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DESIGNING DATA-DRIVEN VIRTUAL PATIENTS FOR HEALTH SCIENCES

EDUCATION

Dmitriy Babichenko, PhD

University of Pittsburgh, 2018

Electronic virtual patients (VPs) are interactive screen-based computer simulations of

real-life clinical scenarios that are widely used for the purposes of health sciences ed-

ucation. Advances in computational modeling and availability of large patient cohort

datasets from Electronic Medical Record (EMR) systems have created an opportunity

to develop a new type of VPs, where cases are based on and simulate real patient

clinical treatment processes and outcomes.

Traditional VP cases are static narrative representations of clinical scenarios that

are presented to health sciences students in order to teach a clinical topic of interest.

This research investigates the feasibility of authoring and presenting virtual patient

cases that leverage Bayesian network (BN) models learned from EMR data to present

clinical scenarios and control outcomes of learners’ decisions within the context of

a presented VP. Because the underlying models are based on real patient data, each

decision made by a learner would affect the probability of each outcome occurring in

the same way as with real patients.

Additionally, this dissertation explores the challenges related to using BN models

in the context of VP case authoring and presentation, and experimentally compares a

VP case based on a BN model to one created using a traditional narrative-branched VP

system across multiple categories, including meeting learning objectives, accuracy in

depicting the chosen clinical scenario, introducing/reinforcing relevant clinical skills,
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providing formative feedback, scenario realism, and learner engagement.

Furthermore, this work investigates the extent to which the use of annotated BN

models in VP cases facilitates modifying an existing VP case by allowing case authors

to manipulate the underlying model in such a way that the modified VP case meets

alternate learning objectives.

Last, but not least, this research provides practical and methodological contri-

butions to the body of work in the areas of health sciences education, problem-based

learning, and clinical simulation design and evaluation. More specifically, this work (1)

defines criteria and guidelines for designing VP cases based on BN models, (2) identi-

fies and describes shortcomings and challenges associated with different BN modeling

approaches for different types of clinical scenarios, (3) and presents a framework for

evaluating VP cases.
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1.0 INTRODUCTION

Problem-based learning (PBL) has gained wide acceptance in many educational do-

mains, including medicine, business, engineering, and computer science. PBL orig-

inated in medical education in the 1950s [5] to address issues with application of

foundational and theoretical knowledge to practical problems. Educators presented

students with complex patient case histories to engage learners and to encourage

them to apply knowledge learned in classroom to real-world problems [6].

One of the most important aspects of PBL is that if implemented correctly, it can

drive the development of critical skills, such as presentation, communication, writing,

and teamwork [7]. Furthermore, PBL provides a direct gateway for applying theory

and knowledge presented in traditional didactic lectures to real-world problems. An-

other outcome of PBL is the positive effect on student engagement. Because PBL

comprises of activities with immediate feedback and tangible outcomes, and because

it focuses on practical problems with stakeholder engagement and realistic assess-

ments, students find themselves more involved and engaged than they would be with

more traditional homework assignments or in-class projects [7]. A systematic study of

students’ perceptions of skills that they have developed during PBL projects showed

that students do indeed find PBL more engaging than traditional pedagogical meth-

ods [8].

Patient simulation is a type of PBL that has been a well-established part of the

medical education paradigm since the 1950s. Clinical simulations allow for safe and

supportive experiences for healthcare students to practice problem solving, diagnostic
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skills and critical procedures without endangering real patients. Traditionally, med-

ical schools have been employing standardized patients (actors trained to portray a

patient in a medical situation) to simulate various clinical situations and to teach stu-

dents bedside manner, diagnostic skills, and critical thinking. Traditional simulations,

however, are logistically time-consuming and require considerable space to perform

adequately. Advances in technology made it possible to create software-based virtual

patient (VP) systems [9]. These VP simulations could be used at a lower logistical cost

and have been shown to enhance knowledge and skill retention as well as teamwork,

critical thinking, and satisfaction in learning [10, 11]. Software-based VPs have be-

come widely adopted in all fields of healthcare education because of these strengths.

Currently, the majority of software-based VPs are created within the institution that

employs them. This internal development of VPs is driven by the lack of robust com-

mercial alternative options. On account of this, VP programs are considered to be

time and resource intensive to produce [12]. Additionally, the amount of time a fac-

ulty member must devote to learning the system, building the cases, and deploying

them for students to use is prohibitively large. This has led to VPs being under-utilized

in most facilities [13].

The current platforms for VP cases are essentially finite state machines that use

blank templates to allow VP case authors to define and describe individual states

(Figures 1, 2, 3). This means that all the information must be added by the author,

increasing the burden of time on the creator and limiting the pool of authors to subject-

matter experts. Due to this burden on faculty, the VP cases that are made gravitate

towards linear experiences (a learner simply navigates through the teaching case by

going from screen to screen in a linear fashion) that fail to capture the nuances of

actually caring for a patient.
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Figure 1: Blank narrative template in vpSim

Figure 2: Blank state template in Laerdal Learning Application (LLEAP) SimDesigner
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Figure 3: Blank narrative template in OpenLabyrinth

These current barriers present an opportunity for a VP platform to leverage the

plethora of available electronic medical records (EMR) data sets and machine learning

techniques to benefit educators and learners.

1.1 MOTIVATION

One of the most commonly discussed problems with current VP authoring systems

is the difficulty of managing case complexity [14, 15, 16]. To manually create a

complex teaching case that addresses the majority of common outcomes, common

treatments, and diagnostic mistakes, as well as offers just-in-time learning opportu-

nities to students often results in a visual equivalent of “spaghetti code.” Figure 4

shows a small subset of the decision structure of a diabetic ketoacidosis virtual pa-
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tient case1 [17] created in vpSim.2 This particular case has a total 92 nodes (screens

accessible by learners) and 67 decision points (screens where learners have to make

decisions). Maintaining such a case, adding or removing pathways or decision options

is a very time-consuming task indeed. Furthermore, existing VP systems provide low

fidelity and limited re-playability, making the learning experience less engaging and

ultimately less immersive [18].

The clear benefit of simulation in health sciences education combined with the

need for realistic dynamic learner experiences and time-constraints of educators presents

a need for a data- and model-driven VP platform.

Figure 4: Decision structure of a diabetic ketoacidosis virtual patient case.

1Permission is granted for one-time non-exclusive, non-transferable worldwide re-use and modifica-
tion of the case, “Diabetic Ketoacidosis,” for research purposes, as long as you credit Annals Virtual
Patients as the original source of the material as follows. Adapted from Tabas G, Kosytkowski M, Har-
sha Rao H (2015). Diabetic Ketoacidosis [Online patient case]. Annals Virtual Patients. Philadelphia,
PA: American College of Physicians. Copyright 2016 American College of Physicians. Used with per-
mission.

2vpSim: http://vpsim.pitt.edu
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1.2 AIMS OF MY DISSERTATION

This research investigates the feasibility of authoring and presenting VP cases that

leverage Bayesian network (BN) models learned from EMR data to present clinical

scenarios and control outcomes of learners’ decisions within the context of a pre-

sented VP. Because the underlying models are based on real patient data, each deci-

sion made by a learner would affect the probability of each outcome occurring in the

same way as with real patients.

Furthermore, this dissertation explores the challenges related to using BN models

in the context of VP case authoring and presentation, and experimentally compares a

VP case based on a BN model to one created using a traditional narrative-branched

VP system on multiple categories, including meeting learning objectives, accuracy in

depicting the chosen topic, representing clinical variations, introducing/reinforcing

relevant clinical skills, providing formative feedback, scenario realism, and learner

engagement (Chapter 6).

Last, but not least, this work investigates the extent to which the the use of an-

notated BN models in VP cases facilitates modifying an existing VP case by allowing

case authors to manipulate the underlying model in such a way that the VP case meets

alternate learning objectives.

More specifically, my work strives to address the following questions:

1.3 RESEARCH QUESTIONS

• Research Question 1: To what extent is it possible to create a virtual patient case

using a VP system based on a Bayesian network model that is comparable to a case

created using a branched-narrative VP system? (Refer to Appendix C, Section C.1

for comparison categories.)

• Research Question 2: To what extent does the proposed system facilitate modi-
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fying an existing VP by allowing case authors to change the model’s states in such

a way that the VP case meets alternate learning objectives?

1.4 FINDINGS

1.4.1 Research Question 1 Findings Summary

Branched-narrative case presented in vpSim was rated significantly higher than a VP

case based on a Bayesian network model on the following criteria:

• Reflecting the learning objectives

• Introducing / reinforcing clinical skills, attitudes, and behaviors relevant to sepsis

treatment

• Providing formative feedback for choices / outcomes

• Being more effective in teaching the subject matter to novice clinical practitioners

The VP case based on a Bayesian network model was rated significantly higher than

the branched-narrative version on:

• Representing clinical variations associated with sepsis

• Scenario realism

• Learner Engagement

Neither version of the evaluated VP case showed a significant difference in ratings on

how accurately they depicted the chosen topic (both versions of the evaluated VP case

presented a sepsis scenario).

1.4.2 Research Question 2 Findings Summary

While it is possible to modify an existing Bayesian network model-based VP case by

manipulating the model’s states and the associated rules, many other parts of the

case need to be modified in order to address alternate learning objectives. Almost
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unanimously case authoring expert subjects indicated that in order to meet alternate

learning objectives, case narrative, patient demographic information, prior medical

history, and comorbidities would also have to be updated.

1.5 CONTRIBUTIONS

This research provides practical and methodological contributions to the body of work

in the areas of health sciences education, problem-based learning, and clinical sim-

ulation design and evaluation. More specifically, this work (1) defines criteria and

guidelines for designing VP cases based on BN models, (2) identifies and describes

shortcomings and challenges associated with different BN modeling approaches for

different types of clinical scenarios, (3) and presents a framework for evaluating VP

cases.

1. Defines criteria and guidelines for designing VP cases based on BN models.

Using empirical evidence from RQ1 and RQ2 studies, I identified and catalogued

criteria, guidelines, and constraints for designing VP cases based on BN models.

Even though this work’s primary aim is to investigate the feasibility of author-

ing and presenting VP cases that leverage BN models learned from EMR data,

the methods, criteria, and guidelines presented and explained in Chapter 7, Sec-

tion 7.2 can be generalized to other intelligent tutoring systems (ITS) that present

scenario-based cases. For example, methods described in this work could be ap-

plied to develop crisis management models derived from historical crime data for

FBI training [19], or to control the behaviors of non-player characters (NPC) in

serious games used for cyber security training [20].

2. Identifies and describes shortcomings and challenges associated with dif-

ferent BN modeling approaches for various types of clinical scenarios. This

work helped identify a number of shortcomings and challenges associated with ap-
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plying different types of BN models to various clinical scenarios. The challenges I

experienced in creating BN models representative of complex treatment scenarios

such as diabetic ketoacidosis (DKA) (Chapter 5, Section 5.4.2) indicated that – at

least in its current iteration – a VP system based on BN models is more suitable to

present clinical scenarios for acute or emergent clinical conditions.

With the help from the University of Pittsburgh School of Medicine and School of

Pharmacy clinical faculty, I identified a list of clinical conditions / scenarios that

are more suitable for implementation with the methods described in this work.

Moreover, shortcomings of the methods described in this work provided insight

into approaches that could work better in future model-based VP systems, as well

as in computational modeling endeavors associated with modeling complex time-

dependent clinical treatment scenarios (Chapter 7.4, Section 7.4.1).

Last, but not least, these findings can inform and guide selection of modeling ap-

proaches when designing decision support systems (DSS). Machine learning ap-

proaches are often employed in the design of general clinical DSS [21], as well

as in development of disease-state-specific computational models [22, 23]. It is

possible that a practitioner attempting to design a model for a complex clinical

condition such as DKA will encounter problems similar to the ones described in

this work — it is my hope that my “lessons learned” will help others to avoid or to

overcome the same difficulties.

3. Presents a framework for evaluating VP cases. In order to experimentally com-

pare a VP case based on a BN model to one created using a traditional narrative-

branched VP system (Chapter 6, Section 6.1.2), I developed a VP case evaluation

framework based on (1) features and uses of high-fidelity medical simulations that

lead to effective learning as proposed by Issenberg, et. al. [24], (2) Posel’s disser-

tation work on validating criterion-referenced guidelines for virtual patient case

authoring [25], and (3) the Bateman et. al. exploratory study on virtual patient de-

sign [26]. The VP case evaluation questionnaire was validated as part of the RQ1
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study ((Chapter 6, Section 6.1.3) and can be used for evaluating and rating VP

cases, PBL problems, and clinical simulations for use in health sciences curricula.

Moreover, this framework could be generalized to evaluation of educational mate-

rials outside of health sciences. For example, as case- and problem-based learning

are widely used in educational programs everywhere from middle schools [27] to

law schools [28], the framework described in this dissertation could be used by ed-

ucational experts to evaluate the perceived quality of such learning experiences.

1.6 DISSERTATION OUTLINE

The remainder of this dissertation is structured as follows. Chapter 2 covers back-

ground information on virtual patients, case-based learning, and simulation in medi-

cal education. Chapter 3 provides background information on Bayesian network mod-

els, including Bayesian classifiers, constraint-based learning (causal discovery), and

dynamic Bayesian network models. Chapter 4 describes ModelPatient’s system ar-

chitecture, including underlying technologies, frameworks, programming languages,

and user interfaces. Chapter 5 present VP cases, related data, and underlying BN

models that were used to evaluate the feasibility of the system. Chapter 6 addresses

the research questions, subject inclusion criteria, experimental designs, analysis, and

findings. Finally, Chapter 7 covers limitations, discussion, and future work.
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2.0 SIMULATION AND TUTORING SYSTEMS IN MEDICAL EDUCATION

2.1 SERIOUS GAMES IN MEDICAL EDUCATION

Simulation technology has been used for nearly a century to train pilots, soldiers, and

astronauts. The military has been the primary investor in the development of simula-

tion training technology throughout most of its history, but the gaming industry has

recently stepped forward as the driving force toward the advancement of this tech-

nology [9]. The industry has shifted some of its focus away from entertainment, and

“serious games” now represent a $20 million market within the $10 billion per year

digital gaming industry, and have become more significant within the global education

and training market, a market estimated in the trillions of dollars [29].

A game-based approach to learning is being applied to many different areas of

training and curriculum. Introduction of the Serious Games Initiative and the Games

for Health Project has encouraged the development of serious games for training med-

ical professionals [30].

The expression “serious games” describes games that implement advanced video

graphics and computer technology for the purposes of developing games and simula-

tions for education and training, rather than mere entertainment [31]. A simulation

is defined as a representation of a real-world system in which simulation activity is

flexible and variable according to rules and strategies particular to that system. Sim-

ulation activity can take on aspects of reality in which learning may transfer while

maintaining a low cost of error, thus protecting the user from the severity of real-
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world mistakes by containing the consequences within the simulation [32].

The potential of serious games as platforms for training has captured the attention

of training experts and educators for three reasons [33]. First, instructional models

have shifted toward a learner-centered model that emphasizes a more active learner

role in which information is applied rather than recalled. A second reason underlying

the interest of training professionals in serious games is the empirical evidence sug-

gesting that games can be implemented as instructional tools for enhancing learning

and understanding of complex subject-matter. The literature has begun to establish

connections between instructional strategies, motivational processes, and learning

outcomes to better guide research and development within this domain. The third

reason supporting efforts in the development of serious games application is the in-

tensity of engagement that can be invoked by games.

Changes in the delivery of healthcare engender major shifts in the methods of

medical education [34]. Clinical skills training is directly influenced by the pressures

of managed care and limited financial resources. Consequently, physicians in training

have reduced educational time in managed care settings and have fewer opportunities

to assess patients with a wide variety of diseases and physical findings. Such prob-

lems result in a reduction in the quality of healthcare providers’ bedside skills, and

this transfers to a decline in the ability to provide cost-effective, high-quality health-

care [35]. Simulation systems have been recognized as valuable tools that support

the resolution of such problems influencing training and assessment within medical

education [36, 37].

Serious games allow students to follow individualized learning paths, engage in ex-

periences equivalent to those of their peers, and engage in practice without risk to the

patient [38, 39]. These simulations offer some extent of compensation for the limited

experience that students receive within managed care settings, and can expose physi-

cians in training to rare but critical cases that are essential to their development. The

student and instructor can discuss clinical decisions about the condition of a patient,
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explore the psychosocial aspects of the case, and raise bioethical issues, without the

need of having access to a real patient [40].

The Accreditation Council for Graduate Medical Education (ACGME)1 has classi-

fied six domains of clinical medical competence: patient care, medical knowledge,

practice-based learning and improvement, interpersonal and communication skills,

professionalism, and systems-based practice [41]. Serious games should require users

to demonstrate competence within these domains at four levels (Miller, 1990): knows

(knowledge) — recall of facts, principles, and theories; knows how (competence)

— ability to solve problems and describe procedures; shows how (performance) —

demonstration of skills in a controlled setting; and does (action) — behavior in real

practice.

Serious games have the ability to implement learner-specific conditions, provide

standardized experiences for all examinees, and include outcome measures that yield

reliable data [34]. This provides a platform for evaluating the first three levels of

assessment. Leveraging games to engage the learner in deliberate practice can also

lead to more successful outcomes at the fourth level of assessment [34].

Despite many advantages to using serious games, two major disadvantages are

that these systems can be resource intensive and difficult to manage. Developing low-

cost and low-time-investment systems that support easy authoring, management, and

presentation of simulated patient cases without the assistance of technical specialists

is a significant concern that must be addressed early on in the design process [10, 42].

2.2 SIMULATION TYPES

Health sciences simulation training falls into five broad categories:

• Standardized patients - actors hired by medical schools to play scripted patient

scenarios to teach medical students patient interaction, clinical diagnostic, and

1The Accreditation Council for Graduate Medical Education. http://www.acgme.org/
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critical decision-making skills.

• Mannequin simulators - companies such as Laerdal2 produce high-fidelity “human-

looking” simulators that are capable of simulating human physiological processes

and responses to external stimuli. An additional benefit of mannequin simulators

is that they allow health sciences students to practice invasive procedures such

as central line placement or emergency intubation without endangering a real

patient.

• Specialized procedure simulators / task trainers - companies such as Surgical Sci-

ence3 produce special-purpose devices that simulate invasive procedures by com-

bining physical representations of surgical tools (e.g., laparoscopic surgery con-

trols) with haptic feedback mechanism and some form of virtual reality (VR) rep-

resentation of human organs.

• In-game scenarios - leveraging existing entertainment gaming platforms, such as

Second Life4 and World Of Warcraft5 to create interactive clinical scenarios [43].

• Electronic Virtual patients (VP) - interactive screen-based “computer simulations

of real-life clinical scenarios for the purpose of medical training, education, or

assessment” [44]. Electronic Virtual Patient term is also synonymous with Virtual

Patient Case or Virtual Patient Simulation.

– Linear VP cases are classified into two categories: linear-passive and linear-

interactive. Linear-passive cases “progress in one direction without options"

- in other words, learners can move from one screen to the next without af-

fecting or influencing the progression and the outcomes of a case. Linear-

interactive cases allow learners some degree of exploration, but learners still

cannot make choices or selection that would affect the outcome of a case [12].

– Branched-narrative VP cases present learners with a challenge, offer a se-

ries of choices where each choice result in a consequence. “Use of this model

2Laerdal. http://www.laerdal.com/
3Surgical Science. http://www.surgical-science.com/
4Second Life. http://secondlife.com/
5World of Warcraft. https://worldofwarcraft.com/en-us/
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allows learner input to directly affect the outcomes of the virtual patient where

appropriate recommendations will improve the simulated patient’s condition,

whereas suboptimal recommendations will worsen it [45].”

2.3 VIRTUAL PATIENT SIMULATORS

Traditional virtual patients have characteristics that are reflective of different peda-

gogical frameworks [12]. For example, cases may be characterized as static or dy-

namic. Static cases train students in the process of asking relevant questions, or-

dering relevant tests, and developing a treatment plan based on a patient’s medical

condition. Cases characterized as dynamic progress over time and simulate the pres-

sure of decision-making.

Since 1990, Karolinska Institute (KI) R&D group in e-Learning and simulation at

the Department of Learning, Information, Management, and Ethics (LIME) have de-

veloped over 13 different patient case simulation systems [10]. One of their most ad-

vanced systems was the Interactive Simulated Patient (ISP). With this interactive web-

based system, authors develop patient cases by combining real and fictive patient-

history questions, answers, laboratory data, and physiological examination data [42].

A series of tests proved that ISP was a very realistic tool that is profoundly beneficial

for clinical and preclinical learning. The Web-based Simulation of Patients (Web-SP)

project followed with the aim to incorporate a flexible platform to be used in any

health care curriculum that appropriately involves patient cases. It also sought to

provide a solution to several user and development issues that arise in non-web-based

applications such as the inconvenience of maintenance for the software [3]. The web-

based virtual patient system, vpSim was developed in 2009 [38]. It was designed

as an active way to enhance student learning of advanced therapeutic concepts. Vir-

tual patient sessions are built using a branched-outcome decision-making model and a

problem-based learning practicum, both effective applications of the aforementioned
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criteria which fostered effective learning for students [46].

2.4 VIRTUAL PATIENT CASE AUTHORING

All existing VP systems require educators to manually create teaching cases. Regard-

less of whether the training system in question employs a linear or a branched model

approach, educators must identify learning objectives, find a relevant medical case

that fits those objectives, describe and present that case to the learners.

The advantages of this approach to case design is that educators can rely on their

knowledge, experience, and research literature to tailor the learning experience to

specific learning objectives. Furthermore, manual case creation gives authors full

control of every detail of the teaching case. Even if there is no real patient on whom

one can base a case, authors can make up details. For example, if an educator wanted

to teach students about managing diabetes in cancer patients undergoing chemother-

apy, they would not have to search through medical records to find a patient who

provides a perfect fit for all learning objectives. The authors could either find relevant

cases in the literature [47, 48], or create a list of symptoms based on the authors’ own

expertize in the subject matter. But then, will the case be realistic enough?

Another advantage of manual case creation (provided that the case is a text-based

VP simulation) is that it is relatively easy for educators to modify in order to introduce

new possible outcomes, decision points, symptoms, etc.

On the opposite side of the coin, many VP cases are linear-passive — they present

information in a very linear fashion without options [12]. To add interaction and to

teach critical decision-making skills many medical schools employ branched cases,

such as the ones that can be designed using vpSim,6 an online VP simulator developed

at the University of Pittsburgh School of Medicine. Such cases allow students to

experience the consequences of each decision — the cases will take learners down

6vpSim: Online virtual player simulator. http://vpsim.pitt.edu
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different (and often incorrect) paths based on every choice made within the case.

Figure 5 shows the starting nodes of the diabetic ketoacidosis (DKA) VP case de-

signed in vpSim and described in Chapter 1. Each node shown in Figure 5 represents

a decision point within a case, and connections between the nodes represent possible

pathways through a case, from the introduction to an outcome.

Figure 5: Initial nodes (choices) of the DKA case designed in vpSim

When designing a vpSim case, authors must carefully think about how different

types of learning and assessment can be represented by different node types. Cur-

rently, vpSim supports 5 different node types (Figure 6):

1. Narrative: presents a story (narrative) about a patient, clinical condition, aspect

of a case, or just-in-time learning

2. Branching: a decision point within a case. When learners make a choice within a

branching node, they effectively choose a treatment pathway that might lead them

to one of the possible outcomes.

3. MCQ : a multiple choice question with one correct answer. This type of node acts

as a gate - a learner must answer a question correctly in order to continue. This
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type of node is generally used for assessment or for just-in-time learning. The

multiple choice question in this type of node is represented by HTML radio button

controls; only one choice is possible.

4. Inquiry: a multiple choice question with multiple correct answers. This type of

node is generally used as a checklist. For example, an inquiry node might be used

when a learner needs to select appropriate questions to ask a patient during the

initial encounter. The multiple choice question in this type of node is represented

by HTML checkbox controls that allow for multiple selections.

5. Short Answer: a question that requires an open-ended text-based response from

the learner. Answers to such questions are evaluated by the instructor upon VP

case completion.

Figure 6: A “Patient History” node from the DKA case designed in vpSim in the edit
mode (being edited by a case author)

Recently, Clinical Tools, Inc7 began developing branched cases similar to the one

7Clinical Tools, Inc. http://www.clinicaltools.com/
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created in vpSim using an open-source storytelling software Twine.8 Twine offers

an editing environment similar to that of vpSim that allows to extend stories with

variables, conditional logic, images, CSS, and JavaScript.

