
DERIVED ECC FOR PROTECTION OF

ON-DEMAND DATA

by

Sebastien Ollivier

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/185272748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Sebastien Ollivier

It was defended on

November 28, 2018

and approved by

Alex K. Jones, Ph.D., Professor
Department of Electrical and Computer Engineering

Jingtong Hu, Ph.D., Assistant Professor
Department of Electrical and Computer Engineering

Samuel J. Dickerson, Ph.D., Assistant Professor
Department of Electrical and Computer Engineering

Thesis Advisor: Alex K. Jones, Ph.D., Professor
Department of Electrical and Computer Engineering

ii

Copyright c© by Sebastien Ollivier

2018

iii

DERIVED ECC FOR PROTECTION OF ON-DEMAND DATA

Sebastien Ollivier, M.S.

University of Pittsburgh, 2018

Traditional error correction coding (ECC) methodologies store data parity bits along with

data they protect. Subsequently, upon accessing the combined data and parity bits it is

possible discover and correct faults in either the data or correction bits. In domain-wall

memories (DWMs), a type of sequential access non-volatile memory related to spin-transfer

torque magnetic memory (STT-MRAM), it is not convenient or efficient to store data to

protect access errors data shifting during sequential access. To solve this problem, we propose

a new technique called derived error correction (DEC) for such cases where it is intractable

to record metadata for error correction. Instead, we rebuild the metadata on-demand and

store only the parity bits that protect the metadata. The DWM metadata is constructed

using a novel transverse read (TR). TR reads in an orthogonal direction of a traditional

DWM access point and can be used to calculate number of ones in a DWM. Faults in the

metadata correspond to shift-errors in the DWM. Using ECC, we can correct these faults

in the metadata and use these corrections to repair the shifting state of the DWM to ensure

correct operation. Through these techniques, we propose a shift-aware error correction code

that provides a lifetime over 10 years while reducing area by 2.6 and 3.7 times against state

of the art technique.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 BACKGROUND . 3

2.1 RACETRACK MEMORY . 3

2.2 FUSED CACHE . 4

2.3 INSERTION WHILE OVER-SHIFTING/UNDER-SHIFTING 5

2.4 ECC FOR DWM CACHES . 5

2.5 P-ECC, P-ECC-O . 6

3.0 TRANSVERSE READ . 7

3.1 TRANSVERSE READ BEHAVIOR . 8

3.2 TRANSVERSE READ UTILIZATION . 8

4.0 DERIVE ECC . 10

4.1 DEC FOR DWM CACHES . 10

4.2 BLOCK OF NANOWIRES . 12

4.3 GREY CODE FOR ONES COUNTING . 14

4.4 LIMITED SHIFT . 14

5.0 EXPERIMENTAL SETUP FOR TRANSVERSE READ 15

5.1 TRANSVERSE READ . 15

5.2 RESISTANCE PROFILE . 15

5.3 SIMULATION FRAMEWORK . 17

6.0 ERROR PROBABILITY . 19

6.1 ERROR PROBABILITY IN A BLOCK . 19

6.2 HW0 DIVISION . 20

v

7.0 RESULTS . 22

7.1 RELIABILITY . 23

7.2 DIMENSION COMPARISON . 24

7.3 POWER CONSUMPTION . 25

7.4 PERFORMANCE EVALUATION . 26

8.0 CONCLUSIONS . 28

8.1 FUTURE WORK . 28

BIBLIOGRAPHY . 29

vi

LIST OF TABLES

1 Shift error probabilities, for k=1 and k=2 bit shifting offsets, from [1]. 4

2 Resistance during a transverse read of four racetrack bits for all data combi-

nations. 18

3 Latency and Energy Parameters by [2] . 22

vii

LIST OF FIGURES

1 (a) Shows the traditional MTJ form of reading the domain under the read

head. (b) Shows a transverse read along the right of the read head (c) Shows

a transverse read along the left of the read head 7

2 DEC for DWM cache . 11

3 Hamming weight protection . 13

4 (a) Structure of the strip containing 7 bits ; (b) half of the strips used for

simulation;(c) ’1100’ bit patterns stored in the strip. 17

5 ECC bits needed when subdividing HW0 into different sizes 21

6 Average Shift Distance in L2 for Different SPEC 2006 benchmarks. 23

7 DUE MTTF . 24

8 Area overhead . 25

9 Power consumption: DEC64-32/p-ECC-O, DEC64-32/p-ECC 26

10 Latency overhead . 27

viii

1.0 INTRODUCTION

The progression of process scaling has enabled increasingly faster and higher-capacity caches,

which in turn along with parallelization and networks-on-chips has enabled the continued

improvements of computational performance. While the scaling of traditional memory tech-

nology used for caches, SRAM, has enabled this progression, current SRAM caches now

dominate both chip-area and power consumption of the device. In order to reduce the sub-

stantial static energy consumption of SRAM, non-volatile memories such as STT-MRAM

have been considered as replacements for SRAM [3]. STT-MRAM preserves the perfor-

mance of SRAM while being low powered. That’s why people as Tom Coughlin expects this

technology revenues to reach 3.3 billion dollars by 2028.

