

𝑉𝐷𝐶

2
𝑚𝑐(𝑡) − 𝑉𝑠cos (𝜔𝑡 +

2𝜋

3
)

 (3-18) 

 

{
 
 

 
 

𝑚𝑎(𝑡) = 𝑀𝑎cos (𝜔𝑡)

𝑚𝑏(𝑡) = 𝑀𝑏cos (𝜔𝑡 −
2𝜋

3
)

𝑚𝑐(𝑡) = 𝑀𝑐cos (𝜔𝑡 +
2𝜋

3
)

 (3-19) 

 

 

 

To control the system and get balanced three-phase currents, time varying references 

have to be used for each phase. Consequently, this control will involve complex compensators to 

track with zero steady state error and no phase delay the time-varying reference. Another 

solution is to implement a control strategy in the dq-frame using the Park transformation on the 

equations (3-18) and (3-19). As the references to track for this control strategy will be DC values 

only PI compensators would be required. The next section realizes a deep analysis of the Park 

transformation and use to design the current control of the three-phase voltage sourced converter.  



 25 

3.2 PARK TRANSFORMATION FUNDAMENTALS 

To understand and build a better intuition of the Park transformation, let’s consider the concept 

of space phasor (3-20) of a balanced set of time varying functions (3-21). 

 

{
 
 

 
 

𝑓𝑎(𝑡) = 𝑓𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

𝑓𝑏(𝑡) = 𝑓𝑐𝑜𝑠(𝜔𝑡 −
2𝜋

3
+ 𝜃0)

𝑓𝑐(𝑡) = 𝑓𝑐𝑜𝑠(𝜔𝑡 +
2𝜋

3
+ 𝜃0)

 (3-20) 

 
𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

2

3
[𝑒𝑗0𝑓𝑎(𝑡) + 𝑒

𝑗
2𝜋
3 𝑓𝑏(𝑡)+𝑒

𝑗
2𝜋
3 𝑓𝑏(𝑡)] = (𝑓𝑒

𝑗𝛳0)𝑒𝑗𝜔𝑡 = 𝑓𝑒𝑗𝜔𝑡 (3-21) 

 

 

 

In (3-20), 𝑓 refers to a time varying amplitude and 𝜃0 to the initial phase angle. If 𝑓 is 

constant, 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   can be represented by a vector in the complex plane turning counterclockwise at 

the speed ω in figure 13.  

 

 

 
Figure 13: Space phasor in the complex plane [3] 
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The equations in (3-22) might be used to extract the time domain functions from the 

space phasor.  

 𝑓𝑎(𝑡) = 𝑅𝑒{𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑒−𝑗0}

𝑓𝑏(𝑡) = 𝑅𝑒 {𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑒−𝑗
2𝜋
3 }

𝑓𝑐(𝑡) = 𝑅𝑒 {𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑒−𝑗
2𝜋
3 }

 (3-22) 

 

 

 

With the concept of space phasor comes the space phasor phase-shifter/scaler in (3-23) 

that aims at changing the amplitude and phase of the three-phase signal. 

 𝑓′⃗⃗  ⃗(𝑡) = 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝐴(𝑡)𝑒𝑗∅(𝑡) (3-23) 

 

 

 

The Park transformation (3-24) is a particular case of a space phasor phase-shifter/scaler 

that only phase shifts the space phasor of an angle −𝜀(𝑡) = 𝜀0 + ∫𝜔(𝜏)𝑑𝜏. 

 𝑓𝑑 + 𝑗𝑓𝑞 = (𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 𝑒−𝑗𝜀(𝑡) = (𝑓𝑒𝑗𝜔𝑡) 𝑒−𝑗𝜀(𝑡) = 𝑓𝑒𝑗(𝛳0−𝜀0) (3-24) 

 

 

 

If 𝑓 is constant, then the result of the transformation is a constant complex number. To realize 

properly the Park transformation, 
𝑑𝜀(𝑡)

𝑑𝑡
 must be equal to 𝜔 but 𝜀0 is not necessarily equal to 𝜃0 . 

The transformation can also be understood as the projection of the space phasor in a 

“synchronously rotating reference frame” in figure 14. The Clark transformation is the 

expression of the real (α) and imaginary (β) component of the space phasor and can also be seen 

as a projection in a static reference frame. 
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Figure 14: dq- and αβ- coordinate of a space-phasor [3] 

 

 

 

As the transformation is currently using three AC inputs to get two DC outputs, the 

common mode or zero component in (3-25) is generally added to the result of this phase shift to 

make the whole Park transformation. 

