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A B S T R A C T

An end notched flexure (ENF) test was used to study the effect of growth stability on mode II
interlaminar fracture toughness (GIIC) of a carbon/PEEK composite. The instability of the ENF
test was used to induce both stable and unstable crack growth with a static loading. Two tech-
niques were used to evaluate mode II fracture toughness: the traditional compliance method and
the infra-red thermography technique. The compliance technique has the advantage of being
simple and it has already been confirmed for standard tests. Nevertheless its results may be
inaccurate for unstable crack growth propagation. The infra-red thermography technique enables
fracture toughness to be accurately measured for non-standard tests in which the crack growth
may be unstable.

Both methods are complementary and this study came to the conclusion that GIIC is sensitive
to crack growth velocity. Fracture toughness showed a low value for crack growth start and
unstable propagation, and a high value for stable crack growth. The transition between a ductile
fracture mode (for low crack growth velocity) and a brittle fracture mode (for high crack growth
velocity) explained the important variability in GIIC values.

1. Introduction

High performance thermoplastics are increasingly considered in composite structures mainly for damage tolerance reasons. These
materials are actually considered more damage tolerant than thermoset based composite materials [1,2]. Semi crystalline thermo
plastic resins offer a number of advantages over conventional thermoset resins (such as epoxies): a high degree of chemical resistance,
excellent damage and impact resistance and they may be used over a wide range of temperatures.

From a general standpoint, it appears from the literature that thermoplastic based composites display a better resistance to impact
damage than epoxy based composites. Among the properties governing the impact behavior of laminated composites, mode I and
mode II critical energy release rates (ERR), GIC and GIIC, are of the utmost importance [2 8].

Despite the high difference between the critical ERR of thermoplastic and thermoset composite materials, the gain on impact
damage tolerance is not as great as expected [7,8]. Mode I ERR is about 4 N/mm for pure PEEK resin and about 0.5 N/mm for pure
epoxy resin [7]. However, the fracture behavior of composite material is weaker. For example, carbon/PEEK fracture toughness (FT)
is about 1.5 N/mm in mode I and 2 N/mm in mode II [9 12], whereas carbon/epoxy T700/M21 FT is about 0.5 N/mm in mode I and
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1.6 N/mm in mode II [13,14]. Therefore fracture toughness is currently higher for thermoplastic than for thermoset, but the dif
ference is less important for composite than for pure resin. Moreover, impact damage tolerance is mostly driven by mode II FT
[15,16], and the difference between thermoset and thermoplastic composite fracture toughness is lower in mode II than in mode I.

Another important point dealing with damage tolerance of thermoplastic composites is the rate sensitivity of the crack growth. In
fact, some authors show that critical ERR changes with the velocity of the crack growth. It is particularly the case for interlaminar
shear fracture [6,9 11,17]. Friedrich et al. [9 11] performed End Notched Flexure (ENF) tests at room temperature over a range of
crosshead speeds from 4.2×10−6 to 9.2× 10−2 m/s and showed that GIIC of APC 2 PEEK resin decreases from 1.9 to 0.4 N/mm
when crack growth velocity increases (Fig. 1a). They explained that the APC 2 material exhibits ductile crack growth at low rates
(Fig. 2a) and brittle crack growth at high rates (Fig. 2b).

Blackman et al. [18] used an End Loaded Split (ELS) test and a Fixed Ratio Mixed Mode (FRMM) test to evaluate carbon/PEEK
fracture toughness under high rates in mixed mode I/II and mode II loadings. They showed that GIIC decreases from 2.5 N/mm at the
slowest test rate (of about 10−4 m/s), to 2.2 N/mm at the highest test rate (of about 3m/s). Contrary to these results, Berger and
Cantwell [19] found that AS4/carbon fiber reinforced PEEK interlaminar fracture toughness increased as the crosshead displacement
rate increased. They carried out a double ENF test and their study shows that GIIC increases from 2.2 to 2.7 N/mm for a crosshead
displacement rate increasing from 1.7× 10−6 to 8.3× 10 3m/s. They concluded that mode II interlaminar fracture toughness is
strongly influenced by the yield stress of thermoplastic resin. In their study, the temperature influence (from 20 to 150 °C) was also
studied. The authors concluded that increasing the test temperature has the same effect as decreasing the loading rate; these two
phenomena induce similar reductions in the value of GIIC. The authors compared the 25% increase in GIIC (at 20 °C) with the 25%
increase in yield stress found by Béguelin et al. [20]. They concluded that the rate sensitivity of the mode II interlaminar fracture