While STT-MRAM can yield considerable savings versus SRAM, an improvement to

SRAM based on similar technology, Domain-Wall Memory, can potentially yield substantial

savings to both area and power.

Made of tapes (ferromagnetic nanowire) separated in domains, DWM conserves the ad-

vantages of STT-MRAM while increasing the storage density up to 10x according to previous

study [4]. To read or write a value inside a domain, it has to be align with a read/write

head (similar to a STT-RAM cell). In order to make that possible, a current is either send

through the head or the tail of the nanowire.

However, due to imprecision in the fabrication of these highly-scaled domain-wall mem-

ory tapes [5], slight variations in current combined with these imperfections can cause errors

in the shifting process. These errors include over-shifting, under-shifting, and pinning errors

(where only part of the tape shifts). While all of these errors, especially pinnning, should

become more infrequent as the lithography process matures, recent modeling has demon-

1

strated that the current error rates of under-shifting and over-shifting is significant [1], and

must be addressed to feasibly consider using domain-wall memory in commercial systems.

Classical ECC code will interact with the data under the different read head but won’t

be able to interact with the position of the domains. Due to that, previous works [1, 6]

develop interesting new algorithms. However, all this algorithms need to sacrifice advantages

of the racetrack to minimize the impact of the shifting errors, either by degrading the perfor-

mance or by using extra area (high number of additional read/write heads and/or additional

domains).

In this paper, we propose DEC (Derive error correction), a method to correct errors

which doesn’t interact directly with the data, but with information created from the data.

By interacting with these elements, DEC enables the correction of misaligned racetrack. The

correction code applied on the data is a combination of hamming code and additional parity

bits. In this paper, we also demonstrate the new concept of transverse read, which gives

the number of ones between two ports (read head to the head or read head to the tail) of

the racetrack. Applying these two new concepts to fused cache [2] enable the correction of

a misalignment by any number. In addition, while being as reliable as previous scheme it

decrease the area overhead.

In this paper we provide the following contributions:

• Transverse Read

• Arbitrary Shift Error Correction

• Reduced Area Per Tape

• We use overhead bits like p-ECC-O, we can arbitrarily shift like p-ECC, and we can

correct arbitrary shift errors

2

2.0 BACKGROUND

In this section, we will present basic information about racetrack memory as well as a short

description of the previous algorithms from [1] developed to resolve the shifting errors.

2.1 RACETRACK MEMORY

Domain wall memory (DWM) is an array of nanowires[5]. Each of them is composed of do-

mains separated by domain walls. The value of a domain is determined by its polarization.

As STT-MRAM, DWM is a spintronic memory. When the domain is under a magnetore-

sistance also call read head if their polarization are in the same direction the resistance will

be minimal and inversely if they are in opposite directions the resistance will be maximal

(same principle as STT-MRAM). Read and write heads are fix elements. Thus, a domain

needs to be shifted in order to be aligned with the head to be read or written. Depend-

ing on the direction needed, a pulse is send either at the head or the tail of the nanowire.

Extra-domains are on each side of the data to prevent any lost while shifting to an extremity.

Once a domain is under the head another current is used to read or write the domain. On

figure 1(a) we can see the racetrack composition in different position. Data domains are

represented in blue and the one in dark blue is under the head. Domain walls are in green

and the extra-domains in grey. Several nanowires receive a pulse at the same time to allow

the system to read/write a word or a cache line depending on the usage of the DWM.

This technology has been proposed for utilization in a variety of positions in the mem-

ory hierarchy, including in network-on-chips [7], as part of the cache hierarchy representing

the last-level cache [8] and multiple cache levels [2], and as a fast main-memory technology [9].

3

Table 1: Shift error probabilities, for k=1 and k=2 bit shifting offsets, from [1].

In this work, we will assume the technology is utilized at the cache level, using the Fused-

Cache technique [2]. While using the nanowires as cache, they can over or under-shift, the

probabilities of that happening are given in table 1. If a shifting error occurs, this special

nanowire will never be correctly align with the others which results in several faults appear-

ing. Hence, the importance to detect and correct a misalignment as soon as it appears.

A previous work proposed to add read heads on each nanowire and a specific pattern on

the extra domains to detect and correct this issue [1]. We propose a solution coupling DWM

with STT-MRAM which minimize the space overhead while enabling the correction of an

arbitrary shift error.

2.2 FUSED CACHE

The principle is to use blocks of racetrack as L1 and L2 cache. The domains under the head

are considered as L1 and all the other domains are L2. To read a cache line of 512 bits,

512 racetracks will read the values under their head in L1. To demote or promote a cache

line from L2 to L1 a block of racetrack needs to be shifted. Using a fused cache made of

4

racetrack, enables a performance gain of seven percent and a 69 percent reduction in cache

energy compared with an iso-capacity two level SRAM cache. In addition, DWM consumes

less area per bits, so for the same space more data can be stored.

2.3 INSERTION WHILE OVER-SHIFTING/UNDER-SHIFTING

While shifting the racetrack, not only one but all the domains are shifting, as a consequence

extra domains are needed to conserve the main data. The number of head (min(read head,

write head)) and their distances to useful data determine the length of the extra domains.