 
𝑓0 =

1

3
(𝑓𝑎(𝑡) + 𝑓𝑏(𝑡) + 𝑓𝑐(𝑡)) (3-25) 

 

 

 

In control design considerations, nominal conditions assume balanced signals making the 

Zero-sequence component equal to zero. Therefore, this component is often not taken into 

account and only the space phasor expressed in the synchronously rotating frame in (3-24) is 

considered.  
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In practical applications the transformation in (3-26) and (3-27) are used to directly 

express the dqo components from three-phase signal and the time varying signals from dqo 

components respectively.  

 

[

𝑓𝑑
𝑓𝑞
𝑓0

] =
2

3

[
 
 
 
 
 cos (𝜀(𝑡)) cos (𝜀(𝑡) −

2𝜋

3
) cos (𝜀(𝑡) +

2𝜋

3
)

sin (𝜀(𝑡)) sin (𝜀(𝑡) −
2𝜋

3
) sin (𝜀(𝑡) +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 
 

[

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] (3-26) 

 

[

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] =

[
 
 
 
 

cos (𝜀(𝑡)) sin (𝜀(𝑡)) 1

cos (𝜀(𝑡) −
2𝜋

3
) sin (𝜀(𝑡) −

2𝜋

3
) 1

cos (𝜀(𝑡) +
2𝜋

3
) sin (𝜀(𝑡) +

2𝜋

3
) 1]

 
 
 
 

[

𝑓𝑑
𝑓𝑞
𝑓0

] (3-27) 

 

 

 

3.3 CURRENT CONTROL IN THE DQ-FRAME OF THE GRID IMPOSED 

FREQUENCY THREE-PHASE VOLTAGE SOURCED CONVERTER  

3.3.1 Dynamic Model of the Voltage Sourced Converter in the dq-frame 

As equations (3-18) and (3-19) are representing a decoupled symmetrical three-phase system, it 

is possible to express a dynamic equation relating the space phasors of each variable in (3-28) 

using the operation introduced in (3-21) on the set of equations in (3-18) 

 
𝐿
𝑑𝑖(𝑡)⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
+ 𝑅𝑖(𝑡)⃗⃗⃗⃗⃗⃗  ⃗ =

𝑉𝐷𝐶

2
𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑉𝑠𝑒

𝑗𝜔𝑡+𝜃0 (3-28) 
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It is assumed that the space phasor of each variable has a constant amplitude. Moreover if 

the dq components of the modulation index and the current are obtained using a rotating frame 

that is not rotating at the speed 𝜔 but realizing a phase shift of angle -ε(t) of the space phasor, 

 𝑖(𝑡)⃗⃗⃗⃗⃗⃗  ⃗ = (𝑖𝑑 + 𝑗𝑖𝑞)𝑒
𝑗ε(t) 

𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑚𝑑 + 𝑗𝑚𝑞)𝑒
𝑗ε(t) 

(3-29) 

 

 

 

The equation (3-28) can be transformed into the equations (3-30) using the new 

expressions for the current and the modulation index above and separating the real components 

from the imaginary components, with 𝑉𝑠𝑑 = 𝑉𝑠cos (𝜔𝑡 + 𝜃0 − 𝜀(𝑡)) and 𝑉𝑠𝑞 = 𝑉𝑠sin (𝜔𝑡 + 𝜃0 −

𝜀(𝑡)) 

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

− 𝐿
𝑑𝜀(𝑡)

𝑑𝑡
𝐼𝑞 + 𝑅𝑖𝑑 =

𝑉𝐷𝐶
2
𝑚𝑑 − 𝑉𝑠𝑑(𝑡)

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝐿

𝑑𝜀(𝑡)

𝑑𝑡
𝐼𝑑 + 𝑅𝑖𝑞 =

𝑉𝐷𝐶
2
𝑚𝑞 − 𝑉𝑠𝑞(𝑡)

 (3-30) 

 

 

 

In the case that 𝜀(𝑡) = 𝜔𝑡 + 𝜃0, the equation (3-30) can be simplified to get the equation 

in (3-31) 

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

− 𝐿𝜔𝐼𝑞 + 𝑅𝑖𝑑 =
𝑉𝐷𝐶
2
𝑚𝑑 − 𝑉𝑠

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝐿𝜔𝐼𝑑 + 𝑅𝑖𝑞 =

𝑉𝐷𝐶
2
𝑚𝑞

 (3-31) 
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As the input modulation indexes in dq-frame are DC references then 𝑖𝑑 and 𝑖𝑞 are DC 

variables in steady-state. The equations in (3-32) represent the dq components of output current 

in steady-state and considering that the dq component of each variable is computed using a 

synchronously rotating frame. 

