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OPERATIONS AND MAINTENANCE OPTIMIZATION OF STOCHASTIC

SYSTEMS: THREE ESSAYS

David T. Abdul-Malak, PhD

University of Pittsburgh, 2018

This dissertation presents three essays on topics related to optimally operating and maintaining

systems that evolve randomly over time. Two primary areas are considered: (i) joint staffing

and pricing strategies for call centers that use co-sourcing to improve service operations and reduce

costs; and (ii) optimally maintaining stochastically degrading systems when either multiple systems

are associated via a common environment, or when a single-unit system is maintained using a

population of heterogeneous spare parts.

First we present a queueing and stochastic programming framework for optimally staffing a

call center utilizing co-sourced service capacity. The interplay between the call center and external

service provider is modeled as a leader-follower game in which the call center, acting as the follower,

solves a two-stage stochastic integer program. The problem is reformulated as a quadratically-

constrained linear program to obtain the optimal contract prices and the optimal staffing problem

yields a closed-form solution. Numerically we demonstrate that significant cost reductions can be

achieved, even in the presence of imperfect and asymmetric information. Second the problem of

optimally replacing multiple stochastically degrading systems using condition-based maintenance is

considered. Properties of the optimal value function and policy motivate a tractable, approximate

model with state- and action-space transformations and a basis-function approximation of the

action-value function. It is demonstrated that near optimal policies are attainable and significantly

outperform heuristics. Finally, we consider the problem of optimally maintaining a stochastically

degrading system using spares of varying quality. Conditions are provided under which the optimal

value function exhibits monotonicity and the optimal policy is characterized. Numerically we

demonstrate the utility of our proposed framework, and provide insights into the optimal policy as

an exploration-exploitation type policy.
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1.0 INTRODUCTION

This dissertation presents three essays on topics related to optimally operating and maintaining

systems that evolve randomly over time. Two primary areas are considered: (i) joint staffing

and pricing strategies for call centers that use co-sourcing to improve service operations and reduce

costs; and (ii) optimally maintaining stochastically degrading systems when either multiple systems

are associated via a common environment, or when a single-unit system is maintained using a

population of heterogeneous spare parts.

The models developed and analyzed herein can all be viewed as important extensions of classical

models considering enriched state and action spaces. Chapter 2 considers the classical problem of

staffing a call center over multiple periods, but it involves an expanded state space that allows

for demand rate uncertainty, and the action space includes decisions for both the call center and

an external service provider. Chapter 3 considers optimal replacement under environment-driven

degradation, but the state and action spaces considered are higher-dimensional spaces allowing

for the consideration of multiple systems whose stochastic and economic dependencies cannot be

ignored. Chapter 4 considers optimal maintenance of a single-unit system, but the state space

allows for maintaining a belief about the quality of a system, and the action space considers both

repair and replacement.

1.1 DISSERTATION OUTLINE AND CONTRIBUTIONS

Chapter 2 presents a joint queueing and stochastic programming framework for optimally staffing

a single-class call center that utilizes co-sourced service capacity. The call center is faced with

uncertain, time-varying demand and must meet specified quality-of-service (QoS) requirements.

Before the arrival rates are realized, the call center responds to an external service provider’s
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pricing strategy by setting its in-house staffing levels and choosing the number of co-sourced agents

to place on call in order to minimize its expected total staffing costs. Once the arrival rates are

realized, the call center activates the on-call agents to ensure that its QoS constraints are satisfied.

The external service provider (or contractor) seeks to maximize expected total revenues over a

finite contract period by setting per-agent holding and activation prices. We model the interplay

between the call center and contractor as a leader-follower game in which the contractor plays the

part of the leader, and the call center represents the follower. We show that the corresponding

bilevel programming problem can be reformulated as a quadratically-constrained linear program to

obtain the contractor’s optimal per-agent holding and activation prices. The call center’s optimal

staffing problem – a two-stage stochastic integer program (SIP) with recourse – is shown to be

highly tractable for a wide range of QoS constraints. A numerical study illustrates the advantages

of using our joint optimization framework in the presence of imperfect and asymmetric information.

Chapter 3 considers the problem of optimally replacing multiple stochastically degrading sys-

tems using condition-based maintenance. Each system degrades continuously at a rate that is

governed by the current state of the environment, and each fails once its own cumulative degrada-

tion threshold is reached. The objective is to minimize the sum of the expected total discounted

setup, preventive replacement, reactive replacement, and downtime costs over an infinite horizon.

For each environment state, we prove that the cost function is monotone nondecreasing in the

cumulative degradation level. Additionally, under mild conditions, these monotonicity results are

extended to the entire state space. In the case of a single system, we establish that monotone policies

are optimal. The monotonicity results help facilitate a tractable, approximate model with state-

and action-space transformations and a basis-function approximation of the action-value function.

Our computational study demonstrates that high-quality, near-optimal policies are attainable and

significantly outperform heuristic policies.

Chapter 4 considers the problem of optimally maintaining a stochastically degrading, single-unit

system using heterogeneous spares of varying quality. The system’s failures are unannounced; hence,

it is inspected periodically to determine its status (functioning or failed). The system continues

in operation until it is either preventively or correctively maintained. The available maintenance

options include perfect repair, which restores the system to an as-good-as-new condition, and

replacement with a randomly-selected unit from the supply of heterogeneous spares. The objective

is to minimize the total expected discounted maintenance costs over an infinite time horizon. We

formulate the problem using a mixed observability Markov decision process (MOMDP) model in

2



which the system’s age is observable but its quality must be inferred. We show, under suitable

conditions, the monotonicity of the optimal value function in the belief about the system quality

and establish conditions under which finite preventive maintenance thresholds exist. A detailed

computational study reveals that the optimal policy encourages exploration when the system’s

quality is uncertain and is more exploitive when the quality is highly certain. The study also

demonstrates that substantial cost savings are achieved by utilizing our MOMDP-based method as

compared to more naive methods of accounting for heterogeneous spares.
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2.0 STAFFING AND PRICING IN CO-SOURCED CALL CENTERS

2.1 INTRODUCTION

Customer contact centers, and particularly call centers, play a central role in bridging the gap

between manufacturing and service organizations and their customers. Effectively managed call

centers serve as a means of direct communication with customers and foster loyalty with customers.

However, call center operating costs can be substantial, with 60–80% of these costs stemming from

staffing agents to service incoming calls [2]. Increasingly, organizations are electing to co-source a

portion or all of their customer support functions. The practice of outsourcing a portion of these

functions is often referred to as co-sourcing. That is, rather than handling all service requests with

in-house agents, a portion of service capacity can be delegated to an external service provider (or

contractor). Organizations choose to outsource their operations for a number of reasons, including

(but not limited to): cost reduction, handling call overflow, offering extended hours or leveraging

an external provider’s expertise. However, cost reduction is arguably the key factor in co-sourcing

decisions [44]. Service organizations must weigh the benefits (economic and otherwise) of co-

sourcing against the potential costs of forfeiting control of their largest source of direct customer

support. For those that decide the benefits of co-sourcing outweigh the risks, the question remains:

How much service capacity should be outsourced? This question is complicated by the difficulties

associated with managing a call center, namely that call center managers must determine staffing

levels, rosters and schedules in order to satisfactorily service incoming calls in a timely manner.

These tasks are challenging due to the inherently stochastic and dynamic nature of incoming calls.

We consider the problem of optimally staffing a call center that can exercise the option to co-

source a portion of its service capacity to an external contractor. Simultaneously, we consider the

related problem faced by the contractor: How should contract prices be set so as to maximize the

revenue generated by rendering service to the call center? Specifically, with uncertain knowledge
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of the call center’s demand and operating costs, the contractor seeks to set per-period, per-agent

holding and activation prices that maximize the expected total revenues accrued over a finite

contract horizon. For its part, the call center responds to the contractor’s pricing strategy by

setting in-house and on-call staffing levels that minimize their expected total staffing costs over

the duration of the contract. However, the call center must contend with uncertain call arrival

rates. Additionally, it must satisfy two common quality-of-service (QoS) requirements: (1) the

probability that an arbitrary customer abandons their call must not exceed a fixed threshold; and

(2) the expected time a customer waits before their call is answered must not exceed a fixed time

threshold [4, 31, 38, 61]. Once the contract prices are fixed, the call center decides how many

in-house agents to staff (in each period) and how many external agents to place on call for each

period. We may view these on-call agents as reserved capacity. Subsequently, as needed, they

reactively activate agents during each period in order to satisfy their QoS constraints, paying an

additional per-agent cost for each activated agent. We model the interplay between the call center

and contractor as a leader-follower game in which the contractor plays the part of the leader,

and the call center represents the follower. We show that the corresponding bilevel programming

problem can be reformulated as a quadratically-constrained linear program whose solution yields

the contractor’s optimal per-agent holding and activation prices. The call center’s optimal staffing

problem is formulated as a two-stage stochastic integer program (SIP) with recourse and is shown

to be highly tractable. The value of this modeling framework is illustrated through numerical

examples using real call center data. Before proceeding, we next discuss existing relevant research.

The body of literature related to the operation and management of call centers is vast and

growing. The cogent survey by Gans et al. [30] spans a wide range of topics including modeling,

analysis, forecasting, staffing, rostering, long-term planning, and call routing. More recently, Akşin

et al. [2] surveyed the broad literature, paying special attention to the impacts and challenges

surrounding recent technological advances and research on psychological aspects of call centers.

Other surveys, focused on tractable queueing models [55], examined optimization problems related

to call centers [59], and surveyed issues related to multi-skill call centers [56, 4]. In what follows, we

review call center contributions that are most pertinent to our work here, namely those concerned

with staffing under uncertain arrival rates and call center outsourcing and co-sourcing.

Significant effort has been devoted to developing forecasting, staffing, and scheduling models

that incorporate arrival rate uncertainty [45, 93, 47, 106, 28, 80, 91, 43, 65, 81]. Chen and Henderson

[20] demonstrated that estimation error, arrival rate nonstationarity and random arrival rates may
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lead to highly uncertain future demand. Gurvich et al. [38] considered a system with multiple

customer classes and agent types, probabilistic QoS constraints, and demand volume uncertainty.

Their aim was to obtain the minimal staffing level needed to meet the QoS constraints with a

chosen probability. They devised a two-step solution procedure in which the first step provides

an approximation of the optimal staffing level and a staffing frontier. Subsequently, deterministic

problems whose arrival rates are on the staffing frontier are solved, and their solutions are used to

generate a solution to the original chance-constrained staffing problem. Gans et al. [31] proposed

an integrated forecasting and staffing model when future staffing levels can be adjusted. They

developed a parametric forecast model, discretized via Gaussian quadrature, that is stable under a

small number of samples. This stability makes it particularly well-suited for use within a stochastic

program. Accordingly, they modeled their staffing problem as a stochastic program with recourse

and demonstrated its efficacy in satisfying long-run QoS targets with low expected cost. Recently,

Bodur and Luedtke [16] proposed an integrated staffing and scheduling model for multiclass service

systems under arrival rate uncertainty. Their problem was formulated as a stochastic integer

program (SIP), and a new mixed-integer rounding (MIR) technique was used to improve Bender’s

cuts. Their MIR method is applicable to any SIP with integer first-stage decision variables. Other

recent work exploits heavy-traffic approximations to account for arrival rate uncertainty [7, 8,

61]. Bassamboo et al. [9] considered the problem of staffing with constraints on the fraction of

abandoned calls. They proposed a fluid limit approach that allows the original staffing problem to

be treated as a newsvendor network problem. Extending the quality and efficiency-driven limiting

regime, Maman [60] considered a service system whose arrival process is described by a Poisson

mixture model.

The literature related to call center outsourcing/co-sourcing is comparatively sparse and fairly

recent. Some papers, primarily focused on the case of total outsourcing, consider contracts with

various forms of information asymmetry [1, 40, 79, 78]. Akşin et al. [3] considered the problem of

contract design and choice, where the contractor sets prices for two different types of contracts and

the call center can select between them. Specifically, pay-per-capacity and pay-for-job contracts

were considered. In pay-per-capacity contracts, the contractor handles a fixed call volume, and all

overflow is handled by the call center. Pay-for-job contracts function in the opposite manner; a

base level of calls are handled in-house, and excess calls are routed to the contractor. They showed

that, in the presence of uncertain demand, neither type of contract is universally preferred under

a multi-period decision horizon. Only a few papers have studied operational decisions within a
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co-sourcing setting. Van den Schrieck et al. [100] examined the problem of staffing a vendor that

offers co-sourcing services. They investigated the issue of bursty arrivals and proposed two staffing

methods that utilize peakedness as a measure of burstiness. The first method is an extension of

square-root staffing, and the second makes use of the Hayward approximation principles. Gans and

Zhou [32] considered a multi-class model with two types of customers; high-value customers must

be handled by in-house agents, while low-value customers can be routed to an external vendor. Four

call routing schemes of varied complexity and information technology infrastructure requirements

were considered. The simpler schemes were shown to perform well when outsourcing requirements

are significant. Milner and Olsen [68] considered a similar problem but investigated the impact

of different types of service-level agreements. Koçağa [53] proposed a joint model of staffing and

outsourcing when there is a cost associated with each call outsourced. Specifically, they sought to

minimize the expected long-run average cost when there are costs associated with customer aban-

donment, outsourcing calls, and staffing costs. A modified square-root staffing rule and threshold

outsourcing rule were proposed and shown to be asymptotically optimal (as the mean arrival rate

goes to infinity). Moreover, the level of uncertainty in the arrival rate is of the same order as the

inherent system fluctuation under a fixed arrival rate.

Our work here differs from the existing call center staffing models in several important ways.

First, in most existing models, it is assumed that the call center pays for each call that is routed

to an external service provider. By contrast, we assume that external agents function identically

to dedicated in-house agents. This modeling feature obviates the need for call routing schemes and

serves to simplify the process of aligning the motives of the call center and contractor. Second,

to the best of our knowledge, our model is the first to consider the joint problem of staffing and

pricing, in the presence of co-sourcing, within a queueing framework. We carry out our analysis

by assuming the call center functions as an Erlang-A queueing system but do not employ fluid

or diffusion approximations; rather, we rely only on steady-state results for the Erlang-A system.

Third, we consider information asymmetry between the call center and the contractor. That is,

the contractor must set its prices while possessing only partial information about the demand

experienced at the call center and its operating costs. Despite the complexities inherent in these

models, we are able to establish insightful results. We show that the feasible region of the staffing

problem is an integral polyhedron and provide a closed-form expression for the optimal staffing

levels. Hence, the staffing problem is tractable even for very large instances. After establishing

simple, but useful, bounds for the contractor’s pricing problem, we leverage results from the staffing
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problem to reformulate the optimization problem as a quadratically-constrained linear program.

Finally, we provide a numerical study that illustrates the tractability of the pricing problem and

its amenability to including an alternative, profit-based objective.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the mathemat-

ical model and describe a joint staffing and pricing problem formulated as a two-stage stochastic

program. Section 2.3 discusses bounds on the pricing problem and a reformulation of the program,

as well as a closed-form solution to the staffing problem. In Section 2.4, we demonstrate the ad-

vantages of using our model via numerical examples that utilize real call center data. Finally, we

provide some concluding remarks and directions for future work in Section 2.5.

2.2 MODEL FORMULATION

Consider a call center external provider (termed the contractor) who seeks to set prices in order to

maximize expected revenue (or profits) over a fixed, finite-horizon contract. The contract horizon

is partitioned into non-overlapping time intervals, and we denote this planning horizon by T :=

{1, . . . , T}, where t ∈ T represents the tth period. The contractor has a call center client with its

own service needs. Contracts between call centers and outsource providers typically take one of two

forms: volume- or capacity-based [32, 3]. In capacity-based contracts, capacity is reserved by the

call center a priori and paid for whether it is utilized or not. In volume-based contracts, fees are

assessed only when the contractor’s resources are utilized. By contrast, the model we present here

allows for a hybrid structure that exhibits features of both volume- and capacity-based contracts.

Specifically, the contracts consist of two, per-period, per-agent cost rates: an “on-call” (or holding)

cost rate, denoted by co (co ≥ 0), and an “activation” cost rate, denoted by ca (ca ≥ 0). Before

formulating the contractor’s decision problem as a bilevel optimization model, we first present a

model to prescribe how the call center should staff its system, assuming a fixed contract with cost

vector c = (co, ca).

2.2.1 Call Center Staffing Problem

We consider an inbound single-class, single-pool call center that receives calls during each of the T

periods in the planning horizon. During period t ∈ T , the call center is modeled as an M/M/s +
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M queueing system. Specifically, for each period t, calls arrive according to a Poisson process

with an uncertain arrival rate λt, service times are independent and identically distributed (i.i.d.)

exponential random variables with rate parameter µ (µ > 0), there are s servers (agents) available to

respond to customer requests, and unserved calls abandon the system after an i.i.d. exponentially-

distributed patience time with rate parameter α (α > 0). Thus, we treat the call center as an

Erlang-A model extended to include uncertainty in arrival rate forecasts. The Erlang-A model is

frequently employed to represent call centers with abandonment [30].

In what follows, all random variables are defined on a common measurable space (Ω,F ),

and each arrival rate λt is assumed to be a discrete random variable with finite support Λt :=

{λt1, . . . , λ
t
K(t)} where K(t) ∈ N and λtk ≥ 0. We do not impose the assumption that the arrival

rates {λt : t ∈ T } are mutually independent; however, it is assumed that their unconditional prob-

ability mass functions are known a priori, i.e. before any staffing decisions are made. For each

t ∈ T , define the probabilities

ptk := P
(
λt = k

)
, k ∈ Λt

where (Ω,F ,P) is a complete probability space.

The call center seeks to minimize the expected total staffing costs over the planning horizon

while meeting quality-of-service (QoS) requirements. For the purposes of this model, we assume the

QoS requirements are specified as upper bounds on functions that are nonincreasing in the number

of servers s, and nondecreasing in the arrival rate λt. For example, two common constraints are

ensuring that the steady-state expected delay (time in queue) experienced by an arbitrary arrival,

and the probability of abandonment, do not exceed fixed thresholds, i.e.,

P(Ab) ≤ ψ1 and E(D) ≤ ψ2, (2.1)

where D is the steady-state delay, P(Ab) is the probability of abandonment, and ψ1 and ψ2 are

specified thresholds. Define the standard lower incomplete Gamma function

γ(x, y) :=

∫ y

0
tx−1e−tdt, x > 0, y ≥ 0,

the function E as the reciprocal of the well-known Erlang-B formula (with deterministic arrival rate

λ)

E

(
λ

µ
, s

)
=

∑s
j=0

1
j!

(
λ
µ

)j

1
s!

(
λ
µ

)s ,
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and an auxiliary function J(·) by

J(s, λ, µ, α) =
exp

(
λ
µ

)

α
·
(α
λ

) sµ
α
· γ

(
sµ

α
,
λ

α

)
.

Applying well-known results for the M/M/s +M queue [61], we have

P(Ab|s, λ, µ, α) =
1 + (λ− nµ)J ′

E ′ + λJ ′
,

and

E(D|s, λ, µ, α) = α−1 P(Ab|s, λ, µ, α), (2.2)

where E ′ = E(λ/µ, s − 1) and J ′ = J(s, λ, µ, α). Therefore, the nonlinear constraints (2.1) are

equivalent to

s ≥ min {n ∈ N : P(Ab|n, λ, µ, α) ≤ min{ψ1, α · ψ2}} . (2.3)

Define sk as the minimum number of servers needed to satisfy (2.3) for arrival rate λ = k. To

address the problem of determining the number of in-house and external agents to use, we formulate

the problem as a two-stage SIP. For each t ∈ T , let xt be the number of scheduled in-house agents

and bt the number of co-sourced agents placed on call. Note that xt and bt are first-stage decisions

made prior to the realization of the arrival rates λt. For convenience, we denote the vector of first-

stage decisions by x = (x1, . . . , xT , b1, . . . , bT ). The number of activated on-call agents, given the

arrival rate realization λt, will be denoted by the recourse variables yt
λt . The call center’s problem

of minimizing the expected total staffing costs, subject to QoS constraints, is formulated as the

following SIP:

min
∑

t∈T

(chx
t + cob

t) + E(Q(x,λ)) (2.4a)

s.t. xt ∈ Z+, b
t ∈ Z+, t ∈ T (2.4b)

where ch is the call center’s in-house per-period, per-agent cost rate, and for each ω ∈ Ω,

Q(x,λ(ω)) = min
∑

t∈T

cay
t
λt(ω) (2.5a)

s.t. xt + ytλt(ω) ≥ sλt(ω), t ∈ T (2.5b)

ytλt(ω) ≤ bt, t ∈ T (2.5c)

ytλt(ω) ∈ Z+, t ∈ T . (2.5d)
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The objective function (2.4a) represents the cost of setting in-house staffing and on-call levels

plus the expected cost of activated servers. Constraints (2.5b) guarantee that the QoS requirements

are met for each realization, and constraints (2.5c) ensure that the number of activated, co-sourced

agents does not exceed the number reserved. Equivalently, formulation (2.4) can be expressed in

its extensive form

min
∑

t∈T

(chx
t + cob

t) +
∑

t∈T

∑

k∈Λt

cap
t
ky

t
k (2.6a)

s.t. xt + ytk ≥ sk, t ∈ T , k ∈ Λt (2.6b)

ytk ≤ bt, t ∈ T , k ∈ Λt (2.6c)

xt ∈ Z+, b
t ∈ Z+, y

t
k ∈ Z+, t ∈ T , k ∈ Λt (2.6d)

The objective function (2.6a) represents the expected total staffing cost over the contract horizon.

Constraints (2.6b) ensure that the QoS constraints are met for all realizations, while constraints

(2.6c) guarantee that the number of activated, co-sourced agents does not exceed the number

reserved. It is important to note that, although the planning horizon is comprised of multiple

time periods, it lacks dependence between recourse decisions and future time periods. This lack of

dependence allows for the formulation of a two-stage stochastic program, in lieu of a multi-stage

formulation.

Next, we examine the optimal staffing levels for model (2.6). We begin by analyzing the case

of a single-period problem in which formulation (2.6) simplifies to

min z(x, b, y) = chx+ cob+
∑

k∈Λ

capkyk (2.7a)

s.t. x+ yk ≥ sk, k ∈ Λ, (2.7b)

yk ≤ b, k ∈ Λ, (2.7c)

x ∈ Z+, b ∈ Z+, yk ∈ Z+, k ∈ Λ. (2.7d)

We assume that Λ = {λ1, . . . , λK} is completely ordered so that λi < λi+1, i = 1, . . . ,K − 1. Note

that this also implies sλi
≤ sλi+1

, as the QoS measures are assumed to be nondecreasing in the

arrival rate. We also let sk ≡ sλk
and pk ≡ pλk

for notational convenience. While we seek the

optimal first-stage and recourse decisions that jointly minimize z(x, b, y), one can first consider the

optimal capacity and recourse decisions for a fixed in-house staffing level. Lemma 2.1 characterizes

the optimal decisions b and y, given some fixed staffing level.
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Lemma 2.1 Given first-stage staffing levels x ≤ sK , the optimal single-period numbers of on-call

and activated agents are respectively given by b∗(x) = sK − x and y∗k(x) = max{sk − x, 0}.