A racetrack needs to be able to read or write any data domains without losing data.

While adding heads decreases the number of shift needed to access a specific domains

and so improve the performance, it is adding an area overhead. It’s a trade off between area

and performance.

If needed, a special value (’0’ or ’1’) can be inserted in the domain when shifting in.

However, when a domain over-shift or under-shift it impacts the insertion.

Let’s say we want a pattern that alternately inserts one and zero. If at one point the

racetrack over-shift then it will insert twice the same value, and if it under-shift then the

racetrack considers that a value have been inserted and go to the next one. In both case,

two times in a row the same value will be inserted, which would break the pattern.

2.4 ECC FOR DWM CACHES

A natural consideration for any error-prone memory is to consider the use of ECC codes

to protect its stored data. However, the nature of the over and under-shifting errors makes

the simple application of ECC inadequate and ill-advised. “Correcting” a bit caused by a

shifting error does not solve the underlying problem: that all bits in that tape are out of

position, and that they will remain out of position for accesses to other words in that cache

block. Future word accesses will have one tape already out of position, greatly reducing

5

the effectiveness of the ECC. Further, because of the organization of racetrack memory, an

uncorrectable ECC error would result in the entire cache block having to be scrubbed, not just

an individual word, resulting in degradation to performance. As a consequence, alternative

methods of error correction have been proposed which overcome these limitations. In the

next paragraph, we will present several such techniques.

2.5 P-ECC, P-ECC-O

Several techniques were developed by [1] in order to provide superior correction to ECC for

domain-wall memory shift errors.

To accomplish this superior correction, both p-ECC and p-ECC-O took advantage of

the fact that both under-shifting and over-shifting is observed over the entire length of the

tape. Therefore, adding additional read/write heads and domains on either side of the tapes,

known patterns can be used to detect when a misalignment has occurred. Thus, the idea is

to read a pattern that will have a different output if an error occurred.

Their goal being to correct a misalignment by one they decided to alternate ’00’ and

’11’. Using two additional heads, if for instance they read ’01’ while they should have read

’00’, they detect the error and they can determine if it’s an under or over-shift. The pattern

location differentiate p-ECC from p-ECC-O. For the first one, additional domains are added

to store the pattern. The number of domain added depends on the maximum movement

needed to reach every data. In the other hand, p-ECC-O uses the extra-domains that are

already necessary for the racetrack to shift without losing any data. P-ECC will privilege a

small latency overhead over area overhead, at the opposite p-ECC-O sacrifices less area but

loses in performance. P-ECC-O can only shift by one domain at a time in order to implement

the pattern inside the extra-domains. Their scheme is scalable to detect and correct more

errors.

6

3.0 TRANSVERSE READ

While the traditional current-based read of STT-MRAM under a single domain is the ob-

vious mode of reading, the nanowire implementation of domain-wall memory enables new

possibility. Our simulations demonstrate that an alternative method of reading along the

racetrack is possible. We call this alternative mode of reading transverse read (TR).

Figure 1: (a) Shows the traditional MTJ form of reading the domain under the read head.

(b) Shows a transverse read along the right of the read head (c) Shows a transverse read

along the left of the read head

7

3.1 TRANSVERSE READ BEHAVIOR

In contrast to the traditional method of reading discussed in the preliminaries, transverse

reads provide information through multiple domains. To be precise it gives the number of

one between an extremity and the head without knowing their position. To get this result a

current is sent from one extremity while the other extremity behave as an open circuit.

Figure 1(b) and (c) represent respectively a transverse read performs from each extrem-

ities. As precised by the arrow on the figures, even the domain under the read head is

include in the transverse read. In (b) the transverse read produce β2+β3+β4+0+0, and in

(c): 1+1+β0+β1+β2. Here, plus represents a traditional addition. the result from (b) can

be either zero, one, two or three. The result from (c) is between two and five inclusive.

3.2 TRANSVERSE READ UTILIZATION

In this paper, the ultimate goal of introducing the transverse read is to enable efficient

correction of domain-wall memory shift errors. To accomplish this protection, TR will first

provide the total number of ones inside a racetrack line. Due to a special pattern located in

the extra-domains, by computing the number of ones our algorithm determines the racetrack

position. Thus, If an undershift or overshift error occurs, the calculated number of ones will

differ from the expected value. Using the difference from the expected value, we can then

correct the error.

First, to calculate the total number of ones per line two transverse reads and a normal

read are required. After performing the transverse reads shown in figure 1(b) and (c) and

adding both values the result is: 1+1+β0+β1+β2 + β2+β3+β4+0+0. To remove the extra

value of β2, we perform a normal read, and use the value of β2 to either subtract one from

the total (in the case β2 = ‘1’) or keep the calculated value (in the case β2 = ‘0’). The

resulting sum gives us the number of ones-per-line (OPL). The classical read is performed

first in order to, wherever possible, hide the latency of the transverse read verification.