One advantage that Twine has over vpSim and other proprietary VP simulator

platforms is that authors can modify their VP cases’ presentation with simple CSS

changes. Twine’s ability to export cases to HTML, CSS, and JavaScript package files

allows reasonably easy deployment to mobile platform via PhoneGap9 or Xamarin.10

vpSim, on the other hand, offers more robust simulation logic programming via

rules and variables (called counters) (Figure 7).

Figure 7: Example of rules (logic) authoring in vpSim

While branched cases have a number of advantages compared to their linear coun-

terparts [16], the downside of such cases is that they are time and resource intensive

to produce [12]. The amount of time a faculty member must devote to learning the

VP system, building the cases, and deploying them for students to use is prohibitively

large. This has led to VPs being underutilized in most facilities [13].

Another significant issue with manually created cases comes from the difficulty in

managing case complexity. To manually create a complex teaching case that addresses

8Twine. https://twinery.org/
9PhoneGap. http://phonegap.com/

10Xamarin. https://www.xamarin.com/
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the majority of common outcomes, common treatment and diagnostic mistakes, as

well as offers just-in-time learning opportunities to students often results in a visual

equivalent of “spaghetti code.” Figure 8 shows a small subset of the decision structure

of a diabetic ketoacidosis virtual patient case [17] created in vpSim. This particular

case has a total 92 nodes (screens accessible by learners) and 67 decision points

(screens where learners have to make decisions). Maintaining such a case, adding or

removing pathways or decision options, is a very time-consuming task indeed.

Figure 8: Subset of the decision structure of a diabetic ketoacidosis virtual patient
case.

Last, but not least, a major issue with manually-created teaching cases is replaya-
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bility [49]. Even with complex branching educational cases, most VPs are essentially

state machines with a limited number of states and a limited number of choices to

change these states. Once learners go through each possible branch of a VP case,

they can no longer learn anything new by playing through the same simulation.

2.5 GENERATING VP CASES FROM CLINICAL KNOWLEDGE BASES

Early work on automating VP case creation concentrated on generation of cases from

medical knowledge bases and decision support systems (DSS) such as Internist-1 [50],

HELP [51], RECONSIDER [52], DXplain [53], and MYCIN/NEOMYCIN [54], to name a

few.

The idea of developing a tutoring system from a clinical DSS knowledge base was

first described in 1975 by Shortliffe and Davis as a question-answer program based

on a semantic network of disease knowledge extracted from MYCIN [55]. In 1986

Clancey build on Shortliffe’s and Davis’ work with a tutoring system called GUIDON.

GUIDON was based on a list of approximately 200 reasoning rules extracted from a

generalized version of MYCIN [56, 57]. In their 1989 work, Chin and Cooper describe

KBSimulator — a case-based tutorial system that combines Internist-1’s rules with a

BN model to calculate the probability of each possible diagnosis given the symptoms

presented to the learner [58]. The most recent work by Carberry at. al. (1996) in

the area of VP case generation described a system based on TraumAID knowledge

base [59] and used a set of reasoning rules similar to those outlined by Clancey in

1986 [60].

This research builds on the idea presented by Chin and Cooper in their 1989 work

and evaluates the feasibility of using BN models learned from EMR data rather than

from specialized clinical knowledge bases to author and present VP cases.
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3.0 BAYESIAN NETWORK MODELS

3.1 BAYES’ THEOREM

The foundation behind all Bayesian statistics is Bayes’ theorem, which, in turn, is

based on the idea of conditional probabilities. For example, according to the National

Institute of Health (NIH) cancer.gov website, based on 2009-2013 cases and deaths

and adjusted for age, thyroid cancer rate in the United States was 13.9 per 100,000

men and women per year.1 That means that an average US citizen has a 0.00014

probability of developing thyroid cancer in his or her lifetime. These are pretty good

odds, unless... you are not an average citizen. What if you have been exposed to

radiation? Than the probability of you developing a thyroid cancer P(thyroid cancer)

becomes conditioned on radiation exposure P(thyroid cancer | radiation exposure).

What if you add a few more variables into the mix, something along the lines of genetic

predisposition to an aggressive tall cell variant (TCV) of papillary thyroid carcinoma

(PTC) [61]? What if you have family history of thyroid cancer?

Bayes’ theorem allows us to calculate the probability of an event based on con-

ditions that might be related to this event. Given the aforementioned scenario, we

can calculate the probability of an individual developing thyroid cancer in his or her

lifetime if we know the related conditions, history of radiation exposure, probabilities

of TCV, and relevant family history.

1SEER Stat Fact Sheets: Thyroid Cancer. http://seer.cancer.gov/statfacts/html/thyro.html
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Mathematically, Bayes’ theorem is stated as the following equation:

P (A|B) =
P (B|A)P (A)

P (B)
,

where:

• P(A) and P(B) are the probabilities of events A and B occurring respectively

• P(A | B) is the conditional probability of an event A occurring given that the event

B has occurred

• P(B | A) is the conditional probability of an event B occurring given that the event

A has occurred

• P(B) 6= 0 - the probability of an event B cannot be 0 (in other words, an event B

cannot be impossible)

Applying Bayes’ theorem to the aforementioned thyroid cancer example, we can

calculate the probability of developing thyroid cancer given one’s exposure to radia-

tion.

• TC: Thyroid cancer

• RE: Radiation exposure

P (TC|RE) = P (RE|TC)P (TC)
P (RE)

,

where:

• P(TC) is the probability of the hypothesis before we see the relevant data, called

the prior probability

• P(TC | RE) is the probability of the hypothesis after we see the data

• P(RE | TC) is the probability of the data under the hypothesis

• P(RE) is the probability of the data under any hypothesis, called the normalizing

constant [62]
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3.2 BAYESIAN NETWORKS

A Bayesian network (BN) model is an acyclic directed graph that consists of nodes that

represent domain variables and arcs that represent probabilistic (possibly causal) in-

fluences among connected nodes. The qualitative part of a Bayesian network model is

the graph itself, showing a pattern of dependencies among variables in a data set. The

quantitative part of encodes the joint probability distribution over these variables [63].

As Thomas Bayes showed in his famous billiard ball experiment, if we update our

initial beliefs with objective new information, we get a new and improved belief [64].

In Bayesian networks, this updating of initial beliefs essentially translates into up-

dating the probability of a hypothesis (e.g., thyroid cancer) given new evidence (e.g.,

radiation exposure).

Figure 9: An example of a Bayesian network modeling the relationships among Thy-
roid Cancer, TCV, Radiation Exposure, and Family History of Thyroid Cancer.

States of nodes that do not have predecessors (prior knowledge nodes) are defined

by prior probability distribution tables. Given the example shown in Figure 9, the prior

probability distribution table for the “Family History of Thyroid Cancer” node would

like like Table 1, where No/Yes states indicate absence or presence of family history

of thyroid cancer with respective probabilities of 0.7 and 0.3.
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Table 1: Prior probability distribution table for the “Family History of Thyroid Cancer”
node

No 0.7

Yes 0.3

States of nodes that do have predecessors are defined by conditional probability

distribution tables (CPT). The example in Table 2 shows conditional probability distri-

butions for all possible combination of states in the “Tall Cell Variant (TCV)” node:

• P(TCV | Family History of Thyroid Cancer)

• P(TCV | No Family History of Thyroid Cancer)

• P(No TCV | Family History of Thyroid Cancer)

• P(No TCV | No Family History of Thyroid Cancer)

Table 2: Conditional probability distribution table for the “Tall Cell Variant (TCV)”
node

Family History of Thyroid Cancer No Yes

No 0.7 0.4

Yes 0.3 0.6

Bayesian networks are widely used in decision support systems (DSS), including

clinical DSS [65, 66], business analytics [67], and even forecasting the results of pres-

idential elections [68].

3.3 BAYESIAN NETWORK MODELS

Given a data set containing observations (features) about a specific data point (class

variable) whose category association is known, it is possible to identify a category to
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which a new observation belongs. In machine learning, this process is called classifi-

cation. Machine learning algorithms that perform the classification process based on

models learned from training data are called classifiers.

For example, let us consider a data set containing data about patients diagnosed

with lung cancer. Let us also assume that this data set contains four propositional

variables:

• Exposure to asbestos (A): denotes whether or not a patient had been exposed to

asbestos prior to the lung cancer diagnoses

• Yellow fingers (F): a denotes presence or absence of yellow fingers

• Smoking (S): indicates whether or not a patient is a smoker

• Lung cancer (C): denotes presence or absence of lung cancer.

Now let us assume that given the existing data we need to build a model that uses

values from each instance of A, F, and S to predict the value (or the category) of C.

The following sections describe different classification algorithms that learn the

structure and the parameters of a model from an existing (training) data set where

the category of each instance of the class variable (in our example the class variable

is C - lung cancer) is known. Then, leveraging the model learned from the training

data set, the algorithms can attempt to predict (classify) an unknown instance, for

example a new patient who has yellow fingers and is a heavy smoker, but has not yet

been diagnosed with lung cancer.

3.3.1 Naive Bayes

Naive Bayes is a well-known Bayesian classifier that tends to outperform more sophis-

ticated classifiers, especially in datasets where the variables are not strongly corre-

lated [69]. Naive Bayes has several advantages over many other classifiers, including

the PC algorithm. Because it assumes conditional independence among the features

given the class in a data set, its structure is given a priori. Therefore, constructing

a Bayesian network using the Naive Bayes classifier requires no structure learning
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procedure. Furthermore, because of the assumed independence, the classification

process is very efficient [70].

Figure 10: A Naive Bayes model for the example classification problem.

3.3.2 Augmented Naive Bayes

In real life we cannot assume that variables in a data set are independent. Aug-

mented Naive Bayes classifiers include the Tree Augmented Naive Bayes (TAN), BN

Augmented Naive Bayes (BAN), and General Bayesian Network (GBN) classification

algorithms. What differentiates augmented classifiers from the simple Naive Bayes is

that their classification algorithms add a tree structure to a Naive Bayes model by con-

necting the most dependent attributes with directed arcs [70]. This results in a more

accurate modeling of the join probability distributions and improves the predictive

accuracy of the model.
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Figure 11: A TAN model for the augmented Naive Bayes example problem.

3.4 CONSTRAINT-BASED SEARCH

Causal discovery procedures focus on creating a model of the joint probability dis-

tribution over the variables in a dataset. A critical element in such a model is an

explicit representation of independences among variables. The starting point is the

intuitive idea that causal connections result in dependencies, whereas lack of causal

connections shows as independence between variables in a data set generated by the

system. Causal discovery procedures focus on testing for independence and inferring

from the observed independencies the causal structure that has most likely gener-

ated the data. Independence and dependence can be conditional on other variables.

For example, yellow fingers and cancer are correlated, but this correlation disappears

when we condition on smoking (that is, when we look at smokers and non-smokers

separately). Figure 12 shows the causal graph modeling this example.
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Figure 12: A causal graph modeling the relationships among Smoking (S), Yellow
Fingers (F), Cancer (C), and Asbestos Exposure (A).

Conditioning can also lead to dependencies. This happens when we condition on

common effects. For example, smoking and exposure to asbestos may be independent

in the general population. However, they are very likely negatively correlated among

cancer patients.

The PC algorithm [71] is a prominent member of the constraint-based search class

of algorithms. Constraint-based search is a causal discovery procedure that tests each

pair of variables in a data set for conditional independence and then produces a set of

directed graphs representing the discovered dependencies. Conditional independence

tests are classical statistical tests with a predefined significance level α. When causal

discovery algorithms begin to analyze a data set, they assume that all variables are

dependent on each other. For the example described above, the initial causal structure

would look like the diagram in Figure 13.
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Figure 13: The initial structure assumed by the PC algorithm.

If two variables are found to be independent, the algorithm drops the connecting

edge. For example, observation of independence between Smoking (S) and Asbestos

Exposure (A) leads to removal of the edge between S and A. Observation of indepen-

dence between Asbestos Exposure (A) and Yellow Fingers (F) allows for removal of

the edge between A and F.

Next, the algorithm checks each variable in each pair to verify whether they are

independent conditional on other variables in the data set. If the procedure finds such

a dependency, it removes the corresponding edge from the resulting graph (Figure

14). For example, observing that Yellow Fingers (F) are independent of Cancer (C)

given Smoking (S) allows us to remove the edge between F and C.

Figure 14: The causal structure reflecting conditional independencies.

Finally, the algorithm tries to orient each arc. For every triple of variables A, B, and
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C, such that A is connected to B and B is connected to C, but A is not directly connected

to C, the algorithm tests whether A and C are dependent conditionally on B. Spirtes

et al. [72] prove that if A and C are dependent conditionally on B, the arcs from A

and C must be directed toward B. In our example, Smoking and Asbestos Exposure

are independent until we condition them on Cancer. The resulting graph will have

three types of arcs: (1) directed arcs, where the algorithm found correct orientation,

(2) undirected arcs, where the algorithm was unable to determine an orientation, (3)

bidirectional arcs, where the algorithm was unable to determine an orientation, but

inferred a possible hidden common cause between two variables, which is possible

under certain circumstances.

The output of this causal discovery procedure is a class of acyclic directed graphs,

where each node represents a variable in a data set and each directed edge (arrow)

represents a direct dependence between two variables.

Figure 15: Example of final causal structure after the PC algorithm orients arcs.

Note that the arc between the variables Smoking and Yellow Fingers in (Figure 15)

is bidirectional. However, we may add our experiential knowledge that smoking and

yellow fingers have a temporal relationship. In order to develop yellow fingers, a

person must smoke first. If we are willing to assume that smoking comes before yellow

fingers and there is no hidden common cause of both, we can reorient the direction of

the arc to demonstrate that Smoking is a likely underlying cause of Yellow Fingers.
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Each test of independence in the algorithm is a classical statistical test performed

at some level of significance α. A high value of α makes rejection of the independence

hypothesis of two variables more likely. When the independence hypothesis cannot be

rejected, the connection between two variables is removed. The result is that lower

significance levels lead to sparser graphs (graphs with fewer connections), and higher

significance levels lead to denser graphs. It is a good practice to repeat the search

for a wide spectrum of α values. Graphs retrieved for high values of alpha are denser

but lack of an arc is a robust finding: it was not possible to reject independence

even though the value of α was high. Conversely, these arcs that remained at a very

low level of α will serve as good indicators of possible causal relationships between

connected variables: even though α was very low, independence was rejected.

Additional details of causal discovery procedures are available in Spirtes et al. [72].

3.5 DYNAMIC BAYESIAN NETWORK MODELS

Dynamic BN models extend standard BNs by allowing us to model time series or se-

quences of events [73, 74]. For example, let us consider a scenario where a diabetic

ketoacidosis patient needs to be treated with hydration and insulin over a period of

time. In a standard Bayesian network models, we could envision this scenario as the

probability of some outcome (O) (hopefully an improvement in the patient’s condition)

given insulin I and hydration H. We can express this relationship as P (O|I ∪H), or as

a graphical model shown in Figure 16.
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Figure 16: Example structure of a standard BN model

However, in a more likely scenario, a DKA patient would have to receive hydration

and insulin multiple times over the course of the treatment and every administration of

hydration and insulin will affect the outcome probabilities. To model such a scenario,

we need to model the interactions between the two treatments and the outcome as

multiple time slices. In other words, we want to be able to determine P (O1|I1∪H1) at

time point 1, then P (O2|I2 ∪H2 ∪O2) at time point 2, and so on. If we were to model

this scenario as a 2-slice dynamic BN, the graphical model may look like Figure 17.

Figure 17: Example structure of a 2-slice dynamic BN model

Dynamic BN models are commonly used in clinical decision support systems where

a treatment scenario has a temporal component (e.g. a treatment needs to be repeated
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multiple times over a period of time). Examples of usage of such models include

dynamic models of sepsis treatment [22], personalized medicine applications [75], and

ICU organ failure decision support systems [76]. Non-clinical applications include

speech processing [77], gene sequencing [78], face recognition [79], and sociology

research [80].

3.6 PROPOSED USE OF BAYESIAN NETWORK MODELS IN VIRTUAL

PATIENT CASES

Let us consider the following hypothetical VP simulation scenario. A 38-year-old male

patient presents with symptoms of acid reflux and stomach ache. The patient’s med-

ical record indicates past history of proton pump inhibitor (PPI) and Ibuprofen 800

prescriptions. Which medication would offer the best treatment option?

This example case is based on a simple BN model learned from a small data set of

patients who presented with acid reflux symptoms. (Figure 18).

Figure 18: A model for patients with acid reflux learned from the data. Bars in the
nodes CYP2C19 and GERD show marginal probability distributions for those nodes.
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This model contains four nodes:

1. GERD: Severity of gastroesophageal reflux disease.

2. PPI: Whether or not a PPI medication (such as over-the-counter Omeprazole) was

prescribed. PPI medications reduce the symptoms of acid reflux.

3. Ibuprofen: Whether or not Ibuprofen was prescribed.

4. CYP2C19: Whether a patient has a rare variant of the CYP2C19 gene that makes

people rapid metabolizers of PPIs. In other words, rapid metabolizers do not ben-

efit from PPI treatment for GERD.

If the learner chooses to prescribe Ibuprofen, the system uses SMILE API to update

the state of “Ibuprofen” node to “Prescribed.” SMILE, in turn, updates the probability

distributions over the BN model (probability of GERD symptoms severity given Ibupro-

fen). The learner’s action changes the outcome of the case – now the VP has a higher

probability of having severe GERD symptoms (Figure 19).

Figure 19: Probability distribution over GERD symptoms severity given Ibuprofen.

If the learner chooses to prescribe a PPI medication, the VP’s symptoms will im-

prove (Figure 20).
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Figure 20: Probability distribution over GERD symptoms severity given PPI.

However, if the learner fails to take into account presence of the CYP2C19 gene

variant, the PPI prescription will have virtually no effect, because rapid metabolizers

do not benefit from PPI treatment for GERD (Figure 21).

Figure 21: Probability distribution over GERD symptoms severity given PPI and
CYP2C19.
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Each decision that the learner makes while interacting with a VP results in imme-

diate update of the probability distributions over the model, reflecting the VP’s state

of health in real time and providing immediate feedback to the learner’s actions.
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4.0 MODELPATIENT SYSTEM IMPLEMENTATION AND USER INTERFACE

DETAILS

I implemented some of the ModelPatient’s features as part of the preliminary work

described in Designing the Model Patient: Data-Driven Virtual Patients in Medical Ed-

ucation [81]. In validating ModelPatient with health sciences educators and medical

simulation experts, I have discovered a number of shortcomings, both from educa-

tional and system engineering and design perspectives.

The design decisions for the current version of ModelPatient were largely based on

outcomes of a series of iterative semi-structured interviews with eight VP case author-

ing experts1, the MedBiquitous Virtual Patient Specifications [82], and an extensive

literature review of publications on the subjects of virtual patient design, serious game

design, intelligent learning system design, and best practices in instructional design

of clinical simulations. Furthermore, I carefully reviewed several existing VP cases

and simulation scenarios designed using vpSim [46, 45], DecisionSim [83, 84, 85],

OpenLabyrinth [86, 87, 88], and Laerdal SimMan [89, 90, 91] case authoring tools

and compiled a list of features that were common to all four systems.
More specifically, I reviewed the authoring side of the following VP cases:

1VP case authoring expertise criteria are defined in Chapter 6, Section 6.2.1
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Table 3: VP cases reviewed for authoring features design

System Case/Scenario Title Developed At

vpSim Managing Sepsis University of Pittsburgh

School of Pharmacy

DecisionSim Management of Diabetic

Ketoacidosis (DKA)

American College of

Physicians (ACP)

SimMan Lost a/w in PACU WISER Simulation Cen-

ter, University of Pitts-

burgh

SimMan Laparoscopy WISER Simulation Cen-

ter, University of Pitts-

burgh

OpenLabyrinth OpenLabyrinth v3 cases

— Robin: A Dermatology

Case

University of Calgary

In addition to the features presented in Table 4, every interviewed case author

requested the ability to add elements of randomness and unpredictability to VP cases.

The primary rationale behind this feature request was guided by the premise that in

real life sometimes patients do not respond to treatment protocols in a predictable

and consistent fashion and that adding unpredictable outcomes will increase the vari-

ability in outcomes and presumably make the case more interesting / challenging to

advanced learners. Moreover, a number of studies and pedagogical frameworks show

benefit of learning to deal with unpredictable situations early on in ones clinical edu-

cation career [92, 93, 94]. A system feature that allows for a degree of uncertainty and

unpredictability of outcomes can be an important teaching tool in the virtual patient

toolbox (Subsection 4.6.1).
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Table 4: VP case features common to vpSim, DecisionSim, OpenLabyrinth, and
Laerdal SimMan

Feature vpSim Decision

Sim

Open

Labyrinth

Laerdal

SimMan

Introductory narra-

tive and instructions

X X X

Feedback (text) X X X

Feedback (changing

vitals)

X

Distractors (incor-

rect decision options

or incorrect treat-

ment pathways)

X X X X

Case metrics (coun-

ters)

X X X X

Rules X X X X
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Even though all features listed in Table 4 will be discussed and explained in detail

further in this chapter, it is important to understand the motivation behind some of

the design decisions. The descriptions of the system architecture, user interfaces,

and interactions with BN models provided in this chapter are designed to help the

reader gain a better insight into VP case design and study design decisions described

in subsequent chapters (Chapters 5 and 6), as well as into possible future directions

(Chapter 7).

Introductory Narrative and Case Instructions

While not every VP case reviewed as part of ModelPatient’s system design con-

tained elements of narrative, most of them started by providing learners with instruc-

tions and by giving learners some background information on the patient. The ini-

tial designs of ModelPatient’s case authoring user interface (UI) was based entirely

on the premise that the learner will only interact with the data and metadata con-

tained in the case’s underlying BN model [81]. Evaluating existing VP systems and

the related body of literature provided invaluable insight into necessary elements of

VP case design and VP case authoring. Providing guidance and instructions to the

learner prior to allowing them to delve into a virtual patient case is a commonly used

instructional design technique, as well as a recommended feature of designing case-

based scenarios [95, 96, 15, 97]. Moreover, even though patient history information

can be presented in ModelPatient’s EMR-like interface, most case authors interviewed

during the requirements collection phase requested the ability to present VP history

as part of a cases’ instructions in a linear narrative fashion at the start of the case

(Subsection 4.6.3).

Feedback Feedback is an integral part of every VP case and every VP system

reviewed as part of this study. Moreover, feedback mechanisms are defined in the

MedBiquitous Virtual Patient Specifications [82] and are strongly advocated for in

many VP-related studies and publications [98, 97, 99, 100]. ModelPatient combines

text-based feedback mechanisms available in vpSim, DecisionSim, and OpenLabyrinth
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with a feedback mechanism based on changing vital signs and laboratory test results

(Laerdal SimMan). Text-based feedback in ModelPatient can be deployed via custom

rules (Subsection 4.6.6), while feedback based on changing vital signs and laboratory

values is automatically triggered every time probability distributions change in the

underlying BN model (Subsections 4.3 and 4.6.2).

Distractors

Every vpCase reviewed as part of the initial design study presented learners with

distractors — incorrect decision choices or incorrect treatment options deliberately

added to the case in order to increase complexity. In their cross-disciplinary review of

literature on developing teaching cases Kim, et. al. state that “[teaching] cases should

include both pertinent information (positive and negative) and unnecessary informa-

tion to simulate the real challenge of data collection and synthesis [101].” Moreover,

Posel, et. al, Grunwald, et. al., and Kim, et. al. advocate for the use of distractors

in clinical scenarios to increase case complexity in order to “help learners experience

complex and unpredictable decision-making [97, 102, 101].” Details describing how

ModelPatient implements distractors are presented in Subsections 4.6.4 and 4.6.6.