 

{
𝐿𝜔𝐼𝑞 + 𝑅𝑖𝑑 =

𝑉𝐷𝐶
2
𝑚𝑑 − 𝑉𝑠

𝐿𝜔𝐼𝑑 + 𝑅𝑖𝑞 =
𝑉𝐷𝐶
2
𝑚𝑞

 (3-32) 

 

 

 

The PLL extracts the frequency of the grid voltage to fulfill the requirement of a 

synchronously rotating frame. The next part describes the design of such a function. 

3.3.2 Design and Control of the PLL 

The main function of a PLL is to extract the frequency of the grid voltage so that the inverter is 

able to produce a three-phase output voltage having the same frequency. This frequency is used 

to realize the Park transformation of input and output variables for the control in the dq-frame of 

the inverter. 

 To realize such a function, the q component of the grid voltage  𝑉𝑠𝑞 will be used to adjust 

the angle 𝜀(𝑡) to be equal to 𝜔𝑡 + 𝜃0. It is important to notice that to make such an adjustment, 

𝜀(𝑡) has to be set to regulate 𝑉𝑠𝑞 to 0. However, the expression of 𝑉𝑠𝑞 is a sinusoidal function and 

can’t be used directly as a feedback signal to regulate 𝜀(𝑡).  If 𝜀(𝑡) respects the initial conditions 

in (3-33) then it is possible to state that  𝑉𝑠𝑞 ≈ 𝑉𝑠(𝜔𝑡 + 𝜃0 − 𝜀(𝑡)). 
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 𝑑𝜀

𝑑𝑡
(0) = 𝜔𝜖(0) =  𝜔

𝜔𝜖𝑚𝑖𝑛 ≤ 𝜔𝜖 ≤ 𝜔𝜖𝑚𝑎𝑥

 (3-33) 

 

 

 

The process of PLL presented in figure 15 is able to track 𝜔𝑡 + 𝜃0 and can be transformed into a 

classical feedback control block diagram in figure 16. 

 

 

 
Figure 15: Schematic of the Phase Locked Loop (PLL) process 

 

 

 

 

 

 
Figure 16: Equivalent Feedback control loop diagram 
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The VCO in figure 15 and 16 can be represented as a resettable integrator of 𝜔𝜖 every 

time the result of the integration reaches 2π. 

If the voltage grid is under nominal conditions, then the loop gain needs to integrate two 

integrators as the reference 𝜔𝑡 + 𝜃0 is a ramp function. Therefore, the compensator H(p) needs 

to contain at least one integrator for 𝜀(𝑡) to track (𝜔𝑡 + 𝜃0) without steady-state error. However, 

the expression of Vsq is different if the voltage grid is unbalanced changing the design features of 

the compensator H(p). 

3.3.3 Compensator design for PLL under non-nominal conditions 

As seen in the first chapter, the event of a single line-to-ground fault brings a zero and a negative 

sequence component in the grid voltage that is therefore expressed in (3-34)  

 

{
 
 

 
 

𝑉𝑠𝑎(𝑡) = 𝑉𝑠1𝑐𝑜𝑠(𝜔𝑡 + 𝜃0) + 𝑉𝑠2𝑐𝑜𝑠(𝜔𝑡 + 𝜃0) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

𝑉𝑠𝑏(𝑡) = 𝑉𝑠1𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −
2𝜋

3
) + 𝑉𝑠2𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −

4𝜋

3
) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

𝑉𝑠𝑐(𝑡) = 𝑉𝑠1𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −
4𝜋

3
) + 𝑉𝑠2𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −

2𝜋

3
) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

 (3-34) 

 

 

 

The space phasor of the set of voltages in (3-34) is expressed in (3-35) and shows that the 

zero component no longer appears in the expression of the space phasor.  

 𝑉𝑠(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑉𝑠1 + 𝑉𝑠2𝑒
−𝑗2𝜔𝑡)𝑒𝑗(𝜔𝑡+𝜃0) (3-35) 

 

 

 

The space phasor of the Negative-sequence component can be represented by a vector 

turning clockwise at the speed ω. Therefore, a projection of this component on a frame that is 

rotating counterclockwise at the speed ω represents a vector turning at the speed -2ω clockwise. 
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Therefore, the impact of the negative sequence component is a complex time-varying expression 

representing a phase shift of −2𝜔𝑡 in (3-35). The expression in (3-36) gives the Park 

Transformation of (3-35) in the synchronously rotating frame. 