8

As seen in Figure 1 the pattern used in the extra domains consists of ones for the extra-

domains on one side (purple domains) and zeroes for those on the other side (beige domains).

This pattern has been chosen for two reasons: (1) every possible alignment has a unique

number of ones in the extra-domains, (2) while over-shifting or under-shifting the pattern

isn’t disturbed. If we look at Figure 1(a)(ii) where β2 is aligned with the read head, there

will always be a total of two ones in the extra-domains. While it’s β1 under the head (a)(iii),

three ones are in the extra-domains, even if we arrived in this position due to an under-shift

or over-shift. Therefore, the number of ones in the extra domains directly corresponds to

the position of the racetrack.

Now, we will explain how after any shift operation, we can calculate the number of

ones in the extra domains, and in doing so, ascertain the current position of the racetrack.

During the initialization, we know the current position of the racetrack. As a consequence

the number of ones on the side is known. By subtracting this value to the result from two

paragraphs above (OPL), the Hamming weight to zero (hw) of the main data is obtained.

This information will be used in DEC.

After any shift, OPL is read then OPL-hw is computed which is equal to (one-on-left-

side+β0+β1+β2+β3+β4+zeros) - (β0+β1+β2+β3+β4) = one on left side + zeros. In other

words, the position of the racetrack.

Keeping the nanowire as it appears in figure 1, we consider for the example that:

β0=β1=β2=β3=0 and β4=1. After initialization hw=1. Considering the initial position

to be β3 and β2 the destination. The DWM should shift by one. If shifted correctly, opl=3

and hw=1. So opl-hw=2 which is the number of one in the extra-domains on the left side. In

the case of an over-shift error, opl=4, and hw=1, which gives Sb=36=2. An error is detected

and the correction that needs to be applied is known.

9

4.0 DERIVE ECC

The primary contribution of this work is Derived Error Correction (DEC). While, in some

cases, as for example DWM, ECC is not effective nor efficient, the concept of DEC is to

perform a more efficient correction on a derived representation of the data instead of the data

itself. The primary benefit of using DEC is the area considerable saving versus performing

error correction directly on the data. By accessing the data on demand, the derived elements

can also be created on demand. Therefore, it’s unnecessary to store the derived elements.

That’s why, in DEC we only store parity bits. When an error occurs the derived elements

will generate parity bits those won’t be as expected and when comparing with the stored

bits an error will be detected and corrected. This method can be used when the main data

can be read on demand. If our elements that are needed to protect the data are of length

n then the hamming code needs log(n)+2 bits in order to protect it. The second extra bit

is to guaranty the detection of a second error. Using the classical ECC(1) code n+log(n)+2

bits would be stored (variable + parity bits), when using the derive ECC only log(n)+2 bits

has to be stored (parity bits).

4.1 DEC FOR DWM CACHES

In the case of position error in racetrack memory, we will use DEC to protect the number

of one per racetrack.

As seen in section III-B, if the number of data-one per racetrack is known we can correct

any position error. However, storing log(n) bits per racetrack (where n is the number of data

bits per racetrack) would consume too much space and accessing them would also consume

10

Figure 2: DEC for DWM cache

a large amount of energy. In spite, racetrack are grouped in blocks, and for each of these

blocks, DEC will be applied. The bits generated by DEC are stored in STT-MRAM cells,

which are considered as secured memories, thus, fault free.

First, hamming weight to zero (HW0) is generated (using TR) for each racetrack, figure 2.

Then the protection code is applied on these elements. In our case, the protection code is

composed of two elements. HW0 parity per line (one bit per line), and an ECC1 block per

column (log(column length)+2 * number of columns) as represented in Figure 3.

As seen in the background section, the racetrack is used as fused cache, in such manner,

we consider the length of a racetrack block equal to the length of the cache line (LCL).

Figure 2 is composed of LCL nanowires, of length n (number of domains with important

data, blue domains). The maximum number of ones visible in a line of length n is log2(n).

So, the number of column is log2(n). In order to take an easier example, we consider only

for now, that LCL=512, n=8 and log2(n)=3.

11

In the initialization, three bits α0, α1, α2 are computed per racetrack. These are the

HW0 line on Figure 2. If for instance, in the first nanowire, β10=β11=β12=β13=0 and

β14=1 then α10=α11=0 and α12=1. if β10=β11=β12=β13=β14=1 then α10=α12=1 and

α11=0 because five ones are seen in the beta.

Afterwards, the line parity and the column ECC are created. Each line parity bit is

the parity of each HW0 line. The column ECC (Hamming code), as represented in figure 3

protects a column of HW0. In our example, 512 line parity bits (one for each nanowire)

and three column ECC blocks (log2(n)=3) are created. All these bits are stored, they are

modified only if a cache line is written.

Once they are initialized, after a shift, all these bits are computed again, however, this

time they are only compared with the one stored. If they are not identical then an error

occurred.

If only one error occur the column ECC are enough to detect and correct the error. The

line parity bits are really useful when more than one error is to occurred because then, they

point to the lines with the faults. In the case of multiple errors, the column ECC will detect

the faults but won’t be able to do anything or even worse the ECC block could point to

the wrong racetrack. However when combined with the line parity it’s possible to know

from which HW0 column the errors are and the other parity bits will precise which lines are

wrong. This will be further discussed in section 6-1.