Metrics

The idea of tracking author-defined learner performance metrics in VP cases origi-

nated in entertainment games [103, 104, 105]. For example, first-person shooter (FPS)

games routinely keep track of and display real-time values for each player hit points,

lives, weapons, and ammunition. The use of these metrics allows players (in our case

learners) to self-evaluate their performance and progress. For educators, these met-

rics allow for quantitative evaluation of learners’ performance, as well as for evalua-

tion of the quality of the VP case itself. Medbiquitous VP standard [44, 106] calls for

use of counters (metrics) and rules for all VP systems, and most branched-narrative

VP systems such as OpenLabyrinth, vpSim, and DecisionSim implement them to some

degree. vpSim and DecisionSim case authoring systems provide VP authors with pre-

defined metrics (score, number of steps, real time, virtual time, health), as well as with
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the ability to define custom metrics. Based on feedback collected from case authoring

experts during initial user interviews, ModelPatient was designed to allow authors to

define custom metrics without providing predefined ones (Subsection 4.6.5).

Rules

Rule-based systems have been extensively used in entertainment games from Pac-

Man [107] to Super Mario Brothers [108]) to control behaviors of non-player charac-

ters (NPCs), as well as in clinical decision support systems [109, 51, 52, 53, 54, 110],

and in existing virtual patient systems [111]. User studies with the original version of

ModelPatient [81] showed that a BN model alone does not provide enough flexibility,

complexity, and variability to a VP case. All interviewed case authoring experts unan-

imously requested the ability to augment a BN model-based case with custom-defined

rules. Details of rules implementation, as well as specific examples and use cases are

discussed in Subsection 4.6.6.

4.1 SYSTEM ARCHITECTURE SUMMARY
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Figure 22: System architecture diagram

The core of the system is implemented as an ASP.NET MVC web application, using

the C# programming language. The system also integrates Knockout.js JavaScript

library2 to facilitate client-side data binding. BN model visualization and annotation

tool is implemented using D3js document visualization library.3 All BN model, VP case,

user, and event log data is stored in a MongoDB database.4

2Knockout.js Javascript Library: http://knockoutjs.com/
3D3js: https://d3js.org/
4MongoDB: https://www.mongodb.com
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4.2 LEARNING BN MODELS FROM THE DATA

For the current version of the system, the models are learned using GeNIe, a Bayesian

modeling environment developed at the University of Pittsburgh School of Information

Sciences Decision Systems Laboratory.5 Figure ?? shows a model learned from a data

set of 2,300 IBD patients [112] using the PC algorithm [71]. This model was originally

created for a study on identifying high-cost IBD patients [113] and used to validate

the original version of ModelPatient [81].

ModelPatient is designed to work with such models to allow learners to manipu-

late the model’s states by making choices using a user interface (UI) that had been

modeled after an Electronic Medical Record (EMR) system. Because each state within

such models is represented by conditional probability tables (CPT), if a learner changes

one state, the model will recalculate the simulated clinical outcome probabilities of all

descendant nodes, thus changing outcomes of the VP.

For example, consider a small “submodel” of the larger IBD treatment cost model.

Figure 24 shows two nodes from the overall model from Figure ??. The relationship

between these two nodes from the larger model shows that IBD patients who do not

smoke have lower probability of managing pain via prescribed opiates.

If we change the state of the “Smoking Status” node, the probability of opiate use

goes up significantly (Figure 25). Now, let us imagine this scenario as part of a VP

simulator system. A learner is presented with a teaching case. As part of collecting

patient history, a learner might identify that the patient is a heavy smoker who also

has an IBD. By updating patient history options in the system, the learner essentially

changes states of corresponding nodes in the model. The model recalculates proba-

bilities of states within connected nodes.

5GeNIe, a Bayesian modeling environment: http://www.bayesfusion.com/
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Figure 24: Relationship between a patient’s smoking status and use of opiates with
default state values.

Figure 25: Relationship between a patient’s smoking status and use of opiates after
change in smoking status from the default to “Never Smoked.”

Figure 26: Relationship between a patient’s smoking status and use of opiates after
change in smoking status from the default to “Current Smoker.”

Because the model was originally learned from real patient data it will respond to

learner’s choices in a manner similar to that of a real patient.

4.3 INTERACTING WITH BN MODELS

ModelPatient uses SMILE (Structural Modeling, Inference, and Learning Engine) [114],

a library of C++ classes implementing graphical decision-theoretic methods, such as
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Bayesian networks and influence diagrams to interact with author-created BN models.

Both the BN model annotation tool (Section 4.6, Subsection 4.6.2) and VP case player

(Section 4.6, Subsection 4.6.7) rely on SMILE API to update BN models’ states and

conditional probabilities.

4.4 NON-DESTRUCTIVE MODEL UPDATING

GeNIe stores its BN models in XML files with .xdsl extensions. SMILE API allows other

applications to modify the models by adding/chaging nodes, states, and edges.6 These

changes can happen either “in-memory” and only be available while the program is

running, or they can be saved back into the .xdsl model file.

One of the key ideas behind ModelPatient is to use BN models as reusable tem-

plates. A single GeNIe model learned from the data can potentially serve as a starting

templates for multiple VP cases. Once authors select a model for a VP case, set the

initial states and annotate it accordingly, the annotated model could also be used as

a template for different VP case scenarios. Finally, learners can modify the model’s

states when they select diagnostic and treatment options for the VP using the case

player EMR interface. Managing these three “versions” of for any given BN model

became a major design and software architecture challenge.

In order to preserve the initial model unchanged, to keep track and to selectively

apply any author- and learner-driven changes, I borrowed the idea of non-destructive

imaging (NDI) editing implemented by Adobe Systems Incorporated in their Light-

room and Photoshop products [4]. The concept of NDI originated from film photogra-

phy where the original image was represented by a film negative and variations in the

actual print were achieved by purposeful variations in the print process. The advent

of digital photography brought new editing challenges – while a photographer may

improve a photograph by adding contrast or altering color hues, the changes essen-

6SMILE API and XDSL XML schema definitions: https://www.bayesfusion.com/smile-engine
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tially destroy the original information captured in the image file. Once an image file

is saved and the photo editing software is closed, the file is essentially altered forever

without any way to bring back the original digital information. To address this issue,

Lightroom and Photoshop systems implement NDI - any changes made to the original

raw image are not applied to the image itself but rather stored in an XML metadata

file and are applied to the image in-memory for preview purposes or when exported

for printing (Figure 27).

Figure 27: Adobe Lightroom “rendering engine in its simplest form: The source
image and your processing settings (in the form of rendering metadata) are processed
in the rendering software and a finished image is created.” [4]

I designed the BN model editing logic in a similar fashion. Once associated with

a VP case, each model has two associated MongoDb documents - one document con-

tains data about initial model states and metadata set by a VP case author. The sec-

ond document (one document per learner who attempts the corresponding VP case) is

identical in structure to the author BN model metadata document and contains data

about states selected by each learner or triggered by a rule while a learner was at-

tempting to complete the VP case. The author-created metadata is applied to a BN

model at runtime when the author opens the model for editing. The learner-created

metadata is applied to a BN model at runtime when the learner is interacting with the
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VP case player / EMR view.

For VP case authors, this approach allows reuse of a single BN model for multiple

cases and creates an “undo” buffer where authors can always revert to the original

model or deselect a node state in case of a mistake.

For learners, this approach may improve case re-playability as learners can go

through the same case multiple times, make different choices, and presumably ob-

serve different results. Furthermore, metadata documents recorded in MongoDB can

be used to track learners’ choices for feedback and/or debriefing.

4.5 DATABASE

The original version of this system used MySQL Community Edition database man-

agement system (DBMS) to store data for the BN model, VP cases, simulation events,

user information, and usage logs. However, as I began working with larger models, I

came across a number of performance issues, most of them stemming from the num-

ber of SQL joins required to map the data from multiple relations to a single complex

C# object that represents a BN model. Introduction of NHibernate,7 an open source

object-relational mapper (ORM) for the .NET framework, helped solve some of the

performance issues related to rendering graphical representations of a model, but the

system still ground to a halt when users tried to change states on nodes with 6 or

more children.

The current version of ModelPatient implements MongoDB - an open source database

that, unlike table- and row-based schemas of relational databases, uses a document-

oriented data model. The data model is built on an architecture of collections and

documents, where documents comprise of key-vale pair sets, and collections contains

sets of documents [115]. This document-based architecture allows for one-to-one map-

ping between MongoDb documents and application objects [116], eliminates the need

7NHibernate: http://nhibernate.info/
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for ORM frameworks such as NHibernate, and reduces run-time overhead [117]. Fur-

thermore, MongoDB’s use of a Binary Javascript Object Notation (BSON) document

storage and data interchange format allows direct asynchronous passing of objects

between the client and the server using jQuery AJAX without having to implement

custom object serialization / de-serialization logic.

4.6 USER INTERFACE

4.6.1 Case Authoring

Authors can begin designing a case by providing basic VP case background informa-

tion, selecting a desired model from an existing list of available models, and specifying

learning objectives (Figure 28).

One notable feature of this screen is the ability to specify how ModelPatient will

respond to learners’ choices. By default, for each learner’s decision, the system will

respond by selecting the most likely outcomes (states) from the model’s conditional

probability tables. Case authors have the option to override this default behavior and

have the system randomly select an outcome from available model states. It is worth

noting that the outcome selection is not completely random, but is rather based on

distributions of “states” in the original dataset.

Consider a VP case where an outcome of a learner’s choice has three possible

states — (1) systolic blood pressure drops, (2) systolic blood pressure stays unchanged,

and (3) systolic blood pressure increases. If in the original data 70% of patients re-

sponded to treatment with a decrease in systolic blood pressure, the state of “blood

pressure drops” has a higher likelihood of being selected than the other two states.
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Figure 28: “Create / Edit VP case” screen.

4.6.2 BN Model Annotation

The next step requires annotating the BN model selected on the previous screen. The

initial visualization of the BN model is based on GeNIe user interface, where nodes are

represented by rectangles and edges are represented by directed arcs (arrows). Each

node’s rectangle contains a list of possible states and their corresponding probabilities

as learned from the data by the PC algorithm. Authors can specify initial conditions for

the VP (patient history) by clicking on states of interest in relevant nodes (Figure 29).
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Figure 29: BN model editing and annotating tool.

One of the cases described in Chapter 5 Section 5.3 is a VP case designed to teach

pharmacy students about managing sepsis. The author might set the following initial

parameters:

• Sex: female

• Race: white

• Age: 18-40

The author would set the states in sex, race, and age nodes by clicking on the state of

interest. ModelPatient uses SMILE API (Section 4.3) to update conditional probability

tables in the BN model based on authors initial selections. States (values) for the

nodes that were set as initial parameters appear in the VP player (learners’ EMR view)

under a section that corresponds to the node’s category. For example, if the author

set a state in a “Renal Failure” node as an initial parameter, and the “Renal Failure”

node is in the “Diagnoses” category, then the value will appear as prior history in the

“Diagnoses” tab of the VP player.
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Authors can double-click on a node to add / edit the node’s metadata. In the node

details editor (Figure 30), authors can add or change the following metadata:

Figure 30: State and annotation editor for a single BN node.

• Rename node: change the node’s label to something more suitable for a specific

case presentation

• Change node category: by default, all nodes are imported as "uncategorized." Au-

thors can classify each node into one of the categories listed below. Each category

corresponds to a section in learners’ EMR user interface (Subsection 4.6.7). Dur-

ing the initial requirements collection case authors identified these categories as

a minimum necessary subset of the tabs available in Epic EMR. Moreover, most of

these categories are defined in the Virtual Patient Data (VPD) component of the

MedBiquitous Virtual Patient (MVP) standard [44].

– Allergy: the node represents a particular allergy and the states represent

severity levels or frequencies of occurrence

– Demographic: the node represents some demographic information about the

VP: gender, age, income, etc.

– Diagnosis: the node represents a specific diagnosis (e.g., hypertension)
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– Encounter: the node represents an instance of contact between the patient

and a physician. For example, the node may represent phone calls between the

patient and a clinical practice and the states represent frequencies of phone

calls.

– Laboratory Test: the node represents laboratory test results

– Medication: the node represents medication prescriptions or drug requests

and the states represent dosages, frequencies, or durations

– Note: the node represents a note about the patient. This type of node is usu-

ally selected as an “initial state,” or “patient history” node and its selected

state appears as a text note in the “Notes” section of the learners’ EMR user

interface.

– Procedure: the node represents surgical or diagnostic procedures.

– Radiology: the node represents results of radiological tests (e.g., X-ray or CT

scan)

– Social History: the node represents social history variables (e.g., smoking his-

tory)

– Vitals: the node represents vital signs (e.g., blood pressure, heart rate)

– Uncategorized: default state of a node. Uncategorized nodes will not appear

in the learners’ EMR view.

• Node type: ModelPatient’s node types are partially based on activity node types

defined in the MedBiquitous Virtual Patient Specifications [106, 82]. More specifi-

cally, ModelPatient’s nodes fall into one of the three types described below:

– Decision: this node’s states will appear as choices / decisions in the VP player.

For example, if a “Lab” node is set as a decision node, learners will be able to

“order” that lab.

– Initial: this node becomes part of the prior patient history that ModelPatient

displays for the learner at the beginning of a VP case.

– Outcome: nodes designated as “outcomes” are displayed as responses to learner’s
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decision. For example, if a learner chooses to prescribe “Normal saline,” the

state of “Normal saline” node will change to “yes” and all nodes designated

as “outcomes” that affected by this change (nodes where states’ probabilities

change) will be shown to the learner as lab results, vitals, or clinical notes.

• Temporal Tier: allows authors to specify the order in which information is pre-

sented to the learner, as well as the order in which the model(s) respond to learn-

ers’ choices. For example, in a sepsis case an author may not wish for the learner

to prescribe hydration before prescribing a vasopressor. In that case, the “Hydra-

tion” node in the BN model would be set to temporal tier one, and the “Vasopres-

sor” node would be set to temporal tier two.

• Change / add metadata for each state:

– State name: Name / label of a state

– Lower and upper range boundaries: since states are represented by discrete

categories rather than by continuous values, authors can specify a numeric

range for each category. This is useful in cases where states represent labora-

tory values. For example, in a node representing systolic blood pressure, the

author can specify four numeric ranges to signify specific health conditions:

(1) less then 120: normal blood pressure, (2) 120-139: prehypertension, (3)

140-159: stage 1 hypertension, (4) 160 or higher: stage 2 hypertension

– Default value: if this value is specified, it will appear in the learners’ EMR

view if the corresponding state is selected or triggered by a rule. For ex-

ample, instead of showing a patient’s age as “age_below_30” as seen in the

corresponding state’s label (Figure 30), authors may chose to associate that

particular state with 30 years old for the purposes of presenting a VP case.

– Feedback: if the state is selected by a learner or triggered by a rule, the feed-

back text will appear in the “Notes” section of the EMR as a notification.

• Set node status as “Patient History.” Information contained in nodes marked as

“Patient History” will be visible to learners at the start of a VP case. By default, all
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demographic node are marked as “Patient History.”

4.6.3 Case Introduction

Case introduction interface allows authors to develop narrative / background informa-
tion about the VP case or the patient (Figure 31), provide learners with instructions,
or administer a multiple-choice pretest.

Figure 31: Virtual patient case introduction.

4.6.4 Additional Case Content

Authors also have the option to augment a VP case with additional content. The con-

tent can be presented to learners as patient history data, or be available as choices

along with states from the underlying BN model. These additional choices can either
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act as distractors that increase complexity of the case [97], or they can be configured

to trigger case rules along with custom metrics and changes to BN node states.

Figure 32: VP Case Player Content Editor.

4.6.5 Case Metrics

ModelPatient allows VP case authors to define any combination of custom variables

that will be tracked throughout the VP case and will change based on learners’ actions

and on author-defined rules. Figure 33 shows a bare-bones user interface that allows

authors to specify the following information for each metric:

• Metric name: desired name / label for a variable

• Lower range and upper range boundaries: the boundaries beyond which the value

of the variable cannot change (for example, an author may choose to define a

“Score” variable whose value must be between 0 and 100)
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• Initial Value: initial / starting value for the variable - the variable will be initialized

to this value at the start of the VP case

• Step: if the variable is auto-incremented (or auto-decremented), this value speci-

fies by how much the variable should change every time.

Figure 33: Custom case metrics editor.

4.6.6 Case Rules

Rule builder (Figure 34) allows authors to specify IF – THEN rules that affect the flow

and the possible outcomes of the learners’ experiences with the VP case.
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Figure 34: Rule editor.

The current version of ModelPatient’s rule builder supports four types of rules,

and each type of rule supports five possible outcome changes. I implemented these

particular rule types based on the rules available in vpSim at the time of this writing,

as well on the case authors’ responses collected during the preliminary user studies.

Authors can create a rule that will be triggered based either on a change in the

underlying BN model, a change in a tracked metric value, a change in a distractor

value,8 or a timer-driven event).

8Distractors are deliberately incorrect (or almost correct) choices added to the case to increase VP
complexity
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Table 5: Author-defined rule triggers

Trigger Description

Model outcome If [Total Cholesterol] = [high] Then [do something...]

In this rule [Total Cholesterol] represents the name of a node in the

BN model, and [high] represents that current state of that node. In

other words, this rule will be triggered when learners’ actions cause

a change in [Total Cholesterol] node to update the node’s state to

[high].

Metric If [Health] < [50] Then [do something...]

In this rule [Health] is an author-defined variable that represents

the VP’s health score and changes throughout the case based on

learner actions. This rule will be triggered when learners’ actions

change the value of [Health] to some number below 50.

Distractor If [Meningitis] is selected Then [do something...]

In this rule [Meningitis] is an author-added distractor - in this ex-

ample, it is a diagnosis that did not exist in the BN model or in the

original data set. This rule will be triggered when a learner select

“Meningitis” diagnosis from the list of diagnoses available in the VP

case.

Time elapsed If time elapsed is 30 seconds Then [do something...]

Timer-based rules are based on the time elapsed (in seconds) since

a learner entered the VP case.

4.6.6.1 Rule Triggers
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Table 6: Author-defined rule outcomes

Outcome Description

Model outcome If [something triggers this rule...] Then [Stabilized Glu-

cose] = [high]

In this rule [Stabilized Glucose] represents the name of a

node in the BN model, and [high] represents that current

state of that node. In other words, when this rule is trig-

gered by a condition defined in the If clause, the rule will

update the state of [Stabilized Glucose] node to [high].

Metric If [something triggers this rule...] Then [Score] - [10]

When this rule is triggered by a condition defined in the

If clause, the rule will subtract 10 points from the value

of the author-defined [Score] metric.

Feedback If [something triggers this rule...] Then feedback =

[Author-defined feedback]

When this rule is triggered by a condition defined in the

If clause, the system will show learners author-provided

text feedback. The feedback will appear in the “Notes”

section of the EMR view as a “consultant note.”

Distractor If [something triggers this rule...] Then [MAP] = 80

When this rule is triggered by a condition defined in the

If clause, the system will set the value of MAP (Mean

Arterial Pressure) distractor to 80.
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Temporal tier If [something triggers this rule...] Show choices for

next temporal tier

Temporal tiers allow authors to specify the order in which

information is presented to the learner, as well as the

order in which the model respond to learners’ choices.

When this rule is triggered by a condition defined in the

If clause, the system will make the choices from the sub-

sequent temporal tier available to the learner.

4.6.6.2 Rule Outcomes

4.6.7 VP Case Player

The case player (the part of the systems that learners interact with) is designed to

resemble a patient chart of an EMR (Figure 32).
Nodes and states from the underlying BN model, as well as author-generated dis-

tractors that are flagged as "Initial", are displayed to the learner at the start of the
VP case (Figure 35). The BN model editor (Section 4.6.2 allows authors to categorize
model’s nodes as “Demographic,” “Diagnoses,” “Labs,” etc... The information associ-
ated with BN model nodes is displayed in sections of the VP player that correspond to
each node’s category. For example, state(s) from a node categorized as “Laboratory
Test” will be displayed in the “Labs” section of the VP player.
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Figure 35: VP Case Player — Learner View — Patient Demographics Screen.

Any selections that the learner makes while interacting with the VP either update

beliefs in the model and change outcome probabilities, or trigger author-created rules.

In the example shown in Figure 36, the learner would be able to only select drugs that

have corresponding nodes categorized as “Drugs” in the model, or that have been

added as distractors by the case author (Subsection 4.6.4).
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Figure 36: VP Case Player — Learner View — Prescribed Drugs.

When learners make decisions that result in changes in BN model states or trigger

a feedback-generating rules, the VP player displays a red notification icon next to the

section where the new information appears (Figure 37). This functionality is designed

to imitate EMR notifications that clinicians receive when new consultant notes, lab

results, and information from other providers become available.

Figure 37: VP Case Player - Learner View - New Information Notifications.

Last, but not least, the “Outcomes” section shows how the learner’s choices had

affected the probabilities in the model’s node categorized by the case author as “Out-
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come.” Figure 38 shows how outcome probabilities changed for a learner in the

“Managing Sepsis” case based on two sequential drug therapy choices. In this exam-

ple, after the initial normal saline bolus hydration treatment, the probability of death

was 7%, the probability of managed care was 50%, and the probability of discharge

from the hospital was 44%. These probabilities essentially represent to P(Outcome |

“Normal Saline Bolus”). However, when learner prescribes Vasopressin, the outcome

probabilities change to 21% for death, 41% for managed care, and 38% for discharge

from the hospital. These probability distribution reflect P(Outcome | “Normal Saline

Bolus” and “Vasopressin”)

Figure 38: VP Case Player - Learner View - New Information Notifications.

This section of the VP player received the most criticism from authoring experts

and learners alike and required an additional explanation displayed at the beginning

of the case:

This case is based on a statistical model derived from a dataset of real patients who
were diagnosed with sepsis. Each decision you make while interacting with this case
can (and most likely will) change the probabilities of certain outcomes. For example,
you may notice that if you prescribe a particular medication, the virtual patient’s blood
pressure will increase in response. It is important to remember that the statistical
model DOES NOT represent a causal relationship - your decisions/actions DO NOT
cause changes in outcomes. Your actions and the virtual patient’s responses simply
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reflect the probability distribution that is already in the data. In other words, if you
prescribe a medication and the system tells you that given your decision, the proba-
bility of the virtual patient’s death is 55%, it doesn’t mean that your decision CAUSED
the virtual patient to die. All it means is that, in the data, a high percentage of the
patients who were diagnosed with sepsis and received this medication did not survive.

Even with the aforementioned explanation, “Outcomes” section caused confusion

with users. Specific comments and suggestions will be discussed further in Chapter 6

(Virtual Patient Case Evaluation) and Chapter 7 (Discussion and Future Work).
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5.0 VIRTUAL PATIENT CASES

5.1 VP CASES

In order to assess the feasibility of BN model-based VP cases, as well as to address

research questions 1 and 2 presented in the introduction to this dissertation (Chap-

ter 1), I identified two existing VP cases that have been extensively used in teaching

and training curricula of accredited health sciences institutions. Both of these cases

have been used in academic research and have been described in published literature.

The “Managing Sepsis” case was originally created in vpSim and used in the Uni-

versity of Pittsburgh School of Pharmacy curriculum [118, 119, 120].

The “The Management of Diabetic Ketoacisosis (DKA)” case was created in De-

cisionSim and used for continuing education by the American College of Physicians

(ACP) [121, 122].

The “Managing Sepsis” case was used in this work with permission of its original

author, Dr. Neal Benedict, PharmD, Associate Professor, Pharmacy and Therapeutics,

University of Pittsburgh School of Pharmacy. The “Managing DKA” case was used with

permission from the ACP.1

Another important reason for selecting these two cases is that they present two

very different disease states that require very different approaches to treatment. The

“Sepsis” case teaches drug therapies required in emergency treatment of an acute

1Adapted from Tabas G, Korytkowski M, Harsha Rao H (2015). Diabetic Ketoacidosis [Online patient
case]. Annals Virtual Patients. Philadelphia, PA: American College of Physicians. Retrieved online
April 28, 2016 from http://vp.acponline.org/virtualpatients/ Copyright (c) 2016 American College of
Physicians. Used with permission.
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condition, while the “DKA” case presents a multi-step treatment scenario that oc-

curs over the course of multiple hours and requires a more temporal approach. The

specifics of both cases are discussed in sections 5.3 and 5.4 respectively.