 
{
𝑉𝑠𝑑 = 𝑉𝑠1+𝑉𝑠2cos (2𝜔𝑡)
𝑉𝑠𝑞 = −𝑉𝑠2sin (2𝜔𝑡)

 (3-36) 

 

 

 

The expression of 𝑉𝑠𝑞 tells that a sinusoidal component is present when the angle 𝜀(𝑡) has 

reached the reference 𝜔𝑡 + 𝜃0. Therefore, if the compensator doesn’t remove this component 

from 𝑉𝑠𝑞, 𝜔𝜖 and  𝜀(𝑡) will contain it and lead to distortions of signals transformed from dq- to 

abc- frame and from abc- to dq- frame. One solution is to design the compensator to have strong 

low-pass filter characteristics but it will reduce the closed-loop bandwidth of the PLL. Another 

solution is to include one pair of complex conjugate zeros at 𝑠 = ∓𝑗2𝜔0 so that the sinusoidal 

component of 𝑉𝑠𝑞 expected in steady-state will not be present in 𝜔𝜖 and  𝜀(𝑡) without reducing 

the closed-loop bandwidth of the PLL. 

3.3.4 Current control loop in the dq-frame 

First of all, it is important to notice that the set of equation in (3-31) are coupled and can’t be 

used directly. However, it is possible to decouple these equations by adding the dq components 

of the grid signal and the dq components of current to the input dq components of the modulation 

index. If the expression of the modulation index in (3-37) is plugged into (3-31), it is possible to 

get two decoupled dynamic equations for the output current represented in (3-38). 
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{
 

 𝑚𝑑 =
2

𝑉𝐷𝐶
(𝑢𝑑 − 𝐿𝜔𝑖𝑞 + 𝑉𝑠𝑑)

𝑚𝑞 =
2

𝑉𝐷𝐶
(𝑢𝑞 + 𝐿𝜔𝑖𝑑 + 𝑉𝑠𝑞)

 (3-37) 

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

+ 𝑅𝑖𝑑 = 𝑢𝑑

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝑅𝑖𝑞 = 𝑢𝑞

 (3-38) 

 

 

 

The equations in (3-38) are two first order equations leading to the expression of transfer 

functions of the system for the d- and q- axis using Laplace transformation in (3-39). 

 𝐼𝑑(𝑠)

𝑈𝑑(𝑠)
=
𝐼𝑞(𝑠)

𝑈𝑞(𝑠)
=

1

𝑅 + 𝐿𝑠
 (3-39) 

 

 

 

Therefore, the d-axis and q-axis can be controlled independently with two feedback loops 

in figure 17 thanks to the new inputs 𝑢𝑑 and 𝑢𝑞 respectively, outputs of the compensator in the 

d-axis control loop and of the compensator in the q-axis respectively.  

 

 

 
Figure 17: d-axis and q-axis control block diagram 
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The compensators for the d- and q- axis are identical so that 𝐻𝐷(𝑠) = 𝐻𝑄(𝑠) = 𝐻𝐷𝑄(𝑠). 

The equivalent transfer function linking the reference current 𝑖𝑑𝑟𝑒𝑓and 𝑖𝑞𝑟𝑒𝑓 to the output current 

𝑖𝑑 and 𝑖𝑞 respectively are expressed in (3-40) 

 
𝑖𝑑
𝑖𝑑𝑟𝑒𝑓

=
𝑖𝑞

𝑖𝑞𝑟𝑒𝑓
=

𝐻𝐷𝑄(𝑠)
𝑅 + 𝐿𝑠

1 +
𝐻𝐷𝑄(𝑠)
𝑅 + 𝐿𝑠

 (3-40) 

 

 

 

The compensator 𝐻𝐷𝑄 is chosen to be a PI compensator as one integrator is required to 

track a DC reference with zero steady-state error. First of all, the proportional gain 𝑘𝑝 and 

integral gains 𝑘𝑖 will be designed to compensate the pole of the system at 𝑠 = −
𝑅

𝐿
 as this pole 

represents a small frequency or a big time constant. 

 
𝐻𝐷𝑄(𝑠) =

𝑘𝑝𝑠 + 𝑘𝑖

𝑠
 (3-41) 

 

 

 

The two degrees of liberty offered by the two parameters of the compensator allows 

setting a new time constant 𝜏𝑖 for the control loop dynamic. On one hand this time constant 

needs to be small enough to ensure a fast tracking of the reference. On the other hand, this time 

constant needs to be big enough for the system to filter the switching harmonics. Typically, the 

closed-loop bandwidth should be at least ten times smaller than the switching frequency. To 

respect the two previous constraints, 𝑘𝑝 and 𝑘𝑖 are computed thanks to the relations in (3-42). 

 

{
 

 𝑘𝑝 =
𝐿

𝜏𝑖

𝑘𝑖 =
𝑅

𝜏𝑖

 (3-42) 
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The closed-loop transfer function in (3-41) simplified with the new expression of the PI 

compensator is a first order behavior of time constant 𝜏𝑖 expressed in (3-43). 