4.2 BLOCK OF NANOWIRES

The process described in the previous section (4-1) is effective to correct a misalignment by

any number, or up to three misalignment by one, however, if four position errors in a block

were to occur in a certain pattern then DEC could only detect the errors without correcting

them. Our goal here, is not to be able to detect and correct everything but to guaranty a

certain reliability.

In order to do that, we separated the HW0 block in smaller blocks, each of them protected

as demonstrated in the previous paragraph. In our example, the cache line size is 512 bits,

12

Figure 3: Hamming weight protection

before we had three column ECC blocks each of them protecting 512 bits. After dividing

the blocks, in spite of one HW0 block of 512x3 bits for which 545 parity bits are stored

(512+3*11), there will be two blocks of 256x3 bits each for which a total of 572 parity bits

are stored (512+3*10+3*10). As a consequence there are now six column ECC blocks, each

of them protecting 256 bits. The line parity bits are unchanged. It’s possible to divide HW0

in more than two blocks, however more column ECC bits are needed. In the result section

our scheme divides HW0 in eight blocks of 64x5 bits (n=32 => log2(n)=5). The goal behind

this subdivision is to reduce the probability to get errors in the same block. The subdivision

is a trade-off between area consumption and reliability.

13

4.3 GREY CODE FOR ONES COUNTING

According to table 1, while shifting the domains, if an error were to occur, most of the time

it will be a misalignment by one domain in a way or the other (over or under-shift). Which

implies, when counting the ones, the sum will be either one up or one down. Using normal

binary counting this kind of error can modify several bits in HW0. That’s why while counting

ones, Gray code was used. It guaranties if an error by one domain occurs only one bit of

HW0 will be modified. As a consequence only one column ECC will be affected by the error

and the parity line will be able to detect the line. If two bits were to be modified then the

line parity wouldn’t detect it and two columns ECC would be affected. By decreasing the

number of bits change it improves the reliability. Whatever the number of line misaligned

by one domains, since only one bit per line is changed, the line parity will always be able to

detect it.

4.4 LIMITED SHIFT

As seen in table 1, the probability of getting an error while shifting by seven is too high.

A way to limit the number of errors without drastically hurting the performance is to limit

the maximum number of shift effected at once. For instance, in spite of directly order a

shift by six, we do two shifts by three. By sending two smaller currents, the probability of

error is decreased. Moreover, even if an order of six shifts is made, as it will be described

in the result section, only three shift can be done in a cycle. Therefore, two cycles will be

needed. The same time is needed while doing two shifts of three if no checked is ordered in

the intermediate state. However, if we wanted to reduce even more the probability of error

and limit the shifting to two shift. Then in this example our performance would be affected

because now, three cycles are needed to shift by six. Solution that we try to avoid.

Consequently, we used a shift limited policy, where for each shift, we try to not decrease

the performance while decreasing the probability of error.

14

5.0 EXPERIMENTAL SETUP FOR TRANSVERSE READ

5.1 TRANSVERSE READ

The existence of a domain wall in a ferromagnetic nanowire can increase the resistance of

it significantly when the difference between the spin-up and spin-down density of states is

considerable. Therefore, a portion of the spin polarized electrons from one domain trying

to pass through the next domain get reflected from the domain wall. Consequently, the

resistance increases even though the reflection by the wall is minimal. Cabrera and Fali-

cov [10] calculated the effect of back scattering due to a domain wall on the resistance by

measuring reflection coefficient. However, the transmitted electrons will experience two dif-

ferent phenomena from the resistivity perspective : (i) in the wall region, the direction of

the electron flow bends; and (ii) in the next domain, spin transfer torque (STT) evolves due

to magnetization mismatch.

5.2 RESISTANCE PROFILE

We read the different bit patterns stored in magnetic nanostrip by considering the fact that

the walls are static. Berger demonstrated that when a current passes through the wall,

it exerts a force on the wall to move [11]. However, due to the presence of local strains,

inhomogeneities and shape anisotropy, there exists a pining force (Fp) on the wall and can

be calculated from :

| F p
x |≤ 2HcMsA (5.1)

15

For a static wall, where, Hc, Ms and A are the coercive field, saturation magnetization

and area of the wall. To ensure that the walls are in zero velocity, the current passing

through it should be less than the critical current (Jc) necessary to move the wall.

Jc =
2Hc

aβ
(5.2)

β =
MsR1

ρ
(5.3)

Where a and β are the wall spacing and the tangent of the Hall angle of the material.