5.2 PATIENT COHORT DATA SET

The data used in creation of both cases, as well as in learning the parameters of the

Sepsis BN model (Section 5.3.2) and the DKA BN model (Section 5.4.2) was originally

obtained by Dr. Neal Benedict, PharmD for a research study titled “Comparison of

Normal Saline and Plasma-Lyte for Fluid Resuscitation in Septic Shock,” IRB protocol

#PRO14100151. The original purpose of this study was “to compare a retrospective

cohort of ICU patients receiving normal saline for fluid resuscitation in septic shock

with a retrospective cohort of patients receiving Plasma-Lyte for fluid resuscitation in

septic shock.2” This data set contains de-identified patient history of 71,202 patients

admitted to the emergency rooms (ER) or hospitals of the UPMC hospital system be-

tween 2001 and 2014. The data was retrieved from UPMC’s Medical Archival Systems

(MARS) data archive by an honest broker. The data and the patient cohort selection

critera are described in Appendix A.

Since both sepsis treatment guidelines [123] and DKA treatment guidelines [124]

recommend hydration as a critical line of treatment, I was able to extract a cohort of

patients who were admitted to UPMC hospitals with a primary, secondary, or tertiary

diagnosis of sepsis and DKA respectively. Inclusion details of the original data set and

of the sepsis and DKA patient sub-cohorts are available in Appendix A.

The use of the “Comparison of Normal Saline and Plasma-Lyte for Fluid Resuscita-

tion in Septic Shock” study data in this work has been approved by the University of

Pittsburgh Institutional Review Board (IRB protocol #PRO17080163, Designing Data-

2Quoted from the IRB protocol for “Comparison of Normal Saline and Plasma-Lyte for Fluid Resus-
citation in Septic Shock” study, IRB protocol #PRO14100151
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Driven Virtual Patients for Health Sciences Education.)

5.3 VIRTUAL PATIENT CASE 1: MANAGING SEPSIS

5.3.1 Managing Sepsis: vpSim Case

“Sepsis of any type is one of the most time-sensitive non-trauma emergencies a health

team is likely to face. The guidelines from the Surviving Sepsis campaign emphasize

the importance of rapid identification of sepsis and quick deployment of therapies.

Practice in this area is crucial for the pharmacy student to be comfortable enough

to react swiftly and accurately when faced with a real sepsis case when in practice.

Virtual patients provide a safe environment to practice these skills.”3

A vpSim version of the Sepsis case has been used for problem-based learning (PBL)

in University of Pittsburgh School of Pharmacy and University of the Sciences College

of Pharmacy courses [46, 119] since 2010. This case’s original author, Dr. Neal Bene-

dict, PharmD, Associate Professor, University of Pittsburgh School of Pharmacy has

provided a tremendous amount of help and insight in designing a ModelPatient version

of the vpSim case and in developing a BN model representative of sepsis treatment.

The “Managing Sepsis” case presents learners with a 23-year-old female college

student who was found unresponsive by her roommates and brought to the emergency

department by an ambulance. “The roommates report that the patient went to the

University health clinic for a sore throat about a week ago and was given Azithromycin

for strep throat. For the last two days she had complained of a headache and in the

last 24 hours, a stiff neck and photophobia.” 4 (Figure 39).

3From an interview with Dr. Lorin Grieve, PharmD, Instructor, University of Pittsburgh School of
Pharmacy

4From the vpSim “Managing Sepsis” case introduction
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Figure 39: vpSim – Sepsis Case Narrative – Patient Introduction.

The learners are also presented with a set of initial vital signs and laboratory test

results and are asked to evaluate, diagnose, and select appropriate drug treatments

for the patient. The primary learning objectives for this case are (1) to evaluate pa-

tient’s risk factors for septic shock, (2) to understand steps and guidelines for emer-

gent sepsis treatment, and (3) to select appropriate empirical drug treatment therapy.

The VP case proceeds to guide the learner through a series of choices where

the learner must make decisions on hydration, vasopressor, and antibiotic therapies

needed to stabilize the virtual patient. The vpSim version of the case [118, 38] pro-

vides learners with options to correct their mistakes and offers real-time feedback,

just-in-time learning opportunities [125, 126], and assessments in the form of multi-

ple choice quiz questions (Figure 40).
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Figure 40: vpSim – Sepsis Case Quiz.

5.3.2 Sepsis BN Model

The ModelPatient version of the “Sepsis” case is based on a BN model learned from a

cohort of 3,991 patients extracted from the master dataset described in Section 5.2.

The inclusion criteria for the sepsis cohort and the resulting dataset’s features are

described in Appendix A, Section A.2.

Initially five BN models were trained from the Sepsis cohort dataset. Four of the

models were static BN models trained using TAN (Chapter 3, Section 3.3.2) and PC

(Chapter 3, Section 3.4) at significance levels α = 0.5, α = 0.1, and α = 0.01. The fifth

model was a 5-timeslice dynamic BN (Chapter 3, Section 3.5).

Out of the five BN models the TAN model (Figure 41) performed best at predicting

discharge location (what happens to the patient as a result of learners’ decisions)
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(Table 8, 7 and Figures 44, 43, 42). The dynamic BN had the lowest overall accuracy of

the five (0.433); after the 3rd timeslice most nodes’ states exhibited uniform probability

distributions.

Figure 41: Sepsis BN model graph
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Table 7: Accuracy of Predicting Discharge Location

Discharge location 0.614999 2329/3787

Deceased 0.692057 636/919

Managed Care 0.733015 1381/1884

Self Care 0.317073 312/984

Table 8: Sepsis Model Confusion Matrix

Deceased Managed Care Self Care

Deceased 636 240 43

Managed Care 245 1381 258

Self Care 158 514 312

Figure 42: ROC curve for “Discharge Location” state (AUC=0.816)
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Figure 43: ROC curve for “Managed Care” state (AUC=0.662)

Figure 44: ROC curve for “Self Care” state (AUC=0.622)

All five models were evaluated by two clinicians to determine if the models accu-

rately represented responses to hydration, vasopressor, and antibiotic treatments in

septic patients. In this particular evaluation we relied on sepsis criteria that are de-

fined as “bacterial infection plus two or more of the following systemic inflammatory
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response syndrome (SIRS) conditions: (1) heart rate > 90 beats per minute, (2) res-

piratory rate > 20 per minute, or PaCO2 < 32 mm Hg, (3) temperature < 96.8 F or

temperature > 100.4 F, and (4) white blood cell count > 12,000/mm3 or < 4,000/mm3

or >10% immature bands [127, 128, 129].” Note that since all patients in the data

set were already diagnosed with sepsis based on the ICD-9 codes used to select the

cohort, I made the assumption that the bacterial infection criteria has already been

met for all patients. It is important to note that the aforementioned sepsis selection

criteria have been replaced by by the sequential organ failure assessment, or SOFA

score, “based primarily on laboratory results.” [130] Since the data set did not contain

features related to organ failures (except for renal and respiratory failure) and did not

have all the labs required for calculating a full SOFA score, we relied on the “quick

SOFA,” or qSOFA score for additional model validation. The qSOFA score includes only

two vital signs (systolic blood pressure ≤ 100 mm Hg and respiratory rate ≥ 22) [131];

changes to these vital signs could be examined at any point in the ModelPatient VP

case and while observing the changes to the model’s states.

Both clinicians selected the TAN model as the most representative of a sepsis pa-

tient treatment scenario presented in the vpSim “Managing Sepsis” case and of the

sepsis criteria defined above.

5.3.3 Managing Sepsis: ModelPatient Case

The ModelPatient version of the “Sepsis” case presents the same initial information

as the vpSim version; the main difference in the presentation is that ModelPatient

offers learners a view similar to that of an Electronic Medical Record (EMR) system.

Learners have to explore the patient chart without any guidance from the system

and make decisions based on available information rather than go through a series of

multiple-choice decision points (Chapter 4, Section 4.6.7). Figures 45 and 46 show

how clinical notes and laboratory test results are presented to the learner.
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Figure 45: ModelPatient — Sepsis Case Clinical Notes.

Figure 46: ModelPatient — Sepsis Case Labs.

This VP case is based on the Sepsis BN model described in the previous subsection
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(5.3.2). All responses to learner decisions are driven by changes in probability distri-
butions across the underlying model (described in Chapter 4, Sections 4.3, 4.6.7).

Figure 47: ModelPatient — Learner prescribing normal saline bolus hydration treat-
ment.

Figure 48: ModelPatient — Changes in the model’s probability distributions result in
new information begin presented to the learner. Sections of the “EMR” that contain
new information are denoted with red notification icons.
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Figure 49: ModelPatient — The system displays changes to six vital signs based on
the changes in the states’ probabilities of the corresponding BN model nodes following
learner’s selection of ”Normal Saline” hydration treatment (Figure 47)

To stay consistent with the vpSim “Managing Sepsis” case, the ModelPatient ver-

sion only allows learners to select diagnosis and prescribe drug treatments — ordering

procedures and labs was disabled for the purposes of this study. Figures 47, 48, and 49

show how choices and outcomes are presented to the learner.

Another important distinction between the vpSim and the ModelPatient versions

of the “Sepsis” case is that vpSim provides learners with a clear stopping point — the

patient is either “cured,” or the learner has been “kicked off the team” for making

too many poor decisions. ModelPatient does not have an explicit stopping point — it

is up to the learner to examine the changes in laboratory results and vital signs and

recognize when to stop the treatment(s).
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5.4 VIRTUAL PATIENT CASE 2 – THE MANAGEMENT OF DIABETIC

KETOACIDOSIS

“Diabetic ketoacidosis (DKA) is a metabolic disorder seen as a complication of dia-

betes mellitus and is associated with significant morbidity and mortality. Management

requires complex decision-making and improper treatment increases the risk for pro-

longed metabolic dysregulation as well as recurrence. General internists, emergency

medicine physicians, and endocrinologists play a role in managing DKA. However,

only a minority of health sciences students will encounter a patient with DKA during

clinical experiential learning rotations because DKA accounts for [a very small frac-

tion] of admissions to the hospital, necessitating an increased educational role for

computer simulation. DKA as a topic lends itself to teaching clinical decision making

because management requires the integration of several forms of clinical information

for optimal outcomes.” 5

At the time of this writing a vpSim / DecisionSim version of this case is currently

available through the American College of Physicians’ (ACP)6 Annals Virtual Patients

interactive online program.7

One of this case’s original authors, Dr. Gary Tabas, MD, Professor of Medicine,

Director, Ambulatory Education, UPMC Shadyside work with me to identify patient

cohort inclusion criteria, build a BN model representative of DKA treatment, and de-

velop a VP case using ModelPatient’s authoring system.

5.4.1 Managing DKA: vpSim Case

The DKA case presents learners with partial patient history of Mrs. Debra Carter, a

43-year-old African-American woman with a history of type 2 diabetes mellitus who

presented to the emergency department with nausea and vomiting.

5DKA description was provided by Dr. Gary Tabas, MD, Professor of Medicine, Director, Ambulatory
Education, UPMC Shadyside

6American College of Physicians (ACP): https://www.acponline.org/
7ACP Annals Virtual Patients: http://vp.acponline.org/virtualpatients
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The DKA case learning objectives are (1) to diagnose DKA, (2) to manage fluids,

electrolytes, and insulin, and (3) to transition the patient from continuous IV insulin

to subcutaneous insulin.

The case guides the learner through obtaining patient information (history, physi-

cal exam, diagnostic tests) through multiple choice / multiple answers questions and

allows learners to make clinical decisions through multiple choice / one correct an-

swer questions. Each choice/decisions directly affects the patient’s clinical status

(medications, procedures, consultation) - for each decision vpSim presents learner

with a table of laboratory test result changes over time (Figure 50). It is important

to note that the data displayed on each of the vpSim’s screens is manually entered by

the case author(s).
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Figure 50: vpSim DKA Case – The system displays changes vital signs and laboratory
values based on learner’s choices on prior vpSim screen(s).

In order to successfully treat the virtual patient the learner must navigate through

twelve treatment timeslices (Table 9).

Table 9: DKA VP treatment timeslices presented in the vpSim version of the case

Timeslice Description Time

Since

Last

Treat-

ment
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1 Initial Management 0 hours

2 Continuous insulin infusion and intravenous

fluids (0.9% Normal Saline [NaCl], 1L per

hour)

1 hour

3 Continuing Fluid Choices (0.9% Normal Saline

[NaCl], 1L per hour)

1 hour

4 Additives (Potassium, 10 meq, 500 cc per hour) 1 hour

5 Regular Insulin Bolus 1 hour

6 Continuous intravenous insulin infusion, 10

units per hour

1 hour

7 Continuous intravenous insulin infusion, 10

units per hour

2 hours

8 Continuous intravenous insulin infusion, 12

units per hour

1 hour

9 0.45% NaCl and insulin infusion rate at 12

units per hour

2 hours

10 0.45% NaCl and insulin infusion rate at 12

units per hour

1 hour

11 5% dextrose in 0.45% NaCl at 6 units per hour 1 hour

12 Insulin glargine (Lantus) or insulin detemir

(Levemir) subcutaneously at 35 units

2 hours

This case’s vpSim implementation allows learners to mediate poor decisions by
going back to the last “correct” treatment choice and provides just-in-time learning
opportunities through tutorials.
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Figure 51: vpSim DKA Case – Fluids administration tutorial

Unlike the “Managing Sepsis” case (Section 5.3), the DKA vpSim case does not

allow the learner to fail and resolves with the patient’s blood sugar controlled on 35

units of subcutaneous insulin glargine. At the end of the case the learner is presented

with a summary of learning in the form of DKA treatment guidelines as they relate to

the individual learning objectives.

5.4.2 Diabetic Ketoacidosis Model

Creating a BN model of DKA turned out to be a challenging task, as diabetic ketoacido-

sis requires a complex treatment scenario. Over the course of 6 months I have worked

with Dr. Gary Tabas, one of the original authors of the vpSim DKA case, to design a

BN model of DKA and a corresponding virtual patient case. The original vpSim case

guides learners through 12 time-based treatment steps (Section 5.4). We attempted

several approaches to building a DKA model:
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• Manually create the model’s structure for each timeslice based on the features

(treatments, lab values, vital signs) listed in the vpSim case and learn the model’s

parameters from the data using GeNIe and SMILE (Chapter 4, Section 4.3).

• Create a static BN model by learning both the structure and the parameters from

the DKA patient cohort dataset using the PC algorithm (Chapter 3, Section 3.4).

• Create a dynamic BN model by learning both the structure and the parameters

from the DKA patient cohort dataset. For the dynamic BN we attempted creating

3-, 5-, and 7-timeslice models.

The DKA patient cohort dataset (Appendix A, Section A.4 contains data for a little

over 3,000 DKA patients. For some of these patients there are as few of 3 time slices of

treatments and responses, and one patient has as many as 57 time slices. To compli-

cate things further, the treatments in each time slice are different. For example, in the

first time slice the patient may be given a normal saline bolus, in the second time slice

the treatment is switched to continuous hydration, in the third time slice the learner

needs to select an additive to the hydration solution (e.g. potassium). Presence of

these very different treatments in each time slice makes it difficult to model the DKA

disease state using a dynamic Bayesian network model.

Furthermore, the feature space is so large (there are many variables required in

administering and evaluating results of a treatment) that in a BN model with 5 static

time slices the distributions become mostly uniform after the 3rd timeslice, making the

model useless. A DKA virtual patient case based on a 3-timeslice model was immedi-

ately rejected by an expert as too simplistic and not representative of DKA treatment

protocols.
In the end, we used a 3-timeslice model (Figure 52), but heavily augmented it with

expert-defined rules in order to make the case comparable to the one in vpSim. That
being said, with a rule-augmented case the model is responsible only for about 20%
of the treatment scenario – the rest of the case is governed by a total of 195 rules.
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Figure 52: DKA model structure

Because the DKA BN model was responsible for such a small percentage of the

resulting VP case, I did not use the “Managing DKA” case in the experiments described

in Chapters 6. That being said, the difficulties discovered while attempting to develop

the DKA BN model and the “Managing DKA” VP case provided ideas and insights into

how such issues could be addressed in future iterations of ModelPatient (discussed in

Chapter 7).
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6.0 STUDY DESIGN, ANALYSIS, AND FINDINGS

This chapter is divided into two main sections, one for each of the research questions.

These sections are further subdivided into the following subsections: (1) subject se-

lection criteria and subject demographic information, (2) experimental design, and (3)

analysis and findings.

Studies associated with research questions 1 and 2 (RQ1 and RQ2) have been

approved by the University of Pittsburgh Institutional Review Board (Study title: “De-

signing Data-Driven Virtual Patients for Health Sciences Education,” IRB Protocol

#PRO17080163).

Subject recruitment email verbiage and consent forms are available in Appendix E.

Questionnaires used in both RQ1 and RQ2 studies are available in Appendix C.

There was no overlap between subjects who participated in RQ1 and RQ2 studies.

In other words, subjects from RQ1 study did not participate in RQ2 study, and vice

versa.

Both studies were conducted at a variety of locations, including hospital lounges,

hospital cafeterias, coffee shops, private offices, University of Pittsburgh libraries,

and through videoconferencing software (Skype).

Subjects were not compensated for their participation in either study.

Both studies were conducted using the “Managing Sepsis” VP case. I selected the

“Managing Sepsis” case as the baseline for this study because its vpSim version has

been extensively used in teaching at the University of Pittsburgh School of Pharmacy.

Moreover, several academic research studies based on the “Managing Sepsis” case
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have been conducted and described in published literature [118, 119, 120].

6.1 RESEARCH QUESTION 1 (RQ1)

To what extent is it possible to create a virtual patient case using a VP system

based on a Bayesian network model that is comparable to a case created using

a branched-narrative VP system?

The purpose of this study was to benchmark the clinical and educational content

and presentation of a VP case based on a BN model (ModelPatient) to the content and

presentation of an established branched-narrative VP case (vpSim) in order to deter-

mine whether or not a VP case based on a BN model can be an effective teaching tool.

This study relied on the following nine criteria to compare the clinical and educational

content and the presentation of the two aforementioned versions of the “Managing

Sepsis” VP case:

1. How well did the learning experience reflect the stated learning objectives? (Q1)

2. How accurately did the case depict the chosen topic? (Q2)

3. How well did the case represent clinical variations associated with the chosen

topic? (Q3)

4. How well did the case introduce / reinforce relevant clinical skills? (Q4)

5. How well did the case introduce / reinforce behaviors and attitudes relevant to

sepsis treatment? (Q5)

6. How well did the case provide formative feedback for choices / outcomes? (Q6)

7. How realistic was the case? (Q7)

8. Based on the presentation method of the virtual patient case, how engaging was

the case? (Q8)

9. Based on the presentation method of the virtual patient case, how effective was

the case in teaching the subject matter to novice clinical practitioners? (Q9)
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The comparison and evaluation criteria for the VP case clinical and educational

content and presentation were based on and derived from:

1. Features and uses of high-fidelity medical simulations that lead to effective learn-

ing proposed by Issenberg, et. al. [24]

2. Posel’s dissertation work on validating criterion-referenced guidelines for virtual

patient case authoring [25]

3. Bateman et. al. exploratory study on virtual patient design [26]

6.1.1 Subject Selection Criteria and Demographic Information

In order to address RQ1, the VP cases used in this study needed to be evaluated from

clinical and educational perspectives by subjects with both clinical and educational

background / expertise. For that reason participating subjects were selected based on

meeting BOTH of the following inclusion criteria:

• The subject is actively practicing in a clinical field and is familiar with either sepsis

or diabetic ketoacidosis treatment guidelines.

• The subject is actively teaching in an accredited health sciences institution (medi-

cal, pharmacy, nursing, dental, public health, epidemiology), or is a practicing clin-

ician who performs preceptor duties with medical, pharmacy, or nursing students,

and is familiar with either sepsis or diabetic ketoacidosis treatment guidelines.

A total of 40 subjects were recruited for the study. Data collected from the first two

subjects were removed from the analysis because based on their feedback the Model-

Patient version of the “Managing Sepsis” VP case had to be updated with a clarifying

explanation detailing how the outcome probabilities change and how that affects feed-

back and results of treatment choices. Adding a clarifying explanation to the VP case

effectively changed its content; in order to ensure that all subjects complete the same

VP case, the first two subjects’ responses were removed from the final analysis. Data

collected from one more subject was removed from the analysis because they rated
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all Likert questions as “4” without actually reading the questions and did not provide

any text responses. From the remaining cohort, 33 subjects completed the “Managing

Sepsis” case and four completed the “Managing DKA” case. Due to the shortcomings

of the “Managing DKA” case outlined in Chapter 5, Section 5.4, only the data col-

lected from the 33 subjects who completed the “Managing Sepsis” case were used in

the analysis and evaluation.

Selected subjects represented a wide variety of clinical specialties (Table 10) and

years of experience (mean of 13 years of experience with a standard deviation of 7.34

and median of 11).

Table 10: Subjects’ Clinical Specialties

Specialty Count

Emergency medicine 2

Otolaryngology (ENT) 1

Gastroenterology 1

General Internal Medicine 5

Maxillofacial surgery 1

Neurology 1

Nursing 6

Oncology 1

Orthopedic surgery 1

Palliative Care 1

Pediatrics 3

Pharmacy 4

Public health 3

Pulmonology 3
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6.1.2 RQ1 Study Design

The subjects were randomly selected into two groups (Group A and Group B) using a

Python script (Appendix F). Each subject was asked to complete one VP case in both

vpSim and ModelPatient. Participants in Group A (n = 17) completed their assigned

cases in vpSim first, followed by the same case in ModelPatient. Participants in Group

B (n = 16) completed their assigned cases in ModelPatient first, followed by the same

case in vpSim. This helped reduce the priming bias based on which system was used

first [132].

Subjects completed the vpSim version of the “Managing Sepsis” case using a web-

based vpSim1 instance hosted by the Laboratory for Educational Technologies (LET)2

at the University of Pittsburgh School of Medicine.

Subjects completed the ModelPatient version of the “Managing Sepsis” case de-

ployed as a localhost web application on a laptop.

After completing each version of the case, each participant completed a web-based

Qualtrics3 questionnaire (Appendix C, Section C.1) on the same laptop that they used

for completing VP cases.

The questionnaire was divided into three sections: (1) demographic information,

(2) VP case content and presentation evaluation based on the nine criteria described in

Table 35, and (3) open-ended questions asking subjects to provide free-text feedback

on strengths and weaknesses of each version of the “Managing Sepsis” case and each

VP system.

After completing BOTH versions of the case (one in vpSim and one in ModelPa-

tient), subjects completed an additional 2-question Qualtrics Likert-scale question-

naire comparing educational content and the degree to which the learning objectives

were met between the two versions of the “Managing Sepsis” case (Appendix C, Ta-

1vpSim: https://vpsim.pitt.edu
2Laboratory for Educational Technology at the University of Pittsburgh School of Medicine. https:

//let.pitt.edu/
3Online Survey Service (Qualtrics): http://technology.pitt.edu/services/

qualtrics-survey-service
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ble 36).
Flowchart shown in Figure 53 summarizes the steps and the flow of the RQ1 study.

Figure 53: RQ1 Study Flowchart.

Screen captures of subjects’ interactions with both systems were recorded using

Open Broadcaster Software (OBS) Studio.4 Since this study did not involve interview

questions or capturing “think-out-loud” observations, audio was not recorded as part

of this experiment.

Subjects spent an average of 57 minutes on the on RQ1 study (median of 53 min-

utes, standard deviation of 14 minutes). Subjects spent an average of 8 minutes 34

4Open Broadcaster Software (OBS) Studio. https://obsproject.com/
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seconds in vpSim (median of 7 minutes 11 seconds, standard deviation of 6 minutes

8 seconds) and 11 min 30 seconds in ModelPatient (median of 10 min 28 seconds,

standard deviation: 3 min 49 seconds) (Appendix G).

Both vpSim and ModelPatient record users’ decisions, time between decisions,

each visited screen and time spent on each screen in user activity logs. While not

directly relevant to this study, this data was captured and stored for future analy-

sis. Examples of user activity logs for both vpSim and ModelPatient are available in

Appendix D. Moreover, backups of ModelPatient’s MongoDB database were exported

and saved as JSON files using the MongoDB export utility5 after each case completion.

6.1.3 Analysis and Findings

Likert scale questions in the RQ1 questionnaire (Appendix C, Section C.1) were eval-

uated for internal consistency and reliability using Cronbach’s alpha. Overall Cron-

bach’s alpha for the entire questionnaire was 0.837, indicating a high level of internal

consistency [133]. Removing responses to individual questions did not significantly

affect the overall reliability (Table 11).

Table 11: Item-Total Statistics (Cronbach’s Alpha if Item Deleted)

Question Cronbach’s Alpha if Item Deleted

vpSim ModelPatient

Q1: How well did the learning experi-

ence reflect the stated learning objec-

tives?