 𝑖𝑑
𝑖𝑑𝑟𝑒𝑓

=
𝑖𝑞

𝑖𝑞𝑟𝑒𝑓
=

1

1 + 𝜏𝑖
 (3-43) 

 

 

 

As the dq components of the current are the control input of the system, the converter is 

therefore seen as a current source that will provide, in steady-state, a balanced three-phase 

current obtained by realizing the inverse Park transformation of the dq references of current. 

However, in (3-23) the control of the inverter uses the voltage grid as a feedforward signal to 

decouple the dynamics of the d-axis and q-axis of the output current. Under unbalanced 

conditions the grid voltage might contain a zero component that will not be part of the 

feedforward signal as only the d and q component of the grid voltage are kept for control.  

3.4 GRID-TIED CURRENT CONTROLLED INVERTER VALIDATION 

This section is dedicated to validate through simulation results, the model of grid-tied current 

control inverter under nominal conditions presented in the previous section. The schematic figure 

18 presents the simulation diagram used in PLECS. 
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Figure 18: Current controlled inverter simulation diagram in PLECS 

 

 

 

The schematic is composed of several subsystems for the sake of clarity. Each subsystem 

will be described in detail as well as the plot that are displayed on the picture. The simulation 

parameters chosen for the system are summarized on table 1. 

If the output current of the inverter has reached references set by the control, then the amplitude 

of each line current is given by the relation below. 

 
𝐼𝐴𝑝𝑘 = 𝐼𝐵𝑝𝑘 = 𝐼𝐶𝑝𝑘 = √𝐼𝑑𝑟𝑒𝑓

2 + 𝐼𝑞𝑟𝑒𝑓
2 =  4301.16𝐴 

(3-44) 

 

 

 

The figure 19 demonstrates that the line currents amplitudes are in agreement with the 

prediction of amplitude using the dq components of the current reference. 
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Table 1. Simulation parameters for the model validation in PLECS 

 

 

Parameter Value 

AC Voltage source magnitude 

AC voltage source frequency 

Voltage source output impedance 

DC voltage source(VDC/2) 

Line Resistance (R) 

Line Inductance (L) 

Load Impedance per phase 

Switching Frequency (1/Ts) 

d-axis reference current 

q-axis reference current 

Closed-loop time constant for d-axis 

and q-axis current (τi) 

PLL frequency upper limit (ωεmax) 

PLL frequency lower limit (ωεmin) 

480 VRMS line-to-line 

60 Hz 

0.05Ω 

625V 

1.63 mΩ 

100μH 

10kΩ 

3420 Hz 

3500 

2500 

2 ms 

 

377.001rad/s 

376.981 rad/s 
 

 

The modulation index of each phase presented in figure 20 show no sign of saturation as 

their amplitude never exceeds 1. Finally, the figure 21 demonstrates that the closed-loop of the 

PLL managed to track the grid frequency as the slope of the ramp curve during one cycle is equal 

to 376.9766 rad/s. The C-Script block in figure 18 simulates the behavior of a VCO and is 

provided by the PLECS library. 

 

 

 
Figure 19: Line currents in time domain 
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Figure 20: Modulation indexes of phase A, B and C in time domain 

 

 

 

 

 

 
Figure 21: Dynamic of  the angle Epsilon used for Park transformation 

 

 

 

The detail of the PWM subsystem is shown in figure 22 and show the comparison of each 

modulating signal with a triangular waveform. 
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Figure 22: PWM producing the switching function for each phase 

 

 

 

The schematic figure 23 illustrates the current controller of the inverter with the different 

signals operations to decouple the dynamics of the d- and q- axis and also the PI compensator 

respecting the following design constraints. 

 
𝑘𝑝 =

𝐿

𝜏𝑖
= 0.05 

𝑘𝑖 =
𝑅

𝜏𝑖
= 0.815 

(3-45) 

 

 

 

 

 

 
Figure 23: Current controller of the simulation model on PLECS 
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As the closed-loop transfer function for each axis of the current has a first order behavior 

of time constant τi = 2ms, then Id and Iq will reach 63% of their steady-state value (2205 A for Id 

and 1575 A for Iq) at time t=2ms. Plots in figure 24 and 25 prove that Id and Iq have a first order 

behavior of time constant τi = 2ms set by the closed-loop transfer function as Id and Iq reach 63% 

of their steady-state value (2205 A for Id and 1575 A for Iq) at time t=2ms and reach 95% of their 

steady-state value after 5τi=10ms. 