Assuming that the current flow is in +x direction while the magnetic domains are out of

plane (+z or -z), the resistivity tensor can be expressed [11] as

ρ1 =

∣∣∣∣∣∣∣∣∣
ρ −βρMz1

Ms
0

βρMz1

Ms
ρ 0

0 0 ρ

∣∣∣∣∣∣∣∣∣ (5.4)

ρ2 =

∣∣∣∣∣∣∣∣∣
ρ βρMz2

Ms
0

−βρMz2

Ms
ρ 0

0 0 ρ

∣∣∣∣∣∣∣∣∣ (5.5)

where ρ, Mz1, Mz2 are the resistivity of the material and the magnetization of domains

next to the wall. The resistance of the nanostrip due to the presence of domain walls is

calculated as

R = R0 + ∆R = R0(1 +
KcNwtβ

2

L
) (5.6)

where Kc is material dependent, L,t and Nw are the length, thickness of the strip and

the number of walls.

16

Figure 4: (a) Structure of the strip containing 7 bits ; (b) half of the strips used for simula-

tion;(c) ’1100’ bit patterns stored in the strip.

5.3 SIMULATION FRAMEWORK

We considered a nanowire with perpendicular magnetic anisotropy (PMA) for high density

and faster operation. The structure of the nanowire is depicted in Fig. 4a. This strip is

symmetric in a sense that the read port is in the middle of the nanostrip and it can store 7

bits.

The reading process starts by turning the rightmost transistor off, and turning the left-

most transistor and the transistor connected to the read port on to ensure that the current

flows from the left most domain to the read port. Fig. 4(b) shows the half of the strip used

in the simulation for measuring resistances. We applied a read current I less than the critical

current (see Eq. 5.2) for domain wall motion, and collected the current in the fixed layer of

the read port. We calculated the resistance of the nanostrip for bit patterns by measuring

the voltage difference between the leftmost domain and the fixed layer of the read port. Due

to the symmetry, achieved similar results while reading from the right. We carried out the

simulations by using LLG micromagnetic simulator, and used the parameters from [12] for

a nanostrip with PMA. The resistance values are listed on average in table 2. These results

are for a length of four bits, in this case the average is for the same number of one but in

different configuration as: 1100 and 0101 both have two ones but their resistance isn’t equal.

17

Table 2: Resistance during a transverse read of four racetrack bits for all data combinations.

18

6.0 ERROR PROBABILITY

In previous work, the correction code is applied at the granularity of one racetrack. In our

case, we apply a correction code to an entire block of racetracks. In this section we will

consider the probability of several racetracks simultaneously suffering from a position error.

The probabilities are calculated for a cache line length (LCL) of 512 and data length per

racetrack n=32.

6.1 ERROR PROBABILITY IN A BLOCK

When shifting an entire block, using the numbers from table 1, the probability of having

two or more misalignments by one domain is significant enough that it must be considered.

First, we calculated the likelihood of transitioning from a fault-free state to a faulty state in

terms of the number of erroneous shifts. The equation used is:

P (o1, o2) =

(
o1 + o2

o2

)
∗
(

nn

o1 + o2

)
∗ Pk(off1)o1 ∗ Pk(off2)o2 ∗ Pk(nf)(nn−o1−o2) (6.1)

Where o1 represents the number of racetrack misaligned by one domain, o2 the number

of racetrack misaligned by 2 domains, nn the number of nanowires per block (nn=LCL if

the HW0 block is not divided), Pk(off1) the probability of being misaligned by one domain

while shifting by k, and Pk(off2) the probability of being misaligned by two domains while

shifting by k.

The probability of a misalignment by three domains is too small to be considered. Pk(nf) is

19

the probability of having no faults while shifting by k. Pk(off2) and Pk(off1) are as described

in table 1.

Pk(nf) = 1− Pk(off1)− Pk(off2) (6.2)

Presuming we are in one of these error states, we calculated the probability of detection

and correction. These numbers are tied to the racetrack length; the bigger n is, the more

column ECC blocks are used. Thus, more errors can be corrected. If in DEC only vertical

ECC and Gray code were used, then the maximum number of errors that could be corrected

would be log2(n) misalignments by one (n is the data length of a racetrack), or log2(n)/2

misalignments by two. This result is explained by the fact that using the grey code, only

one bit will change (if misaligned by one), thus each vertical ECC can correct one error,

in the case where each error appears in a different column of HW0. Using only column

ECC (CECC), if more than two errors occur in the same column, then the line parity would

be necessary to correct it. CECC alone would detect only a single error in this case, and

attribute it to the wrong position. For this reason, the line parity bit must be included to

provide the reliability as described in section 4.

6.2 HW0 DIVISION

If four errors by one occur in a block, only certain patterns are guaranteed to be correctable.

If the errors occur in different lines, then the errors can be corrected as described above.

If two errors occur in one column and two in another column, because the line parity bits

are shared, it is impossible to determine precisely which bit in HW0 is wrong and so it’s

impossible to characterize the errors as over-shift or under-shift. We address this by cutting

in half the hamming weight to zero block (HW0) and doubling the number of CECC blocks.

This will decrease the probability of errors in the same block, because we keep the same

overall fault rate, but the number of blocks increases.

Figure 5 shows the additional ECC bits needed when dividing the HW0 block. In the

results section, we decided to divide the HW0 block into eight sub-blocks. DWM is a new

20

Figure 5: ECC bits needed when subdividing HW0 into different sizes

technology and in the future we can hope that IBM improves this technology, reducing the

probability of position errors. If the probability of shifting drops, it’s possible to consider no

division of HW0, which would reduce the number of cells needed to store the CECC bits by

approximately six times.