0.838 0.821

Q2: How accurately did the case de-

pict the chosen topic?

0.842 0.834

5MongoDB Export Utility: https://docs.mongodb.com/manual/reference/program/mongoexport/
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Q3: How well did the case represent

clinical variations associated with the

chosen topic?

0.843 0.819

Q4: How well did the case introduce /

reinforce relevant clinical skills?

0.824 0.817

Q5: How well did the case introduce /

reinforce behaviors and attitudes rele-

vant to [DKA or sepsis] treatment?

0.824 0.818

Q6: How well did the case provide

formative feedback for choices / out-

comes?

0.841 0.839

Q7: How realistic was the case? 0.836 0.815

Q8: Based on the presentation method

of the virtual patient case, how en-

gaged were you?

0.833 0.819

Q9: Based on the presentation method

of the virtual patient case, how effec-

tive do you think this case is in teach-

ing the subject matter to novice clinical

practitioners?

0.833 0.830

I used the Wilcoxon rank-sum test to identify if there is a statistically significant

difference in the per-question responses (responses about vpSim were compared to

responses about ModelPatient) given the effect size d = 0.5, significance level α =

0.05, and power β = 0.80 (80%) (Table 12).
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Table 12: Wilcoxon Signed Ranks Test Results

Question Mean St.Dev.

vpSim MP vpSim MP Z Sig (α)

Q1: How well did the

learning experience reflect

the stated learning objec-

tives?

4.64 3.79 0.489 0.696 -4.242 0.001

Q2: How accurately did

the case depict the chosen

topic?

4.15 4.21 0.508 0.650 -0.462 0.644

Q3: How well did the case

represent clinical varia-

tions associated with the

chosen topic?

3.24 4.39 0.561 0.864 -3.999 0.001

Q4: How well did the case

introduce / reinforce rele-

vant clinical skills?

4.64 3.48 0.653 0.834 -4.573 0.001

Q5: How well did the case

introduce / reinforce be-

haviors and attitudes rel-

evant to [DKA or sepsis]

treatment?

4.55 3.30 0.666 0.770 -4.557 0.001

Q6: How well did the

case provide formative

feedback for choices /

outcomes?

4.73 3.30 0.626 0.728 -4.608 0.001
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Q7: How realistic was the

case?

3.42 4.45 0.663 0.869 -3.912 0.001

Q8: Based on the presen-

tation method of the virtual

patient case, how engaged

were you?

4.27 4.61 0.674 0.788 -2.338 0.019

Q9: Based on the presen-

tation method of the virtual

patient case, how effective

do you think this case is in

teaching the subject mat-

ter to novice clinical prac-

titioners?

4.82 3.70 0.584 1.159 -3.880 0.001

The Wilcoxon rank-sum test results (Table 12) indicate that a branched-narrative

case presented in vpSim was rated significantly higher than its ModelPatient coun-

terpart on reflecting the learning objectives (Q1), introducing / reinforcing clinical

skills, attitudes, and behaviors relevant to sepsis treatment (Q4, Q5), providing for-

mative feedback for choices / outcomes (Q6), and being more effective in teaching the

subject matter to novice clinical practitioners (Q9).

ModelPatient case was rated significantly higher than the vpSim version on repre-

senting clinical variations associated with sepsis (Q3), on realism (Q7) and on engage-

ment (Q8).

Both versions of the “Managing Sepsis” case showed no significant difference in

ratings on how accurately they depicted the chosen topic (Q2).

Response means for the Likert scale questions presented in the educational con-

tent and learning objectives survey (Table 13) indicate that subjects found the two

systems “somewhat comparable”, with a mean rating of 4 on the scale of 1 to 5, with
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1 being “Not comparable at all” and 5 being ”Extremely Comparable”.

Table 13: Summary Statistics — Case Presentation and Learning Objectives Compar-
ison

Question Mean St.Dev Median

In terms of educational content, how comparable

is the case presented in ModelPatient to the case

presented in vpSim?

4.030 0.684 4

In terms of meeting the learning objectives, how

comparable is the case presented in ModelPatient

to the case presented in vpSim?

3.970 0.770 4

6.1.3.1 Analysis of Free-Text Responses (Affinity Diagramming) In order to

identify common themes from the participants’ responses about strengths and weak-

nesses of the VP systems and the VP cases presented in this experiment, answers

to questions 2 - 5 from the RQ1 questionnaire were analyzed using the affinity dia-

gram method. “Affinity diagraming is a method of qualitative analysis wherein com-

mon themes are identified from [qualitative] data, such as statements from a free

response interview” [134, 135]. Affinity diagrams are commonly used in qualitative

analysis across multiple domains and disciplines, including identifying customer re-

quirements [136], creating business and marketing models [137], and software sys-

tems usability analysis [138, 139].

Since responses to most questions contained statements about multiple aspects

of each version of the “Managing Sepsis” case and of the two VP systems used in

this experiment, I separated each response into a series of atomic statements. For

example, one subject responded to the question “Describe the best/strongest features

of this case?” with “I think this case is a much better fit for novice learners. The other

system (ModelPatient) presented a case much more suited to residents or practicing
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physicians. The feedback and guidance in this case were excellent. This case is better

designed to both test someone’s knowledge and to teach.” I separated this response

into the following statements:

• “This case is a much better fit for novice learners.”

• “The other system (ModelPatient) presented a case much more suited to residents

or practicing physicians.”

• “The feedback and guidance in this case were excellent.”

• “This case is better designed to both test someone’s knowledge and to teach.”

Seven independent raters reviewed text response statements associated with ques-

tions 2 - 5 from the RQ1 questionnaire to identify common themes. All raters received

the same affinity diagramming instructions at the same time and analyzed the text

data while sitting in the same room. Three of the raters were faculty from the Univer-

sity of Pittsburgh School of Computing and Information, two of the raters were faculty

from the University of Pittsburgh School of Pharmacy, and two of the raters were staff

from the University of Pittsburgh School of Computing and Information. Two of the

raters had prior experience with designing virtual patient cases.

Each rater identified and labeled the common themes independently of each other.

After responses were grouped according to independently identified common themes,

the labels for the common themes were reviewed and reconciled as a group. For

example, six raters identified “Feedback” as a common theme, while one of the raters

labeled the same theme as “System responses.” Both labels carried the same meaning

and were reconciled under a single label of “Feedback.”

While there is no consensus in the literature on a threshold for a satisfactory level

of agreement among raters, there are some suggestions that inter-rater agreement

of 70% or higher is acceptable [140]. Common themes were defined as similar state-

ments about reviewed VP cases and the respective systems made by at least 25% of

the experiment subjects (9 subjects out of 33) [141] and recognized as “common” by

at least 70% of the reviewers (5 reviewers out of 7).
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6.1.3.2 Common Themes From Text Responses About ModelPatient In de-

scribing the best/strongest features of the “Managing Sepsis” case presented in Mod-

elPatient, 67% of subjects commented that they liked that the results are reflective of

learner decisions and that “feedback to learners [is] provided in terms of immediate

changes in lab and vital values in response to learner decisions similar to the way

a real patient would respond to treatments.” 33% of subjects felt that the EMR-like

case presentation “teaches students how to read patient charts and select appropriate

treatment.”

In response to the question “What features of this case did you struggle with the

most?,” 30% of subjects commented that the case is not suitable for novice learners

because it does not provide “enough formative feedback for incorrect decisions”, does

not “enforce [...] temporal treatment order,” and does not provide “just-in-time learn-

ing opportunities.” 27% of subjects reported that they did not like the open-ended

nature of the case because “there are no clear stopping criteria.” 42% found it dif-

ficult to interpret outcome probabilities (hospitalization, discharge, death) presented

in the “Outcomes” tab of the VP player, stating that “[it] either needs a better expla-

nation, or a different way to show learner the results / outcomes.” 36% of subjects

expressed frustration with “not being able to order additional labs and procedures.”

In response to the question “Describe the best/strongest features of this VP sys-

tem?,” 48% of subjects commented on ModelPatient’s realism in portraying VP treat-

ment scenarios — “cases are built on real patient data and respond to treatments

like real patients would.” 42% liked that virtual patient cases are presented as a pa-

tient chart and that the learner-facing user interface looks like an electronic medical

records (EMR) system.

In describing ModelPatient’s features that could use improvement, 27% of respon-

dents said that while the current user interface resembles an EMR, it needs to look

even more like Epic or Powerchart. These suggestions included statements that “labs

and vitals results should show newest results first” and “system should show changes
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in lab values over time either as a side-by-side display or a trend graph” and “drug

ordering screen should not be a single dropdown with a list of medications.” 51%

of subjects felt that ModelPatient needs a better formative feedback mechanism —

“changing vitals and lab values and popup messages are not enough for a novice

learner.” Last, but not least, 27% mentioned that ModelPatient needs to have an abil-

ity to allow learners to recover from incorrect decisions — “learners should be able to

make a wrong decision, observe the effect, receive formative feedback, and ‘cancel‘

an incorrect order.”

6.1.3.3 Common Themes From Text Responses About vpSim While describ-

ing the best/strongest features of the vpSim “Managing Sepsis” case, 42% of subjects

found the case to be well-suited for novices “because of the guided nature of the case.”

70% of subjects commented on the “excellent feedback for both correct and incorrect

decisions,” and 36% liked the ability to “go back and review previous choices.” 27%

of participants indicated that just-in-time learning opportunities and build-in assess-

ments in the form of mini-quizzes were the vpSim “Managing Sepsis” case’s strongest

features. As one of the subject’s commented, “This case was a nice guided experience

with feedback and just in time learning opportunities, which is what you want to see

in a case for novice clinical practitioners.”

In response to “What features of this case did you struggle with the most?,” 64%

indicated that the case needs to have more decisions points and branches — “some of

the decision options and multiple choice questions have too few choices and make the

correct decision too obvious.”

Only one common theme emerged from the responses to “Describe the best/strongest

features of this VP system?,” with 73% of subjects listing “ease of use” as vpSim’s

strongest feature — “Very simple to use, [...], no ambiguity about what needs to be

done to make choices / decisions.”

Finally, 30% of subjects noted that when it comes to vpSim’s features that could

use improvement, the system is not interactive / engagning enough and needs “more
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dialogue / Q&A with the patient” and the ability to “ask open-ended questions [to] col-

lect [patient] history.” 27% commented that vpSim needs to be able to support more

choices — “the system needs to be able to generate more choices to make cases more

challenging, to drive actual critical decision-making rather than answering multiple

choice questions.”

6.2 RESEARCH QUESTION 2 (RQ2)

To what extent does the proposed system facilitate modifying an existing VP

by allowing case authors to change the model’s states in such a way that the

VP case meets alternate learning objectives?

As mentioned several times in the “Introduction” and “Simulation and Tutoring

Systems in Medical Education” chapters of this dissertation (Chapters 1 and 2), some

of the barriers to authoring VP cases with current VP authoring systems include the

difficulty of managing case complexity and the burden that authoring/editing VP cases

puts on already time-constrained content experts [14, 15, 16]. This study’s primary

aim is to assess the degree to which the the use of annotated BN models in VP cases

facilitates modifying an existing VP case by allowing case authors to manipulate the

underlying model in such a way that the VP case meets alternate learning objectives.

6.2.1 Subject Selection Criteria and Demographic Information

Participating subjects were selected based on meeting BOTH of the following inclu-

sion criteria in order to be classified as VP authoring experts:

• The subject authored at least 2 VP cases that have been used in a curriculum of a

medical, nursing, dental, or pharmacy school, or a simulation center

• The subject is an author or a co-author of at least one publication that is related to

simulation authoring, evaluation, or use of simulation in health science curricula
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A total of 27 subjects were contacted via email (Appendix E) about participation in

this study. All subjects were identified based on either prior research collaborations

with the author of this dissertation, a Google Scholar publication search, or a direct

introduction through their work with virtual patient case design for DecisionSim,6

a company that provides a simulation-based technology platform for developing and

deploying virtual patient cases.

Five subjects participated in preliminary interviews that informed some of the de-

sign features of ModelPatient’s authoring system; 14 subjects agreed to participate in

the study related to RQ2.

Out of the 14 subjects who agreed to participate in the RQ2 study, one subject

dropped out due to scheduling issues. Two subjects realized in the middle of their

respective interviews that they do not meet all of the inclusion criteria — their data

were excluded from the analysis. One subject was removed from the cohort due to

multiple technical issues that occurred while trying to conduct the experiment using

Microsoft Skype for Business for videoconferencing and screen sharing.

It is important to note that the intention of the RQ2 study is to extrapolate com-

mon themes related to VP case authoring rather than generalizing the outcomes to a

population. In other words, this is a preliminary qualitative study designed to elicit

feedback from VP case authoring experts. Other published studies that relied on qual-

itative analysis of experts’ responses suggest that the number of expert subjects used

in the RQ2 study (n = 10) is sufficient for preliminary qualitative analysis [142, 143].

The 10 participating subjects represented a wide variety of clinical specialties (Ta-

ble 14), years of clinical experience (mean of 16.7 years of experience with a standard

deviation of 10.92 and median of 16.5), years of virtual patient case design experience

(mean of 8.1 with a standard deviation of 3.31 and median of 6.5), and the number of

designed and deployed virtual patient cases (mean of 15.5 with a standard deviation

of 8.1 and median of 17.5). The majority of subjects (7 out of 10) had prior experi-

ence designing VP cases with vpSim. The remaining three had experience creating

6Kynectiv/DecisionSIM. https://www.kynectiv.com/
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VP cases using a combination of Twine,7 Unity,8 DecisionSim, or Laerdal SimMan-

ager/SimDesigner9 case authoring tools.

Two of the subjects reported that they did not have enough knowledge of sepsis

management and treatment guidelines and did not answer the questions that were

specifically related to sepsis learning objectives (Appendix C, Table 38).

Table 14: Subjects’ Clinical Specialties

Subject’s Specialty Count

Pharmacy 3

Instructional Design and Emergency Medicine 1

Anesthesiology 1

Thoracic Surgery and Patient Safety 1

Palliative Care 1

Transplant and Nephrology 1

Clinical Simulation 1

Oral and Maxillofacial Pathology 1

6.2.2 RQ2 Study Design

Each subject was presented with a 15-minute demonstration of ModelPatient, followed

by a 5-minute overview of the sepsis model (Chapter 5, Section 5.3.2). The demon-

stration included all aspects of the VP case authoring system and the VP player (Chap-

ter 4), as well as an opportunity to experiment with the model’s states and observe

the changes in probability distributions.

7Twine, an open-source tool for telling interactive, nonlinear stories. http://twinery.org/
8Unity3D: https://unity3d.com/
9Laerdal SimManager / SimDesigner: https://www.laerdal.com/us/products/

simulation-training/manage-assess-debrief/simcenter/simmanager/
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After the completion of the demonstration and the overview, each subject was

presented with a set of primary learning objectives (Table 15) and was asked to review

and interact with the “Managing Sepsis” VP case. The primary learning objectives

presented to this study’s subjects were defined by the case’s original author, Dr. Neal

Benedict, PharmD.

Table 15: “Managing Sepsis” VP Case Primary Learning Objectives

Learning Objective

1 Understand steps and guidelines for emergent sepsis treatment

2 Select appropriate empirical drug therapy

After having an opportunity to “prescribe” several drug treatments and observe

the feedback in the form of changes in laboratory test and vitals values, the subjects

were presented with alternate learning objectives (Table 16) and guided through mod-

ifying the “Managing Sepsis” VP case to fit the new objectives.

Table 16: “Managing Sepsis” VP Case Alternate Learning Objectives

Alternate Learning Objective

1 Understand steps and guidelines for emergent sepsis treatment in

a patient with acute kidney injury / renal failure

2 Select appropriate empirical drug therapy for a patient with acute

kidney injury / renal failure

These alternate learning objectives were selected for the following clinical and

educational reasons (reasoning provided by Dr. Neal Benedict, PharmD, Associate

Professor, Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy,
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and Dr. Lorin Grieve, PharmD, Instructor, Pharmacy and Therapeutics, University of

Pittsburgh School of Pharmacy):

• Fluid administration: In patients with severe renal failure, not yet on dialysis,

learners would have to reduce the volume of fluid that is administered. Since

renal failure patients are not able to clear large volumes of fluid (due to the kidney

injury), learners will need to be cautious with the amount of fluid administered so

not to put them in a fluid overload state.

• Antibiotic dosing: Nearly all the antibiotics administered in sepsis and septic

shock would require dose adjustments based on renal function.

• Response to therapy: Learners should closely monitor kidney function and specif-

ically urine output during sepsis and septic shock as markers of therapy respon-

siveness. Renal failure clouds the learners ability to use this indicator to gauge

fluid and/or vasopressor response.

The subjects were asked to ONLY modify states for the nodes and rules relevant to

the new learning objectives. For example, in the “Managing Sepsis” VP case, subjects

were be asked to only change states of the nodes and rules associated with the renal

failure comorbidity (e.g., presence/absence of renal failure, related labs and drugs).

The three subjects that were interviewed using Microsoft Skype for Business (with

screen sharing) could not directly interact with the case, so instead they guided the

interviewer through their desired actions (i.e., “Please set the state of the ’Renal Fail-

ure’ node to ’yes’.”, or “Create a new rule that is triggered by selecting [X].”).

Once the subjects modified and reviewed their respective cases, they were asked

to complete the ModelPatient case authoring evaluation questionnaire (Appendix C,

Section C.3). Subjects provided responses to demographic, clinical experience, prior

VP case authoring experience, and ModelPatient authoring system rating questions

using a paper questionnaire form. Subjects also provided verbal responses to the

open-ended interview questions regarding the authoring system’s usability, strengths,

weaknesses, and ability to modify the provided VP case to meet alternate learning
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objectives.

The mean duration of the RQ2 study was 1 hour 17 minutes (median of 1 hour 18

minutes, standard deviation of 23 minutes) H).

Screen captures of subjects’ interactions with ModelPatient were recorded using

Open Broadcaster Software (OBS) Studio. Audio was also captured as part of this

experiment.

Audio recording failed in two of the interviews due to a technical issue with the

laptop used for the experiment. One subject asked for the audio not to be recorded.

Audio recordings from the experiments were transcribed using Temi - an auto-

mated online audio transcription service.10

Each experiment took approximately 1 hour and 20 minutes to complete.

6.2.3 Analysis and Findings

Responses to the two Likert scale questions from the ModelPatient VP case authoring

questionnaire (Appendix C, Section C.3) were evaluated for internal consistency and

reliability using Cronbach’s alpha.

Responses to interview questions were separated into atomic statements and ana-

lyzed by seven independent raters using the affinity diagram method [134] (Described

in Section 6.1.3, Subsection 6.1.3.1).

Overall Cronbach’s alpha for questions regarding the ModelPatient’s authoring

system usability (Table 37) is 0.753, and 0.954 for questions regarding the alternate

learning objectives (Table 38). Even with the small sample size of responses and a

small number of questions, both values indicate a high level of internal consistency

for their respective questions [133].

Table 17: Summary Statistics — Authoring System Difficulty Rating

10Temi - an automated online audio transcription service. https://www.temi.com/
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Question Mean St.Dev Median n

How difficult or easy was it to update the

model’s states?

4.30 1.25 5 10

How difficult or easy was it to observe the

effects of changes that you made to the

model’s states?

4.50 0.97 5 10

Overall, how difficult or easy was it to un-

derstand the use of models in a VP case?

4.40 0.70 4 10

How difficult or easy was it to modify the

rules?

4.00 0.94 4 10

How difficult or easy was it to observe the

effect(s) of changes to the rules

3.80 1.32 4 10

Overall, how difficult or easy was it to use

the VP case authoring system?

3.60 0.52 4 10

Question Mean St.Dev Median n

How well did the case reflect the alter-

nate learning objectives?

4.22 0.83 4 8

How accurately did the case depict the

clinical scenario associated with the cho-

sen topic?

4.37 1.06 5 8

How well did the case introduce / rein-

force relevant clinical skills?

4.22 0.97 4 8

How realistic was the case? 4.25 1.16 5 8

Table 18: Summary Statistics - How Well Does the Modified Case Reflect Alternate
Learning Objectives
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In response to “Compared to other VP authoring systems that you have used in

the past, how easy or difficult was it for you to modify this VP case?” question, most

subjects found modifying a VP case in ModelPatient as having “about the same level

of difficulty” (4 subjects out of 10) or being “somewhat easier” (4 subjects out of 10)

than case authoring tool(s) that they previously used (Question 4 on the ModelPatient

case authoring evaluation questionnaire, Appendix C, Section C.3).

Most subjects’ response ratings to the questions related to ModelPatient’s author-

ing system usability (Appendix C, Section C.3, Table 37) indicated that when modifying

an existing ModelPatient case it was easy to update the model’s states (mean = 4.3,

median = 5), easy to observe the effects of changes made to the model’s states on the

VP case (mean = 4.5, median = 5), somewhat easy to understand the use of models in

VP cases (mean = 4.4, median = 4), and somewhat easy to modify the rules (mean = 4,

median = 4). Subjects also indicated that it was neither easy nor difficult to observe

the effects of changes to the rules (mean = 3.8, median = 4) and neither easy nor

difficult to use the ModelPatient VP authoring system (mean = 3.6, median = 4).

Subjects with clinical expertise reported that the modified case reflected the alter-

nate learning objectives reasonably well (mean rating = 4.22, median = 4), accurately

depicted the clinical scenario associated with sepsis (mean rating = 4.37, median = 5),

reinforced relevant clinical skills (mean rating = 4.22, median = 4), and was realistic

(mean rating = 4.25, median = 4).

After reviewing the sepsis BN model and modifying the case to reflect alternate

learning objectives described in Section 6.2.2, authors commented that given the ex-

isting model, the ModelPatient VP case could be modified to address learning objec-

tives such as worsening sepsis (8/10 subjects), treatment of sepsis with comorbidities

present in the model, such as congestive heart failure (CHF), hypertension, or acute

renal disease (7/10 subjects), and time-to-treatment (5/10 subjects).

Most subjects commented that simply modifying the model’s states does not make

the resulting VP case address alternate learning objectives. In order to address the
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alternate learning objectives described in Section 6.2.2, case authors also suggested

that they would at the very least need to modify patient demographics and prior medi-

cal history (10/10 subjects) and rules (8/10 subjects). As one subject commented, “[...]

the demographics should be completely different. If you’re trying to create an older

patient, pretty much any of these extra conditions are not going to be seen in a 23

year old college student. You’re not going to have congestive heart failure and hy-

pertension, or renal, liver failure, and respiratory failure.” Another subject indicated

that “for the learning objective of renal failure, [we] would need to add dialysis needs,

complications, anemia, phosphate levels, and selection of dialysis”.

In response to “Describe the best/strongest features of this VP system’s case au-

thoring” question, seven subjects commented that they liked the system’s flexibility

— “almost any part of the VP case, including the underlying model, can be augmented

with additional information, metrics, and rules to make the case more robust”. Five

subjects indicated that they liked the “ability to relatively quickly generate realistic

VP cases from a library of [BN] models.” Five subjects suggested that very robust

rule authoring system is also one of the strongest features of ModelPatient’s author-

ing system. Four subjects commented that the real strength of the system is “that the

case is generated from real data and has additional labs and comorbidities that are

representative of the patient population”.

When analyzing interview responses to the “Describe features of this VP system’s

case authoring that you struggled with the most?,” two out of seven raters reported

that they could not find common themes. Only two common themes emerged from the

analysis by and agreement among the remaining five raters.

Five subjects commented that rules were cumbersome to generate — “too many

clicks, easy to get lost when the case has multiple rules.” One case authoring expert

suggested that “[...] you should be able to generate some rules from the data and

treat the rest of the rules as time-based event triggers,” a comment that is addressed

in more details in Chapter 7, Section 7.4.
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Three subjects stated that there is a chance that models (and the corresponding

cases) would get outdated as treatment guidelines and the subsequent clinical out-

comes change. One subject provided the following example. “The data changes when

the treatment guidelines change. For example, I work with hepatitis, and the treat-

ments changed drastically in the last 5 years. With new treatments the mortality rates

are much lower. So if I had a model based on 5-year-old data, it wouldn’t reflect cur-

rent treatment practices and outcomes.” In February of 2018 the guidelines for sepsis

treatment have undergone a number of changes [144, 145, 146], meaning that the BN

model created for the “Managing Sepsis” case used in this experiment will no longer

be reflective of the patients who are treated using newer guidelines.