 

 

 
Figure 24: d-axis output current dynamic in time domain 
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Figure 25: q-axis output current dynamic in time domain 
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4.0  IMPROVED SYMMETRICAL COMPONENT MODEL FOR A GRID-TIED, 

CURRENT CONTROLLED INVERTER  

Even if grid interconnected current controlled inverters are designed based upon nominal grid 

voltage conditions it is possible to find in literature that specific voltage and current control 

architectures are based upon symmetrical components for handling unbalanced grid conditions 

[7]–[11]. However, most of the existing current controlled inverters use only the synchronously 

rotating frame for regulation. This control is based upon the assumption that the grid voltage is 

balanced and, as seen in chapter 3, requires only two closed feedback loops.  

In chapter 2, a literature review established that the prediction of the fault response of a 

three-phase inverter with the control mentioned, a common practice is to model the inverter as an 

ideal current source in its positive sequence representation only [5], [6]. However, unbalanced 

loads on the grid are able to disturb the output voltage symmetry and the model prediction of an 

islanded inverter unless this inverter is interfaced to the grid through a wye-delta transformer 

[12]. The fault analysis in [6] is actually a special case where it is correct to model the inverter as 

a current source in the positive sequence only because the inverter is interfaced with a wye-delta 

transformer. As in [12], this transformer isolates the inverter from experiencing any zero 

sequence voltage provided by the grid experiencing a single line-to- ground fault (SLGF).  Thus, 

without an interfacing transformer, the output current symmetry of the inverter in [6] would be 

disturbed due to the presence of a zero sequence voltage component. The inverter cannot be 



 44 

modeled as an ideal source providing only a positive sequence current because this assumption 

will result in poor estimations of the expected fault current. This chapter will be organized as 

follows: Section 1 provides the necessary background knowledge on how to build sequence 

networks assuming the inverter acts as an ideal three-phase current source providing balanced 

currents. In Section 2, the control limitations of the inverter under a SLGF scenario are analyzed 

and used to create a proposed sequence network. Section 3 compares sequence networks of 

Section 1 and 2 with a computer simulation model conducted in PLECS. 

4.1 INVERTER SEQUENCE NETWORK MODEL USING CLASSICAL 

ASSUMPTIONS FROM LITERATURE 

The sequence network construction of figure 1 requires both the sequence components of the 

non-ideal three-phase voltage source and the inverter. One accepted community assumption is 

that the current controlled inverter generates balanced current during a fault. Therefore, the 

inverter will only provide a positive sequence current component defined by the phasor, Iejϕ. As 

the inverter is current controlled with references established in the synchronous reference frame, 

Id and Iq, the positive sequence current phasor is determined by (4-1) and (4-2). 
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Figure 26: Sequence networks that model the fault response of a grid-tied, current controlled 

inverter in response to a SLGF with the classical assumptions on the inverter’s behavior (left) and proposed 

(right). 

 

 
 

 
𝐼 = √𝐼𝑑

2 + 𝐼𝑞
2 (4-1) 

 

𝛷 =

{
  
 

  
 arctan (

𝐼𝑞

𝐼𝑑
)  𝑖𝑓 𝐼𝑑 > 0

arctan (
𝐼𝑞

𝐼𝑑
) + 𝜋 𝑖𝑓 𝐼𝑑 < 0, 𝑎𝑛𝑑 𝐼𝑞 > 0

arctan (
𝐼𝑞

𝐼𝑑
) − 𝜋 𝑖𝑓 𝐼𝑑 < 0, 𝑎𝑛𝑑 𝐼𝑞 < 0

 (4-2) 
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Assuming that the pre-fault current magnitude is negligible compared to the fault current 

magnitude, a SLGF sequence network can be formulated and shown in the left of figure 26 

thanks to the analysis realized in chapter 2.  

4.2 SEQUENCE NETWORK MODEL ACCOUNTING FOR INVERTER CURRENT 

CONTROL 

For our analysis here, it is assumed that the inverter does not output balanced currents during a 

fault. Fundamentally, the current controlled inverter uses the grid voltage as a feedforward signal 

to apply the proper voltage difference across the RL filter.  In the context of this work, the 

inverter is controlled in the synchronous rotating reference frame. It is recalled that the dynamics 

associated with the inverter output current are governed by the relationships in (4-3). 

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

− 𝐿𝜔𝐼𝑞 + 𝑅𝑖𝑑 =
𝑉𝐷𝐶
2
𝑚𝑑 − 𝑉𝑠

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝐿𝜔𝐼𝑑 + 𝑅𝑖𝑞 =

𝑉𝐷𝐶
2
𝑚𝑞

 (4-3) 

 

 

 

It is assumed that the grid voltage contains a positive, a negative and a zero sequence 

component due to the SLGF.  A general expression for this set of voltages is given by (4-4). The 

dq components of the grid voltage signal can be shown to be (4-5). Note that Vs1, Vs2, and Vs0 

represent the positive, negative, and zero sequence voltage amplitudes, respectively.  