21

7.0 RESULTS

In this section, four characteristics will be evaluated: reliability, area overhead, power con-

sumption, and finally performance. The simulations are realized using the simulator Sniper.

All the benchmarks used to profile the performances are workloads from SPECCPU2006.

All the simulations were launched with the parameters describe in table 3. Furthermore,

we simulated only one read/write head per line.

Table 3: Latency and Energy Parameters by [2]

22

7.1 RELIABILITY

Figure 6: Average Shift Distance in L2 for Different SPEC 2006 benchmarks.

Figure 6 represents the average shift distance in L2 cache for different lengths of racetrack

(n=16 and n=32). According to this figure, to get the best performance the system should

be allowed to shift by distances greater than eight. However, according to table 1 shifting

twice by two is not equivalent to shifting once by four from a reliability perspective.

In Figure 7 we shows the detectable, unrecoverable errors mean time to failure (DUE

MTTF) of our scheme using various shift lengths. In order to meet the DUE MTTF target

fixed by previous research [?] at 10-years, we need to make a trade-off between reliability and

performance. Each DEC-i represents the MTTF if the system can only shift in increments of i

domains. The horizontal line represents the 10 years goal. As a consequence, in order to meet

this goal, the system can’t shift by more than three domains at once. Under this condition,

the different MTTFs are: 1780, 160 and 13 years on average across the benchmarks.

23

Figure 7: DUE MTTF

7.2 DIMENSION COMPARISON

In DWM having extra domains on the sides of the data domains is a necessity to preserve the

data integrity. However, additional heads on these domains are sources of area consumption,

reducing the density of the racetrack. By adding fewer STT-MRAM cells in spite of these

heads we limit the area overhead needed to protect the racetrack under DEC.

In p-ECC-O [1] four extra heads (two to read/write and two read-only) are added (two

on each side). Thus, the number of additional heads is four per racetrack. Despite using

only two extra read heads per racetrack, because of the additional domains that p-ECC

needs, this algorithm consumes more area than p-ECC-O if the racetrack length exceeds

16. In this article, figure 8 is obtained using the data from [12] as a reference for the cell

area and sensing circuit. In figure 8, we compare the impact on area per bit using four

24

different techniques: HW0, DEC64, p-ECC and p-ECC-O. HW0 is included in this figure to

demonstrate the utility of our scheme in comparison with just storing the derived data. As

we can see, for both n=16 and n=32 our scheme decreases the area overhead (by 2.6 and 3.7

respectively versus p-ECC).

Figure 8: Area overhead

7.3 POWER CONSUMPTION

According to our simulation (section V-C), a transverse read consumes 1.67x more energy

than a normal read. As seen in section III, to compute DEC, two transverse reads and a

normal read are required after every shift. Furthermore, to check if an error occurred, all

the STT-MRAM cells need to be read; DEC64 for n=32 requires 832 cells and DEC64 for

n=16 requires 704 cells. In comparison, p-ECC-O shifts only by one domain at a time to

25

Figure 9: Power consumption: DEC64-32/p-ECC-O, DEC64-32/p-ECC

guarantee the integrity of the system. However, this characteristic has a huge impact on

the power consumption and performance because heads are repeatably used. On figure 9 we

compare our scheme with both of their schemes. On average the power consumed by DEC64

for n=32 is equivalent of the energy consumed by p-ECC and 20% of p-ECC-O.

7.4 PERFORMANCE EVALUATION

As discussed previously, the transverse reads are expected to negatively impact the perfor-

mance. Compared to other techniques were the reads can be done in parallel, transverse

reads need to be done in series with the normal read. In order to decrease this impact, the

system has to first read the normal way, then carry out the transverse reads. This enables the

read to complete quickly if there is no fault, reducing average access time. If the block is not

accessed before the extra reads and the comparison with DEC complete, then our scheme

26

is perceived has a normal read, which doesn’t impact the performance. Thanks to that

this algorithm performs as seen on figure 10. On average DEC64-32 incurs a performance

overhead of 1.5%.

Figure 10: Latency overhead

27

8.0 CONCLUSIONS

In domain wall memory prototypes, the extremely high probability of positional shift errors

can discourage its potential use despite its area and power advantages compared to other

traditional and emerging memories. To overcome this reliability limitation and allow the

intrinsic benefits of domain-wall memory to shine, we presented DEC, an efficient correction

code which is original in its methodology, considering its capability to correct errors in the

primary data by only protecting a smaller value calculated from the original data. In order

to calculate this derived information, our novel reading technique, transverse reading, is

used to calculate the number of ones in a nanowire. Using these concepts we reach an DUE

MTTF above the target. In addition, our scheme preserves the area advantage of DWM by

decreasing the area overhead by 2.6 and 3.7 times against state of the art technique.

8.1 FUTURE WORK

While DEC can correct shifting errors, DWM is also subject to pinning errors. Pinning

errors cause the racetrack to lose or duplicate bits. This can modify data far from the read

head. As a consequence, pinning errors are extremely difficult to detect and correct. Another

direction for future work is to explore the possibilities that DEC offers in instances other

than DWM.