Two interview responses that DID NOT emerge as common themes still resonated

with findings from RQ1 (Chapter 6, Section 6.1.3). One response touched on the

shortcomings and advantages of vpSim and ModelPatient and suggested that “in order

to give authors more flexibility and to offer learners a richer learning experience, [I]

should consider combining features of a [narrative-branching] system with features of

a [BN] model-driven system.”

Another response addressed a shortcoming of the authoring system that emerged

as a common theme of poor formative feedback mechanism in ModelPatient in RQ1

responses (Chapter 6, Section 6.1.3). One of the subjects suggested allowing authors

to trigger feedback based on “a certain number of mistakes — learner has to review

summary or complete a tutorial before returning to the case. Even when learner is

correct, [authors should be able to] reinforce why [the learner was] correct.” Another

subject mentioned that in order to provide better formative feedback, the authoring

system must provide for “easier ways to allow learners to be wrong.”
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7.0 DISCUSSION AND FUTURE WORK

In this work I investigated the feasibility of designing a virtual patient case authoring

and presentation software system that uses Bayesian Network (BN) models learned

from EMR data to generate a framework for VP cases. This research experimentally

compared a “Managing Sepsis” VP case based on a BN model to one created using a

more traditional narrative-branched VP system (RQ1). Furthermore, this work inves-

tigated the extent to which ModelPatient facilitated modifying an existing VP case by

allowing case authors to manipulate the underlying model in such a way that the VP

case would meet alternate learning objectives (RQ2).

7.1 DISCUSSION

7.1.1 Reflections on Research Question 1

Research Question 1: To what extent is it possible to create a virtual patient case

using a VP system based on a Bayesian network model that is comparable to a case

created using a branched-narrative VP system?

RQ1 study compared subjects’ ratings of two VP cases - a branched-narrative VP

case presented in vpSim and a BN-model-based VP case presented in ModelPatient.

The two cases were compared on the following criteria:

1. Q1: How well did the learning experience reflect the stated learning objectives?

2. Q2: How accurately did the case depict the chosen topic?
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3. Q3: How well did the case represent clinical variations associated with the chosen

topic?

4. Q4: How well did the case introduce / reinforce relevant clinical skills?

5. Q5: How well did the case introduce / reinforce behaviors and attitudes relevant

to sepsis treatment?

6. Q6: How well did the case provide formative feedback for choices / outcomes?

7. Q7: How realistic was the case?

8. Q8: Based on the presentation method of the virtual patient case, how engaged

were you?

9. Q9: Based on the presentation method of the virtual patient case, how effective do

you think this case is in teaching the subject matter to novice clinical practitioners?

Analysis of RQ1 responses discussed in Chapter 6, Section 6.1.3 indicates that a

case created using a branched-narrative VP system outperformed a BN model-based

system on reflecting the stated learning objectives (Q1), introducing / reinforcing clin-

ical skills (Q4), introducing / reinforcing attitudes and behaviors relevant to sepsis

treatment (Q5), providing formative feedback for choices / outcomes (Q6), and being

more effective in teaching the subject matter to novice clinical practitioners (Q9).

A BN model-based case was rated significantly higher than the branched-narrative

version on representing clinical variations associated with sepsis (Q3), on realism (Q7)

and on engagement (Q8).

The subjects’ indication that the vpSim version of the “Sepsis” case was better

at “reflecting the stated learning objectives (Q1)” is likely due to the fact that

the vpSim version of the case provided a guided learning experience through feed-

back, ability to review previous choices and with just-in-time learning modules, while

the ModelPatient version of the case allowed learners to make choices without any

direction or guidance. Even though comparing the two instructional modalities (open-

ended vs. guided) wasn’t an aim of this dissertation, this finding raises new research

questions regarding the effect of VP case modality on learning outcomes. In their
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2006 work Kirschner, et al. make an argument for the superiority of guided instruc-

tion and provide empirical evidence that unguided or minimally guided instructional

approaches are “less effective and less efficient than instructional approaches that

place a strong emphasis on guidance of the student learning process [147].” The au-

thors further argue that unguided or minimally guided instructional approaches only

work when “learners have sufficiently high prior knowledge to provide ‘internal’ guid-

ance [147],” a sentiment reflected in many of this study’s subjects’ comments.

Subjects’ preference for vpSim’s ability to reflect learning objectives could be fur-

ther explained by some of the differences in user interfaces and VP case design choices

between the two systems and the two versions of the “Managing Sepsis” case. For ex-

ample, one subject commented regarding the ModelPatient case that “if ordering labs

is not a part of the learning objectives, the system shouldn’t have an option to ‘Add

Lab’,” indicating that some of ModelPatient’s UI elements distracted learners from

the stated learning objectives. Another subject reported that ”[ModelPatient] is much

more suitable for advanced learners [...], but not for novice clinical practitioners. [The

case presented in vpSim] was a nice guided experience with feedback and just in time

learning opportunities, which is what you want to see in a case for novice clinical

practitioners.” Several subjects felt that the open-ended nature of the ModelPatient’s

case was actually detrimental to learners, stating that “having an open-ended case

like that would not work well for medical students.” Last, but not least, some sub-

jects expressed that ”[...] having the ability to test learners’ knowledge throughout

the simulation is very important to improve learning outcomes.”

vpSim’s ability to embed quizzes and just-in-time learning modules can provide

an explanation as to why the subjects rated vpSim’s version of “Managing Sepsis”

as being better at introducing / reinforcing clinical skills, attitudes, and be-

haviors relevant to sepsis treatment (Q4, Q5 than its ModelPatient counterpart.

This finding is supported by a number of studies showing that debriefing and just-

in-time learning opportunities in clinical simulations lead to improved learning out-
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comes [148, 149, 150, 24]. Several subjects expressed their preference for the as-

sessment and just-in-time learning aspects of the vpSim case over the ModelPatient

version, reporting that “asking students questions to make sure that they understand

the subject matter and aren’t just guessing is really important in medical education.”

“Providing formative feedback for choices / outcomes (Q6)” was another cri-

terion in which the vpSim’s VP case was rated significantly higher. The subjects’ pref-

erence of vpSim’s feedback mechanism and of how it was implemented in the vpSim’s

version of “Managing Sepsis” emerged as one of the common themes (as identified by

independent raters). While this theme was already discussed in Chapter 6, it is worth

mentioning that many of the subjects reported that ModelPatient needs “some type

of [...] feedback that explains why the probabilities and the values change the way

they do.” Furthermore, while a number of subjects liked that ModelPatient presented

feedback in the form of changing vital signs and laboratory test values, they felt that

“getting clinical notes and vitals and labs updates in the EHR view was a really good

form of real-time feedback, [but] this type of feedback may not be appropriate for a

novice learner.” Subjects also indicated that in vpSim’s “Managing Sepsis” an incor-

rect choice would lead the learner down a “wrong” path with additional choices that

would allow them to remediate poor decisions. In ModelPatient, when learners made

decisions based on dis tractors (choices that did not exist in the underlying model but

were added by the case author), there was no feedback at all (no vital signs or lab-

oratory test values changed). “When I added hydrocortisone, there was no feedback

or new [changes] which [would indicate] that [this choice] would not have done any

additional benefit or harm.”

vpSim’s case’s higher rating in “being more effective in teaching the subject

matter to novice clinical practitioners (Q9)” can be explained by a combination

of multiple factors, including formative feedback, just-int-time learning opportunities,

and built-in assessments that are present in vpSim’s version of “Managing Sepsis”,

but not in the corresponding ModelPatient’s version. Some subjects felt that “see-
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ing changes in labs and vitals is great for advanced users, but novices would have

difficulty interpreting the data and selecting appropriate treatment.” Subjects also

reported that ModelPatient’s inability to allow learners to change incorrect decisions

(e.g., cancel an inappropriate medication order) was detrimental to novices — “abil-

ity to remediate poor choices is especially important for novices — [ability to change

orders] would give them an opportunity to change ‘bad’ decisions.” ModelPatient’s

overwhelming number of decision choices and outcomes may have been another con-

tributing factor as to why subjects felt that vpSim was more appropriate to novice

learners. As one subject commented, “when we treat sepsis, we generally only care

about 2 - 3 labs, not 15.” The “too many choices” argument is well-supported by a num-

ber of marketing studies that suggest that an excessive number of choices may lead to

“a decrease in the motivation to choose, to commit to a choice, or to make any choice

at all [151, 152].” Furthermore, in vpSim the temporal order of decisions is enforced

through the narrative and through the sequence of presented decision points. The

open-ended nature of ModelPatient makes it difficult to enforce the temporal order of

decisions and to provide feedback for treatments that were ordered / administered in

an incorrect order. As one subject reported, “I shouldn’t be able to select an antibiotic

before hydration in this case — all treatment options are presented at the same time

which might be confusing for the learner.” Another subject suggested that “enforc-

ing some kind of temporal treatment order either through feedback or through not

showing certain options would be very helpful to novices.”

While there were no explicit responses explaining why the subjects thought that

ModelPatient VP case “represented clinical variations associated with sepsis

(Q3)” better than its vpSim counterpart, this finding could be attributed to the fact

that ModelPatient DOES NOT always present learners with the most likely outcome

based on the probability distributions in the underlying BN model. ModelPatient case

authoring system allows authors to set an option where the learners’ choices result in

either “The most statistically likely outcome” or an “Outcome randomly selected from
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the model” (Chapter 4, Figure 28). Setting the “Outcome randomly selected from the

model” option results in outcomes to be randomly selected from the connected child

nodes’ states. In other words, just like not every patient responds to a medication in

the same way, in ModelPatient the VP can respond differently to the same medication

during different attempts to complete the case.

Another criterion with a significant difference in ratings was the realism of each

version of the “Managing Sepsis” VP case (“How realistic was the case? (Q7)”).

On vpSim’s side, subjects reported that their perception of the case’s realism was

negatively affected by the sparsity of decision options. “I would have liked to see

more choices to make the case more challenging, to drive actual critical decision-

making rather than [answering] multiple choice questions.” Another subject echoed

this sentiment by stating that “more decision possibilities would have been nice [and]

would make the case a bit more complex and realistic.”

Lastly, subjects indicated that based on the presentation method of the vir-

tual patient case (Q8), they were more engaged with the VP presented in Model-

Patient. Several subjects felt that the vpSim version of the case was not interactive

or immersive enough, stating that “I wish the case was a bit more interactive - more

dialogue / Q&A with the patient” and that “I did not feel like I engaged with the [vir-

tual] patient..” Furthermore, subjects’ engagement with the ModelPatient version of

the “Managing Sepsis” case could be attributed to an unintentional bias favoring the

model-driven VP. This bias is further discussed in Section 7.3 (Limitations). Finally,

ModelPatient’s relative novelty might have played a role in the subjects’ preferences

— there are numerous studies that describe the effect of novelty on learning and en-

gagement [153, 154, 155]

On ModelPatient’s side, subjects reported that “the case did a good job reflecting

the outcomes of certain treatment choices — that realism would be very useful to teach

about conditions rarely seen during medical students rotations.” ModelPatient’s EMR-

like UI had also contributed to a higher perception of realism. Subjects commented
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that ModelPatient has a “much higher degree of realism than vpSim — I liked working

in a system that kind of looked like an EMR” and that “it was more realistic because I

was reviewing a patient’s chart like in a real clinical scenario.”

These findings suggest that there may be a need for a system that combines ac-

tions, responses, and clinical variations in disease states and treatment outcomes

made possible by the use of computational models with the narrative, formative feed-

back, and just-in-time learning typically present in branched-narrative VPs. In other

words, a hybrid system that combines the narrative and feedback of vpSim with the

realism and clinical variations made possible by ModelPatient.

7.1.2 Reflections on Research Question 2

Research Question 2: To what extent does the proposed system facilitate modifying

an existing VP by allowing case authors to change the model’s states in such a way

that the VP case meets alternate learning objectives?

One of the original aims of developing ModelPatient was to reduce the case au-

thoring burden by automating the virtual patients’ “behaviors” through the use of BN

models. Another aim was provide case authors with an easier way to modify exist-

ing BN-model-based cases to address new learning objectives. The study conducted

with VP case authoring experts (Chapter 6, Section 6.2.2) showed that developing VP

cases based on BN models is still a time-consuming proposition. Almost unanimously

the case authoring experts indicated that it is not possible to modify an existing BN-

model-based VP case by simply updating the model’s states and the relevant rules. In

order for the modified case to meet alternate learning objectives, case authors would

also need to update case narrative, VP’s prior medical history and comorbidities.

Creating a new case from scratch would likely reveal problems and obstacles not

considered in this study. For the study described in Chapter 6, I provided case authors

not only with a working and validated model of sepsis, but also with the initial case

content. In a real-world scenario, authors would have to work with modeling experts
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to develop computational models to represent relevant disease-states and courses of

treatment, which in and of itself is a time-consuming and complex activity that re-

quires specialized expertise.

Moreover, as one of the common themes discovered in the RQ2 study (Section 6.2.3)

indicated, a model could represent a possibly outdated state of clinical knowledge (the

state of how that clinical knowledge was represented in the data at the time the model

was created). As clinical guidelines change, the models would need to be continuously

updated and the associated VP cases would have to be revised.

Another important consideration of using BN models to drive virtual patient cases

is the models’ potential computational complexity. As inference in BN models is NP-

hard [156, 157], it may cause the modelers to simplify the models and remove features

that exist (and are potentially important) in real-world scenarios.

Last, but not least, it may be challenging for clinicians and health sciences stu-

dents to understand probabilistic inference. One of the common themes that emerged

from RQ1 surveys (Chapter 6, Section 6.1.3) is that the subjects had a difficult time

understanding that the the “Managing Sepsis” did not represent a causal relationship

and that the learner’s decisions/actions reflected the probability distribution that was

already in the data. In other words, if the learner prescribed a medication and the

system responded with an outcome that given this particular decision, the probability

of the virtual patient’s death was 55%, it meant that in the data a high percentage

of the patients who were diagnosed with sepsis and received this medication did not

survive. As one case authoring expert pointed out, “I lack expertise in creating mod-

els and I think this will be an issue for many other [case] authors. [It would also be

critical to] understand how the model maps to clinical practice.”
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7.2 CASE AUTHORING LESSONS LEARNED: FEASIBILITY CRITERIA /

GUIDELINES FOR CREATING VP CASES BASED ON BAYESIAN

NETWORK MODELS

The challenges I experienced in creating a BN model representative of the entire

DKA treatment scenario (Chapter 5, Section 5.4.2) indicate that at least in its current

iteration a VP system based on BN models is more suitable to present VP cases that

do not have a temporal component. In other words, BN model-based cases appear

particularly suited for VP scenarios that teach about treatment of acute or emergent

conditions (conditions that do not require longitudinal treatment) and are more likely

to be comparable with branching-narrative VPs.

Table 19 shows a list compiled from the top 25 medical problems commonly en-

countered by the University of Pittsburgh 3rd and 4th-year medical students during clin-

ical rotations1, from the list of common medical problems encountered by the Henry

Ford Health System residents [1], and from the list of 25 most commonly recorded

ICD-10 codes [158].

I worked with three University of Pittsburgh clinical faculty members to review

this list and determine which of these conditions can be presented to learners with-

out a temporal treatment component. It is important to note that even though the

conditions listed in the left column of Table 19 are chronic and require longitudi-

nal treatment, some of these conditions can have acute presentations. For example,

hypertension is a chronic condition that requires long-term treatment; modeling hy-

pertension treatment using a BN model would likely encounter the same difficulties

as we experienced attempting to model DKA treatment. However, if the learning ob-

jectives included teaching about hypertensive crisis (an acute condition), or about risk

assessment for hypertension [159], it would be feasible to design a VP case using the

1The University of Pittsburgh data was extracted from the Learning Log, an application used by the
University of Pittsburgh medical students to log their de-identified patient encounters. This data was
extracted by the University of Pittsburgh School of Medicine Laboratory for Educational Technologies
(https://let.pitt.edu).
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methods presented in this work. Colon cancer would be another use case where the

entire progression and management of cancer would be challenging to model. How-

ever, if one wished to develop a VP case where the learning objectives are to diagnose

cancer or estimate patient survival, it would be feasible to develop BN models repre-

sentative of such case scenarios [160, 161].

Table 19: Medical problems commonly encountered by the University of Pittsburgh
3rd and 4th-year medical students during clinical rotations + common medical prob-
lems encountered by the Henry Ford Health System residents [1].

A: CANNOT be presented to

learners without a temporal

component

B: CAN be presented to

learners without a temporal

component

Hypertension Hypertensive crisis

Depression Anxiety (Panic Attacks)

Arthritis Asthma

Obesity Angina

Gastroesophageal reflux Stroke

Diabetes mellitus COPD

Hyperlipidemia Pneumonia

Hernia Upper respiratory infection

Bipolar disorder UTI / dysuria / hematuria

ADHD Otitis media / otitis externa

Sleep apnea Migrane

Dementia Diverticulitis

Cancer - colon Cholangitis

Cancer - lung Pulmonary embolism

Seizure disorder Acute renal failure

Pancreatitis Endocarditis
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Pulmonary hypertension Meningitis

Chronic renal failure Allergic rhinitis

HIV Acute bronchitis

Tuberculosis Acute laryngopharyngitis

Hyperlipidemia Acute maxillary sinusitis

Back pain

Osteoarthritis

Hypothyroidism

Fibromyalgia / myositis

Coronary atherosclerosis

More specifically, case authors who wish to develop VP cases based on the methods

presented in this work should consider the following design constraints on data, BN

models, and case contents:

• Acute clinical condition. As discussed above, the methods presented in this

dissertation work better when used for authoring and presenting VP cases for

acute clinical conditions. In other words, when selecting a clinical topic for a new

virtual patient case based on a BN model, authors should select clinical conditions

that do not require time-dependent or longitudinal treatments.

• Limited treatment options. Datasets for clinical conditions with limited treat-

ment options will have fewer variables and will likely result in simpler and better

performing models.

• The data is representative of the clinical condition AND of the learning

objectives. While ModelPatient makes it possible to augment a BN model-based

VP case with distractors (Chapter 4, Section 4.6.4) and rules (Chapter 4, Sec-

tion 4.6.6), a number of subjects from the RQ2 study found rule creation to be

cumbersome and time-consuming. For a simpler case authoring experience, case
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authors need to ensure that the dataset used for training a BN model contains

all variables required for the desired case scenario and for the stated learning

objectives.

• The data is reasonably recent. One of the common themes that emerged from

the RQ2 study was that there is a chance that models (and the corresponding

cases) could get outdated as treatment guidelines and the subsequent clinical out-

comes change. When selecting a patient cohort dataset for a model-driven VP,

authors should ensure that patient inclusion criteria take into account the dates of

recent changes / updates to treatment guidelines and protocols. In other words,

authors should avoid including patients that have been treated according to out-

dated treatment guidelines and protocols.

• Treatment homogeneity within patient cohort. It would be well advised to

limit VP authoring to clinical conditions where all patients receive approximately

the same treatment(s) in the same sequence. As discussed in Chapter 5, Sec-

tion 5.4, one of the challenges with developing a BN model representative of DKA

was that for some of the patients represented in the data there were as few as 3

time slices of treatments and responses, and one patient had as many as 57 time

slices. To complicate things further, the treatments in each time slice were dif-

ferent. Presence of these very different treatments in each time slice makes it

challenging to model disease states using static BN models.
• Limited number of treatment options that directly influence the outcome.

If authors choose to use causal BN models trained on EMR datasets (Chapter 3,
Section 3.4), they would need to select a clinical condition and a corresponding
model where the number of variables that directly influence the treatment out-
come is reasonably small. Figure 54 shows a partial BN model of sepsis trained
with the PC algorithm.
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Figure 54: Partial BN model of sepsis trained with PC algorithm (Chapter 3, Sec-
tion 3.4).

Note that the outcome node has nine parents — BUN, age, vasopressors, lactate,
systolic blood pressure, hydration, blood gas pHa, anion gap, and oxygen satura-
tion. The PC algorithm determined that the outcome (patient is discharged from
the hospital, patient remains in hospital care, patient dies) is dependent on these
variables based on results of a chi-square test. Such a high number of parents
results in large conditional probability tables. Moreover, when such models are
trained on datasets with a small number of recrods, the conditional probability
distributions can be estimated as uniform (Figure 55). Subsequently, such models
tend to perform poorly both in terms of computational performance (it take a long
time to recalculate probability distributions based on learner selections) and in
terms of predictive accuracy.
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Figure 55: Partial conditional probability table (CPT) of the “discharge location” node
from a BN model of sepsis trained with PC algorithm (Chapter 3, Section 3.4).

7.3 LIMITATIONS

In interpreting findings of this work, it is important to acknowledge its limitations.

Three out of seven independent raters noted that while reviewing text responses

to RQ1 surveys they noticed that some comments praised ModelPatient as being data-

driven and model-driven without providing an explanation as to why this was an ad-

vantage to the learning experience. It seems that by telling the subjects in advance

that ModelPatient uses computational models to control VP scenarios an unintentional

bias favoring the model-driven VP may have been introduced.

Another limitation was related to the topic of the VP case used in the RQ1 exper-

iment. I selected the “Managing Sepsis” VP case for this study because it had been

validated and used in teaching and in academic research [118, 119, 120]. When de-

signing the experiment I did not take into account the fact that sepsis presents in

only 6% of adult hospitalizations [162] and that not all clinicians regularly encounter

sepsis cases during hospital rotations. 5 out of 33 RQ1 subjects reported that they do

not often encounter sepsis patients in their clinical practice and are not as familiar
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with sepsis treatment guidelines as, for example, an ICU attending would be. While

working on either the vpSim or ModelPatient version of the “Managing Sepsis” VP

case, these subjects used mobile devices to look up sepsis treatment guidelines. Fu-

ture studies may limit subject inclusion criteria to physicians, clinical pharmacists,

and nurses who routinely encounter sepsis patients as part of their clinical practice.

Yet another limitation of the RQ1 study is that the VP case presented in vpSim and

ModelPatient was evaluated by clinicians and educators, not by the actual intended

learners (post-graduate trainees with working knowledge of human physiology and

clinical medicine - learners who have completed their medical, nursing, or pharmacy

degrees but have not completed clinical training). While I can make some inferences

about how comparable the educational qualities of the two versions of “Managing

Sepsis” are based on the expert subjects’ responses, the study would benefit from

an additional experiment with the intended target audience (e.g., 4th year pharmacy

students) and an evaluation of the degree of comparability between the two cases with

a pre- and a post-test.

Several subjects commented on the importance of being able to retract choices and

explore different decision pathways as part of the learning experience. vpSim has the

built-in ability to revisit previously-made choices, make different decision, and explore

the “what-if” scenarios associated with different decision paths. Implementing similar

functionality in ModelPatient by allowing learners to cancel treatment orders would

have made the two systems and the two more comparable.

Last, but not least, the RQ1 experiment was conducted in varying environments,

including physicians’ offices, hospital cafeterias, coffee shops, a library, and common

areas of academic buildings. Most of these locations were noisy and offered a lot of

distractions. Furthermore, several times the experiments was interrupted by phone

calls or pages. Three of the experiments were interrupted by patient emergencies and

had to be split between several sessions. Given the nature of the study participants’

work, I believe that this limitation was unavoidable.

124



One major limitation of the RQ2 study was its length and complexity. The average

time required to complete the RQ2 study was 1 hours and 17 minutes, a time require-

ment that placed a burden on already busy health sciences educators and clinicians.

By the end of the experiment (especially during the interview section), some of the

subjects rushed with their responses and made it clear that they have other matters

to attend to. One way in which I could have reduced the time requirement for the case

authoring experts was to provide them with a pre-recorded system video tutorial, as

well as give them access to an online version of the ModelPatient case prior to the

interview. This way at least some of the subjects could have reviewed the author-

ing system and the VP case’s contents before the experiment, thus reducing the time

investment by approximately 20-30 minutes.

Another limitation was the interview format. For the RQ2 experiment I used a

semi-structured interview to elicit responses about strengths and weaknesses of au-

thoring model-driven VP cases. While a more open-ended format of a semi-structured

interview allowed me to discover themes and ideas that I did not previously consider,

it also generated responses and conversations that were not relevant to the interview

questions. In the case of the question “Describe features of this VP system’s case

authoring that you struggled with the most?,” most subjects responded by expressing

their frustration with authoring text-based and screen-based simulations in general

and I found it difficult to direct them to the question at hand. As a result, two out

of seven raters who reviewed the text responses reported that they could not find

common themes in statements related to this question.