Lemma 2.1 states that, given a staffing level, the optimal co-sourcing decisions are the smallest

decisions that satisfy constraints (2.7b) and (2.7c). Thus z∗(x), the optimal objective value as a

function of the in-house staffing level, is given by

z∗(x) = chx+ co(sK − x) +
∑

k≤K

ca pk max{sk − x, 0}.

Thus, for n ∈ {1, . . . ,K − 1} and x ∈ [sn, sn+1), the marginal cost of increasing the staffing level

by one in-house agent is

∆(x) := z∗(x+ 1)− z∗(x) = ch −

(
co + ca

∑

k>n

pk

)
. (2.8)

Lemma 2.2 The optimal single-period, in-house staffing level x∗ that minimizes z∗(x) is given by

x∗ =





max

{
sk ∈ Z+ : co + ca

∑
i>k

pi ≥ ch

}
, ch < co + ca,

0, ch ≥ co + ca.

(2.9)

Proof. When ch ≥ co + ca, it is clear that the marginal cost of increasing the in-house staffing

level, ∆(x), is nonnegative for x ∈ {0, . . . , sK}; therefore, it is never beneficial to increase x. For

the case when ch < co + ca, ∆(x) ≤ 0 for x ∈ [sn, sn+1), as long as

co + ca
∑

n<k≤K

pk > ch.

If co + ca
∑

k>n pk < ch, the marginal cost is positive for all n′ ≥ n. As the marginal cost remains

constant on the intervals [sn, sn+1), this sign change in ∆ must occur where x = sk for some

k ∈ {1, . . . ,K}.

Lemmas 2.1 and 2.2 characterize the optimal solution when there is only a single time period.

We note here that, if outsourcing is cheaper than staffing with in-house agents, co-sourcing is

never optimal in the single-period problem; however, co-sourcing can be optimal when the sum of

the holding and activation costs exceeds the in-house cost. While the latter result might appear

counterintuitive on first glance, it should be noted that the activation cost is not incurred unless

the arrival rate warrants the addition of an on-call agent. Proposition 2.1 extends this result to the

multi-period problem given by formulation (2.6).
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Proposition 2.1 The optimal first stage solutions xt∗ to formulation (2.6) are

xt∗ =





max

{
stk :

(
ca

∑
j>k,j∈Λt

ptj + co

)
≥ ch

}
, ch < co + ca,

0, ch ≥ co + ca.

(2.10)

Proof. Because there are no decision variables that link the constraints between periods, the

problem can be decomposed into T subproblems, each of which takes the form of (2.7) with Λ = Λt

for all t. The result then follows by Lemma 2.2.

2.2.2 Contractor’s Pricing Problem

It is assumed that the contractor does not precisely know the call center’s in-house cost rate

or forecasted arrival rates (i.e., the contractor’s information is both incomplete and imperfect).

Therefore, the contractor faces the problem of setting contract prices that maximize its expected

revenue (or profits) under information asymmetry and the inherent stochasticity of the arrival rates.

This problem can be viewed as a leader-follower game in which the contractor acts as the leader,

and the call center acts as the follower.

To formulate the problem, we assume that for each period t the arrival rate forecast of λt origi-

nates from a distribution function Fλt that is parameterized by some vector θt (that is, Fλt(·;θt)).

Moreover, we assume that the contractor knows the parametric family {Fλt(·; θ)}, but not the

precise value of θt. Specifically, it is assumed that

(
ch,θ

1,θ2, . . . ,θT
)
= (ch,θ)

is a random vector with known distribution function G and support Ξ = Ξc×Ξθ, where Ξc and Ξθ

are the supports for ch and θ, respectively.

The contractor’s random revenue, R, is the sum of holding costs and conditional expected

activation costs given by

R(c; (ch,θ)) =
∑

t∈T

bt(c; (ch,θ))co +
∑

k∈Λ(θt)

ptk(θ)y
t
k(c; (ch,θ)), (2.11)

where c = (co, ca) are the price levels set by the contractor, bt(c; (ch,θ)) and ytk(c; (ch,θ)) are

solutions to (2.6) with holding cost ch and, for each t ∈ T , λt is distributed by Fλt(·;θt),
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and ptk(θ) and Λ(θt) are the mass function and support of λt induced by Fλt(·;θt), respectively.

Thus, in this formulation, the contractor seeks to maximize the expected revenue,

EG(R(c)) =

∫

Ξ



∑

t∈T

bt(c; ξ)co +
∑

k∈Λ(ξt
2
)

ptk(ξ2)y
t
k(c; ξ)ca


 dG(ξ), (2.12)

by selecting the holding and activation costs co and ca where ξ = (ξ1, ξ2) for ξ1 ∈ Ξc and ξ2 ∈ Ξθ.

Within this framework, the contractor first sets the price levels co and ca, and subsequently,

the call center sets their optimal staffing levels using formulation (2.6). It is assumed that, if the

follower can choose between multiple decisions, each of which minimize their expected costs, then

the decision that most benefits the leader will be chosen. It is well known that leader-follower

games can be formulated as bilevel programming problems [24]. Therefore, the optimal contract

pricing problem can be stated as follows:

max EG (R(c)) (2.13a)

s.t. co ≥ 0, ca ≥ 0, (2.13b)

where, for each ξ = (ξ1, ξ2) ∈ Ξ and c ≥ 0, ytk(c; ξ) and b
t(c; ξ) solve

min
∑

t∈T

cob
t(c; ξ) + ξ1 x

t(c; ξ) +
∑

k∈Λ(ξt
2
)

ptk(ξ2)cay
t
k(c; ξ) (2.14a)

s.t. − xt(c; ξ)− ytk(c; ξ) ≤ −sk, t ∈ T , k ∈ Λ(ξt2), (2.14b)

ytk(c; ξ) − bt(c; ξ) ≤ 0, t ∈ T , k ∈ Λt(ξt2), (2.14c)

xt(c; ξ) ∈ Z+, b
t(c; ξ) ∈ Z+, y

t
k(c; ξ) ∈ Z+, t ∈ T , k ∈ Λt(ξt2). (2.14d)

2.2.3 Profit-Based Objective

When the contractor’s operation is substantially larger than that of the call center, it is reasonable

to treat the contractor’s pool of agents as infinite, thereby justifying a revenue-based objective.

However, in reality, the contractor’s resources are also constrained; consequently, the marginal

labor costs associated with a particular call center contract can be substantial. Furthermore, the

contractor may not have sufficient available capacity to satisfy the required activations of the call

center; hence, we also consider a certain type of service-level agreement (SLA). Specifically, we

assume that for each agent the contractor is unable to provide (per period), it must pay a fixed

cost r (r > 0).
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If the number of agents to be activated in a time period t ∈ T is yt, and the number of servers

that are available by the contractor is ỹt (ỹt < yt), then the shortfall of servers St is given by

St = yt − ỹt. Thus, in any time period, the contractor owes the call center a fee, due to the SLA,

of rSt, where St is a random variable with finite support {0, . . . , bt}. Additionally, the contractor

can increase its period t staffing level by an amount zt at a per-agent, per-period cost of cz. Thus,

the contractor’s profit Π is given by its revenue R less its costs C, where R is defined in (2.11) and

C is given by

C(c; (ch, θ)) =
∑

t∈T

czz
t + rSt. (2.15)

Hence,

EG(Π(c)) = EG(R(c)− C(c)) = EG(R(c)) −
∑

t∈T

czz
t − rEG(S

t|zt, yt(c; ξ)), (2.16)

where the exact form of EG(S
t|zt, yt(c; ξ)) depends on the contractor’s particular staffing, schedul-

ing, and server demand considerations. We do not impose any assumptions on the functional form

of EG(S
t|zt, yt(c; ξ)). Pragmatically, it is only required that the expectation of St, conditioned on

ξ ∈ Ξ, be computationally tractable.

2.3 REFORMULATING THE PRICING PROBLEM

Solving the bilevel problem (2.13) is nontrivial using either the revenue- or profit-based objective,

so we first set out to obtain lower and upper bounds on the contractor’s expected revenues. These

bounds help the contractor determine whether or not it may be worthwhile to take on certain call

center clients. For the remainder of the chapter, we assume that ch and θ are independent random

elements with distributions Gc and Gθ, respectively. Proposition 2.2 provides lower and upper

bounds on the leader’s optimal objective function value.

Proposition 2.2 Let z∗L denote the optimal objective value of the contract pricing problem. Then,

κ c̄h ≤ z∗L ≤ κEGc(ch) (2.17)

where κ = EGθ

(∑
t∈T max

{
sk : k ∈ Λ(θt)

})
and c̄h := min{ch : ch ∈ Ξc}.

Proof. We will first establish the upper bound of (2.17). Let R(c; ξ) be the value of the leader’s

objective function evaluated at c = (co, ca), ξ = (ξ1, ξ2) ∈ Ξ, and z∗F (c; ξ) be the follower’s optimal
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objective function value for the same arguments. By comparing the objective functions of the leader

and follower, it is seen that

R(c; ξ) = z∗F (c; ξ) −
∑

t∈T

ξ1x
t∗(c; ξ) ≤ z∗F (c; ξ), (2.18)

where xt∗(c; ξ) are the optimal in-house decisions corresponding to z∗F (c; ξ). Note that for all co

and ca, the decision to staff entirely in-house is feasible. Therefore,

z∗F (c; ξ) ≤ ξ1
∑

t∈T

max{sk : k ∈ Λ(ξt2)}, (2.19)

where the right-hand side of (2.19) corresponds to the cost of staffing entirely in-house. Combining

(2.18) and (2.19) and taking the expectation of each side of the resulting inequality yields

EG(R(c)) ≤ EG

(
ch
∑

t∈T

max
{
sk : k ∈ Λ(θt)

}
)

= κEGc(ch), (2.20)

where the equality holds due to the independence of ch and θ. As (2.20) holds for any c ≥ 0, it

also holds for c∗ ∈ argmax {c ≥ 0 : EG(R(c))}. Therefore,

z∗L = EG(R(c
∗)) ≤ κEGc(ch).

Next, to prove the lower bound, note that if the leader sets the cost at c = (c̄h, 0), then it is

optimal for the follower to outsource entirely for any scenario ξ ∈ Ξ (as established in Proposition

2.1). Hence,
∑

t∈T

ξ1x
t∗((c̄h, 0); ξ) = 0, ξ = (ξ1, ξ2) ∈ Ξ,

which implies

R((c̄h, 0); ξ) = z∗F ((c̄h, 0); ξ) = c̄h
∑

t∈T

max{sk : k ∈ Λ(ξt2)}. (2.21)

Taking the expectation of both sides of (2.21) shows that

EG[R((c̄h, 0))] = κ c̄h ≤ max
c≥0

EG[R(c)] = z∗L,

where the equality follows directly, and the inequality holds since c̄h is a feasible solution.

Corollary 2.1 If Ξc = {ch}, the lower and upper bounds of (2.17) are tight and achieved at the

point (c∗o, c
∗
a) = (ch, 0).
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Corollary 2.1 asserts that, if the contractor knows with certainty ch, then it is optimal to set the

on-call cost rate so that it matches the in-house rate, and to set the activation cost rate to zero. For

this case, the follower chooses between two equal-cost strategies: (a) use in-house agents exclusively,

or (b) use outsourced agents exclusively. This setting makes it clear that some assumption must

be made regarding the call center’s behavior when faced with multiple optimal solutions. Our

model assumes that the follower chooses a cost-minimizing strategy that most benefits the leader

(namely option (b)). This assumption is realistic in cases where a company decides that outsourcing

their call center simplifies their internal operations, or that outsourcing reduces their overhead (in

turn leading to indirect cost savings). Additionally, we note that while Proposition 2.2 is given in

terms of the revenue-based objective, it readily extends to the profit-based objective by taking the

lower bound to be κc̄h − EG(C(c̄h, 0)) and leaving the upper bound unchanged, or taking it to be

κEGc(ch)−minc EG(C(c)), noting that computation of the latter may be nontrivial.

In order to solve the optimal contract pricing problem when ch is not constant, we must solve

formulation (2.13) – a quadratic, mixed-integer bilevel program in which each evaluation of the

objective function requires the solution of a Lebesgue integral. If the support Ξ is at most countable,

it is clear that (2.12) reduces to a weighted sum; otherwise, it can be numerically approximated

by sampling methods. In either case, we can consider the follower’s problem, given a particular

scenario ξ ∈ Ξ. Proposition 2.3 establishes that the feasible region of the subproblem, for each

scenario ξ, is an integral polyhedron.

Proposition 2.3 For any scenario ξ, the set P (ξ) := {x(ξ) : A(ξ)x(ξ) ≤ d(ξ)} is an integral

polyhedron, where x(ξ) is the vector of the subset of follower’s decisions corresponding to scenario

ξ ∈ Ξ and A(ξ)x(ξ) ≤ d(ξ) corresponds to the constraint sets (2.14b) and (2.14c).

Proof. For notational convenience, we suppress the dependence on ξ. First, we note that P

is nonempty, as the decision to staff entirely in-house is feasible for xt ≥ maxk∈Λt{sk}. We note

that the right-hand side vector d is integral, as it is composed of the integer threshold values sk and

zeroes. Therefore, it suffices to show that the matrix A is totally unimodular. Let the columns of

A be ordered so that the first T columns correspond to the coefficients of the decision variables xt,

the next N :=
∑

t∈T |Λt| columns correspond to the coefficients of each ytk, and the final T columns

correspond to the coefficients of bt. Next, for any subset of the columns J ⊂ {1, . . . , 2T + N} let

J1 and J2 partition J such that J1 := J ∩ {1, . . . , T} and J2 := J ∩ {T + 1, . . . , 2T +N}. We note
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that for any row i corresponding to a constraint given by (2.14b) that

∑

j∈J1

aij ∈ {−1, 0} and
∑

j∈J2

aij ∈ {−1, 0},

as there is at most one non-zero entry in the columns of J1 or J2 in row i. Therefore,


∑

j∈J1

aij −
∑

j∈J2

aij


 ∈ {−1, 0, 1},

from which it can be discerned that
∣∣∣∣∣∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣∣∣∣∣∣
≤ 1. (2.22)

Next, for any row i corresponding to a constraint given by (2.14c), we have that aij = 0 for all

j ∈ J1 and that there are no more than two non-zero entries in the columns of J2 within row i.

However, these non-zero entries cannot have the same sign; therefore,

∑

j∈J1

aij = 0 and
∑

j∈J2

aij ∈ {−1, 0},

again implying inequality (2.22). Then by Ghouila-Houri [36], the matrix A is totally unimodular;

hence, it follows that P is integral (see Theorem 2 of [41]).

Proposition 2.3 reveals that the linear relaxation of the follower’s subproblem has an integral

optimal solution; therefore, the optimal solution to the linear programming (LP) dual of the relaxed

follower’s subproblem yields an optimal objective value that is equal to the follower’s original

subproblem. Define u(ξ2) and v(ξ2) as the vectors of dual variables corresponding to constraint

sets (2.14b) and (2.14c), respectively. Then the dual of the follower’s subproblem, for fixed leader’s

decisions (co, ca), is

max
∑

t∈T

∑

k∈Λ(ξt
2
)

sku
t
k(ξ2) (2.23a)

s.t.
∑

k∈Λ(ξt
2
)

utk(ξ2) ≤ ξ1, t ∈ T , (2.23b)

∑

k∈Λ(ξt
2
)

vtk(ξ2) ≤ co, t ∈ T , (2.23c)

utk(ξ2)− vtk(ξ2) ≤ ptk(ξ2)ca, t ∈ T , k ∈ Λ(ξt2), (2.23d)

utk(ξ2) ≥ 0, vtk(ξ2) ≥ 0, t ∈ T , k ∈ Λ(ξt2). (2.23e)
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Additionally, if Ξ is finite, we can represent Ξ by {(ch,θ)1, (ch,θ)2, . . . , (ch,θ)N}, for N = |Ξ|. By

utilizing (2.23), Proposition 2.3, and strong duality, we arrive at the main result of this section,

namely Theorem 2.1. In what follows, let N = {1, 2, . . . , N} and qi = P
(
(ch,θ) = (ch,θ)i

)
.

Theorem 2.1 The values c∗o and c∗a that solve the quadratically-constrained linear program

max
∑

i∈N

qi


∑

t∈T

−ch(i)x
t(i) +

∑

k∈Λt(i)

sk(i)u
t
k(i)


 (2.24a)

s.t. xt(i) + ytk(i) ≥ sk, t ∈ T , i ∈ N , k ∈ Λt(i), (2.24b)

ytk(i) ≤ bt(i), t ∈ T , i ∈ N , k ∈ Λt(i), (2.24c)
∑

k∈Λt(i)

utk(i) ≤ ch(i), t ∈ T , i ∈ N , (2.24d)

∑

k∈Λt(i)

vtk(i) ≤ co, t ∈ T , i ∈ N , (2.24e)

utk(i)− vtk(i) ≤ ptk(i)ca, t ∈ T , i ∈ N , k ∈ Λt(i), (2.24f)
∑

t∈T

cob
t(i) + ch(i)x

t(i)

+
∑

t∈T

∑

k∈Λt(i)

pk(i)ca y
t
k(i) − sku

t
k(i) = 0, i ∈ N , (2.24g)

co, ca, x
t(i), ytk(i), b

t(i), utk(i), v
t
k(i) ≥ 0, t ∈ T , i ∈ N , k ∈ Λt(i), (2.24h)

are the decisions that maximize the contractor’s revenue in formulation (2.13) – (2.14).

Proof. The constraints (2.24b) and (2.24c) guarantee that the follower’s subproblems are

each primal feasible, and constraints (2.24d) – (2.24f) ensure dual feasibility. By strong duality, at

optimality, constraints (2.24g) must hold, or equivalently, for each i ∈ N

∑

t∈T

cob
t(i) +

∑

k∈Λt(i)

pk(i)cay
t
k(i) =

∑

t∈T

−ch(i)x
t(i) +

∑

k∈Λt(i)

stk(i)u
t
k(i). (2.25)

It is seen that the expectation of the left-hand side of (2.25), with respect to the distribution

{qi : i ∈ N}, is simply the leader’s objective function; therefore, the quadratic objective function

(2.13) can be replaced with the expected value of the right-hand side of (2.25), and the result is

proved.

Theorem 2.1 shows that solving the nonlinear, mixed-integer, bilevel formulation (2.13) – (2.14)

can be reduced to solving a quadratically-constrained, linear program with N quadratic equality

constraints which are nonconvex. Global optimization techniques can be used to solve this problem
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directly [12]. However, because general purpose global optimization solvers do not exploit the

particular constraint structure of a formulation, they are, in general, too computationally expensive

to utilize on large-scale problems. In our case, the number of decision variables in the formulations

for our pricing problem grow proportional to the product of the cardinality of the sets T ,N , and

Λt(i). Therefore, even for a small call center (needing 20 or fewer servers per period), considering

half-day shifts over a week-long horizon, and sampling only N = 100 parameter realizations, the

number of decision variables in the formulation given by Theorem 2.1 is over 85,000, making it

prohibitively large for standard global optimization techniques. For these reasons, in our numerical

studies, we exploit the result of Proposition 2.1 to solve the problem (as formulated in (2.13))

directly.

2.4 NUMERICAL STUDY

In this section, we provide a numerical study to illustrate the usefulness and tractability of the

staffing and contract pricing models. These illustrations make use of publicly available data orig-

inating from a telephone call center of an anonymous bank in Israel [37]. These data contain the

archives of all calls placed to the call center in 1999. The bank’s call center is typically staffed

159 hours per week, which we partition into 318 30-minute periods. From the arrival times, arrival

counts were tallied for each time period in each week. The arrival rates for the subsequent week

were then forecasted using the procedure described in Gans et al. [31]. Specifically, (on a square-

root scale) the arrival rate process is treated as a hidden, Gaussian AR(1) process. The Gaussian

forecasts were then truncated to ensure nonnegativity and contain all values within four standard

deviations of their respective means. Figure 1 depicts the square-root scaled arrival rate forecasts

for the first day in the forecasted horizon (whiskers depict the interquartile range). It should be

noted that this call center is relatively small and routinely requires fewer than five agents to meet

its demand.

While the supports of the forecasted arrival rates are continuous, this is not problematic, as

(assuming the arrival rates are bounded) there exists a discretization leading to an exact refor-

mulation. In particular, for period t we assume that the arrival rates are bounded above by four

standard deviations above their mean, we call this value u(t), i.e., u(t) = E(λt)+4
√

Var(λt). Hence,

we consider the support to be Λt = [0, u(t)]. Thus, for a fixed set of QoS constraints, the number
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Figure 1: Square-root scale arrival rate forecasts.

of servers needed to satisfy the constraints in time t is contained in the set ∆t = {1, . . . , su(t)},

where su(t) is the minimum number of servers needed to satisfy the QoS requirements for arrival

rate λt = u(t). Next, we determine the probability of needing exactly k servers for each k ∈ ∆t.

We do this numerically, proceeding backwards from u(t). We find the minimum λ ∈ Λt, such that

su(t) − 1 servers are insufficient to satisfy the QoS constraints, call this value u−1(t). Then, the

probability that exactly su(t) servers are needed is given by P(λt ∈ [u−1(t), u(t)]). We then proceed

to determine the minimum λ ∈ Λt such that su(t) − 2 servers are insufficient to satisfy the QoS

constraints, call this value u−2(t), then the probability that exactly su(t) − 1 servers are needed

is given by P(λt ∈ [u−2(t), u−1(t)]), etc. Generally, using the notation of Section 2.2.1, for each

k ∈ ∆t, the probability that k servers are needed (ptk) is given by

ptk = P(λt ∈ {λ ∈ Λt : sλ = k}).

The customer patience parameter (α), was approximated based on (2.2), the theoretical relationship

between steady-state expected delay and steady-state probability of abandonment, using

α ≈
Fraction of calls abandoned

Average wait time
.
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Lastly, the service rate (µ) was taken to be the reciprocal of the average service time. All problem

instances were coded within the MATLAB R2016a computing environment and executed on a

personal computer with a 3.50 GHz processor and 8 GB of RAM.

2.4.1 Staffing Level Problem

In order to demonstrate the usefulness of the staffing level model with recourse, we compare its

performance to that of other well-known staffing rules. The staffing rules only differ by their

prescription of in-house staffing levels; that is, each rule prescribes an in-house staffing level and

then subsequently optimally utilizes recourse given that fixed in-house staffing level (optimal second-

stage decisions, but possibly suboptimal first-stage decisions). For each staffing rule the in-house

staffing level is determined as follows:

• Worst-case: This rule staffs in-house agents to meet the QoS requirements for the worst-case

(largest) arrival rate realization;

• Safety Staffing: Motivated by heavy traffic approximations, this rule staffs in-house agents

according to the (expected) offered load, as well as a safety level. Specifically, for service grade

parameter β (β ∈ R) and service rate µ, the staffing level in period t is

st =
E(λt)
µ

+ β

√
E(λt)
µ

;

• Expected Value: This rule staffs in-house agents to meet the QoS requirements for the mean

arrival rate realization;

• Stochastic: This rule uses our optimal in-house staffing levels, {xt : t ∈ T }, obtained by

solving problem (2.6).