 

{
 
 

 
 

𝑉𝑠𝑎(𝑡) = 𝑉𝑠1𝑐𝑜𝑠(𝜔𝑡 + 𝜃0) + 𝑉𝑠2𝑐𝑜𝑠(𝜔𝑡 + 𝜃0) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

𝑉𝑠𝑏(𝑡) = 𝑉𝑠1𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −
2𝜋

3
) + 𝑉𝑠2𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −

4𝜋

3
) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

𝑉𝑠𝑐(𝑡) = 𝑉𝑠1𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −
4𝜋

3
) + 𝑉𝑠2𝑐𝑜𝑠 (𝜔𝑡 + 𝜃0 −

2𝜋

3
) + 𝑉𝑠0𝑐𝑜𝑠(𝜔𝑡 + 𝜃0)

 (4-4) 
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 𝑉𝑠𝑑 = 𝑉𝑠1 + 𝑉𝑠2cos (2𝜔𝑡) 

𝑉𝑠𝑞 = −𝑉𝑠2sin (2𝜔𝑡) 
(4-5) 

 

 

 

As the grid voltage is expressed in the synchronous rotating frame, (4-5), a zero sequence 

component is not observed by the inverter control. In steady-state, Id and Iq will be equal to their 

reference set points established by the PI controllers and will be DC values. Consequently, the 

derivatives in (4-3) are equal to zero in steady-state.  By substituting (4-5) into (4-3), the steady-

state, inverter terminal voltages for the d-axis and q-axis can be expressed by (4-6). An 

interesting finding to note is that if an inverse Park transformation was applied to the AC terms 

in (4-6) (𝑉𝑠2cos (2𝜔𝑡) in 𝑉𝑡𝑑 and −𝑉𝑠2sin(2𝜔𝑡) in 𝑉𝑡𝑞), the negative sequence component of the grid 

voltage will be obtained.  

 𝑉𝑡𝑑 = −𝐿𝜔𝐼𝑞 + 𝑅𝐼𝑑 + 𝑉𝑠1 + 𝑉𝑠2cos (2𝜔𝑡) 

𝑉𝑡𝑞 = 𝐿𝜔𝐼𝑑 + 𝑅𝐼𝑞 − 𝑉𝑠2sin(2𝜔𝑡) 
(4-6) 

 

 

 

Performing an inverse Park transformation on (4-6) and then applying the Fortescue 

transformation, one will obtain (4-7), which represents the symmetrical component terminal 

voltages for the inverter.  Graphically, the sequence components of the average model of a 

voltage sourced inverter with its RL filter operating at its fundamental frequency can be modeled 

by the sequence networks shown in figure 27. In figure 27, V1 = Vs1, V2 = Vs2, and V0 = Vs0.  

 𝑉𝑡2 = 𝑉𝑠2 

𝑉𝑡1 = −𝐿𝜔𝐼𝑞 + 𝑅𝐼𝑑 + 𝑉𝑠1 + 𝑗(𝐿𝜔𝐼𝑑 + 𝑅𝐼𝑞) 

𝑉𝑡0 = 0 

(4-7) 
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Figure 27: General Sequence Network of a Grid tied current controlled inverter  

 

 

 

Based upon (4-7), the zero sequence voltage associated with the zero sequence network 

of figure 27 is short circuited.  In (4-7), the conditions also show that Vt2 = Vs2.  Therefore, no 

current will flow in the negative sequence network and Vt2 can be treated as an open circuit. 

Equation (4-3) is typically used to regulate Id and Iq.  These current values will influence Vt1 in 

(4-7), which will drive the positive sequence output current flow, It1, through the RL filter.  With 

these constraints the final sequence network for a SLGF scenario that accounts for inverter 

current control is found in the right of figure 26. 

The critical difference between the new and classical model is the RL filter placed in 

parallel with Rv in the zero sequence network. This adjustment accounts for the inverter 

supplying zero sequence current through the RL filter resulting in imbalances in the output 

current of the inverter.  Finally, the proposed model will predict a higher fault current compared 

to the classical model. The parallel impedance, seen in red in figure 26, will reduce the 

equivalent impedance, therefore increasing the system fault current.  
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4.3 SIMULATION RESULTS 

To validate the new sequence network model accounting for inverter current control, a PLECS 

simulation of a current controlled grid tied inverter was developed. The system in figure 1 was 

simulated with the following parameters: L = 100μH, R = 1.63mΩ, VDC = 1250V, and Rv = 

0.05Ω. The source line-to-line peak voltage and frequency are 480V and 377rad/s, respectively.  