Inconsistencies in the experiment environment and frustrations with technical is-

sues may have affected some of the responses as well. Just like with the RQ1 ex-

periment, the RQ2 experiment was conducted in a wide variety of physical spaces

and environments. The experiment suffered from patient-related interruptions as well

as from problems associated with teleconferencing. Of the three experiments that

were conducted using Microsoft Skype for Business, two experienced several network-
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related interruptions, causing subjects to become frustrated and trying to wrap up the

experiment as quickly as possible.

Last, but not least, some of the RQ2 subjects were my research collaborators on

other projects and studies (Chapter 6, Section 6.1.1). A prior professional relationship

with research subjects may have biased some of their responses in favor of ModelPa-

tient.

7.4 FUTURE WORK

7.4.1 Alternate Modeling Approaches

One of the biggest criticisms that ModelPatient received in both studies described in

Chapter 6 was the inability to design VP cases that correctly represent and enforce

an event sequence for learners. For example, one of the case authoring experts sub-

jects commented on the “Managing Sepsis” case that “learners should not be able

to prescribe a vasopressor before prescribing hydration, or should at least receive

corrective feedback if they do.”

While designing the ModelPatient version of the “Managing DKA” VP case where

the disease state and the treatment are presented as 12 sequential time slices in

vpSim, we were unable to create a comparable case largely due to the difficulties in

modeling long time-sensitive event sequences using BN networks and due to ModelPa-

tient’s inability to enforce the sequences of case presentation and learners’ decisions

(Chapter 5, Section 5.4).

In this section, I will discuss several possible approaches that could be explored in

future iterations of ModelPatient to address this problem.

7.4.1.1 Representing Temporal VP Cases with Multiple Chained BN Models

One possible approach was inspired by Barclay, et. al. 2013 work titled “Refining a
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Bayesian Network using a Chain Event Graph” [163] and Thwaites, et. al. 2010 work

titled “Causal Analysis with Chain Event Graphs” [164].

In such approach, each time slice would be treated as a discrete BN model. For

example, let us consider a model with the initial parameters of “Age” and “Renal fail-

ure”, and observable outcomes (response variables) of “Anion Gap” and “Glucose”

(Figure 56).

If a VP case author wanted to add an event that required a learner to order “Saline

Bolus,“ a corresponding BN model for that event would look like Figure 57, modeling

the probabilities of states of “Anion Gap” and “Glucose” given “Saline Bolus.”

Figure 56: Initial parameters and re-
sponse variables — first “sub-model” in
a chain of BN network models.

Figure 57: Second “sub-model” in a
chain of BN network models represent-
ing the “Saline Bolus” event.

In real world, these two events would not be independent, as the initial values of

anion gap and glucose lab results in a patient would affect the subsequent values of

those same variables after a treatment (or treatments) had been administered. One

approach to address this issue would be to chain the two models together, where the

initial states of “Anion Gap 1” and “Glucose 1” would be set to the outcome probabili-

ties of the corresponding states of the previous model in the chain (Figure 58).
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Figure 58: Two “sub-model” chained together. Dashed arrow lines represent setting
the initial states of “Anion Gap 1” and “Glucose 1” to the outcome probabilities of the
corresponding states of the previous model in the chain.

With this approach, a six-timeslice chain of BN models representing part of the
DKA treatment scenario might look like Figure 59.
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Figure 59: Multiple time slices represented as discrete BN models.
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An additional advantage of this approach is that it would allow ModelPatient to

support VP cases where multiple clinical conditions need to be represented as part

of the case scenario. A example scenario described by one of the RQ2 subjects pre-

sented a patient admitted to a hospital with a perforated peptic ulcer. In some cases it

is possible for patients with severe gastric reflux to develop peptic aspiration pneumo-

nia [165]. Creation the proposed scenario in ModelPatient would require two models

— one for the disease state and treatment of a peptic ulcer patient, and a secondary

model representative of an aspiration pneumonia patient. In this case, the case author

could link the two models together where the final state probabilities from the “Peptic

ulcer” model would become the initial probabilities for the corresponding node states

in the “Aspiration pneumonia” model.

Another possible advantage of this approach is that parameters for smaller models

(models with fewer features) that comprise a larger scenario could be learned from

smaller data sets, which may be easier to obtain than large and feature rich data from

EMRs.

A major disadvantage of using a chain of smaller BN models to control a VP sce-

nario is that authoring such a case would create more burden on the author, requiring

the author not only to connect multiple BN models into a chain, but also to validate

such a case and to ensure that the case narrative is consistent with how the probabil-

ities change from one model to the next.

7.4.1.2 Representing Temporal VP Cases with Hidden Markov Models An-

other possible approach to modeling disease progression over time and the associ-

ated sequence of treatment steps is using Hidden Markov models (HMMs). HMMs

are ubiquitously used for modeling time series data and are widely used in speech

recognition systems [166, 167], computational biology [168, 169], and disease state

models [170, 127].

A patient’s progression through DKA could be modeled as a discrete-time HMM,

where each discrete time step (latent state) is associated with vital signs and labo-
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ratory test results that were affected by prescribed treatments. In such a model we

could account for patient heterogeneity by incorporating variables associated with

patient history (age, gender) and comorbidities (renal failure) when calculating state

transition probabilities.
The hidden Markov process illustrated in Figure 60 comprises of an initial patient

state (S init) representing initial vital signs and laboratory test results at ICU admis-
sion, five latent states (S1-S5) representing a patient state after a treatment, and three
outcome (absorbing) states (death, hospitalization, discharge). Directional arcs repre-
sent transitional probabilities for improvement from state to state (left-to-right arcs),
worsening from state to state (right-to-left arcs), or remaining in the same state (loop
arc). Details of this approach, including transitional probability matrices, parameter
estimation approaches, and model inferences are described in detail in Ghosh, et. al.
2016 work [171] and Petersen, et. al. 2018 work [127].

Figure 60: DKA treatment progression modeled with HMM. “S Init” represents initial
vital signs and laboratory test results at ICU admission. S1 - S5 are latent states rep-
resenting a patients’ state given a treatment. Death, Hospitalization, and Discharge
are absorbing states.

7.4.1.3 Representing Temporal VP Cases with Interval Temporal Bayesian

Networks One of the shortcomings of typical BN models is that they only repre-

sent three temporal relationships — precedes, follows, equals [2]. Furthermore, as

BN models are essentially probabilistic finite state-machines, their state-space (and

subsequently the size of conditional probability tables) grows exponentially in size as

the number of parallel events increases [172]. As we saw with the DKA model (Chap-

131



ter 5, Section 5.4.2), the large state-space quickly became unmanageable for modeling

a complex activity such as management of diabetic ketoacidosis.

In their 2013, work Zhang, et. al. proposed to augment BN models with interval

algebra representation of 13 atomic time period relations between two events [173].

This approach allowed the authors to represent an interval relationship between two

events as a union of these atomic relations relations (Table 20) [2].

Table 20: “Allen’s 13 atomic temporal relations to represent temporal relationships
between two events X and Y” [2, 3]

.

Relation Symbol Inverse

Y before X b bi

Y meets X m mi

Y overlaps X o oi

Y starts X s si

Y during X d di

Y finishes X f fi

Y equals X eq eq

For example, if we wanted to model (and enforce) the notion that a normal saline
hydration should be administered BEFORE vasopressor, Allen’s representation of this
relationship would be YbX, where Y is the normal saline hydration and X is the vaso-
pressor. Combined with a traditional graphical BN model, we can model relationships
that are not normally represented by the connecting edges (Figure 61). Furthermore,
by modeling the “hydration preceeds vasopressor” relationship using an interval rela-
tion we effectively reduce the size of the conditional probabilities tables and make a
complex model more computationally feasible [2].
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Figure 61: A graphical representation of temporal dependencies among temporal
entities Hydration (H), Vasporessor (V), and Systolic BP (SBP). In this example, the
temporal relationships are “H occurs before V,” “H occurs before SBP,” and “V occurs
before SBP or overlaps SBP.”

7.4.2 Automatically Generating Association Rules

One of the common themes that emerged from the ModelPatient authoring system

evaluation is that rules are too cumbersome to generate. One of the subjects sug-

gested that “rules should be extracted from the data, not manually created by au-

thors.” There is quite a large body of work dedicated to extracting association rules

from medical health records data [174, 175, 176, 177].

In their 2017 work, Lakshmi and Vadivu describe a method of automated extraction

of association rules from medical health records using multi-criteria decision analy-

sis [178]. The authors use a combination of Apriori, Close, RElim, Eclat and FP-Groth

algorithms and select generated rules with the highest confidence values. Since the

example rules generated in this work are similar to the ones used in ModelPatient (in

the form of “if X then Y”), I would like to try this approach with the DKA patient cohort

dataset to see if it is possible to generate rules similar to those manually created by

an expert case author.
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7.4.3 Automatically Generating Feedback

ModelPatient’s lack of formative feedback emerged as a common theme in both RQ1

and RQ2 studies. More specifically, multiple subjects remarked on difficulties in un-

derstanding how and why outcome probabilities changed in response to their deci-

sions. One subject commented: “After I made the first decision and the VP told me

that the outcome of death is 42%. Compared to what? Did I make the patient better

or worse?” Several subjects found the outcome probabilities “confusing despite the

explanation at the beginning of the case” and “difficult to understand and interpret.”

In their 2002 review of explanation methods for Bayesian networks, Lacave and Díez

classify explanations of Bayesian belief networks into three categories [179]:

1. Explanation of evidence which “consists of determining which values of the unob-

served variables justify the available evidence.”

2. Explanation of the model — a verbal or graphical description of the model to aid

in understanding its structure and purpose [180]

3. Explanation of reasoning — an explanation of the process by which the model

produced (or did not produce) the results/outcomes [180]

Creating a qualitative explanation (i.e. feedback) for every decision and every out-

come would place a tremendous burden on case author and invalidate any time-

saving advantage that model-based VPs may provide. Automating formative feedback

is something I would like to explore further in my future work. Since ModelPatient

already provides a graphical explanation of the model (Figure 62), it is the expla-

nation of evidence and the explanation of reasoning that need to be presented as

feedback to the learners. There is a small body of work that suggests quantitative

approaches to generating explanations for Bayesian network models, Madigan et al.

work on graphical display of the weight of evidence [181], qualitative propagation al-

gorithm proposed by Druzdzel and Henrion [182], and enhanced qualitative networks

approach [183], but none of those approaches provide a definitive guideline for gen-

erating explanations from the model itself or from the underlying data.
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Figure 62: BN model representation (graphical explanation) in ModelPatient case
authoring tool.

7.4.4 Future Studies

As mentioned in the description of RQ1 study limitations, the subjects who partici-

pated in evaluating the “Managing Sepsis” VP case content were practicing clinicians

and educators. To assess if the way the case is presented in vpSim vs. ModelPatient

has an effect on learning outcome, would like to conduct a study with more novice

practitioners that have not completed their clinical training.

The results of the RQ1 study also suggested that the difference in learning out-

comes may be affected by the differences in VP case presentation modalities. While

there is evidence presented in the literature that guided instructional design leads to

better learning outcomes than open-ended instructional design [147], I would like to

conduct a study to evaluate the effect of VP case modality on learning outcomes in

novice clinical practitioners.
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Last, but not least, I would like to design a study to evaluate the effect of VP case

presentation fidelity on learner engagement. In other words, I would like to evaluate

relationship between the degree to which the system’s UI resembles an EMR and the

learner engagement with a VP case.
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APPENDIX A

PATIENT COHORT DATA DESCRIPTION

A.1 ORIGINAL PATIENT COHORT DESCRIPTION

The patient cohort data used in this study was originally obtained for a research study

titled “Comparison of Normal Saline and Plasma-Lyte for Fluid Resuscitation in Septic

Shock,” IRB protocol #PRO14100151. The purpose of this study was “to compare a

retrospective cohort of ICU patients receiving normal saline for fluid resuscitation in

septic shock with a retrospective cohort of patients receiving Plasma-Lyte for fluid

resuscitation in septic shock.” This data set contains de-identified retrospective med-

ical chart data of 71,202 patients admitted to the emergency rooms (ER) or hospitals

of the UPMC hospital system between 2001 and 2014. The data was retrieved from

UPMC MARS data archive by an honest broker.

A.1.1 Inclusion criteria

• age > 18

• Plasma-Lyte or Normal Saline administration [bolus > 500ml or rate>200cc/hr]

• Administration antibiotics (piperacillin/tazobactam, ampicillin/sulbactam, vancomycin,

cefepime, cefriaxone, ciprofloxcin, levofloxacin, aztreonam, meropenem, imipenem,

ertapenem, doripenem, ticarcillin, ceftazidime, azithromycin, gentamicin, tobramycin,
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amikacin, fluconazole, caspofungin, daptomycin, linezolid, tigecycline)

• Mean Arterial Pressure (MAP) < 70 mmHg OR systolic BP < 90 mmHg

• Signs of tissue hypoperfusion (output < 0.5 mL/kg for one hour OR serum lactate

level > 2 mmol/L)

• Requiring vasopressors (norepinephrine, dopamine, vasopressin, epinephrine, phenyle-

phrine)

A.1.2 Additional variables

• Blood gases

• Common chemistries

• Special chemistries

• Hematology

• Ventilator settings

• Vital signs

• Hemodynamics

• Intake and output

• Hospital length of stay

• ICU length of stay

• Mortality

A.2 SEPSIS PATIENT COHORT

Since all sepsis patients receive hydration treatment, I extracted a sub-cohort of pa-

tients who were admitted to UPMC hospitals with with a primary, secondary, or ter-

tiary diagnosis of “sepsis,” ICD-9 codes 995.90, 995.91, and 995.92. The final sepsis

cohort dataset contained 3,991 hospital admission records. The final dataset, after
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removing partial records and records with missing values, contained 3,974 hospital

admission records.

Normal value ranges for discretization of continuous features were obtained from

Medscape [184] and Lab Tests Online [185] websites and further refined through in-

terviews with clinical experts to better meet requirements of the associated VP case

scenarios.

A.3 DATASET FEATURES

Table 21: Sepsis Dataset — Demographic Information

Feature Description Discrete Categories Counts

Age Patient’s age at the time of hos-
pital admission

18 - 40 278
41 - 65 1,434
>65 2,262

Gender Patient’s gender
m - male 2,066
f - female 1,908

Ethnicity Patient’s ethnicity (race)
African American 552
Other 238
White 3,184
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Table 22: Sepsis Dataset — Comorbidities

Comorbidity ICD-9 Code(s) Discrete Cate-
gories

Counts

Congestive Heart Failure
(CHF)

428.0

Y 1,016
N 2,958

Hypertension 401.0, 401.1, 401.9
Y 1,867
N 2,107

Liver Failure 573.8
Y 13
N 3,961

Renal Failure 584, 586
Y 86
N 3,886

Respiratory Failure 518.81
Y 1,604
N 2,370
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Table 23: Sepsis Dataset — Administered (Bedside) Medications

Medication Counts

Normal Saline 1,993

Half Saline 43

D5 Half Saline 375

D5W 473

D10 247

Lactated Ringers 437

Bolus - Normal Saline 3,502

Bolus - Plasmalyte A 471

Norepinephrine 1,715

Epinephrine 1,768

Phenylephrine 1,236

Vasopressin 831

Piperacillin-Tazobactam 2,264

Vancomycin 2,984

Meropenem 659

Metronidazole 1,235

Levofloxacin 76
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Table 24: Sepsis Dataset — Laboratory Tests

Lab. Test Name Discrete Category Counts

Anion Gap
< 13: normal 2,508
≥ 13 and < 15: mildly elevated 648
≥ 15 and < 17: moderately elevated 350
≥ 17: severely elevated 465

Blood Gas pHa
< 7.38: low 1,004
≥ 7.38 and ≤ 7.42: normal 437
> 7.42: high 556

BUN
< 7: low 260
≥ 7 and ≤ 20: normal 1,638
> 20: high 2,065

Chloride
< 96: low 207
≥ 96 and ≤ 106: normal 2,071
> 106: high 1,696

CO2
< 23: low 207
≥ 23 and ≤ 28: normal 2,071
> 28: high 1,696

Glucose
< 70: low 132
≥ 70 and ≤ 100: normal 967
> 100: high 2,839

Potassium
< 3.5: low 672
≥ 3.5 and ≤ 5: normal 2,654
> 5: high 217

Sodium
< 135: low 756
≥ 135 and ≤ 145: normal 2,845
> 145: high 370
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Table 25: Sepsis Dataset — Vital Signs

Vital Sign Discrete Category Counts
Systolic Blood Pres-
sure

< 120: normal 2176
≥ 120 and ≤ 145: prehypertension 1212
> 145: hypertension 581

Diastolic Blood Pres-
sure

< 80: ’normal’ 3398
≥ 80 and ≤ 89: prehypertension 360
> 89: hypertension 208

O2 Saturation
< 95: low 857
≥ 95 and ≤ 100: normal 3117

Pulse
< 60: low 132
≥ 60 and ≤ 100: normal 2687
> 100: high 1147

Respiratory Rate
< 12: low 85
≥ 12 and ≤: normal 2375
> high 1497

Table 26: Sepsis Dataset — Outcomes

Outcome Discrete Category Counts

Discharge Location
Deceased 919
Managed care 2071
Self care 984
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A.4 DIABETIC KETOACIDOSIS PATIENT COHORT DATA

Table 27: DKA Dataset — Demographic Information

Feature Description Discrete Categories Counts

Age Patient’s age at the time of hos-
pital admission

18 - 40 186
41 - 65 986
>65 1,395

Gender Patient’s gender
m - male 1,232
f - female 1,335

Ethnicity Patient’s ethnicity (race)
African American 406
Other 158
White 2,003
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Table 28: DKA Dataset — Comorbidities

Comorbidity ICD-9 Code(s) Discrete
Cate-
gories

Counts

Congestive
Heart Failure
(CHF)

428.0

Y 526
N 2,041

Hypertension 401.0, 401.1, 401.9
Y 1,282
N 1,285

Lactic Acidosis 276.2
Y 2,428
N 139

Psychiatric Co-
morbidities

291.3, 292.1, 292.89, 293.81, 293.84, 295.30,
295.32, 295.34, 295.80, 295.90, 295.92, 296.00,
296.20, 296.23, 296.30, 296.31, 296.33, 296.50,
296.53, 296.54, 296.64, 296.90, 298.9, 300.00,
300.02, 300.3, 300.4, 300.9, 301.4, 304.40, 306.9,
309.24, 309.28, 309.81, 310.9, 311, 368.16, 797,
799.29, 969.3, 969.8, 969.9, E854.2, E939.3,
E939.7, E939.8, E950.3, E980.3, V11.0, V11.8,
V17.0, V62.89, V70.2

Y 717
N 1850

Renal Failure 584, 586
Y 75
N 2492
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Table 29: DKA Dataset — Administered (Bedside) Medications

Medication Counts

Normal Saline 1,192

Half Saline 40

D5 Half Saline 250

D5W 455

D10 143

Lactated Ringers 295

Regular Insulin 321

Sliding-Scale Insulin 1,185

Bolus - Normal Saline 2,315

Bolus - Plasmalyte A 241
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Table 30: DKA Dataset — Laboratory Tests — Initial Values at the Time of Hospital
Admission

Lab. Test Name Discrete Category Counts

Anion Gap
< 13: normal 734
≥ 13 and < 15: mildly elevated 427
≥ 15 and < 17: moderately elevated 356
≥ 17: severely elevated 1,050

Blood Gas pHa
< 7.38: low 993
≥ 7.38 and ≤ 7.42: normal 220
> 7.42: high 217

BUN
< 7: low 79
≥ 7 and ≤ 20: normal 845
> 20: high 1,643

Chloride
< 96: low 448
≥ 96 and ≤ 106: normal 1,413
> 106: high 706

CO2
< 23: low 1367
≥ 23 and ≤ 28: normal 854
> 28: high 346

Glucose
< 70: low 117
≥ 70 and ≤ 100: normal 524
> 100: high 1926

Potassium
< 3.5: low 343
≥ 3.5 and ≤ 5: normal 1,685
> 5: high 539

Sodium
< 135: low 528
≥ 135 and ≤ 145: normal
> 145: high 1,773
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Table 31: DKA Dataset — Initial Vital Signs at the Time of Hospital Admission

Vital Sign Discrete Category Counts
Systolic Blood Pressure

< 120: normal 1,257
≥ 120 and ≤ 145: prehypertension 828
> 145: hypertension 482

Diastolic Blood Pressure
< 80: ’normal’ 2,116
≥ 80 and ≤ 89: prehypertension 298
> 89: hypertension 153

O2 Saturation
< 95: low 561
≥ 95 and ≤ 100: normal 2,004

Pulse
< 60: low 109
≥ 60 and ≤ 100: normal 1,362
> 100: high 1,095

Respiratory Rate
< 12: low 29
≥ 12 and ≤ 16: normal 1,753
> 16: high 785

Table 32: DKA Dataset — Outcomes

Outcome Discrete Category Counts

Discharge Location
Deceased 594
Managed care 1,441
Self care 532
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APPENDIX B

NORMAL VALUE RANGES FOR VITALS AND LABORATORY TESTS

Table 33: Normal Value Ranges for Vitals

Vital Unit(s) Ranges

Systolic BP mmHg Normal: < 120
Prehypertension: 120 - 140
Hypertension: ≥ 140

Diastolic BP mmHg Normal: < 80
Prehypertension: 80 - 90
Hypertension: ≥ 90

O2 Saturation mmHg Low: < 95
Normal: 95-100

Pulse beats per minute Low: < 60
Normal: 60 - 100
High: > 100

Respiratory Rate breaths per minute Low: < 12
Normal: 12 - 20
High: > 20

Table 34: Normal Value Ranges for Laboratory Tests

Laboratory Test Unit(s) Ranges

Anion Gap mEq/L Normal: < 13
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Mildly Elevated: 13 - 15
Moderately Elevated: 15 - 17
Severely Elevated: ≥ 17

Blood Gas pHa Low: < 7.38
Normal: 7.38 - 7.42
High: > 7.42

Blood Urea Nitrogen (BUN) mg/dL Low: < 7
Normal: 7-20
High: > 20

Chloride mEq/L Low: < 96
Normal: 96 - 106
High: > 106

CO2 mEq/L Low: < 23
Normal: 23-28
High: > 28

Glucose mEq/L Low: < 70
Normal: 70-100
High: > 100

Potassium mEq/L Low: < 3.5
Normal: 3.5 - 5.0
High: > 5.0

Sodium mEq/L Low: < 135
Normal: 135 - 145
High: > 145

Creatinine mg/dL Low: < 0.6
Normal: 0.6 - 1.2
High: > 1.2

Magnesium mg/dL Low: < 1.7
Normal: 1.7 - 2.2
High: > 2.2

Lactate mmol/L Low: < 0.5
Normal: 0.5 - 1.0
High: > 1

Albumin g/dL Low: < 3.5
Normal: 3.5 - 5.5
High: > 5.5

Bilirubin mg/dL Low: < 0.1
Normal: 0.1 - 1.2
High: > 5.5

Phosphate mg/dL Low: < 2.5
Normal: 2.5 - 4.5
High: > 4.5

Partial pressure of oxygen (PaO2) mg/dL Low: < 75
Normal: 75 - 100
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High: > 100

Partial pressure of carbon dioxide
(PaCO2)

mg/dL Low: < 38

Normal: 38 - 42
High: > 42
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APPENDIX C

MODELPATIENT CASE PRESENTATION AND AUTHORING EVALUATION

QUESTIONNAIRES

C.1 QUESTIONNAIRE: MODELPATIENT CASE PRESENTATION

EVALUATION

Questions in the following questionnaire are based on and derived from features and

uses of high-fidelity medical simulations that lead to effective learning proposed by Is-

senberg, et al. [24], Posel’s dissertation work on validating criterion-referenced guide-

lines for virtual patient case authoring [25], and Bateman et. al exploratory study on

virtual patient design [26].

Note: The questionnaire distributed to subjects will contain a note stating that

both sepsis and DKA VP cases have been designed for post-graduate trainees with

working knowledge of human physiology and clinical medicine — learners who have

completed their medical, nursing, or pharmacy degrees but have not completed clini-

cal training.