For each staffing rule, after the in-house staffing level is determined, the number of on-call

and activated servers is determined (optimally) in accordance with Lemma 2.1. It should be noted,

however, that because the Worst-case staffing rule staffs to meet the largest arrival rate realization,

it never requires the use of recourse and only utilizes in-house agents.

In the first numerical example, we illustrate regimes in which our approach results in significant

cost savings as compared to the alternative staffing rules. To begin, we estimate the arrival rate

distributions, service rate, and patience parameter from the bank’s call center data. The mean

service and patience times were estimated to be 185.18 and 121.27 seconds, respectively. The
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remaining model parameters were selected as follows: ψ1 = 0.05, ψ2 > 15, ch = 6, β = 1.75, and ca

and c0 were varied between 1 and 6 such that ca+c0 = 7. The QoS thresholds were selected so that

the threshold on the abandonment probability imposed the dominating constraint, cost rates were

selected so that co-sourcing is optimal, and β was optimized for ψ1, the probability of abandonment

[33]. Figure 2 depicts the total expected weekly staffing cost under the staffing rules.

1 2 3 4 5 6Activation Cost (ca)500055006000650070007500
T ot alS t aff i ngC ost Expected ValueSafety StaffingStochasticWorstbcase

Figure 2: Comparison of one-week staffing costs for varied c0 and ca.

With the exception of the Worst-case staffing rule, the staffing costs intuitively decrease as the

holding cost decreases and the activation cost increases. In the case of Safety Staffing, we see that

the cost is relatively high across all parameter values. This high cost is due to the fact that the

Safety Staffing rule frequently overstaffs (when compared to the Stochastic staffing rule) in-house

agents; therefore, it is not able to fully exploit the cost savings that are possible from maintaining a

lower average staffing level and utilizing recourse decisions to staff for higher-than-expected arrival

rates as needed. Additionally, as guaranteed by our problem formulation, the Stochastic staffing

rule has the minimum expected cost across all values of ca and c0. However, the relative cost savings

moving from the Expected Value staffing rule to the Stochastic staffing rule is minimal (<2% in all

cases). Generally, in the setting where the number of agents required is very small, and the arrivals

are relatively stable (low-variance forecasts), our staffing rule provides only minimal benefit over

the simpler Expected Value staffing rule. However, as the mean and variance of arrival rates
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increase, our optimization framework provides significant savings. Figure 3 depicts the same setting

but with the arrival rate distributions scaled so that their means are twice as large and their

variances are five times larger.

1 2 3 4 5 6Activation Cost (ca)4 .55
5 .56
6 .57
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Figure 3: Comparison of one-week staffing costs for varied c0 and ca (scaled parameters).

Additionally, the service rate is decreased to one fifth its initial value. As a consequence, the

minimum number of required agents is generally much larger, and harder to predict (due to the

higher variance). This provides a setting in which the recourse decisions are more meaningful

and consequently the Stochastic staffing rule can provide savings of nearly 15%. It should also be

noted that, as ca increases (and c0 correspondingly decreases), the Stochastic staffing rule provides

increasing benefit.

In our next illustration, we investigate the value of recourse and the trade off between cost and

performance. We consider again the bank call center and the scaled version. For this experiment,

however, we fix the costs to ca = 6 and c0 = 1 and vary ψ1 from 0.05 to 0.25 in increments of 0.01.

In each case, we fix the value of β so that it corresponds with the probability of abandonment ψ1.

Figure 4 depicts the probability of violating the QoS constraints for the Expected Value and Safety

Staffing rules if recourse is not utilized. The Safety Staffing rule provides a high probability of

satisfying the QoS constraints, but the Expected Value rule fails to meet the QoS requirements
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30-40% of the time. These graphs illustrate the benefits of recourse and flexible staffing on call

center performance. Specifically, Safety Staffing without recourse is not cost effective, and Expected

Value staffing without recourse performs poorly.

0 5 10 15 20 25Time (0:00½24:00)00 .050 .10 .150 .20 .250 .30 .350 .40 .450 .5
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(a) Probability of constraint violation (ψ1 = 0.05).
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(b) Probability of constraint violation (ψ1 = 0.05).

Figure 4: Probability of violating QoS constraints for unscaled (a) and scaled (b) call centers.

Figures 5 and 6, depict the staffing costs for the unscaled and scaled call centers respectively. In

each figure, the in-house and total staffing costs are plotted side-by-side. In all cases, the Stochastic

rule has lower in-house staffing costs (and correspondingly staffing levels) than all other methods

intuitively suggesting that if recourse is available, typical staffing methods will lead to chronic

overstaffing. Additionally, we see that the savings due to the Stochastic rule are minimal in the

unscaled call center, but around 15% in the scaled case. Lastly, we note that the percent savings

are reasonably uniform over all values of ψ1.

2.4.2 Joint Staffing-Pricing Problem

We next consider the contractor’s problem of setting revenue-maximizing cost rates co and ca. In

what follows, let U(a, b) denote a continuous uniform random variable on [a, b] and N(c, d) denote

a normally distributed random variable with mean c and variance d. For each t ∈ T , we assume

that λt ∼ N(µt, σ
2
t ), where µt and σ

2
t are, respectively, the mean and variance of λt estimated from
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(a) In-house staffing cost.

0 .05 0 .1 0 .15 0 .2 0 .25Probability of Abandonment Threshold ( 1)25003000350040004500500055006000650070007500
T ot alS t aff i ngC ost

Expected ValueSafety StaffingStochasticWorst»case

(b) Total staffing cost.

Figure 5: Comparison of one-week staffing cost for varied ψ1 on the unscaled call center (ψ1).
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(a) In-house Staffing Cost.
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(b) Total staffing cost.

Figure 6: Comparison of one-week staffing cost for varied ψ1 on the scaled call center (ψ1).
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the call center data. The contractor’s uncertainty about the call center’s cost rate and arrival rate

forecasts is captured by letting ch ∼ U(4, 8) and λt ∼ N(θt, σ2t ), where θ
t ∼ U(0.8µt, 1.2µt) for each

time period t. The average patience and service times were likewise estimated from the data.

Using formulation (2.13), when costs c0 and ca are fixed, the lower-level problem can be solved

by determining the call-centers optimal staffing levels according to Proposition 2.1. Utilizing this

fact, we determine the revenue-maximizing cost rates by solving formulation (2.13) on a discrete

set of values for co and ca. We begin by selecting an appropriate range of values for each. By

Proposition 2.1, if co > max{ch : ch ∈ Ξc}, then the contractor’s revenue must be zero; hence, the

feasible range for co is [0, 8]. While a similar upper bound can be derived for ca, it may not be tight.

Based on the results of a numerical experiment, it was found that an appropriate feasible range

for ca is [0, 10]. Starting from 0, we increased the feasible set of values in increments of 0.01 up

to the upper bound of the range so that co ∈ {0.00, 0.01, . . . , 8.00} and ca ∈ {0.00, 0.01, . . . , 5.00}.

We sequentially sampled from the joint distribution of (ch,θ), solving formulation (2.13) after each

sample. That is, for the first problem, a single sample was drawn, and for each discrete value of

c0 and ca the optimal call center staffing levels were determined. Then the expected cost to the

call center, and the corresponding expected revenue for the contractor, were calculated. Lastly, the

pair of costs that maximize the revenue over that sample were determined. This same procedure

was then performed with two samples, then three samples, and so on. One benefit of this solution

procedure is that it can be easily implemented to solve large instances in a parallel fashion. That

is, given multiple computing resources, each machine can approximate the value of the contractor’s

objective function using any number of samples. Once the machines are stopped, the results can

be combined without requiring any intermediate communication. In addition to the revenue-based

objective function, we considered a profit-based objective function with the cost function

E(C(c)) = 0.5bt(c; ξ) + rEG(S
t|c),

where r = 1.5 and St|c, ξ ∼ Bin(yt(c; ξ), 0.05).

Figure 7 depicts the contractor’s estimated objective function values after drawing 1000 random

samples from the distribution of (ch,θ). By contrasting the revenue- and profit-based objective

functions, it is evident that the contractor’s costs play a substantial role in the optimal choice of

cost rates.

Figures 8 and 9, respectively, depict the optimal holding and activation costs after each new

sample is taken. It can be seen that the revenue-based objective function tends to place more value
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(b) Profit-based objective function values.

Figure 7: Leader’s objective function values (lighter shading indicates favorable performance).

on the holding cost than the activation cost and, in this particular instance, the optimal holding

and activation costs were co = 4.3 and ca = 0, respectively. On the other hand, the profit-based

objective yields an optimal holding cost of co = 4.0 and activation cost of ca = 4.2. The profit-based

optimal costs guarantee that co-sourcing is optimal for all possible realizations of ch, whereas the

revenue-based optimal costs would provide no revenue for ch < 4.3. Additionally, we note that

the nonzero activation cost reduces the overall revenue in the profit-based objective, but helps the

contractor to balance their costs by decreasing the overall utilization of their agents and increasing

the revenue whenever the agents are actually utilized. Lastly, we note that the optimal solutions

converged rapidly for both objective functions, but especially for the profit-based objective with

neither cost rate (c0 or ca) changing after 160 samples were taken.

2.5 CONCLUSIONS

We have considered the joint problem of contract pricing and staffing within the context of call

center co-sourcing. A leader-follower model was developed and formulated as a bilevel program in

which the lower-level is a stochastic integer program with recourse. The model assumes asymmetric

28



0 200 400 600 800 1000Number of Samples0123
4567
8910

O pti malH oldi ngC ost

(a) Optimal holding cost for revenue objective.
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Figure 8: Effect of sample size on the optimal holding cost.
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Figure 9: Effect of sample size on the optimal activation cost.
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information between the contractor and call center, as well as uncertainty in the call center’s arrival

rate forecasts. By exploiting the structure of the lower-level problem, namely its totally unimodular

constraint matrix, we demonstrated that the bilevel program can be reduced to a single-level linear

program with quadratic equality constraints. Additionally, we showed that the staffing problem

can be solved efficiently.

Our numerical study demonstrates that the use of co-sourcing and responsive staffing can lead

to a substantial cost reduction while maintaining the highest level of service quality for the chosen

performance parameters. For appropriately priced contracts, co-sourced staffing proves to be less

costly than square-root safety staffing while satisfying QoS requirements more reliably. From

a contract pricing standpoint, we showed that determining optimal, or near-optimal, prices is

computationally tractable for two-week time horizons. The contractor’s uncertainty about the call

center’s demand and operating costs was captured through a joint probability distribution, and

the pricing problem was shown to be stable, even when considering small sample sizes from that

distribution.

While our work here provides a foundation for co-sourced contracts and staffing, it also suggests

several avenues for future inquiry. One extension is to generalize the queueing model of the call

center to include multiple customer classes and multi-skilled call center agents. Doing so necessitates

the inclusion of routing considerations (e.g., high-priority classes must be handled in-house while

low-priority classes can be handled either in-house or by the contractor). Furthermore, we assumed

that in-house and contractor agents operate in an identical manner; however, this assumption is

impractical. It will be instructive in future work to consider a multi-skill model that accounts for

potential heterogeneity between these two agent pools, while incorporating service-level agreements

in the contract. Other potential research directions include the consideration of more general QoS

requirements (e.g., satisfying long-run performance goals rather than per-period goals), exploring

the impact of alternative contractor objective functions, as well as fluid and diffusion approximations

of the call center queueing model.

Finally, the model we presented here focused only a small subset of operational considerations

that are crucial to call center decision making. Although forecasting, shift scheduling, and rostering

are outside of the scope of this work, their inclusion would improve the realism and practicality of

our model. In particular, our framework relies on arrival rate forecasts and the ability to reliably

estimate the arrival rate at an arbitrary point in time. Therefore, it will be instructive to explore

the impact of estimation error on staffing and pricing decisions.
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3.0 MULTI-SYSTEM REPLACEMENT IN A SHARED ENVIRONMENT

3.1 INTRODUCTION

The emergence of low-cost, advanced sensing technologies and real-time condition-monitoring sys-

tems have led to increased interest in advanced maintenance planning strategies. Condition-based

maintenance (CBM) techniques utilize up-to-date condition information to make well-informed

maintenance decisions to achieve important objectives (e.g., minimize maintenance costs, maximize

revenue, or maximize system availability). For example, modern wind turbine systems use advanced

sensors to measure particle contamination levels in lubricating fluids, shaft torque, electrical dis-

charge, vibrations, acoustic emissions, torsional vibration, and many other signals of degradation

[109]. CBM provides an opportunity to exploit degradation measurements, or signals of degra-

dation, for system prognosis and intelligent maintenance decision making that increases system

uptime while reducing maintenance and operational costs.

Many large-scale systems that degrade stochastically over time are difficult to analyze in the

presence of dependencies, including stochastic, economic, and structural dependencies. Stochas-

tic dependencies are prevalent when integrated components, or systems, do not degrade (or fail)

independently. For example, within a single wind farm, wind turbines are exposed to common,

local weather conditions and, therefore, operate in a shared ambient environment. This exposure

to similar environmental conditions may lead to dependencies in the degradation sample paths of

individual wind turbines. Economic dependencies can be viewed as any financial linkages between

maintenance actions, e.g., exploitation of shared downtime or rented equipment. Finally, struc-

tural dependencies result when maintenance activities performed on one component, or subsystem,

require maintenance activities to occur on another component or subsystem. For instance, these

types of dependencies exist when a multi-component system is enclosed in a single machine, and

disassembly is required to repair or replace failed components.
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In this chapter, we consider the problem of determining optimal replacement strategies for

multiple, stochastically degrading systems that exhibit both stochastic and economic dependen-

cies. Within this context, we refer to multiple machines with similar characteristics operating in

close proximity to one another. The systems operate in a shared, exogenous environment that

evolves randomly over time and modulates the rates of degradation of each of the systems. The

systems, which are stochastically heterogenous, degrade monotonically until the cumulative level

of degradation reaches a threshold, or the system is replaced. The costs of maintaining this system

with replacements include a substantial fixed cost that is incurred when any maintenance action

is taken. Replacements may occur preventively (before failure) or reactively (in response to a

failure). Preventive replacements are less costly than reactive replacements. Finally, a downtime

cost is incurred whenever the system is taken off-line to perform replacements. Our objective is

obtain cost-minimizing replacement policies that account for preventive and reactive replacement

decisions, as well as downtime and fixed setup costs. To this end, we formulate a continuous-time,

infinite-horizon discounted Markov decision process (MDP) model, establish important proper-

ties of the cost function, reformulate the model using well-devised approximation techniques, and

customize an approximate dynamic programming (ADP) algorithm to obtain high-quality policies.

For well over five decades, maintenance optimization models have emerged in the applied prob-

ability and operations research communities. Many extensive surveys highlight some of the most

prevalent models for both single- and multi-component systems [5, 63, 72, 74, 85, 87, 89, 98, 102].

Most classical models consider single-component systems that operate in a static environment.

Furthermore, the majority of these models employ failure-based (as opposed to condition-based)

decision making. Recent emphasis on condition-based maintenance strategies has led to a stream

of research on degradation-based reliability of single-component systems. These strategies seek to

model degradation (or signals of degradation) as a stochastic process evolving in continuous time.

Some representative models consider degradation as a Brownian motion process [21, 34, 111], while

others assume that degradation is modulated by Markov or semi-Markov processes [48, 49, 50, 51].

Additionally, there exists a significant body of literature on non-condition-based policies for multi-

component systems, and surveys of this literature can be found in [23, 27, 69]. Recently, Ko and

Byon [52] use asymptotic theory to analytically derive the cost minimizing policy for a large-scale

system with finite condition states and independent and identically degrading components.

Over the past two decades, a modest body of literature has emerged for multi-component or

multi-system CBM. Marseguerra et al. [62] formulated a joint optimization model that seeks to
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maximize availability and net profit within a large-scale system with stochastic dependencies. Opti-

mal thresholds, beyond which preventive maintenance should be performed, are computed by Monte

Carlo simulation embedded within a genetic algorithm. Castanier et al. [18] considered a discrete-

time, series system with shared setup cost for inspection or replacement. The model’s decision

variables are thresholds on inspection and preventive, corrective, and opportunistic maintenance.

These thresholds are determined analytically for a two-component system that degrades in a static

environment. Bouvard et al. [17] studied a large-scale system with shared setup cost within the

context of commercial heavy vehicle maintenance. Rolling horizon procedures were developed that

incorporate component information, and dynamic, analytical maintenance intervals were obtained.

Tian and Liao [94] investigated policies similar to those in [18] for the general multi-component case

with multiple identical and independent components. Dual threshold policies, for which once any

component’s failure risk exceeds the first threshold, all components with failure risk over the second

threshold are replaced, were obtained numerically. Zhu et al. [113] considered a multi-component

system with non-identical, independently degrading components and large shared setup costs for

maintenance activities. They examined the case where the degradation paths are described by a

random coefficient model and developed a nested enumeration algorithm to simultaneously obtain

the optimal maintenance interval and optimal preventive maintenance control limits.

The model we present here differs from existing replacement models in that we consider large-

scale systems with condition-based maintenance, stochastic dependency (through a shared modu-

lating environment), economic dependency (through a shared setup cost), non-identical systems,

degradation modulated by an exogenous continuous-time stochastic process, and continuous degra-

dation sample paths. These model features present challenges for: (i) exact analysis of the the

structure of the value function and optimal policy; and (ii) numerical computation of optimal poli-

cies for particular problem instances. Those points notwithstanding, our model is significant, as the

gap between theory and practice of maintenance models is appreciable, and these realistic features

represent a step towards bridging that gap [25, 85]. In the general case of multiple systems, we

establish monotonicity of the value function in the cumulative degradation level for each environ-

ment state. Then, under mild conditions, it is shown that this monotonicity extends to the entire

state space. Additionally, this framework allows for analysis of the special single-system case for

which we show that optimal replacement policies are monotone on the entire state space. This

result partially resolves the conjecture of Ulukus et al. [97] when reactive replacements do not oc-

cur immediately. Subsequently, we exploit the monotonicity results of the value function to devise
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a tractable, approximate model with state- and action-space transformations and a customized,

basis-function approximation of the action-value function. The novel state space transformation

maps abstract degradation levels to probabilities that are easily interpreted. In addition to im-

proved interpretability, the action-value function can be more easily approximated using this new

state space. We believe this type of transformation is sufficiently general to find applicability in

a wide range of maintenance optimization problems. Finally, we provide a detailed computational

study to demonstrate the efficacy of the approximate model in producing near-optimal policies.

Specifically, we obtain policies that are nearly indistinguishable from the optimal policy in small-

scale instances, as well as policies that significantly outperform heuristics in large-scale instances.

To our knowledge, these techniques and algorithms are novel within the maintenance optimization

literature.

The remainder of the chapter is organized as follows. In Section 3.2, we describe the environment

process and its relationship to the degradation of the systems, and formulate a mathematical model

of the sequential decision process. Section 3.3 discusses attributes of the value function and the

optimal decision rule. In Section 3.4, we reformulate the problem using an approximate dynamic

programming (ADP) model and demonstrate the usefulness of this reformulation through numerical

examples in Section 3.5.

3.2 DEGRADATION MODEL AND PROBLEM FORMULATION

Consider a collection of n (n <∞) systems operating in a shared, exogenous environment. The

systems are assumed to begin operation in an as-good-as-new condition. The degradation rate of

each system is governed by the randomly evolving environment, which occupies one of finitely many

states at any point in time. Over time, each system accumulates degradation until it reaches its

own fixed, deterministic threshold, above which it is considered to be failed. For the ith system, we

denote this failure threshold by ξi (0 < ξi <∞), i = 1, . . . , n. In what follows, all random variables

are defined on a common, complete probability space (Ω,F ,P).

Let Z(t) denote the state of the environment at time t and Z ≡ {Z(t) : t ≥ 0} is the environment

process defined on the finite state space S = {1, . . . , ℓ}. For this model, it is assumed that Z evolves

as an S-valued, irreducible, continuous-time Markov chain (CTMC). The environment state j ∈ S

can be understood as an abstract classification of the exogenous factors that impact the degradation
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of each system. Specifically, whenever Z(t) = j ∈ S, the ith system degrades linearly at a rate rji .

Without loss of generality, it is assumed that, for each system, the degradation rates are positive,

finite and monotone increasing in the environment state, i.e., 0 < r1i < r2i < · · · < rℓi < ∞, for

i = 1, . . . , n. Denote by Xi(t) the cumulative degradation of system i at time t given by

Xi(t) = Xi(0) +

∫ t

0
r
Z(u)
i du, t ≥ 0, (3.1)

where Xi(0) denotes the initial degradation level of system i. Assuming Xi(0) = 0, and noting that

for each i ∫ t

0
r
Z(u)
i du <∞,

Xi(t) is well defined for each t ≥ 0. Moreover, as noted in [97], the non-negativity of the degradation

rates, {rji }, ensures that the sample paths of the degradation process X ≡ {Xi(t) : t ≥ 0} are

piecewise linear and monotone increasing in t.

Now, we introduce a Markov decision process (MDP) model to formulate the problem of opti-

mally replacing multiple systems in a shared environment. The objective is to minimize the sum

of the expected total discounted setup, replacement, and downtime costs over an infinite time hori-

zon. This model can be viewed as an extension of the MDP model presented in [97] for a single

system, with a minor variation in the costs and system dynamics. The state of the process is an

(n + 1)-dimensional vector of the form (x, j) – a realization of the joint process (X ,Z) in which

x = (x1, x2, . . . , xn) is the vector of the systems’ cumulative degradation levels, and j ∈ S denotes

the current state of the environment. Without loss of generality, we can scale the degradation

rates appropriately and assume that ξi = ξ for all i; therefore, the state space of the MDP model

is the set Γ ≡ [0, ξ]n × S. The set of feasible actions (or action space) is A = {0, 1}n where,

for a = (a1, . . . , an) ∈ A, ai = 0 corresponds to taking no action on the ith system, and ai = 1

corresponds to replacing system i. System replacements can be done preventively (before failure)

at a fixed cost cp, or reactively (after a failure) at a fixed cost cr. It is reasonable to assume that

cp < cr. In addition to the system replacement costs, a fixed cost c0 is assessed if any maintenance is

performed. In practice, this cost may account for equipment costs, crew wages, or travel expenses

associated with maintenance. Finally, a cost cd for the expected per period lost productivity is

assessed for each failed system that is inoperable, and we assume that all costs are non-negative

and bounded from above, i.e., c0, cp, cr, cd ∈ [0,∞).
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Because the environment process Z evolves as a CTMC on the finite state space S, we employ

the common strategy of uniformization (cf. Puterman [77]) and convert to a discrete-time Markov

chain (DTMC). Denote by Q = [qjk] the infinitesimal generator matrix of Z, and let qj be the total

transition rate out of state j, i.e.,

qj ≡ −qjj =
∑

k:k 6=j

qjk, j ∈ S.

Define a uniformization rate q ≥ max{qj : j ∈ S}. By uniformizing the environment process, the

system is inspected at exponentially-distributed intervals of time. We denote by Tm the length of

themth inter-inspection period, which is exponentially-distributed with rate q for eachm = 1, 2, . . ..