Each PI compensator for the d-axis and q-axis were designed to have a proportional gain value of 

0.05 and integral gain value of 0.815. The inverter is controlled to reach current references of 

Id,ref  = 3kA and Iq,ref  = 0 A, [3]. A single line-to-ground fault is located on Phase A and modeled 

by a fault impedance, Rf , of 0.0163mΩ connected to the ground. A wye-connected resistive load 

of 10kΩ per phase is used. The system power base is set to 1.7 MVA and the voltage base is set 

to 277 V. 

Table 2 provides the computed numerical per unit values for the sequence voltages across 

the load and the fault current. Comparisons are made between the analytical calculation of the 

classical sequence network modeling approach (figure 26) using (4-8), the proposed model 

taking into account the inverter’s current control using (4-9), and the simulation of the system at 

steady-state. Table 2 shows that the proposed inverter model for computing the expected fault 

current has stronger agreement with the simulation result compared to the classical approach. 

The proposed model is able to predict a difference in magnitude between the negative (V2) and 

zero (V0) sequence load voltage. 
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Table 2. Comparison of Classical Sequence Model, Proposed Model, and Simulation Results 

 

 

Parameter 

Classical 

System 

Modeling 

Proposed 

Model 

Simulation 

Result 

V0 

V1 

V2 

3I1 

It0 

0.51 

1.03 

0.51 

4.17 

0 

0.38 

0.92 

0.64 

5.18 

1.36 

0.38 

0.92 

0.64 

5.19 

1.35 

 

 
𝐼𝑓 = 3𝐼1 =

𝑅𝑣𝐼𝑒
𝑗∅ + 𝑉

𝑅𝑣 + 𝑅𝑓
 

𝑉0 = 𝑉2 = 𝑅𝑣𝐼1 

𝑉1 = 3𝐼1𝑅𝑓 − 2𝑅𝑣𝐼1 

(4-8) 

 

 
𝐼𝑓 = 3𝐼1 = 3(

𝑅𝑣𝐼𝑒
𝑗∅ + 𝑉

2𝑅𝑣 + 𝑅𝑣//(𝑅 + 𝑗𝜔𝐿) + 3𝑅𝑓
) 

𝑉2 = 𝑅𝑣𝐼1 

𝑉0 = 𝑅𝑣//(𝑅 + 𝑗𝜔𝐿)𝐼1 

𝑉1 = 3𝐼1𝑅𝑓 − 𝑅𝑣𝐼1 − 𝑅𝑣//(𝑅 + 𝑗𝜔𝐿)𝐼1 

(4-9) 

 

 

 

Figure 28 shows that the inverter’s output current is no longer balanced. A sequence 

analysis of this current reveals that a positive and a zero sequence component is found within the 

signal. Therefore, the zero sequence current is responsible for the inverter’s output current 

asymmetry.  
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The zero sequence component of the inverter’s output current can be predicted by 

computing the current entering through the RL filter in the proposed zero sequence network 

model of Fig. 2. The result of this calculation is listed as It0 in Table I and matches well with the 

simulation result shown in figure 29.  

 

 

 

Figure 28:Simulation of inverter current under a SLGF. 
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Figure 29:Sequence analysis of inverter current under a SLGF. 
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5.0  CONCLUSION 

5.1 CONTRIBUTION 

Working group committee reports for modeling power electronic system impacts on the grid 

often state the limitation of not knowing the control architecture for a vendor’s product. 

However, this work is still able to provide some insight into the controller’s impact on fault 

current contribution by an inverter by utilizing a commonly used current control architecture for 

low power and high power, power electronic systems.   

A SLGF symmetrical component model of a grid-tied current control inverter without an 

interconnecting transformer has been discussed and has shown to predict fault current 

magnitudes accurately. The comparison of the PLECS simulation inverter model with the 

mathematical analytics from the classical fault network approach and proposed model 

demonstrates that the inverter can be assumed to provide balanced three-phase currents only 

under normal grid voltage conditions. Under unbalanced grid supply to the inverter, a dq current 

controlled inverter cannot be assumed to only produce positive sequence current but, has been 

shown, that the zero sequence component impacts the inverter’s output current symmetry. 
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5.2 FUTURE WORK 

The model presented has shown the impact of a single line-to-ground fault on the behavior of a 

Grid-Tied Current Controlled Inverter only considering the layer of current control but not the 

layer of active and reactive power control. In fact, the fault event is subject to have an impact on 

the reference of current that depends on the expression of the grid voltage in dq-frame. A similar 

analysis, as the one realized in this work, might extend the accuracy of the sequence network 

model provided in this report.  
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