Question 1: Virtual patient case evaluation. Please rate your responses to the fol-

lowing questions on the scale of 1 to 5, with 1 being “Poor” and 5 being “Excellent.”
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Table 35: Virtual Patient Case Evaluation Questionnaire 1

P
oo

r

E
xc

el
le

n
t

How well did the learning experience reflect

the stated learning objectives?

N/A 1 2 3 4 5

How accurately did the case depict the chosen

topic?

N/A 1 2 3 4 5

How well did the case represent clinical varia-

tions associated with the chosen topic?

N/A 1 2 3 4 5

How well did the case introduce / reinforce rel-

evant clinical skills?

N/A 1 2 3 4 5

How well did the case introduce / reinforce be-

haviors and attitudes relevant to [DKA or sep-

sis] treatment?

N/A 1 2 3 4 5

How well did the case provide formative feed-

back for choices / outcomes?

N/A 1 2 3 4 5

How realistic was the case? N/A 1 2 3 4 5

Based on the presentation method of the vir-

tual patient case, how engaged were you?

N/A 1 2 3 4 5

Based on the presentation method of the vir-

tual patient case, how effective do you think

this case is in teaching the subject matter

to novice clinical practitioners (learners who

have completed graduate medical or pharmacy

program but have not completed clinical train-

ing)?

N/A 1 2 3 4 5
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Question 2: Describe the best/strongest features of this case? Why did you iden-

tify a particular feature as best/strongest?

Question 3: What features of this case did you struggle with the most? How

would you improve them?

Question 4: Describe the best/strongest features of this VP system? Why did you

identify a particular feature as best/strongest?

Question 5: Describe the features of this VP system that could use improvement?

How would you improve them?

C.2 QUESTIONNAIRE: CASE CONTENT AND LEARNING OBJECTIVES

COMPARISON BETWEEN THE “MANAGING SEPSIS” VP CASE

PRESENTED IN VPSIM AND MODELPATIENT

Question 1: Please rate your responses to the following questions on the scale of 1

to 5, with 1 being “Not comparable at all” and 5 being “Extremely comparable.”

Table 36: Case Content and Learning Objectives Comparison Questionnaire

N
o
t

c
o
m

p
a
ra

b
le

a
t

a
ll

E
xt

re
m

e
ly

c
o
m

p
a
ra

b
le

In terms of educational content, how comparable is the case

presented in ModelPatient to the case presented in vpSim?

1 2 3 4 5

in terms of meeting the learning objectives, how comparable

is the case presented in ModelPatient to the case presented in

vpSim?

1 2 3 4 5
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C.3 QUESTIONNAIRE: MODELPATIENT CASE AUTHORING EVALUATION

Question 1: How long have you been designing virtual patient cases?

Question 2: How many complete virtual patient cases have you designed?

Question 3: What virtual patient (VP) authoring tools do you have most experi-

ence with?

• vpSim

• DecisionSim

• OpenLabyrinth

• Twine

• Other

Question 4: Compared to other VP authoring systems that you have used in the

past, how easy or difficult was it for you to modify this VP case?

• Much more difficult

• Somewhat more difficult

• About the same level of difficulty

• Somewhat easier

• Much easier

Question 5: Based on your experience with modifying a VP case, please rate your

responses to the following questions on the scale of 1 to 5, with 1 being “Difficult” and

5 being “Easy.”

Table 37: Virtual Patient Case Authoring Evaluation

Diffi
cu

lt

Eas
y

How difficult or easy was it to update the

model’s states?

N/A 1 2 3 4 5
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How difficult or easy was it to observe the ef-

fects of changes that you made to the model’s

states?

N/A 1 2 3 4 5

Overall, how difficult or easy was it to under-

stand the use of models in a VP case?

N/A 1 2 3 4 5

How difficult or easy was it to modify the rules? N/A 1 2 3 4 5

How difficult or easy was it to observe the ef-

fect(s) of changes to the rules?

N/A 1 2 3 4 5

Overall, how difficult or easy was it to under-

stand the use of models in a VP case?

N/A 1 2 3 4 5

Overall, how difficult or easy was it to use the

VP case authoring system?

N/A 1 2 3 4 5

Question 6: Based on the changes you made in the VP case, please rate your

responses to the following questions on the scale of 1 to 5, with 1 being “Poor” and 5

being “Excellent.”

Table 38: Virtual Patient Alternate Objective(s) Case Evaluation

P
oo

r

E
xc

el
le

n
t

How well did the case reflect the alternate

learning objectives?

N/A 1 2 3 4 5

How accurately did the case depict the clinical

scenario associated with the new changes?

N/A 1 2 3 4 5

How well did the case represent clinical varia-

tions associated with the chosen topic?

N/A 1 2 3 4 5
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How well did the case introduce / reinforce rel-

evant clinical skills?

N/A 1 2 3 4 5

How realistic was the case? N/A 1 2 3 4 5

Question 7: Based on the VP case that you have modified in this VP system, can

you list additional learning objectives that could be taught with the case?

Question 8: What other parts of the VP case would you modify in order for the

case to reasonably reflect the learning objectives stated in your previous answer?

Question 9: Describe the best/strongest features of this VP system’s case author-

ing. Why did you identify a particular feature as best/strongest?

Question 10: Describe features of this VP system’s case authoring that you strug-

gled with the most? How would you improve them?
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APPENDIX D

SAMPLE VP CASE COMPLETION REPORTS

D.1 SAMPLE VPSIM COMPLETION REPORT

Table 39: Sample vpSim Completion Report

Step/Action Date Time Metrics

Entered node Welcome to vpSim ’Sepsis’” 4/15/2018 3:45:44 AM

Clicked “Continue” button on Welcome to
vpSim ’Sepsis’”

4/15/2018 3:45:53 AM

Entered node “PATIENT CASE: Hannah
Foore”

4/15/2018 3:45:53 AM

Clicked “Continue” button on “PATIENT
CASE: Hannah Foore”

4/15/2018 3:47:45 AM

Entered node “Definitions” 4/15/2018 3:47:45 AM

Selected choice “Hannah meets criteria for
sepsis”

4/15/2018 3:48:04 AM Score: 99

Revisited node “PATIENT CASE: Hannah
Foore”

4/15/2018 3:48:14 AM

Revisited node “Definitions” 4/15/2018 3:48:24 AM

Selected choice “Hannah only meets criteria
for single organ dysfunction”

4/15/2018 3:48:27 AM

Entered node “Definitions” 4/15/2018 3:48:54 AM

Clicked “Continue” button on “Definitions” 4/15/2018 3:49:00 AM

Entered node “Early antibiotics” 4/15/2018 3:49:00 AM

Selected choice “Within the 1st hour from se-
vere sepsis or septic shock diagnosis”

4/15/2018 3:49:12 AM
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Clicked “Continue” button on “Early antibi-
otics”

4/15/2018 3:49:15 AM

Entered node “Shock” 4/15/2018 3:49:15 AM

Selected branch “Administer 0.9% NaCl as an
IV bolus of 500ml q 30 min as needed to main-
tain stable CVP ”

4/15/2018 3:50:12 AM

Entered node “Crystalloids vs Colloids (1)” 4/15/2018 3:50:12 AM

Selected choice “The absence of any clear
benefit following the administration of col-
loid solutions compared to crystalloid solu-
tions, together with the expense associated
with colloid solutions, supports a high-grade
recommendation for the use of crystalloid so-
lutions in the initial resuscitation of patients
with severe sepsis and septic shock.”

4/15/2018 3:50:35 AM

Clicked “Continue” button on “Crystalloids vs
Colloids (1)”

4/15/2018 3:50:39 AM

Entered node “Fluid bolus (1)” 4/15/2018 3:50:39 AM

Selected branch “Start IV vasopressor” 4/15/2018 3:51:16 AM

Entered node “Vasopressor options (1)” 4/15/2018 3:51:16 AM

Selected choice “Start Phenylephrine 30
mcg/min”

4/15/2018 3:51:40 AM Score: 97

Selected choice “Start Norepinephrine 0.1
mcg/kg/min”

4/15/2018 3:51:43 AM

Clicked “Continue” button on “Vasopressor
options (1)”

4/15/2018 3:51:46 AM

Entered node “Vasopressin” 4/15/2018 3:51:46 AM

Selected choice “Low-dose vasopressin can
be added to norepinephrine to raise MAP or
decrease norepinephrine dosage. It is not
recommended as the single initial vasopres-
sor for treatment of severe sepsis or septic
shock”

4/15/2018 3:52:26 AM

Clicked “Continue” button on “Vasopressin” 4/15/2018 3:52:30 AM

Entered node “Tachycardia mechanisms (1)” 4/15/2018 3:52:30 AM

Selected choice “Beta-1 agonism” 4/15/2018 3:52:42 AM

Clicked “Continue” button on “Tachycardia
mechanisms (1)”

4/15/2018 3:52:46 AM

Entered node “Vasopressor tachycardia (1)” 4/15/2018 3:52:46 AM

Selected branch “Discontinue norepinephrine
and start phenylephrine 30 mcg/min IV infu-
sion”

4/15/2018 3:53:36 AM

Entered node “CVP and MAP rise (1,1)” 4/15/2018 3:53:36 AM
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Clicked “Continue” button on “CVP and MAP
rise (1,1)”

4/15/2018 3:53:50 AM

Entered node “Adrenal Insufficiency (1,1)” 4/15/2018 3:53:50 AM

Selected choice “No, ’stim’ tests are not
recommeded for septic shock. Hydrocorti-
sone therapy is not an option either since
Hannah has responded to her vasopressor
and fluid therapy.”

4/15/2018 3:56:49 AM

Clicked “Continue” button on “Adrenal Insuf-
ficiency (1,1)”

4/15/2018 3:56:56 AM

Entered node “GAME OVER (1,1)” 4/15/2018 3:56:56 AM

Table 40: Sample ModelPatient Completion Report

Date / Time Choice

2018-04-13T15:42:51.940Z Demographic

2018-04-13T15:43:02.693Z Allergies

2018-04-13T15:43:08.009Z Demographic

2018-04-13T15:43:10.866Z Diagnoses

2018-04-13T15:43:37.743Z Notes

2018-04-13T15:43:41.419Z Vitals

2018-04-13T15:43:57.055Z Laboratory Tests

2018-04-13T15:44:07.105Z Drugs

2018-04-13T15:44:21.303Z Procedures

2018-04-13T15:44:28.602Z Radiology

2018-04-13T15:44:40.772Z Social History

2018-04-13T15:44:43.369Z Vitals

2018-04-13T15:44:48.925Z Outcome

2018-04-13T15:44:55.181Z Diagnoses

2018-04-13T15:45:45.045Z Drugs

2018-04-13T15:46:27.759Z Laboratory Tests

2018-04-13T15:47:09.623Z Vitals

2018-04-13T15:47:14.584Z Outcome

2018-04-13T15:47:36.586Z Drugs

2018-04-13T15:47:40.354Z Notes

2018-04-13T15:48:25.554Z Notes

2018-04-13T15:48:30.380Z Outcome

2018-04-15T12:12:35.015Z Demographic

2018-04-15T12:12:42.430Z Allergies
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2018-04-15T12:13:31.030Z Diagnoses

2018-04-15T12:13:59.826Z Laboratory Tests

2018-04-15T12:14:47.022Z Notes

2018-04-15T12:14:55.043Z Vitals

2018-04-15T12:15:37.164Z Diagnoses

2018-04-15T12:16:02.565Z Notes

2018-04-15T12:16:13.905Z Diagnoses

2018-04-15T12:16:23.783Z Drugs

2018-04-15T12:18:41.844Z Laboratory Tests

2018-04-15T12:19:11.928Z Vitals

2018-04-15T12:19:21.170Z Outcome

2018-31-13 11:45:10 Patient meets criteria for sepsis

2018-31-13 11:45:34 Meningitis

2018-31-13 11:45:41 Patient meets criteria for single organ dysfunction

2018-31-13 11:46:1 Vancomycin

2018-31-13 11:46:7 Norepinephrine

2018-31-13 11:46:23 Normal Saline

2018-31-15 8:14:22 Chem 7:

2018-31-15 8:15:42 Meningitis

2018-31-15 8:16:19 Patient meets criteria for single organ dysfunction

2018-31-15 8:16:31 Normal Saline

2018-31-15 8:16:55 Vasopressin

2018-31-15 8:18:29 Vancomycin

2018-31-15 8:18:37 Norepinephrine
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APPENDIX E

SUBJECT RECRUITMENT MATERIALS

E.1 RECRUITMENT EMAIL FOR RESEARCH QUESTION 1 EXPERIMENT

I hope this email finds you well. My name is Dmitriy Babichenko and I am working

on developing a novel virtual patient simulation system in which the simulation is

controlled by a computational model instead of a predefined case scenario. This study

is designed to assess the feasibility of the system and to understand how it compares

with other systems (such as vpSim) in terms of case presentation and case authoring.

1. To what extent is it possible to create a virtual patient case using a VP system

based on a Bayesian Network model that is comparable to a case created using a

branched-narrative VP system?

2. To what extent does the proposed system facilitate modifying an existing VP by

allowing case authors to change the model’s states in such a way that the VP case

meets alternate learning objectives?

As part of this study, I would like you to complete 2 cases, one in vpSim and another

one in ModelPatient. After completing each case, I will ask you to complete a short

online survey. I am also asking for your permission to capture your interactions with

the two virtual patient systems via a screen capture recording. Please note that your

participation in this study is completely voluntary and that you may stop or withdraw

162



at any time.

Please let me know if you have any questions or would like any additional informa-

tion.

E.2 RECRUITMENT EMAIL FOR RESEARCH QUESTION 2 EXPERIMENT

I hope this email finds you well. My name is Dmitriy Babichenko and I am working

on developing a novel virtual patient simulation system in which the simulation is

controlled by a computational model instead of a predefined case scenario. This study

is designed to assess the feasibility of the system and to understand how it compares

with other systems (such as vpSim) in terms of case presentation and case authoring.

This study aims to answer the following research questions:

1. To what extent is it possible to create a virtual patient case using a VP system

based on a Bayesian Network model that is comparable to a case created using a

branched-narrative VP system?

2. To what extent does the proposed system facilitate modifying an existing VP by

allowing case authors to change the model’s states in such a way that the VP case

meets alternate learning objectives?

As part of this study, I would like you to modify one existing virtual patient case

using the ModelPatient VP authoring system. The purpose of this experiment is to

assess how easy or difficult it would be for an expert VP case author to modify an

existing case based on a computational model to address different learning objectives.

I am asking for your permission to record the interview (audio recording) in order

to accurately transcribe and analyze the responses of all participants in this study.

I would also like to capture your interactions with the two virtual patient systems

via a screen capture recording. Please know that your name and other identifying

information will not be associated with this transcript. If you say anything that could
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identify you, we will redact this information from the transcript. Please note that your

participation in this study is completely voluntary and that you may stop or withdraw

at any time.

Please let me know if you have any questions or would like any additional informa-

tion.
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APPENDIX F

PYTHON SCRIPT USED TO SELECT RESEARCH QUESTION 1 SUBJECTS

INTO TWO GROUPS

import random

# File subjects . txt is a plain text f i l e that

# contains a l i s t of subjects ’ names.

# Each name is on a new line

f = open( ’ subjects . txt ’ , ’rb ’ )

# Read subjects ’ names into a l i s t

subject_l ist = f . read ( ) . sp l i t ( ’ \n ’ )

# Randomly shuffle the l i s t

random. shuffle ( subject_l ist )

# Select subjects into two groups

group_A = subject_l ist [:17]

group_B = subject_l ist [17:]
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APPENDIX G

RESEARCH QUESTION 1 STUDY LOG

Table 41: Research Question 1 Study Log

ID First
Sys-
tem

Date Start
Time

End
Time

Location Time
in vp-
Sim

Time
in MP

Notes

L01 vpSim 2/18/2018 1:38 PM 2:56 PM Hospital
cafeteria

10:58 12:33 vpSim images did not load dur-
ing the interview

L02 MP 2/19/2018 7:45 AM 9:10 AM Hospital
cafeteria

07:53 19:02 vpSim images did not load dur-
ing the interview

L03 vpSim 2/21/2018 7:45 AM 8:23 AM Academic
building
common
area

10:20 vpSim image issue has been
fixed. Subject was very thor-
ough, took notes while going
through the case (on paper).
Kept asking about the fact that
radiology images were men-
tioned in the case, but you
could not review them. Looked
up Glasgow coma score on
a phone app. Kept return-
ing to previous screens to re-
view information. Did not get
right away that the patient has
meningitis - was upset with
self. Got a call right as he
started the MP case and had to
leave - will have to reschedule
for the second part of the inter-
view

L03 MP 2/21/2018 2:25 PM 2:50 PM Faculty of-
fice

17:34
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L04 MP 2/24/2018 2:54 PM 3:38 PM Coffee
shop

5:38 15:16 Virtual machine (VM Ware)
crashed as soon as the sub-
ject completed the case. The
screencast is corrupted to-
wards the end, but since the
subject completed the case and
I was able to save the comple-
tion reports, I don’t think this
will be a problem. On another
note, the subject met with me
after a bike ride (still wearing
cycling cloths) and seems tired
and distracted.

L05 vpSim 2/26/18 10:15
AM

10:49
AM

Coffee
shop

5:54 8:04 Subject seemed rushed, espe-
cially with the MP case

L06 MP 3/1/2018 8:35 AM 9:14 AM Academic
building
common
area

4:54 16:07

L07 vpSim 3/1/2018 10:10
AM

10:58
AM

University
library
quiet study
area

7:45 15:24 I forgot to clear data from the
last session and had to stop in
the middle of the interview to
save the previous session and
clear out old data.

L08 MP 3/5/2018 7:45 AM 8:23 AM Academic
building
common
area

13:47 Subject seemed to have issues
using the laptop’s trackpad.
Interview was interrupted af-
ter subject completed the MP
case. The subject asked to
meet again at the College of
Pharmacy at 2PM

L09 vpSim 3/5/2018 11:30
AM

12:17
PM

Hospital,
private
office

7:31 8:51 Issues with hospital guest wire-
less - the connection is too slow
to load vpSim. Had to use
my phone as a WIFI hotspot.
The subject looked up some an-
swers on their phone - might
skew completion time a bit

L08 vpSim 3/5/2018 2:00 PM 2:21 PM Academic
building
common
area

5:40

L10 vpSim 3/5/2018 6:10 PM 7:20 PM Hospital
cafeteria

20:04 14:03

L11 MP 3/6/2018 9:30 AM 10:20
AM

Coffee
shop

8:09 19:02

L12 vpSim 3/6/2018 11:05 12:09
PM

Hospital
patient
waiting
area

5:47 15:37

L13 MP 3/16/2018 9:48 AM 10:39
PM

Hospital
lobby

5:29 10:28 Forgot to close Outlook - sev-
eral emails popped up during
the pass through MP - was a
bit distracting. The subject
does not have a faculty ap-
pointment, but they are a pre-
ceptor.

L14 vpSim 3/20/2018 8:52 AM 9:30 AM University
library
quiet study
area

4:43 6:56 With the MP case the subject
explored around rather than
trying to solve the case
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L15 vpSim 3/21/2018 9:03 AM 9:45 AM Academic
building
common
area

8:33 8:42

L16 vpSim 3/21/2018 11:00
AM

12:15
PM

Academic
building,
faculty
office

5:37 11:54

L17 MP 3/25/18 3:25 PM 4:11 PM Coffee
shop

6:30 9:25

L18 vpSim 3/26/18 1:20 PM 2:06 PM Academic
building
common
area

6:50 7:12

L19 MP 3/29/2018 10:45
AM

11:38
AM

Academic
building,
faculty
office

5:46 7:20

L20 vpSim 3/29/2018 2:00 PM 2:33 PM Hospital
patient
waiting
area

5:50 6:36

L21 MP 4/12/2018 1:50 PM 2:51 PM Hospital,
private
office

6:00 10:02 Forgot to reset MongoDB be-
fore the subject entered MP -
took about 30 seconds to re-
move old data

L22 vpSim 4/13/2018 8:30 AM 9:23 AM Academic
building
cafeteria

8:06 11:07 I think I will have to discard
this interview - the subject an-
swered 4’s for all questions
and left open-ended questions
blank

L23 MP 4/13/2018 11:45
AM

12:33
PM

Hospital
cafeteria

5:06 10:00 Had to start and stop the in-
terview twice - the subject was
called in to discuss a patient.
Stopped after completing MP
case. Came back, completed
survey, took another call, came
back, finished vpSim case and
survey

L24 vpSim 4/15/2018 7:30 AM 8:35 Coffee
shop

11:32 10:14 Asked a lot of questions, looked
up a lot of treatment guide-
lines on their phone. Found a
spelling error and did not want
to continue until I fixed it.

L25 MP 4/18/2018 8:00 AM 9:10 AM Academic
building
cafeteria

6:37 15:06

L26 MP 4/23/2018 10:00
AM

11:15
AM

Hospital,
private
office

5:47 12:07

L27 vpSim 4/24/2018 9:00 AM 9:54 AM Hospital
cafeteria

11:13 7:07 Did not complete text re-
sponses in vpSim survey

L28 vpSim 4/27/2018 1:00 PM 1:45 PM Hospital,
research
offices

10:39 9:13

L29 MP 5/3/2018 8:50 AM 10:07
AM

Academic
building,
faculty
office

9:35 11:03 Had to stop after subject com-
pleted MP case. Met again at
12:30 at the Presby 11th floor
cafeteria

L30 vpSim 5/7/2018 8:30 AM 9:40 AM Coffee
shop

9:47 16:13 Started at [hospital building],
had issues connecting to the
WIFI, moved to coffee shop
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L31 MP 5/11/2018 10:45
AM

11:32
AM

7:11 10:06

L32 vpSim 5/16/2018 1:30 PM 2:30 PM Medical
office
building,
conference
room

34:15 4:37 Spent a lot of time in vpSim,
mostly asking questions about
simulation. The actual time
spent on case is much shorter

L33 MP 5/17/2018 8:50 AM 10:03
AM

Coffee
shop

7:19 8:54

• Mean study duration: 57 minutes

• Median study duration: 53 minutes

• Study duration standard deviation: 14 minutes

• Mean time spent in vpSim: 8 minutes 34 seconds

• Median time spent in vpSim: 7minutes 11 seconds

• Time spent in vpSim standard deviation: 6 minutes 8 seconds

• Mean time spent in ModelPatient: 11 min 30 seconds

• Median time spent in ModelPatient: 10 min 28 seconds

• Time spent in ModelPatient standard deviation: 3 min 49 seconds
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APPENDIX H

RESEARCH QUESTION 2 STUDY LOG

Note that the “In-person?” column designates whether the study was conducted in

person (‘Y’) or using Skype (’N’).

Table 42: Research Question 2 Study Log

ID Date Start
Time

End Time Location In per-
son?

Audio

A01 02/09/2018 11:00 AM 11:52 AM Medical building, private office Y Y
A02 02/21/2018 8:45 AM 9:50 AM Academic building, faculty office Y Y
A03 02/26/2018 12:30 PM 1:30 PM Academic building, faculty office N Y
A04 02/27/2018 9:00 AM 10:45 AM Academic building, conference room Y Y
A05 03/05/2018 8:00 AM 9:37 AM Academic building, public area Y Y
A06 03/05/2018 8:45 AM 9:30 AM Coffee shop Y Y
A07 03/05/2018 10:00 AM 11:00 AM Hospital, research offices Y Y
A08 03/16/2018 6:00 AM 7:47 AM Academic building, faculty office N N
A09 03/23/2018 6:30 PM 8:05 PM Academic building, faculty office Y N
A10 04/03/2018 12:00 PM 1:40 PM Coffee shop Y N
A11 04/05/2018 1:30 PM 3:10 PM Academic building cafeteria Y Y
A12 05/11/2018 4:45 PM 6:17 PM Hospital cafeteria Y Y

• Mean study duration: 1 hour 17 minutes

• Median study duration : 1 hour 18 minutes

• Standard deviation: 23 minutes

Note that the interview and the data from subject A05 was not used in this study.

The subject did not read the selection criteria listed in the recruitment email and did
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meet the required inclusion criteria. The subject authored several VP cases but did

not co-author any publications. Instead, the subject was asked to play the role of a

"learner". The resulting data is designated with a subject ID of "L08" in the Research

Question 1 study (Appendix G).

The data from subject A08 was discarded due to numerous technical issues with

conducting the study using Skype.
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