Nomenclature

Latin variables

a crack length
B sample width
C compliance or specific heat capacity
c0 speed of a longitudinal wave
dWdiss intrinsic dissipation
dWirrev irreversible energy
El Young modulus in the fiber direction
F force
G energy release rate
GIIC mode II interlaminar fracture toughness
I area moment of inertia of the beam
L beam length between supports
sthe thermo mechanical coupling
u displacement

Greek variables

β Taylor Quinney coefficient

ε ̇ strain rate
ϕint intrinsic dissipation
ϕirrev irreversible dissipation
ϕstored stored energy
θ temperature variation
ρ mass density
Ωfis volume containing the crack

Acronyms

ENF end notched flexure test
ELS end loaded split test
ERR critical energy release rates
FRMM fixed ratio mixed mode test
FT fracture toughness
IRT infrared thermography
kll (ktt, kzz) conductivity in l (t, z) direction
LVDT linear variable differential transformer
PEEK polyether ether ketone

Fig. 1. Effect of the crack growth speed on mode II fracture toughness (a) and plastic zone size (b) [9].
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energy is related to the rate dependent characteristics of the PEEK matrix. At the same time, the results showed that the damage zone
length increases from about 1 to 1.3mm as the loading rate increases from 1.7×10−6 to 8.3× 10 3m/s [19]. This result is con
tradictory with Friedrich et al.’s work [9 11] who showed that the damage zone size decreased as the loading rate increased (Fig. 1b).

The goal of this article is to contribute to this complex discussion on the effect of the rate on the GIIC value. Most of the work found
in the literature studies the effect of the loading rate on GIIC because it can be easily evaluated. The authors of this article assert that
the loading rate is not the appropriate parameter to study fracture toughness variability but crack growth velocity is, even though it is
more difficult to assess. In fact, the same loading rate can induce very different crack growth speeds depending on the boundary
conditions. This fact could partly explain the difference in GIIC values observed in the literature. For example, the ENF test can induce
stable (low velocity crack growth) or unstable propagations (high velocity crack growth) [14,21 23]. This instability is often con
sidered a disadvantage and the standard proposes a configuration intended to avoid it [21,22]. But if the goal is to induce fast crack
growth, this instability is very interesting and enables dynamic crack growth to be assessed by performing a static test.

In this project, several ENF tests were carried out in order to compare stable and unstable crack growth. An ultra high speed
camera was also used to precisely measure crack growth velocity in an unstable ENF test. Then, two experimental techniques were
used to study the effect of crack growth instability on the mode II fracture toughness value.

2. ENF test

The composite material examined in this study is an unidirectional prepreg laminate with IM7 carbon fiber and PEEK resin. The
Young modulus in the fiber direction, El, is shown in Table 1, where l is the longitudinal direction, t the transverse direction and z the
out of plane direction. Plates were manufactured with draping sequence [0]32. The first samples (ENF1 to ENF5) were made with plies
of 0.137mm thickness for a total thickness, h, of 4.4mm. They were used to understand the behavior of the specimen and to observe
stable and unstable propagation using an infrared camera. The ENF6 to ENF9 samples were made from a different ply batch. The ply
thickness was 0.145mm for a total thickness of 4.65mm. These tests were filmed with an ultrahigh speed camera to evaluate crack
growth velocity and with an infrared camera to determine GIIC values.