Denote the (random) degradation level, (random) environment state, and action taken at the mth

inspection time to be Xm = [Xi
m], Zm, and Am = [Ai

m], respectively. Similarly, denote the

(random) state at the mth period to be Sm = (Xm, Zm). For j, k ∈ S, define the transition

probabilities of the discretized environment process,

pjk = P(Zm+1 = k|Zm = j),

the probability that the environment transitions from state j to k during one inter-inspection period

given by

pjk =





qjk/q, k 6= j,

1− qj/q, k = j,

and let P = [pjk] be the transition probability matrix of the uniformized chain. Each transition

epoch of the uniformized process is then treated as an inspection time. Therefore, the minimum

inspection rate is dictated by the environment process, and the inspection times are linked to the

environment process through the embedded discrete-time Markov chain {Zn : n ≥ 0}.

Next, let Y j
i be the (random) one-step accumulated degradation of system i ∈ {1, 2, . . . , n}

while the environment is in state j ∈ S. The exponential length of the inter-inspection period

and the constant rate of degradation jointly imply that Y j
i is exponentially distributed with rate

parameter q/rji . That is,

F j
i (y) := P

(
Y j
i ≤ y

)
= P

(
rji Tm ≤ y

)
= 1− exp

(
−qy/rji

)
.
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For notational convenience, define the indicator function

Ii(x) =





1, xi ≥ ξ,

0, xi < ξ.

That is, Ii(x) indicates whether or not system i is failed in the degradation vector x. Therefore,

the expected one-step cost associated with state-action pair (s,a) is

c(s,a) ≡ cj(x,a) =





c0 +

n∑

i=1

[ai(1− Ii(x))cp + aiIi(x)cr + (1− ai)Ii(x)cd] , a 6= 0,

cd

n∑

i=1

Ii(x), a = 0.

(3.2)

For many applications, the downtime cost cd may depend on the length of the inter-inspection

period. Within our framework, this dependence is reflected by the fact that cd is a function of

the uniformization constant q; however, for notational convenience, we suppress this dependence

on q, as it is reasonable to assume that cd(q) is monotone nonincreasing in q. We discuss the

implications of this assumption at the end of Section 3.3. Inspections are assumed to be costless

and instantaneous. If the replacement action is taken, the degradation of that system ceases, and

the replacement occurs during the current period and ends just prior to the start of the next period.

These assumptions ensure that failures do not occur once preventive replacement is decided upon

and that the system begins the next period in as-good-as-new condition. All one-step costs are

incurred at the beginning of the period and discounted at rate α (0 < α < 1), where

α =
q

θ + q

for some continuous-time discount rate θ (0 < θ < ∞). The objective is to minimize the expected

total discounted setup, replacement and downtime costs over an infinite planning horizon. The

optimal expected total discounted cost, starting in state s = (x, j) and denoted by Vj(x), is given

as a solution to the Bellman optimality equations

Vj(x) = min
a∈A

{
cj(x,a) + α

ℓ∑

k=1

(∫ ∞

0
Vk
(
x′
)
qe−qtdt

)
pjk

}
, j ∈ S, (3.3)
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where x′ = [x′i] with

x′i =





min{ξ, xi + t rji }, ai = 0,

0, ai = 1.

It should be noted that this formulation does not force reactive replacements immediately upon

failure. This added flexibility allows the decision maker to pool replacements when appropriate,

thereby sharing the cost (c0) amongst multiple repairs.

In order to solve this problem by conventional MDP solution techniques, the state space must

first be discretized so that numerical methods can be applied (e.g., value iteration or policy iteration

[11, 42]). It is clear from this formulation that as n, the number of systems, grows large, the problem

will suffer from the curse of dimensionality. This occurs because the state space is an n-dimensional

hypercube, and the number of permissible actions is 2n. For example, with 50 systems and one

environment state, the number of feasible actions is approximately 1015, and discretizing the state

space into 1, 000 states per component yields 10100 states. For these reasons, we propose handling

this problem by approximate dynamic programming (ADP) methods. In particular, we customize

a state-action-reward-state-action (SARSA) algorithm with eligibility traces and basis function

approximation [76, 82]. Before doing so, we first provide some useful structural results that help

characterize an optimal policy.

3.3 STRUCTURAL RESULTS

In this section, we characterize the attributes of the cost function and optimal policy of the

MDP model presented in Section 3.2. We first consider the general, multiple system case before

presenting results for the special case of a single system.

3.3.1 Results for the General Case

The first result for n (n > 1) systems establishes the existence of a stationary optimal policy,

as well as the convergence of the standard value iteration algorithm.

Lemma 3.1 There exists an optimal, non-randomized stationary replacement policy, and the value

iteration algorithm converges to the optimal value.
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Proof. First note that the state space, Γ = [0, ξ]n × S, is Borel-measurable and the action

space, A = {0, 1}n, is finite. Additionally, the immediate costs are strictly positive and bounded,

and the problem is discounted. Therefore, the result follows immediately from Corollary 9.17.1 of

Bertsekas and Shreve [13].

For the state space Γ, define the binary relation (≤) as the standard component-wise inequality.

That is, for any two vectors s, s′ ∈ Γ ⊂ Rn+1, s ≤ s′ if and only if si ≤ s′i for each i = 1, . . . , n+1.

It can be verified that ≤ is a partial order on Γ and A; therefore, (Γ,≤) and (A,≤) are partially-

ordered sets (posets). Additionally, as formalized in Lemma 3.2, (Γ,≤) is a lattice (see Birkhoff

[15] for a detailed discussion of lattices).

Lemma 3.2 The partially ordered sets (Γ,≤) and (A,≤) are lattices.

Proof. For any pair of states s, s′ ∈ Γ, we have that

s̄ := (max{s1, s
′
1}, . . . ,max{sn+1, s

′
n+1}) ∈ Γ,

and is an upper bound for s and s′. Letting s̄′ = (s̄′1, . . . , s̄
′
n+1) be an arbitrary upper bound on

s, s′, it is seen that s̄′i ≥ si and s̄
′
i ≥ s′i. Hence, s̄

′
i ≥ max{si, s

′
i} for each i = 1, . . . , n+1. Therefore,

s̄′ ≥ s̄, which implies s ∨ s′ = s̄ ∈ Γ. Similarly, by component-wise minimization, s ∧ s′ ∈ Γ. The

proof that (A,≤) is a lattice proceeds in an identical fashion.

The notion of submodularity plays an important role in deriving our main results; therefore,

we formally define it next.

Definition 3.1 (Submodularity). A function f : A×B → R is said to be submodular on A×B if

f(a2, b2)− f(a2, b1) ≤ f(a1, b2)− f(a1, b1) (3.4)

for any a1, a2 ∈ A and b1, b2 ∈ B such that a1 ≤ a2 and b1 ≤ b2.

Submodularity is useful for characterizing structural properties in optimization problems. Here, we

restate an important result due to Topkis [95] as Theorem 3.1.

Theorem 3.1 (Topkis [95]). Let f : A × B → R be a submodular function on A × B, and let

(A,≤) and (B,≤) be lattices. Then g∗(b) = max {a′ ∈ argmina∈Af(a, b)} is nondecreasing in b.

For the results that follow, define the Q-function,

Q(s,a) ≡ Qj(x,a) := c(s,a) + αE (V (S1)|S0 = s,A0 = a) . (3.5)
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By Theorem 3.1, if it can be shown that Q is submodular on Γ×A, then the optimal decision rule,

d∗(s) := max
{
a′ ∈ argmina∈AQ(s,a)

}
, (3.6)

is monotone in Γ. This result is formalized under some specific conditions in Theorem 3.4. However,

before proceeding to the main results, Lemma 3.3 provides basic insights into the structure of the

expected one-step cost function c(s,a); it asserts that the one-step cost does not decrease as the

cumulative degradation level increases. Additionally, under a particular cost structure, the one-step

cost function is submodular.

Lemma 3.3 The expected one-step cost function c(s,a) is

(a) monotone nondecreasing in s, and

(b) submodular on Γ×A, if cr − cp ≤ cd.

Proof. We note that if a 6= 0, then cj(x,a) can be expressed as

cj(x,a) = c0 +

n∑

i=1

[aicp + Ii(x)ai(cr − cp) + Ii(x)(1− ai)cd].

Because it is assumed that cr > cp, Lemma 3.3(a) follows immediately. For Lemma 3.3(b), we seek

to show that for a < a′ and x < x′,

cj(x
′,a′) + cj(x,a) ≤ cj(x

′,a) + cj(x,a
′). (3.7)

We begin with the case where a = 0 < a′. The left-hand side (l.h.s.) of (3.7) is given by

cj(x
′,a′) + cj(x,a) = c0 +

n∑

i=1

[
a′
icp + a′

iIi(x
′)(cr − cp) + Ii(x

′)(1− a′
i)cd

]
+ cd

n∑

i=1

Ii(x)

= c0 +
n∑

i=1

[
a′
icp + a′

iIi(x
′)(cr − cp) +

(
Ii(x

′)(1 − a′
i) + Ii(x)

)
cd
]
. (3.8)

Similarly, the right-hand side (r.h.s.) of (3.7) is given by

cj(x
′,a) + cj(x,a

′) = c0 +

n∑

i=1

[
a′
icp + a′

iIi(x)(cr − cp) +
(
Ii(x)(1 − a′

i) + Ii(x
′)
)
cd
]
. (3.9)

After some algebraic manipulation, it can be shown that the quantity in (3.8) is no greater than

that in (3.9) if, and only if,

cd

n∑

i=1

a′
i(Ii(x

′)− Ii(x)) ≥ (cr − cp)

n∑

i=1

a′
i(Ii(x

′)− Ii(x)).
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By supposition, cr − cp ≤ cd; therefore, inequality (3.7) holds. Similarly, in case 0 < a < a′, it can

be shown that inequality (3.7) holds if, and only if,

cd

n∑

i=1

[
Ii(x)(ai − a′

i) + Ii(x
′)(a′

i − ai)
]
≥ (cr − cp)

n∑

i=1

[
Ii(x)(ai − a′

i) + Ii(x
′)(a′

i − ai)
]
.

For each i = 1, . . . , n,

Ii(x)(ai − a′
i) + Ii(x

′)(a′
i − ai) = (Ii(x

′)− Ii(x))(a
′
i − ai) ≥ 0.

Therefore, by the condition, cr − cp ≤ cd, inequality (3.7) holds.

We pause here to note that the condition of Lemma 3.3(b), cr − cp ≤ cd, may not hold in

practice. In particular, for a large uniformization rate q, it is unlikely that this inequality is

valid. Fortunately, a useful property still emerges, namely that the value function is monotone

nondecreasing in the cumulative degradation level, even if the condition is relaxed. We formalize

this result in Theorem 3.2.

Theorem 3.2 For each j ∈ S, the value function Vj(x) is monotone nondecreasing in the degra-

dation level x ∈ X .

Proof. For (x, j) ∈ Γ, denote the mth iterate of the value iteration algorithm by vmj (x) ≡

vm(x, j). We prove the theorem by induction on m. Take v0j (x) = 0 for all (x, j) ∈ Γ. Therefore,

v1j (x) = min
a∈A

{
cj(x,a) + αE

(
v0(X1, Z1)|X0 = x, Z0 = j,A0 = a

)}

= min
a∈A

{cj(x,a) + 0}

= cd

n∑

i=1

Ii(x),

which is monotone nondecreasing in x. For the induction hypothesis, assume vmj (x) is monotone

nondecreasing in x ∈ X for each j ∈ S. Let x1,x2 ∈ X such that x1 ≤ x2, then for each a ∈ A

vm+1
j (x1,a) = cj(x1,a) + α

ℓ∑

k=1

(∫ ∞

0
vmk (x′

1)qe
−qtdt

)
pjk

≤ cj(x2,a) + α

ℓ∑

k=1

(∫ ∞

0
vmk (x′

2)qe
−qtdt

)
pjk

= vm+1
j (x2,a), (3.10)

where the inequality holds due to Lemma 3.3(a) and by noting that, for a fixed a, x′
1 ≤ x′

2.

Minimizing both sides of (3.10) over a ∈ A shows that vm+1
j (x1) ≤ vm+1

j (x2). Finally, Lemma 3.1

implies that vmj (x) → Vj(x), as m→ ∞, and the proof is complete.
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Theorem 3.2 asserts that the expected cost-to-go increases as the cumulative degradation level of

the system increases. Informally, this corresponds to the intuitive idea that starting in a ‘bad’ state

is, in fact, more costly than starting in a ‘good’ state. Under some reasonable conditions we can

prove stronger structural results.

For the remainder of this section, we impose mild conditions on the uniformized environment

process and the degradation rate vectors ri. For completeness, we review the notion of the increasing

failure rate (IFR) property of a transition probability matrix.

Definition 3.2 Let P = [pij] be the transition probability matrix of a DTMC with state space

S = {1, . . . , ℓ}. Then P is said to be IFR if

ηm(i) :=
ℓ∑

j=m

pij (3.11)

is nondecreasing in i ∈ S for all m = 1, . . . , ℓ.

Now, let us define the tail distribution function

q(s′|s,a) := P
(
Sm+1 ≥ s′|Sm = s,Am = a

)
. (3.12)

The quantity in (3.12) represents the probability that the MDP transitions to a state at least

as large as s′, given a starting state s and action a. For notational convenience, also define the

following sets:

I(x′) := {i ∈ {1, . . . , n} : x′i = 0}, (3.13)

J (a) := {i ∈ {1, . . . , n} : ai = 1}, (3.14)

K(x,x′) := {i ∈ {1, . . . , n} : xi < x′i}. (3.15)

These sets are used to describe the form of q(·|·), namely,

q((x′, k′)|(x, k),a) =





exp

[
−q · max

v∈K(x,x′)

{
x′v − xv
rkv

}] ℓ∑

m=k′

pkm, J ⊆ I, K 6= ∅,

ℓ∑

m=k′

pkm, J ⊆ I, K = ∅,

0, J * I.

(3.16)

The tail distribution is useful for establishing monotonicity of the value function (3.3) and the cor-

responding optimal decisions. We begin by describing some useful properties of the tail distribution

in Lemma 3.4.
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Lemma 3.4 If P is IFR, and the degradation rates rji are monotone nondecreasing in j ∈ S for

each i = 1, . . . , n, then the tail distribution function q(s′|s,a) is

(a) monotone nondecreasing in s ∈ Γ, and

(b) submodular on Γ×A.

Proof. Let s̃ = (x̃, j̃) ∈ Γ, a ∈ A, and s = (x, j) ≤ s′ = (x′, j′) ∈ Γ. In the case where

J * I, we have q(s̃|s,a) = q(s̃|s′,a) = 0. Because K(x,x′) is decreasing in x, there are three

subcases for J ⊆ I: (i) K(x, x̃) 6= ∅ and K(x′, x̃) = ∅, (ii) K(x, x̃) 6= ∅ and K(x′, x̃) 6= ∅, and (iii)

K(x, x̃) = ∅ and K(x′, x̃) = ∅. For subcase (i),

q(s̃|s′,a) =
ℓ∑

m=k̃

pj′m ≥ exp

(
−q · max

v∈K(x,x̃)

{
x̃v − xv

rjv

}) ℓ∑

m=k̃

pjm = q(s̃|s,a).

For subcase (ii),

q(s̃|s′,a) =
ℓ∑

m=k̃

pj′m ≥
ℓ∑

m=k̃

pjm = q(s̃|s,a),

because P is IFR. Lastly, for subcase (iii), note by monotonicity of ri, for each i ∈ {1, 2, . . . , n},

x̃v − x′v

rj
′

v

≤
x̃v − xv

rjv
.

Additionally, by K(x′, x̃) ⊆ K(x, x̃),

max
v∈K(x′,x̃)

{
x̃v − x′v

rj
′

v

}
≤ max

v∈K(x,x̃)

{
x̃v − xv

rjv

}
.

Therefore, by the monotonicity of exp(·) and the increasing failure rate of P we have

q(s̃|s′,a) = exp

(
−q · max

v∈K(x′,x̃)

{
x̃v − x′v

rj
′

v

}) ℓ∑

m=k̃

pj′m

≥ exp

(
−q · max

v∈K(x,x̃)

{
x̃v − xv

rjv

}) ℓ∑

m=k̃

pjm = q(s̃|s,a).

Thus the tail function is monotone in s. For Lemma 3.4(b), we seek to show

q(s̃|s′,a′) + q(s̃|s,a) ≤ q(s̃|s,a′) + q(s̃|s′,a) (3.17)

for a ≤ a′ ∈ A. Noting J (a) ⊆ J (a′), we have three cases to consider: (i) J (a),J (a′) * I, (ii)

J (a) ⊆ I, J (a′) * I, and (iii) J (a),J (a′) ⊆ I. For case (i), it is clear that both sides of (3.17)

equal 0. For case (ii), q(s̃|s,a′) = q(s̃|s′,a′) = 0, reducing inequality (3.17) to

q(s̃|s,a) ≤ q(s̃|s′,a),
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which holds by Lemma 3.4(a). For case (iii), we note q(s̃|s,a) = q(s̃|s,a′) and q(s̃|s′,a) =

q(s̃|s′,a′). Hence, inequality (3.17) holds in equality. Thus, the tail function is submodular.

Next, we review some concepts from stochastic ordering that are needed for the remaining

results. The first is that of upper orthant ordering of random vectors. For two n-dimensional,

random vectors Y 1 and Y 2, we say that Y 1 is less than Y 2 in the upper orthant order, denoted

Y 1 ≤uo Y 2, if for all y ∈ Rn,

P(Y 1 ≥ y) ≤ P(Y 2 ≥ y).

A set U is said to be an upper set if u2 ∈ U whenever u2 ≥ u1 and u1 ∈ U . We say that Y 1 is less

than Y 2 in the usual stochastic order, denoted Y 1 ≤st Y 2, if for all upper sets U ⊆ Rn,

P(Y 1 ∈ U) ≤ P(Y 2 ∈ U).

It is important to note that monotonicity of the tail function, established in Lemma 3.4(a), is

equivalent to the condition

[Sm+1|Sm = s,Am = a] ≤uo [Sm+1|Sm = s′,Am = a], for any s ≤ s′.

If n = 1, the upper orthant and the usual stochastic order are equivalent. If n > 1, the usual

stochastic order is stronger than the upper orthant order. These concepts are useful in that they

allow us to extend part Lemma 3.4(a) to the usual stochastic order as seen in Lemma 3.5.

Lemma 3.5 Under the conditions stated in Lemma 3.4, for any a ∈ A and s ≤ s′ ∈ Γ,

[Sm+1|Sm = s,Am = a] ≤st [Sm+1|Sm = s′,Am = a].

Proof. Let Sm+1 = (Xm+1,Zm+1). By independence of Xm+1 and Zm+1 it suffices to show:

[Xm+1|Sm = s,Am = a] ≤st [Xm+1|Sm = s′,Am = a], (3.18)

and

[Zm+1|Sm = s,Am = a] ≤st [Zm+1|Sm = s′,Am = a]. (3.19)

Inequality (3.19) follows from the IFR assumption of P . For t ≥ 0, define the functions ψ1(t) and

ψ2(t) by

ψ1(t) = [(1 − a1)(x1 + rj1t), (1− a2)(x2 + rj2t), . . . , (1 − an)(xn + rjnt)],

and

ψ2(t) = [(1− a1)(x
′
1 + rj

′

1 t), (1− a2)(x
′
2 + rj

′

2 t), . . . , (1− an)(x
′
n + rj

′

n t)].
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By the monotonicity of the degradation rates rji , and the fact that, x ≤ x′, we see that ψ1(t) ≤ ψ2(t)

for all t ≥ 0. Letting T ∼ Exp(q), we have

ψ1(T )
d
= [Xm+1|Sm = s,Am = a] and ψ2(T )

d
= [Xm+1|Sm = s′,Am = a],

where
d
= denotes equality in distribution. The result P(ψ1(T ) ≤ ψ2(T )) = 1 implies inequality

(3.18) holds, and the proof is complete.

Next, in Proposition 3.1, we state without proof a well-known result about the comparability

of expectations for random vectors under the usual multivariate stochastic order.

Proposition 3.1 (Shaked and Shanthikumar [83]). Let X and Y be two n-dimensional, random

vectors such that X ≤st Y . For any nondecreasing function ψ on Rn

E[ψ(X)] ≤ E[ψ(Y )].

We are now prepared to state our main result concerning the value function. Namely, under

appropriate conditions the value function V (s) is monotone in s ∈ Γ.

Theorem 3.3 If P is IFR and the degradation rates rji are monotone nondecreasing in j ∈ S for

each i = 1, . . . , n, then the value function V (s) is monotone nondecreasing in s ∈ Γ.

Proof. For (x, j) ∈ Γ, denote the mth iterate of the value iteration algorithm by vmj (x) ≡

vm(s). We prove the theorem by induction on m. Take v0j (x) = 0 for all (x, j) ∈ Γ. Therefore,

as in the proof of Theorem 3.2, v1j (x) = cd
∑n

i=1 Ii(x), which is monotone nondecreasing in s. For

the induction hypothesis, assume vm(s) is monotone nondecreasing in s ∈ Γ. By Lemma 3.5 and

Proposition 3.1, for s ≤ s′ ∈ Γ,

E (vm(S1)|S0 = s,A0 = a) ≤ E
(
vm(S1)|S0 = s′,A0 = a

)
.

By Lemma 3.3, c(s,a) is monotone in s; hence,

c(s,a) + αE (vm(S1)|S0 = s,A0 = a) ≤ c(s′,a) + αE
(
vm(S1)|S0 = s′,A0 = a

)
. (3.20)

By minimizing over a ∈ A on both sides of inequality (3.20), we obtain vm+1(s) ≤ vm+1(s′). Thus,

by Lemma 3.1, the result is proved.

Theorem 3.3 asserts that, if the uniformized environment process is IFR, and the degradation rates

are monotone, then the values of the value function are ordered over the entire state space.
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3.3.2 Special Case: A Single System

In general, the optimal policy is not necessarily monotone over the entire state space. Indeed,

in Section 3.5, we provide two numerical examples illustrating that, even under the conditions of

Lemma 3.4, optimal policies need not be monotone. In this subsection, we restrict our attention to

the special case of a single system and establish the monotonicity of optimal policies for this case.

Before proceeding to the main result, Lemma 3.6 is first needed.

Lemma 3.6 Suppose there is only a single system (i.e., n = 1). If P is IFR, and the degradation

rates rj are monotone nondecreasing in j ∈ S, then E(V (S1)|S0 = s, A0 = a) is submodular on

Γ×A.

Proof. By Lemma 3.4(b), the tail distribution function q(·|·) is submodular on Γ×A. Define

F (s|s0, a) = P(S1 ≤ s|S0 = s0, A0 = a). Then for any s1, s2 ∈ Γ and a1, a2 ∈ A such that s1 ≤ s2

and a1 ≤ a2,

∫

s≥s′

dF (s|s2, a2) +

∫

s≥s′

dF (s|s1, a1) ≤

∫

s≥s′

dF (s|s1, a2) +

∫

s≥s′

dF (s|s2, a1)

for each s′ ∈ Γ. Thus,
∫

s≥s′

[dF (s|s2, a2) + dF (s|s1, a1)] ≤

∫

s≥s′

[dF (s|s1, a2) + dF (s|s2, a1)] .