28

BIBLIOGRAPHY

[1] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang, Y. Liu, Y. Wang,
and J. Shu, “Hi-fi playback: Tolerating position errors in shift operations of racetrack
memory,” ACM SIGARCH Computer Architecture News, Vol. 43, pp. 694–706, ACM,
2015.

[2] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones, “FusedCache: A naturally inclu-
sive, racetrack memory, dual-level private cache,” IEEE Transactions on Multi-Scale
Computing Systems, Vol. 2, No. 2, No. 2, pp. 69–82, 2016.

[3] Y. Huai, “Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects,”

[4] G. S. W. Z. F. M. H. L. W. Zhao, C. Zhang, “Quantitative modeling of racetrack mem-
ory, a tradeoff among area, performance, and power,” Design Automation Conference,
2015.

[5] S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall Racetrack Mem-
ory,” Science, Vol. 320, No. 5874, pp. 190–194, Apr. 2008.

[6] A. V. V. K. V. Yeow Meng Chee, Han Mao Kiah and E. Yaakobi, “Codes Correct-
ing Limited-Shift Errors in Racetrack Memories,” IEEE International Symposium on
Information Theory, 2018.

[7] D. Kline, H. Xu, R. Melhem, and A. K. Jones, “Racetrack Queues for Extremely Low-
Energy FIFOs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
No. 99, No. 99, pp. 1–14, 2018.

[8] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy, and A. Raghu-
nathan, “TapeCache: a High Density, Energy Efficient Cache based on Domain Wall
Memory,” Proc. of ISLPED), pp. 185–190, 2012.

[9] Q. Hu, G. Sun, J. Shu, and C. Zhang, “Exploring main memory design based on race-
track memory technology,” Proceedings of the 26th edition on Great Lakes Symposium
on VLSI, pp. 397–402, ACM, 2016.

[10] G. Cabrera and L. Falicov, “Theory of the residual resistivity of Bloch walls I. Param-
agnetic effects,” physica status solidi (b), Vol. 61, No. 2, No. 2, pp. 539–549, 1974.

29

[11] L. Berger, “Prediction of a domain-drag effect in uniaxial, non-compensated, ferro-
magnetic metals,” Journal of Physics and Chemistry of Solids, Vol. 35, No. 8, No. 8,
pp. 947–956, 1974.

[12] W. Zhao, Y. Zhang, H. Trinh, J. Klein, C. Chappert, R. Mantovan, A. Lamperti,
R. Cowburn, T. Trypiniotis, M. Klaui, et al., “Magnetic domain-wall racetrack memory
for high density and fast data storage,” Solid-State and Integrated Circuit Technology
(ICSICT), 2012 IEEE 11th International Conference on, pp. 1–4, IEEE, 2012.

30

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Shift error probabilities, for k=1 and k=2 bit shifting offsets, from hifi.
	2. Resistance during a transverse read of four racetrack bits for all data combinations.
	3. Latency and Energy Parameters by FusedCache

	LIST OF FIGURES
	1. (a) Shows the traditional MTJ form of reading the domain under the read head. (b) Shows a transverse read along the right of the read head (c) Shows a transverse read along the left of the read head
	2. DEC for DWM cache
	3. Hamming weight protection
	4. (a) Structure of the strip containing 7 bits ; (b) half of the strips used for simulation;(c) '1100' bit patterns stored in the strip.
	5. ECC bits needed when subdividing HW0 into different sizes
	6. Average Shift Distance in L2 for Different SPEC 2006 benchmarks.
	7. DUE MTTF
	8. Area overhead
	9. Power consumption: DEC64-32/p-ECC-O, DEC64-32/p-ECC
	10. Latency overhead

	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 RACETRACK MEMORY
	2.2 FUSED CACHE
	2.3 INSERTION WHILE OVER-SHIFTING/UNDER-SHIFTING
	2.4 ECC FOR DWM CACHES
	2.5 P-ECC, P-ECC-O

	3.0 TRANSVERSE READ
	3.1 TRANSVERSE READ BEHAVIOR
	3.2 TRANSVERSE READ UTILIZATION

	4.0 DERIVE ECC
	4.1 DEC FOR DWM CACHES
	4.2 BLOCK OF NANOWIRES
	4.3 GREY CODE FOR ONES COUNTING
	4.4 LIMITED SHIFT

	5.0 EXPERIMENTAL SETUP FOR TRANSVERSE READ
	5.1 TRANSVERSE READ
	5.2 RESISTANCE PROFILE
	5.3 SIMULATION FRAMEWORK

	6.0 ERROR PROBABILITY
	6.1 ERROR PROBABILITY IN A BLOCK
	6.2 HW0 DIVISION

	7.0 RESULTS
	7.1 RELIABILITY
	7.2 DIMENSION COMPARISON
	7.3 POWER CONSUMPTION
	7.4 PERFORMANCE EVALUATION

	8.0 CONCLUSIONS
	8.1 FUTURE WORK

	BIBLIOGRAPHY