The samples were prepared with a teflon film inserted at mid thickness in order to initiate the crack. Afterwards, a box cutter was
used to initiate the crack from the Teflon film, which allowed for different initial crack lengths. Then ENF samples were cut to a
length of 250mm and a width of 20mm. The geometry of the ENF test is shown in Fig. 3: the plate was simply supported on two
10mm diameter cylinders and force was imposed using a 10mm diameter cylinder. The velocity of the central cylinder was imposed
at 0.028mm/s. The force, F, was measured during tests using the machine cell force and the displacement, u, was measured using a
LVDT sensor placed under the sample.

The first test, ENF1 sample, failed under the loading point. This failure was due to fiber failure just under the cylinder, probably
due to high compression and shear stress concentration in this zone. In order to avoid this premature failure, a rubber piece of about
2mm thickness, was set under the upper cylinder (Fig. 3). It spread the applied load over a wider specimen surface without disturbing
the force measurement. As a result, the stress state in the specimen was more uniform. With this rubber piece, no other failure was
observed under the force cylinder.

-a- -b-

Fig. 2. Mode II ductile behavior (a) and mode II brittle behavior (b) [10].

Table 1
Mechanical and thermal properties of carbon/PEEK UD ply [41–43].

Young’s modulus in fiber direction, El 155 GPa
Thermal conductivity in fiber direction, kll 5.4W·m 1·K 1

Thermal conductivity in transverse direction, ktt and kzz 0.25W·m 1·K 1

Specific heat, C 859 J·kg 1·K 1

Density, ρ 1610 kg·m 3
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monitored for these samples so ENF8 and ENF9 samples were painted white so that crack propagation could be fully observed. The
crack propagation mean velocity of each test varied from 807m·s−1 to 962m·s−1 with a maximum peak of 1200m·s−1, Fig. 9. Stroh
et al. [24] shows that, in some specific configurations, crack growth velocity tends to the velocity of a perturbation travelling along a
free surface. The maximum velocity is set by the Rayleigh waves speed [25] and can be estimated by − × c0.2 0.4 0, with c0 being the
speed of a longitudinal wave ( =c E ρ/0 ) [26]. This estimation shows that the maximum crack growth velocity in our material varies
from 1930m·s−1 to 3860m·s−1. Since the velocity of the ENF delamination is as high as 1200m·s−1, it is proven that an ENF static
loading can induce fast damage propagation if an instability condition is reached.

3. Determination of GIIC

3.1. Beam theory

By applying classical beam theory, it is simple to study ENF test crack growth in the framework of linear elastic fracture me
chanics [21 23]. If the structure behavior is assumed linear elastic, the energy release rate, G, can be expressed by:

= =G F
B

dC
da

C u
F2

and
2

(1)

where B is the sample width, F is the force, a is the crack length, C is the compliance and u is the displacement. Then crack growth is
obtained when G equals the critical ERR in mode II, GIIC. If GIIC is assumed constant, the condition of crack growth stability allows for
the expression of the displacement versus force using the beam theory [21 23]:
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where L is the beam length between boundary conditions (Fig. 3) and I is the area moment of inertia of the beam =(I Bh /12)3 . These
curves are plotted in Fig. 10 for two values of GIIC. Higher values of GIIC mean that more energy is needed to obtain crack propagation
and so the force should also be higher. In this figure, the elastic behavior of the sample (F=u/C), using the beam theory, is also
plotted for a= 0 and a= L/2 (the smaller the crack, the higher the stiffness):
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If the ENF is controlled with displacement, which is the case of the experimental tests presented here, the stability condition of the
crack growth is reached for a > 0.347 L (Fig. 4). In reality, the problem is more complex, because GIIC is not constant, and the R

stiffness 
a = 0

GIIC = 1.3 N/mm a > L/2 

GIIC = 1.3 N/mm a < L/2 

stiffness 
a = L/2

GIIC = 2.7 N/mm a > L/2 

GIIC = 2.7 N/mm a < L/2 

a = 0.347 L 

a  = 0

a < L/2

a > L/2

a = 0.347 L 

Displacement (mm) 