Let us define dF1(s) = dF (s|s2, a2)+dF (s|s1, a1) and dF2(s) = dF (s|s1, a2)+dF (s|s2, a1). Noting

that V (s) is monotone nondecreasing (by Theorem 3.3), and that Proposition 3.1 extends to finite

measures, we obtain ∫

s∈Γ
V (s)dF1(s) ≤

∫

s∈Γ
V (s)dF2(s). (3.21)

By expanding the terms on both sides of inequality (3.21), the result is obtained.

We are now prepared to state the main result for a single system. Theorem 3.4 asserts that,

under suitable conditions, the optimal decision rule is monotone nondecreasing over the entire state

space Γ.

Theorem 3.4 For the case of n = 1, if cr − cp ≤ cd, P is IFR, and the degradation rates rj are

monotone nondecreasing in j ∈ S, the optimal decision rule d∗(s) is monotone in s ∈ Γ.

Proof. By Lemma 3.3(b), the expected one-step cost function c(s,a) is submodular on

Γ×A. Similarly, by Lemma 3.6, we have that E(V (S1)|S0 = s, A0 = a) is submodular. Thus,

Q(s, a) = c(s, a) + αE(V (S1)|S0 = s, A0 = a)
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is a non-negative, linear combination of submodular functions and is, therefore, submodular. Hence,

by Theorem 3.1, the optimal decision rule d∗(s) is monotone in s ∈ Γ.

Theorem 3.4 ensures that, under suitable conditions, threshold policies are optimal, and these

thresholds are monotone over the environment states. Ulukus et al. [97] examined a similar model

and proved the optimality of threshold policies for a single-system (or component) setting and con-

jectured (without proof) that the thresholds are monotone over the environment states. Theorem

3.4 is significant in that it provides at least a partial resolution to this conjecture. Specifically,

setting c0 = 0 and cd ≫ cr in our framework yields a model that is identical to the one studied

in [97], except that reactive replacements do not occur immediately following a failure; they occur

at the start of the subsequent period. However, the assumption that cd is very large induces an

optimal policy that forces reactive replacements; hence, our model is not more restrictive than the

one studied in [97].

The actions satisfying the optimality equation (3.3) for each state (corresponding to an optimal

policy) cannot be directly computed by standard numerical methods (e.g. using the value or policy

iteration algorithms [77]). Section 3.4 presents an approximation scheme to address the numerical

problems associated with obtaining replacement policies.

3.4 AN APPROXIMATE FORMULATION

In this section, we address dual manifestations of Bellman’s curses of dimensionality, namely

a continuous state space and a combinatorially large action space [10, 76]. To obtain high-quality

policies, we customize and employ multiple reinforcement learning techniques: Q-function approxi-

mation, reduction to a subset of the action space, and an on-policy approximate dynamic program-

ming (ADP) algorithm, namely the state action reward state action, or SARSA(γ), algorithm. For

a complete description of the algorithm, the reader is referred to [82, 92].

Before discussing the details of our approximation scheme, we first introduce a transformation

of the state description. In lieu of considering the current cumulative degradation level directly, we

consider the state to be a vector of probabilities on the hypercube [0, 1]n. In particular, define the

state by x̃ = (x̃1, x̃2, . . . , x̃n), where

x̃i = P
(
Xi

m+1 ≥ ξ|Xi
m = xi, Zm = j

)
= exp

(
−q(ξ − xi)

rji

)
, (3.22)
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Zm is the current environment state, Xi
m is the current degradation level of system i, and Xi

m+1 is

the degradation level at the time of the next inspection. That is, for each system i, the corresponding

system in the transformed state vector, denoted by x̃i, is the probability that the system will fail

before the next decision epoch. We pause here to remark on two aspects of this transformation:

(i) no information is lost in the transformation (given fixed model parameters, the mapping is a

bijection); and (ii) the new state implicitly contains information about the underlying degradation

process. The first point is important, as we do not fundamentally change the problem. The

second point is of practical significance for our function approximation. We utilize a linear basis

to approximate the Q-function, and direct inclusion of this information improves the performance

of simple basis functions. Intuitively, the degradation level itself is abstract and uninformative,

whereas probabilities require no additional knowledge of the underlying degradation process to

interpret; hence, this state space is more appropriate. For convenience, we denote the modified

state as s̃ and state space as Γ̃ = [0, 1]n × S.

The first issue we address is reduction of the action space A. It is clear that for a large number

of systems, n, the action space A = {0, 1}n is too large to perform any practical computational

operations. For example, for n = 20 the cardinality of the action space is over 106 and for n = 30

the cardinality is over one billion. Unfortunately, it is very difficult to characterize the form of an

optimal policy in the multiple system case, so instead we consider a reduced action space based on

the transformed state vector x̃ that may, or may not, contain the optimal actions. We define the

new action space as

Ã = {0, 1, . . . , n} ,

where a = 0 corresponds to taking no action, and a = k corresponds to replacing all systems

i such that x̃i ≥ x̃k, for k = 1, 2 . . . , n. The action a = k > 0 means that any system whose

probability of failing in the next period is at least as high as that of system k is replaced. For

example, if x̃ = (0.3, 0.7, 0.25, 0.6) and action a = 4 is selected, then all systems whose probability

of failing within the next period is at least 0.6 are replaced. In this case, systems 2 and 4 are

replaced. It should be noted that this action space can be interpreted as the most general set of

threshold policies in the transformed state. That is, for every state s̃ ∈ Γ̃ the optimal action in Ã

is equivalent to replacing all systems above some optimal threshold u(s̃). Most importantly, this

set helps facilitate computational tractability, as it is linear in the number of systems.

The next issue we address is the continuous nature of X . In order to overcome this difficulty,

we employ function approximation techniques. First, we recall the definition of the Q-function, or
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action-value function [76] from equation (3.5). For each j ∈ S, the function Qj(·) maps state-action

pairs to expected total discounted costs, i.e.,

Qj(x,a) = c(s,a) + α

ℓ∑

k=1

(∫ ∞

0
Vk
(
x′
)
qe−qtdt

)
pkj.

It is seen that, by the relationship between (3.3) and (3.5), optimal actions can be determined by

minimizing the Q-function over the original action space A. We seek to approximate the Q-function

as a weighted (linear) sum of basis functions that take the transformed state variables as input [35].

In particular, we approximate Qj(x,a) by Q̃j(x̃, a) defined as

Q̃j(x̃, a) :=
K∑

k=1

λjkφ
j
k(x̃, a), (3.23)

where λjk are real-valued coefficients and φjk(·) are basis functions. By Theorem 3.2, it is known that

the value function is monotone in the state space; hence, we choose to represent the Q-function as a

linear combination of monotone functions and constant functions. In particular, we utilize constant

functions along with functions of the form cos(f(x̃, a)), where f : Γ̃ → [0, 1]. This choice of basis

functions is practical, as they are bounded and monotone on Γ̃. Additionally, the non-constant

basis functions are sigmoidal, enabling flexible modeling of nonlinearity in the value function, and

appropriate choices for f allow for dependencies between systems to be captured. As described

in [54], these basis functions can be viewed as adapted first-order Fourier basis functions, and we

choose the particular form

Q̃j(x̃, a) = λj0 + λj1I (a > 0) +
n∑

i=1

λji,1I (x̃i ≥ x̃a) +
n∑

i=1

λji,1I (x̃i = 1, a > 0)

+

n∑

i=1

n∑

k=i

λji,k,1φ
j
i,k,1 (x̃, a) +

n∑

i=1

n∑

k=i+1

λji,k,2φ
j
i,k,2 (x̃, a) , (3.24)

where

φji,k,m =





cos
(
π
2 · (I (x̃i < x̃a) x̃i + I (x̃k < x̃a) x̃k)

)
, m = 1,

cos
(
π
2 · I (min {x̃i, x̃k} < x̃a) · (x̃i + x̃k)

)
, m = 2.

(3.25)

The first term in (3.24) is a constant, the second term accounts for the impact of the setup cost, the

third term accounts for preventive maintenance cost, the fourth for reactive maintenance, and the

final two terms account for the impact of the degradation level (given the current action taken). It

can be seen in (3.25) that the approximation Q̃j(·) considers only pairwise dependencies between
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systems. This assumption can be relaxed, but the computation time of any iterative learning

process would naturally be adversely impacted. For the model in (3.24), the coefficients λjk can

be obtained using an iterative, on-policy learning algorithm, such as the SARSA(γ) algorithm, as

described in Sutton and Barto [92].

3.5 NUMERICAL EXAMPLES

In this section, we illustrate the efficacy of the proposed approximation framework in obtain-

ing high-quality solutions. Both small- and large-scale examples are considered. Small problem

instances are illustrated because exact solutions can be obtained using standard MDP machinery;

hence, approximate solutions can be compared to these exact solutions. Larger problem instances

are used to assess how well our approximation scheme performs on problems that are otherwise

intractable.

Because our aim is to compare distinct policies, we first simulate the evolution of the envi-

ronment process over a large number of sample paths. The simulation run length is given by the

number of decision epochs N (recall that the time between decision epochs is exponentially dis-

tributed with rate parameter q). Along each sample path, the total discounted cost is computed

for each policy of interest, and these values are compared. It should be noted that, because the

expected one-step costs are bounded, and the cost function is discounted, we can determine a priori

the simulation run length needed to ensure that the total discounted cost is accurate to a fixed

constant. In particular, to guarantee the finite approximation is within ε (ε > 0) of the true total

discounted cost, the length of the sample paths N must satisfy

N ≥
ln((1 − α)ε/C)

ln(α)
− 1,

where C is any valid upper bound on the expected one-step costs, and α is the one-step discount

rate. For all numerical examples, N was chosen to correspond to ε = 0.01 and C was taken to

be c0 + ncd + ncr. All problem instances were coded within the MATLAB R2016a computing

environment and executed on a personal computer with a 3.50 GHz processor and 8 GB of RAM.
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3.5.1 Single-System Problems

First, we present single-system examples to demonstrate the accuracy of our approach in the

simplest case. We modify the cost structure of Section 3.2 to fit the single-system case. Rather

than having four cost parameters, we simply have the preventive and reactive replacement costs,

cp and cr respectively, and we force replacement of the system whenever it is found to be failed.

In the first example, we fix the parameter values and solve the resulting problem repeatedly

using the approximate formulation. We compute multiple learned solutions over a single problem

to explore the impact of a stochastic learning algorithm on the consistency of solutions. For the

first instance, the discount rate is α = 0.99 and the cost vector is c = (cp, cr) = (3, 10). The failure

threshold is set to ξ = 1, and the environment Z has state space S = {1, 2, 3, 4} with infinitesimal

generator matrix

Q =




−5 5 0 0

2.5 −5 2.5 0

0 2.5 −5 2.5

0 0 5 −5



.

The inspection rate is q = 10 and degradation rates are r = (r1, r2, r3, r4) = (2.5, 3, 3.5, 4).

The degradation interval [0, ξ] was discretized into 10, 000 states, and the optimal policy was

obtained numerically using the value iteration algorithm. For each fixed environment state j ∈ S,

the optimal policy was determined to be a threshold policy. This is intuitive, as the problem can

viewed as the general problem with c0 = 0 and cd chosen sufficiently large so as to force reactive

replacements. Therefore, Theorem 3.4 ensures that a monotone threshold policy is optimal. In

particular, the thresholds were found to be u = (u1, u2, u3, u4) = (0.524, 0.469, 0.430, 0.387), where

for state (x, j) ∈ [0, 1] × S the optimal action a∗j(x) is given by

a∗j(x) =





0, x ≤ uj,

1, x > uj.

To adapt to the modified cost structure, we simplified the basis functions for our approximation as

follows:

φij(x̃, a) =





1, i = 1,

I(a = 0) cos(πx̃), i = 2,

I(a = 1, x̃ < 1), i = 3,

I(x̃ ≥ 1), i = 4,
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where x̃ is the transformed state as described by (3.22). Therefore, the expected total discounted

cost-to-go, starting from state s = (x, j) ∈ Γ and taking action a ∈ A, is approximated by

Q̃j(x̃, a) =

4∑

i=1

λijφ
i
j(x̃, a).

In order to test the quality of this approximation, 500 sample paths were simulated, each with

2, 000, 000 decision epochs. On each of these sample paths, the approximation model was trained

using a SARSA(γ) algorithm with γ = 0.9. Exploration is encouraged by using an ǫ-greedy action-

selection approach, where the best myopic action is chosen with probability 1 − ǫ, and a random

action is chosen with probability ǫ. For these examples, ǫ is initialized to 0.5 and linearly decreased

in increments of 2.5 × 10−7 to 0.0001 by the final iteration.

1 2 3 4Env ironment State00.10.20.30.4
0.50.60.70.8
0.91

Th resh old
(a) After 400,000 simulation iterations.

1 2 3 4Env iro nment State00.10.20.30.4
0.50.60.70.80.9
1

Th resh old
(b) After 2,000,000 simulation iterations.

Figure 10: Boxplots of thresholds from learned policies (optimal thresholds given by circles).

Figure 10 shows box-and-whisker plots of the thresholds derived from the learned policies. In

Figure 10(a), we see the thresholds from the policies if learning is terminated at 400,000 iterations.

This plot indicates that the bias from parameter initialization is still significant in the learned

policies. Generally, the thresholds are still too high, which matches intuition as the initial parameter

values would induce a policy that never replaces components. By 2, 000, 000 iterations, this upward

bias is drastically diminished, and the variance has been greatly reduced. In fact, the mean absolute

deviations from the true thresholds are under 0.015 for all environment states. The thresholds from

value iteration and the mean learned thresholds are given in Table 1.
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Table 1: Comparison of exact and learned thresholds.

Technique
Environment State

j = 1 j = 2 j = 3 j = 4

Value iteration threshold 0.5238 0.4688 0.4301 0.3865

Mean learned threshold 0.5240 0.4701 0.4303 0.3850

While these policies appear to be accurate, it is important to gauge the impact of small policy

variations on the expected total discounted cost. To this end, we first simulate 5,000 sufficiently

long sample paths per policy (2,500,000 sample paths in total) as described at the beginning

of this section. Each simulation run is initialized in state (x, j) = (0, 1). For learned policy

m ∈ {1, . . . , 500} and sample path k ∈ {1, . . . , 5, 000}, we then follow both the optimal policy and

the learned policy over each of these sample paths to determine their respective total discounted

costs, call them Ṽ m
k and V̂ m

k , respectively. The sample-wise values are then averaged to yield

approximate expected total discounted costs

Ṽ m =
1

5000

5000∑

k=1

Ṽ m
k and V̂ m =

1

5000

5000∑

k=1

V̂ m
k .

The results are summarized in the box-and-whisker plots of Figure 11. While the optimal policy

does perform better on average (over the sample paths), the percent difference in the means is

nominal at approximately

|Ṽ − V̂ |

Ṽ
= 4.887 × 10−4,

where Ṽ =
∑

m Ṽ
m/500 and V̂ =

∑
m V̂

m/500. In fact, the approximate policy outperforms the

optimal policy in 49.16% of the total sample paths. Therefore, the learned policies are not only

superficially similar to the optimal policies, but almost identical in performance as well. Lastly, it

should be noted that obtaining the exact solution took 80.5269 seconds (averaged over 100 function

calls) and the average time for the approximate model to generate the simulations and train was

only 25.8465 (averaged over the 500 sample paths). Thus, even in the single-system case, this

solution method is able to generate stable, accurate policies faster than value iteration.

In the next example, 200 single-system problems are randomly generated, and one solution

to the approximate formulation is computed for each problem. Our aim is to vary the problem
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Figure 11: Boxplots comparing cost using the optimal policy versus the learned policies.

parameters over a wide range to assess the robustness of the approximate formulation. In what

follows, U(a, b) denotes a continuous uniform random variable on (a, b). Fixing α = 0.99, and

the number of environment states at ℓ = 4, we randomly generated M = 200 problem instances.

(These two parameters are fixed because they significantly affect the learning rate, and the training

size will be fixed over the problem set.) For problem m ∈ {1, . . . ,M}, the cost vector is denoted

cm = (cmp , c
m
r ), where cmp ∼ U(0, 5) and cmr ∼ cmp +U(0, 10). As before, the failure threshold is fixed

at ξm = 1, corresponding to rates being normalized. The environment process Zm has state space

Sm = {1, 2, 3, 4} with infinitesimal generator matrix Qm = [qmij ], where q
m
ij ∼ U(0, 10) for j 6= i and

qmii = −
∑

j q
m
ij . The inspection rate is given as qm = 2 ·maxi{−q

m
ii }, and the degradation rates are

rm = (rm1 , r
m
2 , r

m
3 , r

m
4 ), where rm1 ∼ U(0, 4) and rmj ∼ rmj−1 + U(0, 4) for j = 2, 3, 4.

For each problem, the degradation interval [0, ξ] was discretized into 10, 000 states and the

optimal policy was obtained numerically using the value iteration algorithm. In each case, a long

sample path was simulated with 2,000,000 decision epochs, and the approximate model was trained

using a SARSA(γ) algorithm with γ = 0.9. Exploration was again encouraged by using an ǫ-greedy

action-selection approach, where ǫ was initialized to 0.5 and linearly decreased to 0.0001 by the final

iteration. Next, to evaluate the quality of the solutions, 5,000 sufficiently long sample paths were
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simulated per problem using the initial state (x, j) = (0, 1). For each problem m and sample path

km ∈ {1, . . . , 5, 000}, the learned policy was followed over the path to determine the total discounted

cost, denoted vmk . For problem m, we denote the value function, at state (0, 1) ∈ Γ by V m, and

assume that these are given by the final values from the value iteration algorithm. Similarly, for

problem m, we denote the approximate value function, at state (0, 1) ∈ Γ by V̂ m =
∑

k v
m
k /5000.

Lastly, we define δm = |V m − V̂ m| and ∆m = δm/V m to be, respectively, the absolute and percent

differences between the actual and approximate value functions. From the data, we find that there

is one significant outlier, where ∆m = 0.38. It is seen that at this data point, the actual value

function is very small at V m = 1.0649. We remove this outlier from the data set and present the

data in Figure 12. For the percent differences, the sample mean of ∆m is 0.0099 and the standard

deviation is 0.0143. In fact, for approximately 97.5% of the cases ∆m ≤ 0.05. For the absolute

differences, we find that the sample mean of δm is 0.1908 and the standard deviation is 0.1170. In

fact, for over 95% of the cases δm ≤ 0.4.
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3.5.2 Multiple-System Problems

Next, we present multiple-system examples to illustrate solution quality and the tractability

of our approach. We consider three problems with n = 2, n = 3 and n = 50, respectively. For

cases n = 2 and n = 3, we obtain “exact” solutions by applying the value iteration algorithm on

discretized versions of the problems. Our approximate solutions, obtained by using the methods

developed in Section 3.4, are compared to these solutions. Additionally, we describe a set of

heuristic policies and compare our solutions to those as well. When n = 50, exact solutions cannot

be obtained, so our approximation is compared only to heuristic policies.

Example . For the first example, n = 2 systems, the discount rate is α = 0.99 and the cost

vector is c = (c0, cp, cr, cd) = (20, 3, 10, 8). The failure thresholds are ξi = 1, for all i, and the

environment Z has state space S = {1, 2, 3} with infinitesimal generator matrix

Q =




−5 5 0

2.5 −5 2.5

0 5 −5


 .

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i , r

3
i ) =

U(1, 2) · (0.5, 1.0, 1.5), for i = 1, 2, where U(1, 2) is a continuous uniform random variable on (1, 2).

The particular realization of r is

r =


 0.9567 1.9134 2.8701

0.5635 1.1270 1.6905


 .

To compute an exact solution, the degradation interval [0, ξ] was uniformly discretized into 1,000

states for each system, yielding a discretized problem with 3,000,000 total states. The optimal policy

was obtained numerically using the value iteration algorithm. For each s in the discretized set of

states, let vm(s) denote the mth iterate of the value iteration algorithm. The algorithm terminates

when the maximum norm of the difference between subsequent value function iterates is below 0.01,

i.e.,

||vm+1 − vm||∞ = max
s

{|vm+1(s)− vm(s)|} ≤ 0.01,

or after 604,800 seconds (7 days). The algorithm terminated after 401,029.97 seconds (approxi-

mately 4.6 days).

In order to train our approximate model, a long sample path was simulated with 4,000,000

decision epochs, and the approximate model was trained using a SARSA(γ) algorithm with γ = 0.9.
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Exploration was again encouraged by using an ǫ-greedy action-selection approach, where ǫ was

initialized to 0.5 and linearly decreased to 0.0001 by the final iteration. The training took 369.54

seconds, three orders of magnitude faster than value iteration.
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(a) Depiction of optimal policy.
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(b) Depiction of learned policy.

Figure 13: Comparison between optimal and learned policy in environment state 1.

In Figure 13, the optimal and learned policies are depicted when the environment state is fixed

at 1. We observe that the optimal policy does not have a monotone structure. While the absence

of a monotone structure is counterintuitive, the overall structure is not. When one system is

very heavily degraded, but the other system is nearly as-good-as-new, it is optimal to replace the

heavily degraded system. However, due to economic dependencies, the region where replacing both

systems is optimal dominates the replacement regions. This result should be expected, as the shared

replacement cost is high and the difference between the preventive and reactive replacement costs

is substantial. Additionally, it is optimal to wait longer to perform maintenance actions on system

2 as a consequence of the degradation rates. In particular, we note that r12 < r11. Contrasting

the optimal and learned policies, we note that while similar, the learned policy is slightly more

aggressive and replaces more frequently.

For a cost comparison, we also consider a set of threshold-based replacement policies. To

understand these policies, we begin with the policy that ignores the dependency of the systems and
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decouples the problem. For this policy, we consider each system separately and solve the single-

system problem described in Section 3.5.1. We then use the computed thresholds to determine

when to replace individual systems independently of the others. We refer to this as a 1-policy.

We then generalize this policy to a k-policy, where we replace all systems above their independent

threshold whenever there are at least k systems above their threshold. In the case where n = 50,

two other similarly structured policies were considered, but failed to perform as well: (i) wait until

at least k systems are failed and then replace all failed systems; and (ii) wait until at least k systems

exceed their threshold and then replace all systems.

As in the single-system cases, we assess the quality of our solutions by following each policy over

5,000 sufficiently long sample paths simulated using the initial state (x, j) = (0, 1). The results

of this comparison are summarized in the box-and-whisker plots of Figure 14. Beginning with

Optimal Learned k=1 k=2200300400500600700800900
T ot alDi scount edC o
st

Figure 14: Boxplots comparing cost under different policies.

the heuristic policies, we note that they are both significantly outperformed by the learned policy.

On average, the learned policy outperforms the 1-policy by 32.79% and the 2-policy by 22.28%.

Moreover, the learned policy outperforms the 1-policy on all sample paths and the 2-policy on all but

three sample paths. This performance gap demonstrates the importance of considering structural

and economic dependence within our model. Comparing the learned and optimal policies, we note

58



the average total discounted cost for the learned policy was 431.32 compared to 418.74 for the

optimal policy (approximately 3% difference). The learned policy even outperformed the optimal

policy on 1,041 sample paths.

Example . For this example, n = 3 systems, the discount rate is α = 0.99 and the cost vector

is c = (c0, cp, cr, cd) = (20, 3, 10, 8). The failure thresholds are ξi = 1, for all i, and the environment

Z has state space S = {1, 2} with infinitesimal generator matrix

Q =


 −5 5

5 −5


 .

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i ) =

U(1, 2) · (0.5, 1.0). The particular realization of r is

r =




0.9074 1.8147

0.9529 1.9058

0.5635 1.1270


 .

To compute an exact solution, the degradation interval [0, ξ] was uniformly discretized into 125

states, for each system, yielding a discretized problem with 3,906,250 total states. The optimal

policy was obtained numerically using the value iteration algorithm. For each s in the discretized

set of states, let vm(s) denote the mth iterate of the value iteration algorithm. The algorithm

was set to terminate when the maximum norm of the difference between subsequent value function

iterates fell below 0.01, i.e.,

||vm+1 − vm||∞ = max
s

{|vm+1(s)− vm(s)|} ≤ 0.01,

or after 604,800 seconds (7 days). The algorithm terminated after reaching 604,800 seconds and

the maximum norm of the difference between the final two value function iterates was 0.0253.

In order to train our approximate model, a long sample path was simulated with 4,000,000

decision epochs, and the approximate model was trained using a SARSA(γ) algorithm with γ = 0.9.

Exploration was again encouraged by using an ǫ-greedy action-selection approach, where ǫ was

initialized to 0.5 and linearly decreased to 0.0001 by the final iteration. The training took 482.48

seconds to complete.

Figure 15 depicts the optimal and learned value functions when the environment is fixed at state

2 and the degradation level of system 3 is fixed at 0.40. At low degradation levels, in regions where

it is optimal to wait to replace, the magnitude of the gradient of the value function approximation
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(a) Optimal value function.
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(b) Learned value function.

Figure 15: Comparison between optimal and learned value function in environment state 2.

tends to be near zero. Otherwise, the shape and values of the function approximation tend to be

very similar to the true optimal value function. These results are typical and were observed across

all test cases.

Figure 16 depicts the optimal and learned policies when the environment state is fixed at 1

and the degradation level of system 3 is fixed at 0.40. Again we observe that the optimal policy

does not have a monotone structure. In contrast to the two-system case, we see that the policy is

reasonably symmetric. This symmetry stems from the similarity between the degradation rates of

the first two systems. In Figure 17, we compare the policies at environment state 2, noting that

the regions where replacing two systems have largely vanished, but the symmetry is still observed.

In both environment states, over a majority of the degradation states, the learned policy calls for

replacing at least as many systems as the optimal policy.

Again, we evaluate the quality of the solutions by following each policy over 5,000 sufficiently

long sample paths simulated using the initial state (x, j) = (0, 1). The results of this comparison

are summarized in the box-and-whisker plot in Figure 18.

The learned policy again outperforms the heuristic policies, in this case, on average it outper-

forms the 1-policy by 51.89%, the 2-policy by 42.66%, and the 3-policy by 84.61%. The learned

policy outperforms all of the heuristic policies on every sample path. Comparing the learned and
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(a) Depiction of optimal policy.
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(b) Depiction of learned policy.

Figure 16: Comparison between optimal and learned policy in environment state 1.
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(a) Depiction of optimal policy.
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(b) Depiction of learned policy.

Figure 17: Comparison between optimal and learned policy in environment state 2.
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Figure 18: Boxplots comparing cost under different policies.

optimal policies, we note the average total discounted cost for the learned policy was 403.76 com-

pared to 398.91 for the optimal policy (approximately 1.22% difference). The learned policy even

outperformed the optimal policy on 1,854 sample paths (approximately 37%). Showing that for

small n > 1 our approach is able to quickly determine near optimal policies.

Example . For this final example, we consider a larger problem for which finding an optimal

solution by value iteration is computationally intractable. Here, there are n = 50 systems, the

discount rate is α = 0.99 and the cost vector is c = (c0, cp, cr, cd) = (100, 3, 10, 8). The failure

thresholds are ξi = 1, for all i, and the environment Z has state space S = {1, 2, 3, 4} with

infinitesimal generator matrix

Q =




−5 5 0 0

2.5 −5 2.5 0

0 2.5 −5 2.5

0 0 5 −5



.

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i , r

3
i , r

4
i ) =

U(1, 2) · (2.5, 3, 3.5, 4), where U(1, 2) is a continuous uniform random variable on (1, 2).
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Figure 19: Boxplots comparing cost under different policies.

For this problem, the learned policy was trained for 60, 000 seconds, allowing for approximately

12, 000, 000 decision epochs. Once the training was complete, the performance of the learned policy

and the k-policies were compared over 5, 000 sample paths, beginning from state (x, j) = (0, j).

The results of this comparison are summarized in Figure 19.

Looking first at the k-policies, it appears that the expected total discounted cost is convex in

k. This behavior occurs because, for large k, the downtime costs dominate the overall cost, yet

for small k the setup costs are most significant. Even when the setup and downtime costs are

most balanced (k = 12), the heuristic policy fails to outperform the learned policy. In fact, the

learned policy outperforms all other policies sample-wise over all 5, 000 sample-paths. Specifically,

the learned policy leads to an average cost savings of 38.05% when compared to the 12-policy and

92.61% when all dependency is ignored (k = 1).
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4.0 MAINTAINING SYSTEMS WITH HETEROGENEOUS SPARE PARTS

4.1 INTRODUCTION

Operations and maintenance activities constitute a significant proportion of the operational bud-

gets of many organizations [26]. Consequently, companies are employing increasingly sophisticated

methods to improve system reliability, ensure safety, and reduce costs. A common assumption in

maintenance models is that available spares (components or sub-systems) originate from a homoge-

neous population in which each spare has identical degradation characteristics. However, in reality,

replacement parts may exhibit significant unit-to-unit variability in their quality characteristics.

For instance, micro-electro-mechanical systems (MEMS) are known to suffer from a variety of local

defects including particulate, ionic, organic, and isolated defects (e.g., voids and stringers) that can

cause substantial unit-to-unit variability [39]. More generally, multiple device qualities can stem

from manufacturing processes that are still in early stages of development and, therefore, highly

variable [108]. Irrespective of the source of heterogeneity, ignoring this variability can reduce overall

system reliability and lead to economic losses [19].

In this chapter, we consider the problem of optimally maintaining a stochastically degrading,

single-unit system with heterogeneous spare parts. Specifically, the spare parts originate from Y

distinct and heterogeneous subpopulations, each of which has its own time-to-failure distribution.

Failures are not self-announcing; therefore, the system is inspected periodically to determine its

status (functioning or failed). The system continues in operation until it is either preventively or

correctively maintained. The available maintenance options include perfect repair, which restores

the system to an as-good-as-new condition, or replacement of the system with a randomly-selected

unit from the lot of heterogeneous spares. The primary advantage of this framework is that over

time, as a system remains in operation, the subpopulation from which it originates becomes more

apparent. Consequently, we are able to make better-informed maintenance decisions, thereby reduc-
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ing long-run maintenance costs. In contrast to other models that consider spare part heterogeneity,

we are able to update our beliefs, even in the absence of detailed condition monitoring information,

based on the system’s age alone. Assuming an intuitive cost structure that includes inspection

costs, preventive maintenance costs, and corrective maintenance costs, our objective is to obtain

a cost-minimizing policy that accounts for preventive and corrective maintenance decisions. To

this end, we formulate an infinite-horizon, discounted MOMDP model and establish important

properties of the cost function and optimal policy.

Within the applied probability and operations research communities, maintenance optimization

models have been extensively studied over the last five decades. Many existing surveys highlight

some of the most prevalent models for both single- and multi-component systems [6, 26, 64, 73,

75, 86, 88, 90, 99, 103]. Particularly relevant to our work here is the survey of Valdez-Flores and

Feldman [99], which reviews the maintenance optimization literature of single-unit systems and in-

cludes models for inspection, minimal repair, shock, and replacement. Over the past two decades,

reliability and maintenance models have increasingly addressed the problem of population hetero-

geneity. A common method for handling heterogeneous populations is to eliminate low-quality

subpopulation(s) before they enter field service through burn-in procedures. Burn-in procedures

are tests engineered to stress and detect devices that are likely to incur early failures (infant mor-

tality). For a general background on burn-in procedures and models, the reader is referred to

[46, 57] and references contained therein. Mi [66, 67] explores joint problems of burn-in, mainte-

nance, and repair when a system exhibits a bathtub-shaped failure rate function and characterize

the corresponding optimal burn-in times and maintenance policies. While early burn-in models

focused on lifetime-based burn-in (discarding units that have failed before the end of the burn-in

period), recent burn-in models are concerned with degradation-based burn-in (discarding units that

have a particular degradation level at the end of the burn-in period). For example, Ye et al. [110]

consider a joint burn-in and maintenance problem when the degradation processes of two different

subpopulations are modeled as Weiner processes with distinct drift parameters. Optimal burn-in

and replacement policies are characterized for age- and block-replacement and shown to be effective

when compared to traditional lifetime-based burn-in approaches. Xiang et al. [107] investigate the

more general case of joint burn-in and preventive replacement when there are n subpopulations

subject to stochastic degradation. Their framework is then extended to the case of burn-in un-

der accelerated conditions (e.g., elevated voltage, humidity, and temperature) with condition-based

maintenance (CBM).
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In addition to burn-in methods, another fruitful research area related to heterogeneous pop-

ulations is the modeling of degradation in the presence of unit-to-unit variability. A common

strategy is to augment a standard degradation model by allowing for some (or all) of the model’s

parameters to be random (i.e., to differ between systems within the population). This strategy

has been employed when the degradation is modeled as a Brownian motion process [14, 71, 105],

a gamma process [58, 96], or when it assumes an exponential functional form [29]. For each of

these model types, the primary goal is to provide some measure of remaining useful life. Although

these frameworks find wide applicability in CBM applications, they typically require that the sys-

tem deteriorates with time, the deterioration level is observable at any time, and the device fails

when the degradation level reaches a particular threshold [104]. Some recent papers consider CBM

strategies with heterogeneous populations (cf. [22, 29, 101]). In lieu of a true burn-in procedure or

CBM, Zhang et al. [112] propose a joint inspection-replacement policy. Each system is allowed to

enter service, but an early inspection is conducted to determine its health state, at which point the

unit is either replaced (if it appears to be defective) or a preventive replacement time is determined

based on the health state. They show that this inspection-replacement policy outperforms a joint

burn-in and age-based-replacement policy.

The model we present here is distinguished from the existing literature by considering unit-to-

unit variability in repairable systems. Within this paradigm, knowledge about the system’s quality

can be learned and leveraged without a well-defined notion of degradation or failure threshold,

or even an observable degradation signal of any kind. Specifically, as the system continues in

operation and undergoes repairs over time, we are able to glean valuable information about its

population of origin based on its age alone. By way of Bayesian inference procedures, we update our

understanding of the system’s quality and make better-informed decisions that lead to demonstrable

cost savings. Our main contributions include a novel MOMDP framework for accounting for spare

part heterogeneity; providing conditions under which the optimal value function is monotone in the

belief space; providing conditions under which the optimal policy calls for preventive maintenance;

characterizing the optimal policy; and executing a computational study that demonstrates the

utility of our proposed framework and provides additional insights into the optimal policy as a

exploration/exploitation type policy.

The remainder of this chapter is organized as follows. In Section 4.2, we present the maintenance

problem when unit-to-unit variability is significant and formulate a mathematical model of the

corresponding sequential decision-making process. Section 4.3 discusses attributes of the value

66



function and the optimal policy. Finally, in Section 4.4, we provide a detailed computational study

that illustrates the importance of accounting for heterogeneity, demonstrates the effectiveness of

our modeling framework, and highlights some interesting properties of the optimal maintenance

policy.

4.2 MODEL FORMULATION

Consider a single-unit, repairable system that begins operation in an as-good-as-new condition,

that is, with an operating age of 0. The system continues functioning until it fails, i.e., when its

operating age exceeds a probabilistically determined time-to-failure, or until a maintenance action

is taken preventively. In what follows, all random variables are defined on a common, complete

probability space (Ω,F ,P).

It is assumed that the system originates from a lot of spare systems that, despite being visually

indistinguishable, have distinct time-to-failure distributions. The lot of spare systems is composed of

Y (Y > 1) distinct qualities; for convenience, let Y := {1, 2, . . . , Y }. To ensure that the proportion

of each type of system remains constant, we assume that the lot of spare systems is infinitely large.

Additionally, we assume that the proportion of systems is known a priori and given by the vector

ρ := (ρ1, ρ2, . . . , ρY ), where ρy denotes the proportion of systems of quality y ∈ Y and

∑

y∈Y

ρy = 1.

When a system is placed into service, it is able to operate until its (random) time-to-failure

T . We denote the distribution function (d.f.) of T by F (t) := P(T ≤ t), t ≥ 0, and define F̄ (t)

as the complementary d.f., or survival function F̄ (t) = 1 − F (t). Additionally, we assume that

each quality has its own (known) failure distribution. We let Q denote the (random) quality of the

system; hence, ρy = P(Q = y). The conditional time-to-failure distribution, given Q = y, is denoted

by Fy(t) := P(T ≤ t|Q = y) and its survival function will be denoted by F̄y. Hence, whenever a

new system enters service, the time-to-failure distribution is given by the mixture distribution

F (t) =
∑

y∈Y

ρyFy(t), t ≥ 0.

The system is inspected periodically with fixed period τ (τ > 0), that is, the system is inspected

at the times in the set {τ, 2τ, 3τ, . . .}. At each inspection epoch, the system is observed to be in

67



one of two states in the set O = {0, 1}, where state 0 means the system is failed, and state 1 means

the system is functioning. If the system is found to be in state 1, three actions are feasible: do

nothing, repair, or replace. We define the set of feasible actions by A = {0, 1, 2}, where 0, 1, and 2

denote do nothing, repair, and replace the system, respectively. On the other hand, if the system

is found to be in state 0, only repair or replacement are permitted. Whenever a system is repaired,

the same system reenters service with a virtual age of 0, and its quality remains unaltered. If a

system is replaced, a new system is randomly selected from the lot of spare systems and enters

service.

Due to the indistinguishable nature of the systems, the system quality is not known with

certainty. Therefore, we define a vector b = (b1, b2, . . . , bY ), where by denotes the current belief,

or probability, that Q = y. In other words, b is a probability distribution on the support Y.

When a new system first enters service, b = ρ, and the vector b is updated over time as the

system operates. Thus, at each inspection epoch, the state of the system is described by the tuple

(x, b) = (x, b1, . . . , bY ), where xτ is the current age of the system. For convenience, we write

x = ∞ when the system is failed. Hence, the complete state space is given by S = X × Y, where

X = N ∪ {0,∞}.

Denote the (random) virtual age, quality, observation, and action taken at the nth inspection

time byXn, Yn, On, and An, respectively. At each inspection, the system is in state Sn = (Xn, Yn) ∈

S, action An ∈ A is taken, the state transitions to (Xn+1, Yn+1), and the observation On ∈ O is

received (corresponding to the new state). A cost C(Sn, An) is incurred and the process repeats

indefinitely. The cost function, C, accounts for any pertinent maintenance and downtime costs

associated with taking action An while being in state Sn; for the moment, we leave the cost

function unspecified. We seek to minimize the total expected discounted costs over an infinite

time horizon. Because the state is factorable into a fully observable (age) and partially observable

(quality) component, we formulate our sequential decision problem using a mixed-observability

Markov decision process (MOMDP) model [70].

More formally, the MOMDP is specified by the tuple (X ,Y,A,O, PX , PY , Z,C, α), where α ∈

(0, 1) is the per-period discount factor and PX , PY , and Z are functions describing the transition

dynamics of the system. Specifically,

PX (x, y, a, x
′) = P(Xn+1 = x′ | Xn = x, Yn = y,An = a)
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is the probability that the virtual age transitions to x′ when action a is taken starting in state

(x, y),

PY(x, y, a, x
′, y′) = P(Yn+1 = y′ | Xn = x, Yn = y,An = a,Xn+1 = x′)

gives the probability that the partially observable (quality) state transitions to y′ when action a is

taken from state (x, y) and the fully observable state transitions to state x′, and

Z(x′, y′, a, o) = P(On = o|Xn+1 = x′, Yn+1 = y′, An = a)

gives the probability that we receive observation o if the system transitions to state (x′, y′) after

taking action a. Next, we define several functions that play critical roles in describing the problem’s

structure. Let ḡ(t, y; τ) = P(Ty ≥ t+ τ |Ty ≥ t), then

ḡ(t, y; τ) =
P(Ty ≥ t+ τ, Ty ≥ τ)

P(Ty ≥ t)
=
F̄y(t+ τ)

F̄y(t)
.

Because the inter-inspection time τ is fixed, we can ignore the dependence of ḡ on τ and simply

write ḡ(t, y). Additionally, we define g(t, y) = 1− ḡ(t, y), Ḡ(t, b) = P(T ≥ t+ τ |T ≥ t,Q ∼ b), and

G(t, b) = 1− Ḡ(t, b). By the law of total probability, we see that

Ḡ(t, b) =
∑

y∈Y

P(Ty ≥ t+ τ |Ty ≥ t)P(Q = y|Q ∼ b) =
∑

y∈Y

ḡ(t, y)by .

If no maintenance action is taken on a system in state (x, y) with x < ∞, it is clear that the

virtual age will transition to (x+1)τ if Ty > (x+1)τ ; otherwise, it will transition to ∞. Therefore,

for x <∞,

PX (x, y, 0, x
′) =





ḡ(xτ, y), x′ = x+ 1,

1− ḡ(xτ, y), x′ = ∞,

0, otherwise.

However, if the system is repaired or replaced, then the age is returned to 0; hence,

PX (x, y, 1, x
′) = PX (x, y, 2, x

′) =





1, x′ = 0,

0, otherwise.

If the system is allowed to continue operating, or it is repaired, then its quality remains unaltered.
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However, if it is replaced, the new quality is again distributed according to ρ. Consequently,

PY(x, y, 0, x
′, y′) = PY(x, y, 1, x

′, y′) =





1, y = y′,

0, y 6= y′,

and

PY(x, y, 2, x
′, y′) = ρy′ .

Lastly, we note that On = 1 if and only if Xn+1 < ∞; hence, Z(x′, y′, a, 1) = I(x′ < ∞) =

1 − Z(x′, y′, a, 0). Upon taking action a and receiving observation o, we update the belief vector

using Bayes’ theorem as follows:

b′(y′|x, b, x′, a, o) = P(Qn+1 = y′|Xn = x,Qn ∼ b,Xn+1 = x′, An = a,On = o)

= ηZ(x′, y′, a, o)
∑

y∈Y

PY(x, y, a, x
′, y′)PX (x, y, a, x

′)by,

where, for any fixed (x, b, x′, a, o), η is a normalizing constant. Of particular interest, for x ∈ N, we

have

B̄y(x, b) = b′(y|x, b, x+ 1, 0, 1) =
(
Ḡ(xτ, b)

)−1
ḡ(xτ, y)by , (4.1)

and

By(x, b) = b′(y|x, b,∞, 0, 0) = (G(xτ, b))−1 g(xτ, y)by ,

for the cases when a working component is allowed to continue operating and either survives or fails,

respectively. We then define B̄(x, b) := (B̄1(x, b), . . . , B̄Y (x, b)) andB(x, b) := (B1(x, b), . . . , BY (x, b))

as the updated belief vectors when the system survives or fails, respectively.

We assume that at each inspection, a fixed inspection cost cI is incurred regardless of the

action taken. If the system is repaired, a fixed cost cR is incurred, but if it is replaced, a cost of

cP > cR is incurred. Lastly, if the maintenance is corrective, i.e., x = ∞, an additional penalty of

cF is incurred. This additional cost, cF , reflects the fact that corrective maintenance may include

additional costs such as lost production or overtime labor. The optimal total expected discounted

cost, starting in belief state (x, b) and denoted by V (x, b), is given as a solution to the Bellman

70



optimality equations

V (x, b) =





min





cI + cF + cP + αV (0,ρ),

cI + cF + cR + αV (0, b),

x = ∞,

min





cI + cP + αV (0,ρ),

cI + cR + αV (0, b),

cI + α[Ḡ(xτ, b)V (x+ 1, B̄(x+ 1, b))

+G(xτ, b)V (∞, B(x+ 1, b))],

x <∞.

(4.2)

The optimal action (or decision) in state (x, b) is denoted by d∗(x, b) so that d∗(x, b) = 0 if it is

optimal to do nothing, d∗(x, b) = 1 if it is optimal to repair, and d∗(x, b) = 2 if it is optimal to

replace.

4.3 STRUCTURAL RESULTS

In this section, we examine the attributes of the value function and optimal policy of the MOMDP

model formulated in Section 4.2. We begin by presenting several stochastic orders that are used

throughout our exposition.

Definition 4.1 (Usual Stochastic Order) For two random variables X and Y , we say X is

smaller than Y in the usual stochastic order (denoted X ≤st Y ) if

P(X > x) ≤ P(Y > x)

for all x ∈ (−∞,∞).

It should be noted that, given a nondecreasing function φ, and assuming existence of the expecta-

tions, X ≤st Y implies E[φ(X)] ≤ E[φ(Y )].

Definition 4.2 (Hazard Rate Order) For two random variables X and Y , we say X is smaller

than Y in the hazard rate order (denoted X ≤hr Y ) if

P(X > x)P(Y > y) ≥ P(X > y)P(Y > x)

for all real numbers x and y with x ≤ y.

71



Definition 4.3 (Likelihood Ratio Order) For two random variables X and Y , we say X is

smaller than Y in the likelihood ratio order (denoted X ≤lr Y ) if

P(X ∈ A)P(Y ∈ B) ≥ P(X ∈ B)P(Y ∈ A)

for all measurable sets A and B such that A ⊆ B.

Without proof, we next state a well-known result that relates these three types of stochastic orders.

For additional details, the reader is referred to Shaked and Shanthikumar [84].

Theorem 4.1 Suppose X and Y are two continuous or discrete random variables.

1. If X ≤lr Y , then X ≤hr Y .

2. If X ≤hr Y , then X ≤st Y .

Theorem 4.1 formalizes the notion that the likelihood ratio order is stronger than the hazard rate

order, which is stronger than the usual stochastic order. For convenience, if X and Y are discrete

random variables with respective probability mass functions p and q, and if X and Y are ordered

in a particular sense, we also say that p and q are ordered in the same sense. Furthermore, we take

the converse of the statement to be true, e.g., X ≤hr Y , if, and only if, p ≤hr q. Next, we define

the n-simplex, i.e., the space of probability mass functions on n outcomes.

Definition 4.4 (n-Simplex) The standard n-simplex ∆n is the simplex formed from the n stan-

dard unit vectors. That is,

∆n =

{
(x1, . . . , xn) ∈ Rn :

n∑

i=1

xi = 1, xi ≥ 0 for all i

}
.

We also refer to ∆n as the n-dimensional probability simplex.

Using this definition the belief state space can then be defined as Γ = X ×∆Y .

The results of this section require that various conditions be met. We next present these

conditions and their interpretations before proceeding to the main structural results.

Condition 1 The function ḡ(t, y) is jointly monotone nonincreasing in t and y.

Requiring ḡ(t, y) to be monotone in y is necessary for meaningfully comparing the performance of

systems of different qualities. In particular, when i < j, at any decision epoch, a system of quality

i is more likely to survive until the next decision epoch than a system of quality j. In this sense,

a system from lot 1 may be regarded as being of the highest quality, and a system from lot Y of

the lowest quality. This condition is equivalent to requiring that Ty ≥hr Ty+1 by the equivalence of
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(1.B.4) and (1.B.7) in [84]. Requiring ḡ(t, y) to be monotone in t means that for a fixed quality, as

a system ages, its remaining life (stochastically) decreases. This is equivalent to saying that Ty is

increasing failure rate (IFR).

Condition 2 For each y ∈ Y,

lim
x→∞

ḡ(xτ, y) = 0.

Condition 2 is a type of short-tail condition. In particular, it says that regardless of the system

quality, as the system ages, it will eventually become so degraded that it will have zero probability

of surviving the inter-inspection period.

Condition 3 For each y 6= 1,

lim
x→∞

ḡ(xτ, y)

ḡ(xτ, 1)
= 0.

Condition 3 can be interpreted to mean that (in an asymptotic sense) lower-quality systems degrade

more rapidly than the highest quality system.

We are now prepared to state our first result. Under Condition 1, if we observe that the system

survives an inter-inspection period, then the updated belief state is smaller, in the likelihood ratio,

than the initial belief state. Similarly, if we observe that the system fails during an inter-inspection

period, then the updated belief state is larger in the likelihood ratio than the initial belief state.

Proposition 4.1 Under Condition 1, for x ∈ X and b ∈ ∆Y

B̄(x, b) ≤lr b ≤lr B(x, b).

Proof. First, we show that B̄(x, b) ≤lr b. To this end, we must show by/B̄y(x, b) is nonde-

creasing in y ∈ Y. By equation (4.1), we have

by
B̄y(x, b)

=
Ḡ(xτ, b)by
ḡ(xτ, y)by

=
Ḡ(xτ, b)

ḡ(xτ, y)
.

The proof is completed by noting that Condition 1 implies ḡ(t, y) is monotone nonincreasing in

y ∈ Y. The proof for B̄(x, b) ≤lr b follows similarly by noting that g(t, y) = 1− ḡ(t, y) is monotone

nondecreasing in y ∈ Y.

We next show that under Condition 1, for any fixed belief state, the probability of the system

surviving through the inter-inspection period decreases as the virtual age increases; consequently,

the probability of failure increases.
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Proposition 4.2 Under Condition 1, for b ∈ ∆Y and x ∈ X \ {∞},

Ḡ(xτ, b) ≥ Ḡ((x + 1)τ, b) and G(xτ, b) ≤ G((x + 1)τ, b).

Proof. We will first show that Ḡ(xτ, b) ≥ Ḡ((x+ 1)τ, b), noting that G(xτ, b) ≤ G((x+ 1)τ, b)

follows since G(t, b) = 1− Ḡ(t, b). By Condition 1, for each x ∈ X \ {∞},

h1(y) := ḡ(xτ, y) ≥ ḡ((x+ 1)τ, y) := h2(y)

for all y ∈ Y. Because the functions h1 and h2 are ordered for all y,

h1(Q) ≥st h2(Q). (4.3)

Consequently, by taking expectations on across both sides of inequality (4.3),

Ḡ(xτ, b) = E(h1(Q)) ≥ E(h2(Q)) = Ḡ((x + 1)τ, b),

where Q ∼ b.

The next result asserts that, under Condition 1, if two states are ordered such that the belief

state is ordered in the sense of the usual stochastic order, and the virtual ages are ordered, then

the probabilities of system failure are ordered in the same direction. That is, systems with older

virtual ages and stochastically larger belief states are more likely to fail.

Proposition 4.3 Under Conditions 1 and 2, if b1 ≤st b2 and x1 ≤ x2 then

Ḡ(x1τ, b1) ≥ Ḡ(x2τ, b2) and G(x1τ, b1) ≤ G(x2τ, b2).

Proof. We again proceed by first showing Ḡ(x1τ, b1) ≥ Ḡ(x2τ, b2), noting this implies

G(x1τ, b1) ≤ G(x2τ, b2). By Condition 1, we have that ḡ(x1τ, y) is nonincreasing in y ∈ Y. Thus,

if Qi ∼ bi, i = 1, 2, then

Ḡ(x1τ, b1) = E(ḡ(x1τ,Q1)) ≥ E(ḡ(x1τ,Q2)) = Ḡ(x2τ, b2)

where the inequality holds by b1 ≤st b2. The result follows by repeated application of Proposition

4.2.

Next, assume that we have two distributions over the quality of the system in operation that

are ordered in the likelihood ratio sense. Under the same observation, i.e., the system is found to

be functioning or failed at a particular time, the distributions remain ordered after being updated.

This is formalized in Proposition 4.4.
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Proposition 4.4 Under Condition 1, if b1 ≤lr b2 and x ∈ X then

B̄(x, b1) ≤lr B̄(x, b2) and B(x, b1) ≤lr B(x, b2).

Proof. Again, we proceed by only showing that B̄(x, b1) ≤lr B̄(x, b2). For i = 1, 2, let biy

be the yth component of bi. Then,

B̄y(x, b2)

B̄y(x, b1)
=

[Ḡ(xτ, b2)]
−1

[Ḡ(xτ, b1)]−1

ḡ(xτ, y)

ḡ(xτ, y)

b2y

b1y
=
Ḡ(xτ, b1)

Ḡ(xτ, b2)

b2y

b1y
,

but b2y/b
1
y is increasing in y by assumption; hence, B̄y(x, b2)/B̄y(x, b1) is increasing.

We are now prepared to state our first main result. Theorem 4.2 asserts that, under Condition

1, for a fixed virtual age, the value function is monotone in the belief state. Additionally, for any

fixed belief state, the value function is largest when the system is in the failed state.

Theorem 4.2 Under Conditions 1, if x ∈ X and b1 ≤lr b2, then

V (x, b1) ≤ V (x, b2)

and if b ∈ ∆Y then

cF + V (x, b) ≤ V (∞, b).

Proof. We proceed by induction on the iterates of the value iteration algorithm. Let vk

be the approximation of the value function V at the kth iteration and assume v0(x, b) = 0 for all

(x, b) ∈ X ×∆Y . Then,

v1(x, b) =





cI + cF + cR, x = ∞,

cI , x <∞;

hence, v1(x, b) is constant in b and v1(x, b) + cF < v1(∞, b). Now, assume that vk(x, b) satisfies

the induction hypothesis, i.e., if x ∈ X and b1 ≤lr b2 then vk(x, b1) ≤ vk(x, b2), and if b ∈ ∆Y then

cF + vk(x, b) ≤ vk(x, b). For notational convenience, we let Ck
P = cI + cP + αvk(0,ρ), Ck

R(b) =

cI+cR+αvk(0, b), and Ck
DN (x, b) = cI+α(Ḡ(x, b)v

k(x+1, B̄(x+1, b))+G(x, b)vk(∞, B(x+1, b)).

Then, when x = ∞, we have

vk+1(∞, b) = min{cF + Ck
P , cF + Ck

R(b)}.

By the induction hypothesis, Ck
R(b) is monotone nondecreasing in b, and since Ck

P is constant in b,

it is clear that vk+1(∞, b) is also monotone nondecreasing in b.
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Next, for x <∞,

vk+1(x, b) = min{Ck
P , C

k
R(b), C

k
DN (x, b)} ≤ min{Ck

P , C
k
R(b)};

hence, vk+1(x, b) + cF ≤ cF + min{Ck
P , C

k
R(b)} = vk+1(∞, b). To complete the proof, we need to

show that Ck
DN (x, b) is monotone nondecreasing in b. Let, b1 ≤lr b2, and, for i = 1, 2, let Di be a

random variable such that

P(Di = q) =





Ḡ(x, bi), q = 0,

G(x, bi), q = 1,

and let hki (q|x) be a function such that

hki (q|x) =





vk(x+ 1, B̄(x+ 1, bi)), q = 0,

vk(∞, B(x+ 1, bi)), q = 1.

Because b1 ≤lr b2 implies b1 ≤st b2, Proposition 4.2 shows that G(x, b1) ≤ G(x, b2); consequently,

D1 ≤st D2. Additionally, by Proposition 4.4, B̄(x + 1, b1) ≤lr B̄(x + 1, b2) and B(x + 1, b1) ≤lr

B(x + 1, b2); therefore, by the induction hypothesis, hk1(q|x) ≤ hk2(q|x) for q = 0, 1. We can see

then that

Ck
DN (x, b1) = cI + αE(hk1(D1|x)) ≤ cI + αE(hk2(D1|x)).

Next, we note

hk2(0|x) = vk(x+ 1, B̄(x+ 1, b2)) ≤ V k(x+ 1, b2) ≤ vk(x+ 1, B(x+ 1, b2))

≤ vk(∞, B(x+ 1, b2))

= hk2(1|x),

where the first two inequalities follow from the induction hypothesis and Proposition 4.1, and the

last inequality follows from the induction hypothesis. Thus, hk2(q|x) is nondecreasing in q, so by

D1 ≤st D2

Ck
DN (x, b1) ≤ cI + αE(hk2(D1|x)) ≤ cI + αE(hk2(D2|x)) = Ck

DN (x, b2),

and the proof is complete.

Our next result (Theorem 4.3) establishes that the belief state space can be partitioned into

two regions: a region where either doing nothing or repair is optimal, and a region where either

doing nothing or replacement is optimal. Moreover, these regions are formed by partitioning ∆Y

and are related to the likelihood ratio ordering.
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Theorem 4.3 Under Condition 1, if d∗(x, b) = 2, then d∗(x′, b′) ∈ {0, 2} for all x′ ∈ N and

b′ ≥lr b. Additionally, if d∗(x, b) = 1, then d∗(x′, b′) ∈ {0, 1} for all x′ ∈ N and b′ ≤lr b.

Proof. If d∗(x, b) = 2, then V (x, b) = cI + cP + αV (0,ρ); hence,

cI + cP + αV (0,ρ) < cI + cR + αV (0, b) (4.4)

≤ cI + cR + αV (0, b′), (4.5)

where the first inequality follows directly from (4.2), and the second inequality follows from Theorem

4.2. Therefore, repair is not optimal in state (x′, b′). The proof of the second statement follows by

noting that d∗(x, b) = 1 and b′ ≤lr b results in a reversal of inequalities (4.4) and (4.5).

To further understand the structure of the optimal value function and policy, we consider their

behavior when the quality is known with certainty. Let the set of vectors {ey : 1 ≤ y ≤ Y } be the

standard basis for Y -dimensional Euclidean space, where ey denotes the vector with a one in the

yth coordinate and zeros elsewhere. Our next result states that, when the quality is known with

certainty, the value function is monotone nondecreasing in the virtual age.

Proposition 4.5 Under Condition 1, for each y ∈ Y, and x ∈ X \ {∞},

V (x,ey) ≤ V (x+ 1,ey).

Proof. Again, by induction, if v0(x, b) = 0 for all (x, b) ∈ X ×∆Y , then again

v1(x, b) =





cI + cR + cF , x = ∞,

cI , x <∞;

hence, the base case holds. Additionally, for each x ∈ X \{∞} and y ∈ Y, we note that v1(x,ey) ≤

v1(∞,ey). Now, assume that for each x, y that vk(x,ey) ≤ vk(x + 1,ey) ≤ vk(∞,ey), which

also holds in the base case, then by the proof of Theorem 4.2 we know this property is conserved

under each iteration of the value iteration algorithm and holds for k + 1. Then, noting that
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Ḡ(x,ey) = ḡ(x, y), G(x,ey) = g(x, y), and B̄(x,ey) = B(x,ey) = ey, we see

vk+1(x,ey) = min





cI + αvk(0,ρ)

cI + αvk(0,ey)

cI + α
(
ḡ(x, y)vk(x+ 1,ey) + g(x, y)vk(∞,ey)

)

≤ min





cI + αvk(0,ρ)

cI + αvk(0,ey)

cI + α
(
ḡ(x, y)vk(x+ 2,ey) + g(x, y)vk(∞,ey)

)

≤ min





cI + αvk(0,ρ)

cI + αvk(0,ey)

cI + α
(
ḡ(x+ 1, y)vk(x+ 2,ey) + g(x+ 1, y)vk(∞,ey)

)

= vk+1(x+ 1,ey),

where the first inequality follows directly from the induction hypothesis, and the second inequality

follows by noting that vk(x+2,ey) ≤ vk(∞,ey) and g(x, y) ≤ g(x+1, y) (using a stochastic ordering

argument similar to that in the proof of Theorem 4.2).

Additionally, for each ey, there exists a virtual age above which it is optimal to preventively

maintain and below which it is optimal to do nothing. This result is formalized in Proposition 4.6.

Proposition 4.6 If d∗(x,ey) > 0, then

V (x+ 1,ey) = V (x,ey) = V (∞,ey)− cF ,

and

d∗(x+ 1,ey) = d∗(x,ey).

Proof. If d∗(x,ey) > 0, then

V (x,ey) = min{cI + cP + αV (0,ρ), cI + cR + αV (0,ey)}

≤ cI + α (ḡ(x, y)V (x+ 1,ey) + g(x, y)V (∞,ey)) (4.6)

≤ cI + α (ḡ(x, y)V (x+ 2,ey) + g(x, y)V (∞,ey)) (4.7)

≤ cI + α (ḡ(x+ 1, y)V (x+ 2,ey) + g(x+ 1, y)V (∞,ey)) , (4.8)
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where inequality (4.6) follows by supposition that the optimal action is preventive maintenance,

(4.7) follows by Proposition 4.5, and (4.8) follows by Condition 1. The result then follows immedi-

ately by noting that

V (x+ 1,ey) = min





min{cI + cP + αV (0,ρ), cI + cR + αV (0,ey)}

cI + α (ḡ(x+ 1, y)V (x+ 2,ey) + g(x+ 1, y)V (∞,ey))

= min{cI + cP + αV (0,ρ), cI + cR + αV (∞,ey)}

= V (x,ey).

Proposition 4.7, further characterizes the optimal policy and value function when the quality is

known with certainty.

Proposition 4.7 Suppose that Conditions 1 and 2 hold. For each y ∈ Y,

1. if d∗(x,ey) ∈ {0, 2}, then d∗(x,ey) = 0 for all x < x∗y and d∗(x,ey) = 2 for all x ≥ x∗y, where

x∗y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α

αcF

)(
cI + cF
1− α

− (cI + cF + cP )− V (0,ρ)

)}
,

2. if d∗(x,ey) ∈ {0, 1}, then d∗(x,ey) = 0 for all x < x∗y and d∗(x,ey) = 1 for all x ≥ x∗y, where

x∗y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α

αcF

)(
cI + cF
1− α

− (cI + cF + cR)− V (0,ey)

)}
,

3. if d∗(x,ey) ∈ {0, 1}, then V (x,ey) = V (x) where V (x) satisfies the following one-dimensional

Bellman equations:

V (x) = min





cI + cP + αV (0),

cI + α [ḡ(xτ, y)V (x+ 1) + g(xτ, y) (cI + cF + cR + αV (0))] .

Proof. We first prove Part 3. By the assumption that d∗(x,ey) ∈ {0, 1}, and (4.2), we have

V (x,ey) = min





cI + cR + αV (0,ey),

cI + α
[
Ḡ(xτ,ey)V (x+ 1, B̄(x+ 1,ey)) +G(xτ,ey)V (∞, B(x+ 1,ey))

]
.

(4.9)
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It can be seen that ey = B̄(x,ey) = B(x,ey), Ḡ(xτ,ey) = ḡ(xτ, y) and G(xτ,ey) = g(xτ, y). Hence,

V (∞, B(x+ 1,ey)) = V (∞,ey) = cI + cF + cR + αV (0,ey) and (4.9) can be rewritten as

V (x,ey) = min





cI + cR + αV (0,ey),

cI + α [ḡ(xτ, y)V (x+ 1,ey) + g(xτ, y)(cI + cF + cR + αV (0,ey))] ,

(4.10)

completing the proof of Part 3. For Part 2, we see from (4.10) that d∗(x,ey) = 1 if, and only if,

cI + cR + αV (0,ey) < cI + α [ḡ(xτ, y)V (x+ 1,ey) + g(xτ, y)(cI + cF + cR + αV (0,ey))] . (4.11)

We note that if d∗(x,ey) = 1, then by Proposition 4.6 that d∗(x + 1,ey) = 1, and, consequently,

V (x,ey) = V (x+ 1,ey) = cI + cR + αV (0,ey). Hence, inequality (4.11) is equivalent to

cI + cR + αV (0,ey) < cI + α [ḡ(xτ, y)(cI + cR + αV (0,ey)) + g(xτ, y)(cI + cF + cR + αV (0,ey))] .

(4.12)

By noting that g(xτ, y) + ḡ(xτ, y) = 1, we rearrange the inequality to see that d∗(x,ey) = 1 if, and

only if,

ḡ(xτ, y) <

(
1− α

αcF

)(
cI + cF
1− α

− (cI + cF + cR)− V (0,ey)

)
. (4.13)

The proof is completed by noting that ḡ(xτ, y) is monotone nonincreasing in x, and converges to 0

(by Conditions 1 and 2, respectively). The proof of Part 1 is similar to that of Part 2.

Proposition 4.7, Part 3 is useful for computing the optimal policy at extreme points of ∆Y

where repair is optimal. Additionally, as shown in Corollary 4.1, Proposition 4.7, Part 1 is useful

for bounding the age replacement threshold of the extreme points of ∆Y for which repair is not

optimal.

Corollary 4.1 Under Conditions 1-2, for each y ∈ Y, if d∗(x,ey) ∈ {0, 2}, and if there exist real

numbers
¯
V and V̄ such that

¯
V ≤ V (0,ρ) ≤ V̄ , then

¯
xy ≤ x∗y ≤ x̄y, where

¯
xy = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α

αcF

)(
cI + cF
1− α

− (cI + cF + cP )−
¯
V

)}
, and

x̄y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α

αcF

)(
cI + cF
1− α

− (cI + cF + cP )− V̄

)}
.
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There are many ways to bound V (0,ρ), but some simple bounds are given by V (0,e1) ≤ V (0,ρ) ≤

¯
V (0,ρ) where V (0,e1) can be computed as described in Proposition 4.7, Part 3 and

¯
V (0,ρ) is

determined by solving the following one-dimensional Bellman equations:

¯
V (x,ρ) = min





cI + cP + α
¯
V (0,ρ),

cI + α
(
Ḡ(xτ,ρ)

¯
V (x+ 1,ρ) + Ḡ(xτ,ρ)(cI + cF + cP + α

¯
V (0,ρ))

)
.

(4.14)

The solution to equation (4.14) gives the total expected discounted cost of an optimal replacement-

only policy when the belief about the active system’s quality is never updated.

In order to prove our final main result concerning the structure of the optimal policy, we need to

prove several useful lemmas. The first lemma establishes limits for the Bayesian update functions

B and B̄.

Lemma 4.1 For all b ∈ ∆Y , under Condition 2,

lim
x→∞

B(x, b) = b,

and, under Condition 3,

lim
x→∞

B̄(x, b) = e1.

Proof. Define limx→∞By(x, b) = ℓy, then if ℓy exists for ever y, B(x, b) → (ℓ1, . . . , ℓY ).

Now, by definition,

By(x, b) =
g(x, y)

G(x, b)
by,

where clearly, by Condition 2, we have that g(x, y) → 1 and G(x, b) =
∑

m g(x,m)bm →
∑

m bm =

1. Therefore, By(x, b) → by and B(x, b) → b. Similarly, we consider B̄y(x, b), where, after some

algebraic manipulation,

B̄y(x, b) =
ḡ(x, y)by∑
m ḡ(x,m)bm

=
by∑

m
ḡ(x,m)
ḡ(x,y) bm

=
by

by +
∑

m6=y
ḡ(x,m)
ḡ(x,y) bm

. (4.15)

For y = 1, by Condition 3, the expression in (4.15) converges to 1.

Lemmas 4.2 and 4.3 state that, regardless of the time-to-failure distribution, Ḡ, G, B̄, and B

are continuous in the belief about the system quality.
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Lemma 4.2 For each fixed x ∈ X \ {∞}, Ḡ(x, b) and G(x, b) are continuous in b ∈ ∆Y .

Proof. In what follows, the norm || · || will denote the Euclidean norm. For ǫ > 0, con-

sider δ(ǫ) = ǫ/Y . Then, for any b, b′ ∈ ∆Y such that ||b − b′|| < δ(ǫ) we seek to show that
∣∣Ḡ(x, b)− Ḡ(x, b′)

∣∣ < ǫ. First, we note that ||b− b′|| < δ(ǫ) implies
∣∣by − b′y

∣∣ < δ(ǫ) for all y ∈ Y.

Now, by the non-negativity of ḡ(x, y) and the triangle inequality, we know that

∣∣Ḡ(x, b)− Ḡ(x, b′)
∣∣ =

∣∣∣∣∣
∑

y

ḡ(x, y)(by − b′y)

∣∣∣∣∣ ≤
∑

y

ḡ(x, y)
∣∣by − b′y

∣∣ ,

but by the bound on
∣∣by − b′y

∣∣, we have that

∣∣Ḡ(x, b)− Ḡ(x, b′)
∣∣ < ǫ

Y

∑

y

ḡ(x, y) ≤
ǫ

Y

∑

y

1 = ǫ.

Therefore, Ḡ(x, b) is continuous in b and because G(x, b) = 1− Ḡ(x, b), we conclude that G(x, b)

is also continuous in b.

Lemma 4.3 For each fixed x ∈ X \ {∞}, B̄(x, b) and B(x, b) are continuous in b ∈ ∆Y .

Proof. The function B̄(x, ·) is continuous if, and only if, B̄y(x, ·) : RY → R is continuous

for all y ∈ Y. By Lemma 4.2, B̄y(x, b) =
(
Ḡ(x, b)

)−1
ḡ(x, y)by is a product of continuous functions

and is, therefore, continuous. Hence, by the continuity of its components, B̄(x, ·) is continuous.

The proof that B is continuous is similar.

Our next result, states that for each fixed virtual age, the optimal value function, V , is contin-

uous in the belief about the system quality.

Proposition 4.8 Under Conditions 2-3, for each fixed x ∈ X \ {∞}, V (x, b) is continuous in

b ∈ ∆Y .

Proof. By induction, if v0(x, b) = 0 for all (x, b) ∈ X ×∆Y , then

v1(x, b) =





cI + cR + cF , x = ∞,

cI , x <∞,

so the base case holds. Now, assume vk(x, b) is continuous in b and note that

vk+1(∞, b) = cI + cF +min{cP + αvk(0,ρ), cR + αvk(0, b)}.
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Because the minimum of continuous functions is again continuous, we conclude that vk+1(∞, b) is

continuous in b. Now, for finite x ∈ X ,

vk+1 = min{vk+1(∞, b)− cF , C
k
DN (x, b)},

where Ck
DN (x, b) = cI +α(Ḡ(x, b)vk(x+1, B̄(x+1, b)) +G(x, b)vk(∞, B(x+1, b)). Therefore, we

proceed to show that Ck
DN (x, b) is continuous to complete the proof. By Lemma 4.3, we know that

B̄ is continuous; hence,

lim
bn→b

B̄(x+ 1, bn) = B̄(x+ 1, b).

Then, by the induction hypothesis, we see that

lim
bn→b

vk(x+ 1, B̄(x+ 1, bn)) = vk(x+ 1, lim
bn→b

B̄(x+ 1, bn)) = vk(x+ 1, B̄(x+ 1, b));

thus, vk(x+1, B̄(x+1, bn)) is continuous. Similarly, vk(∞, B(x+1, bn)) is also continuous. Lastly,

we note that G and Ḡ are continuous by Lemma 4.2. Because Ck
DN (x, b) is the composition of

continuous functions, it is also continuous.

Our next two results characterize the asymptotic behavior of the value function as the virtual

age increases. First, Lemma 4.4 gives an expression for the value of doing nothing as the virtual

age goes to infinity.

Lemma 4.4 Under Conditions 2-3,

lim
x→∞

VDN (x, b) = cI + αV (∞, b),

where VDN (x, b) = cI + α
(
Ḡ(x, b)V (x+ 1, B̄(x+ 1, b)) +G(x, b)V (∞, B(x+ 1, b))

)
.

Proof. We first show that, for all x <∞, V (x, b) is finitely bounded. By (4.2), we note that

V (0, b) ≤ cI + cR + αV (0, b). Rearranging terms, observe that V (0, b) ≤ (cI + cR)/(1 − α). For

any x <∞, V (x, b) ≤ cI + cR + αV (0, b) ≤ cI + cR + α(cI + cR)/(1− α). By Condition 2 and this

finiteness, we have that

lim
x→∞

Ḡ(x, b)V (x+ 1, B̄(x+ 1, b)) = 0.

By Condition 2, Lemma 4.1, and Proposition 4.8,

lim
x→∞

G(x, b)V (∞, B(x+ 1, b)) = V (∞, lim
x→∞

B(x+ 1, b)) = V (∞, b).

Therefore, VDN (x, b) → cI + αV (∞, b).

A natural consequence of Lemma 4.4 is that, for each fixed system belief, the value function is

convergent. This is stated, without proof, in Corollary 4.2.
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Corollary 4.2 Under Conditions 2-3,

lim
x→∞

V (x, b) = cI +min{cP + αV (0,ρ), cR + αV (0, b), αV (∞, b)}.

Finally, Theorem 4.4 asserts that for each fixed system belief, b ∈ ∆Y , under the appropriate

conditions, there exists a threshold in the virtual age beyond which preventive maintenance is

optimal. Moreover, this threshold is guaranteed to be finite.

Theorem 4.4 Under Conditions 1-3, if cR < αcF , then for each b ∈ ∆Y , there exists an x(b) <∞

such that d∗(x, b) = d∗(x(b), b) > 0 for all x > x(b).

Proof. By Theorem 4.2,

αV (∞, b) ≥ α(cF + V (x, b)),

for all x ∈ X . Therefore,

αV (∞, b) ≥ α(cF + V (0, b)) = αcF + αV (0, b) (4.16)

> cR + αV (0, b) (4.17)

≥ min{cP + αV (0,ρ), cR + αV (0, b)}, (4.18)

where inequality (4.17) follows from the assumption that cR < αcF , and inequality (4.18) by

definition of the minimum function. For all δ, ǫ > 0, there exist two finite, possibly distinct,

integers xDN (δ, b) and x(ǫ, b) such that for all x > xDN (δ, b),

|VDN (x, b)− (cI + αV (∞, b))| < δ, (4.19)

and for all x > x(ǫ, b)

|V (x, b)− (cI +min{cP + αV (0,ρ), cR + αV (0, b)})| < ǫ, (4.20)

where (4.19) follows from Lemma 4.4, and (4.20) follows from Corollary 4.2 and the strict inequality

(4.17).

Define

d(b) = cI + αV (∞, b)− cI +min{cP + αV (0,ρ), cR + αV (0, b)},
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then for any x > max {xDN (d(b)/2, b), x(d(b)/2, b)}, we have

VDN (x, b)− V (x, b) = VDN (x, b)− V (xb) + d(b)− d(b) (4.21)

= VDN (x, b)− V (xb) + d(b)− [cI + αV (∞, b)

− cI +min{cP + αV (0,ρ), cR + αV (0, b)}]

(4.22)

= (VDN (x, b)− cI + αV (∞, b)

+ [cI +min{cP + αV (0,ρ), cR + αV (0, b)} − V (x, b)] + d(b)

(4.23)

> −
d(b)

2
−
d(b)

2
+ d(b) (4.24)

= 0, (4.25)

where inequality (4.24) follows by (4.19), (4.20), and the fact that (4.16)-(4.18) imply d > 0. Thus,

for all x > max {xDN (d/2, b), x(d/2, b)}, doing nothing is strictly suboptimal. The result follows

by defining x(b) = max {xDN (d(b)/2, b), x(d(b)/2, b)}.

We are unable to confirm that the value function is jointly monotone nondecreasing; however,

if such monotonicity holds, we can establish stronger structural properties. Proposition 4.9 asserts

that if the value function is jointly monotone, then the optimal decisions are also monotone in the

system’s virtual age for each fixed belief vector.

Proposition 4.9 If V (x, b) is jointly monotone nondecreasing, then for each b ∈ ∆Y , x ≤ x′ also

implies d∗(x, b) ≤ d∗(x′, b).

Proof. By contradiction, assume that for some (x, b) ∈ X × ∆Y and x′ > x that d∗(x, b) >

d∗(x′, b). It follows by Theorem 4.3 that V (x, b) = min{cI + cR+αV (0, b), cI + cR+αV (0,ρ)} and

V (x′, b) = min{cI + cR + αV (0, b), cI + cR + αV (0,ρ), VDNx
′, b} ≤ min{cI + cR + αV (0, b), cI +

cR + αV (0,ρ)} = V (x, b). Therefore, V (x, b) = V (x′, b) and d∗(x, b) = d∗(x′, b), which is a

contradiction.

Lastly, Proposition 4.10 states that if it is optimal to replace in a particular state, then it is

optimal to replace for all larger states (with the belief vector being ordered in the likelihood ratio

sense). That is, within the region for which replacement is the optimal maintenance action, the

preventive age replacement thresholds are monotone nondecreasing in the belief vector.

Proposition 4.10 If V (x, b) is jointly monotone nondecreasing, then if d∗(x, b) = 2, then d∗(x2, b2) =

2 for all x2 ≥ x1 and b2 ≥lr b1.
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Proof. If d∗(x1, b1) = 2 then by (4.2) we have that V (x1, b1) = cI + cP +αV (0,ρ), and by joint

monotonicity we see that V (x1, b1) ≤ V (x2, b2). Lastly, we note that V (x2, b2) ≤ cI+cP +αV (0,ρ).

Combining these facts we see that

cI + cP + αV (0,ρ) ≤ V (x2, b2) ≤ cI + cP + αV (0,ρ). (4.26)

Therefore, equality holds throughout (4.26), thus completing the proof.

4.4 NUMERICAL EXAMPLES

In this section, we illustrate our maintenance optimization framework on synthetic problem in-

stances. We consider problems that are specifically tailored to illustrate particular properties, in

addition to a large bed of randomly-parameterized problem instances. Examined are the qualitative

properties of the optimal value function and resulting optimal policy. Additionally, we compare

the cost of following the optimal MOMDP policy to several other policies.

Throughout all of our numerical examples, it is assumed that the time-to-failure, (T |Q =

y), follows a Weibull distribution with common shape parameter k > 1 and scale parameter λy.

Additionally, it is assumed that λ1 > λ2 > · · · > λY . These distributional assumptions are

made due to the prevalence of the Weibull distribution in modeling the time-to-failure, particularly

within the context of maintenance optimization models. Additionally, under these assumptions, it

is straightforward to verify that Conditions 1-3 are met.

All two-quality problem instances are coded within the MATLAB R2016a computing environ-

ment, and the three-quality problem instance is coded within the Java SE Runtime Environment

8. All codes are executed on a personal computer with a 3.50 GHz processor and 8GB of RAM.

4.4.1 Randomly-Generated Problem Instances

Here, 200 two-quality problems (Y = 2) are randomly generated with the aim of varying the

problem parameters over a wide range values to assess the robustness of our MOMDP policy. In

what follows, U(a, b) denotes a continuous uniform random variable on (a, b). Fixing the number

of system qualities at Y = 2, we randomly generate M = 200 problem instances. For problem

m ∈ {1, . . . ,M}: the discount factor is denoted α(m), where α ∼ U(0.8, 0.9999); the cost vector
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is denoted c(m) = (c
(m)
I , c

(m)
F , c

(m)
R , c

(m)
P ), where c

(m)
I = 1, c

(m)
F ∼ U(4, 8), c

(m)
R ∼ U(1, 2), and

c
(m)
P ∼ c

(m)
R + U(1, 4); the time-to-failure distribution shape parameter is denoted k(m) and scale

parameter vector is denoted λ(m) = (λ
(m)
1 , λ

(m)
2 ), where k(m) ∼ U(1.1, 3), λ

(m)
2 ∼ U(1, 10), and

λ
(m)
1 ∼ λ

(m)
2 + U(1, 10); the initial quality distribution is denoted ρ(m) = (ρ

(m)
1 , ρ

(m)
2 ), where

ρ
(m)
1 ∼ U(0.1, 0.9) and ρ

(m)
2 = 1 − ρ

(m)
1 ; and the inter-inspection period is denoted τ (m), where

τ (m) ∼ U(0.2, 1.5).

Because there are only two qualities, the belief state can be written as b = (b, 1− b); hence, the

belief space can be simplified to the interval [0, 1]. In order to compute the MOMDP policy, we

discretize the interval [0, 1] into 1,000 states and truncate X to be large enough to have negligible

impact on the optimal value function. When a value iteration step required the value function iterate

be evaluated at a non-grid point, it is approximated using simple linear interpolation between the

two nearest points. The optimal value function and policy are then obtained numerically using the

value iteration algorithm.

In addition to our MOMDP policy, we consider three other policies: Oracle, Heuristic, and

Naive. The Oracle policy is endowed with additional information in that it is given perfect infor-

mation about the system quality. It then takes actions prescribed by the MOMDP policy but with

the belief state fixed to the appropriate extreme point in ∆Y . The Oracle policy provides a per-

formance bound on the total expected discounted maintenance costs, as the additional information

guarantees that, in expectation, it will outperform the MOMDP model. The Heuristic policy is

determined by decoupling the problem across the belief states. Specifically, if the belief state is

fixed, the problem of determining the optimal policy simplifies to solving a one-dimensional set of

Bellman equations in which the time-to-failure distribution is determined by the current mixture

distribution. As in the MOMDP policy, we begin by discretizing the interval and then solving a

one-dimensional problem for each of the 1,000 belief states. This approach reduces the computa-

tional burden and storage requirements, and because each of the MDP models is monotone, we can

utilize a monotone value iteration algorithm to further enhance the computational savings. The

Heuristic policy is implemented by updating the belief about the quality of the system in the same

manner as the MOMDP policy, but at each inspection epoch, it utilizes the one-dimensional policy

corresponding to the current belief state to determine which action is taken. Finally, the Naive

policy fixes the belief state at the initial distribution and, similar to the Heuristic policy, solves a

one-dimensional MDP to determine whether or not to preventively maintain the system.
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In order to compare the costs of the four policies, we use a simulation model. For a given

simulation run, we simulate the system’s time-to-failure each time it enters service, and when a

system is replaced, we randomly draw a new system using the initial distribution ρ(m). For each m,

the simulation run length is given by the number of decision epochs N (m). Along each sample path,

the total discounted cost is computed for each policy of interest, and these values are compared.

It should be noted that, because the expected one-step costs are bounded, and the cost function

is discounted, we can determine a priori the simulation run length needed to ensure that the

total discounted cost is accurate to a fixed constant. More precisely, to guarantee that the finite

approximation is within ǫ (ǫ > 0) of the true total discounted cost, the number of decision epochs

N (m) must satisfy

N (m) ≥
ln
[
(1− α(m))ǫ/C(m)

]

ln(α(m))
− 1, m = 1, . . . ,M,

where C(m) is any valid upper bound on the expected one-step costs. For all numerical examples,

N (m) is chosen to correspond to ǫ = 0.01 and C(m) is taken to be c
(m)
I + c

(m)
F + c

(m)
P .

For each problem instance m ∈ {1, . . . ,M}, 500 sample paths are simulated and the cost of

following each policy is computed. Under a particular policy and problem instance m, we denote

the average total discounted maintenance cost (averaged over the 500 sample paths) by v̄
(m)
policy, e.g.,

v̄
(m)
Naive. In problem instance m = 12, the parameter values are as follows:

α(12) = 0.9904

c(12) = (1, 4.2283, 1.9530, 3.9396)

k(12) = 1.9516

λ(12) = (14.3213, 8.1914)

ρ(12) = (0.4907, 0.5093)

τ (12) = 0.4942

Problem instance m = 12 is noteworthy in that it exhibits the greatest discrepancy between the

MOMDP and Naive policies; the MOMDP policy achieved a 39.47% average cost savings, i.e.,

v̄
(m)
Naive − v̄

(m)
MOMDP

v̄
(m)
Naive

× 100% = 39.47%.

For each problem instance, we establish baseline performance by comparing each policy to the

Oracle policy. We assess this difference by comparing the average increase in cost realized by using

each policy. This increase, for a particular policy in problem instance m, is denoted by v̂
(m)
policy. For
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example, when comparing the MOMDP policy against the Oracle policy in problemm, we compute

v̂
(m)
MOMDP =

v̄
(m)
MOMDP − v̄

(m)
Oracle

v̄
(m)
Oracle

× 100%.

These percentage increases are then averaged over all 500 problem instances to obtain the average

cost increase for a given policy, denoted by v̂policy. Table 2 summarizes the average cost increase

for each policy, demonstrating significant savings achieved by utilizing the MOMDP policy. It is

noteworthy that our model yields a nearly 20% improvement over the Naive policy, on average.

Table 2: Summary of policy comparison results.

v̂Oracle v̂MOMDP v̂Heuristic v̂Naive

– 7.70% 20.90% 26.39%

Figure 20 depicts the cost comparison between two particular problem instances, m = 10 and

m = 12. In problem instance m = 10, the parameter values are as follows: α(10) = 0.9989, c(10) =

(1, 7.5643, 1.7253, 4.3246), k(10) = 1.4123, λ(10) = (10.5496, 5.8213), ρ(10) = (0.3754, 0.6246), and

τ (10) = 0.9942. In these problem instances, the difference between the performance of the MOMDP

policy and Oracle policy are negligible, but there is a large performance gap between the MOMDP

policy and the Naive and Heuristic policies. The most striking commonality between these two

problem instances is that the discount factor α(m) is large in both cases (α(10), α(12) > 0.99). This

finding indicates that our framework is likely to outperform these policies under an average cost

criterion (as opposed to a discounted cost criterion).

4.4.2 A Specific Two-quality Problem

For the example considered in this section, the number of system qualities is again Y = 2. The

discount rate is α = 0.99 and the cost vector is c = (cI , cF , cR, cP ) = (1, 2, 3, 4), the time-to-

failure shape parameter is k = 2, the scale parameter vector is λ = (λ1, λ2) = (12, 6), the initial

distribution is ρ = (ρ1, ρ2) = (0.7, 0.3), and the inter-inspection period is τ = 0.2.

To compute the MOMDP policy, the belief space, [0, 1], is uniformly discretized into 1,000

states and X is truncated to be {0, 1, . . . , 200,∞}. The optimal value function and policy are

then obtained numerically using the value iteration algorithm. When a step in the value iteration

algorithm requires a value function iterate whose belief state is outside this discretization, it is
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(a) Boxplots of total discounted cost for m = 10.

Oracle MOMDP Heuristic NaivePolicy1400160018002000220024002600
T ot alDi scount edC ost

(b) Boxplots of total discounted cost for m = 12.

Figure 20: Boxplots comparing policy costs for problem instances m = 10 and m = 12.

approximated by linear interpolation. For each (x, b) in the discretized and truncated set of states,

let vk(x, b) denote the kth iterate of the value iteration algorithm. The algorithm terminates when

the maximum norm of the difference between subsequent value function iterates is below 10−6, that

is,

||vk+1 − vk||∞ = max
x,b

{|vk+1(x, b)− vk(x, b)|} ≤ 10−6.

In the case of only two qualities, the belief space is completely ordered; consequently, as seen

in Figure 21, the value function exhibits monotonicity across the entire state space. In Figure

22, the MOMDP and Heuristic policies are depicted. For each fixed belief, b1, both policies are of

threshold type in age. We note that for theMOMDP policy, it is guaranteed to be of threshold-type

by Proposition 4.9. Interestingly, in the MOMDP policy, we see that near the interface where the

repair and replacement regions meet, the age threshold is increasing in both regions. This behavior

is somewhat counter intuitive as the time-to-failure is stochastically smaller (in the hazard rate

sense) near this interface than it is when b1 is nearer to 1. This behavior can be understood as a

natural exploration that occurs in the MOMDP policy. By allowing the system to function longer

near this interface, the decision maker obtains failure data that is less likely to be right-censored.

This additional data can be used to increase the liklihood that a high quality system is repaired

90



and a low quality system is replaced. Moving away from this interface (by either increasing or

decreasing b1), we see that actions become more exploitative, i.e., quickly replace systems that are

likely to be low quality and allow systems that are likely to be high quality to function for longer

before preventively repairing. Additionally, we see that near where b1 = 1, the MOMDP policy

and the Heuristic policy are nearly identical. This observation is not surprising, as Proposition 4.7

guarantees that they should be exactly the same when b1 = 1.

20 40 60 80 100 120 140 160 180
∞

x

1.00.960.80.70.60.50.40.30.20.10

b
1

Figure 21: Depiction of the optimal value function (dark colors indicate lower costs).

4.4.3 A Specific Three-quality Problem

For the example considered in this section, the number of system qualities is Y = 3. The discount

rate is α = 0.99 and the cost vector is c = (cI , cF , cR, cP ) = (1, 2, 3, 4), the time-to-failure shape

parameter is k = 2, the scale parameter vector is λ = (λ1, λ2) = (12, 10, 6), the initial distribution

is ρ = (ρ1, ρ2, ρ3) = (0.5, 0.2, 0.3), and the inter-inspection period is τ = 1.

To compute the MOMDP policy, each dimension of the belief space is uniformly discretized into

500 states and X is truncated to be {0, 1, . . . , 50,∞}. The optimal value function and policy are

then obtained numerically using the value iteration algorithm. When a step in the value iteration

algorithm requires a value function evaluation at a belief state outside this discretization, it is

approximated by bilinear interpolation (with edge cases approximated by linear or barycentric
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(a) Depiction of the MOMDP policy.
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(b) Depiction of the Heuristic policy.

Figure 22: Comparison between the MOMDP and Heuristic policies.

interpolation). For each (x, b) in the discretized and truncated set of states, let vk(x, b) denote the

kth iterate of the value iteration algorithm. The algorithm terminates when the maximum norm

of the difference between subsequent value function iterates is below 10−6, that is,

||vk+1 − vk||∞ = max
x,b

{|vk+1(x, b)− vk(x, b)|} ≤ 10−6.

Figure 23 depicts a portion of the optimal value function evaluated at virtual age x = 5 and

x = 25. It should be noted that in each image, the origin represents the belief state b = e3 =

(0, 0, 1), and can, therefore, be thought of as the worst belief. For this reason, we see that at x = 5

and x = 25 starting from this belief state has the highest total expected discounted cost. Similarly,

starting from belief state (1, 0, 0) has the lowest cost. It can also be observed that the value function

exhibits monotonicity for each fixed x (as guaranteed by Theorem 4.2), but also across the x’s, i.e.,

V (5, b) < V (25, b) for each b.

Figure 24 provides a graphical depiction of the MOMDP policy. By Theorem 4.3, the belief

state space can be partitioned into two regions: one in which doing nothing or repair is optimal, and

another in which doing nothing or replacement is optimal (see Figure 24(a)). It is not coincidental
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(a) The optimal value function at x = 5.
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(b) The optimal value function at x = 25.

Figure 23: Depiction of the optimal value function (dark colors indicate lower costs).

that these regions are separated in the belief state space by a straight line; rather, it is a further

consequence of Theorem 4.3 resulting from the partitioning of ∆3 being related to the likelihood

ratio ordering. In particular, these regions are divided in such a way that if b ≤lr b
′ and b′ is in the

repair region, then b is also in the repair region. Similarly, if b ≤lr b′ and b is in the replacement

region, then b′ is also in the replacement region.

By the joint monotonicity of the value function, and Proposition 4.9, the optimal policy is

guaranteed to be a threshold-type policy, for each fixed belief state. Figure 24(b) shows the age

threshold for each belief state above which it is optimal to perform preventive maintenance. Un-

surprisingly, the thresholds are ordered at the corner points of the plot, i.e., the threshold at e3

is the smallest and at e1 is the largest. However, in contrast to the two-quality case, the largest

threshold is not when the belief state is e1, but rather at b = (0.4, 0, 0.6). Again, a ridge is formed

along the interface between the repair and replacement regions where exploration is encouraged in

the form of large thresholds. Additionally, we see that the thresholds are monotone in the belief

state within the replacement region, but not within the repair region. By the joint monotonicity

of the value function, the monotone age thresholds in the replacement region are guaranteed by

Proposition 4.10.
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(b) The preventive maintenance thresholds.

Figure 24: Depiction of the MOMDP policy (dark colors indicate lower thresholds).

4.5 CONCLUSIONS AND FUTURE WORK

In this work, we have considered the problem of optimally maintaining a stochastically degrading,

single-unit system with heterogeneous spare parts of varying quality. To address this problem,

we presented an MOMDP model and investigated its properties. Under intuitive conditions on

the time-to-failure distributions, we have established monotonicity properties of the optimal value

function and presented a comprehensive characterization of the optimal policy. Additionally, by

way of a detailed computational study, we highlighted the cost savings that can be achieved by

properly accounting for spare part heterogeneity. These numerical illustrations also revealed that

the optimal policy implicitly accounts for the tradeoff between receiving high-quality, uncensored

data (which improves long-term decision making) and reducing short-term maintenance costs.

The model we presented herein can be improved in a few important ways. First, our model

assumes that the proportion of parts of each quality is fixed and known, and that the number of

qualities and their respective time-to-failure distributions are known. Relaxing these assumptions

would allow for additional model flexibility and the investigation of tradeoffs between parameter

learning and maintenance decisions that exploit the current belief about the parameters. Another

promising direction for future research is to relax the assumption that the inter-inspection period
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τ is a predetermined model parameter. Two problems related to this relaxation are worthy of

further consideration: (i) determining the optimal fixed value of τ ; and (ii) allowing the subsequent

inter-inspection length to be set at each inspection epoch. In the latter problem, shorter inter-

inspection intervals would provide higher-quality information but with an increase in cost. Due to

this tradeoff, we suspect the optimal policy may be difficult to fully characterize.
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