Fig. 10. Analytical curve of force versus displacement of the ENF test for GIIC= 1.3 N/mm and GIIC= 2.7 N/mm.
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damage mechanisms involved [32,34,37 38]. In the literature, very little information is available on the values of β for resins
[27 32]. Li and Lambros [38] measured the ratio of dissipative work converted into heat for a polycarbonate material and they found
that it varies from 100% for low strain to 50% for high strain. For metallic materials, some further studies exist in the literature. For
example, Kapoor and Nemat Nasser [37] show that β is close to 1 for a Ta 2.5% Bhalla et al. [39] measured values of β between 0.5
and 1 depending on the strain for an annealed 302 stainless steel. With the same material, Zehnder et al. [40] studied cracks in a
0.8mm plate for stable tearing growth. They showed that quantitative imaging of the crack tip temperature field using IRT can be
used to resolve crack tip energy flux and to measure the energy release rate.

Moreover, the β coefficient in composite materials depends on the damage mode [27,30 34]: β value is close to 1 when damage
consists of cracks, i.e. a brittle fracture mode and β value is low when damage consists of resin “plasticity”, i.e. a ductile fracture
mode. This phenomenon may be linked to the fracture modes (Fig. 2) observed by Friedrich et al. [9 11]. If the fracture mode
changes during crack growth, the β coefficient can also change. It is likely that the β value is close to 1 for unstable crack growth and
β values may be lower for stable crack growth. As it is difficult to accurately assess β, this study is based on the hypothesis that β is
equal to 1. The fact that fast unstable propagation is present during these ENF tests endorses this hypothesis.

For unstable crack growth, the IRT method was adapted by choosing tA just before the crack crossing the studied area and tA+dA

just after the crack crossed the studied area (Fig. 13). Then dA was directly the length of the studied area, multiplied by the width. In
fact, the calculation was independent of the thickness, because dissipated energy, dWdiss, was also an integration over the volume,
which was reduced to an integration over the surface, if dA is, at the same time, reduced to a length.

This method was used to calculate GIIC (Eq. (8) with β=1) in several lines (n1 to n6 plotted in Fig. 14). These lines correspond to
the volume Ωfis and they represent thermal gauges. The position of the thermal gauges at the front of the specimen is fixed during the
test. When the crack crosses the thermal gauge, temperature varies (similar to what is presented in Fig. 7) and GIIC can be calculated
by integrating the temperature variation over time and the gauge length. These gauges enabled GIIC to be calculated with the crack in
different positions in order to have an evolution of GIIC with the crack growth (Fig. 12). We can observe a uniform GIIC value for the
whole duration of the unstable propagation. The values of GIIC are shown in Table 2 and they correspond to a time tA+dA=0.03 s
(Fig. 14) because fracture toughness is uniform at this time. Mean values of fracture toughness during unstable propagation vary from
0.9 N/mm to 1.5 N/mm. When brittle damage linked to unstable propagation takes place, fracture toughness decreases drastically
(∼50% of the values obtained at maximum force).

These values are in line with those estimated by beam theory and the compliance method (Fig. 7). This significant correlation
partly justifies the choice of β=1 and must be due to the brittle nature of the crack. As mentioned above, a high fracture toughness
value is found for stable crack growth, and a low fracture toughness value is found for unstable crack growth.

Fig. 14. Temperature field during ENF8 test and the thermal gauges used to calculate GIIC via IRT technique.
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4. Conclusion

An ENF test was used to study the effect of growth stability on mode II interlaminar fracture toughness of a carbon/PEEK
composite. The instability of the ENF test was used to induce both stable (or slow) and unstable (or fast) crack growth with a static
loading. Unstable propagation was filmed with an ultra high speed camera in order to determine crack growth velocity, varying from
807m/s to 962m/s. Then two processes were used to evaluate fracture toughness: the standard compliance method and the Infra Red
Thermography (IRT) technique.

The standard compliance method enabled GIIC to be assessed using force and displacement imposed on the ENF sample, and the
crack growth length was measured during the test [21 23]. Initial fracture toughness varied from 0.6 N/mm (ENF9) to 1.3 N/mm
(ENF6 and ENF8). Afterwards, stable propagation took place until the point of maximum force, when GIIC increased to a value
between 1.4 N/mm (ENF9) and 3 N/mm (ENF8). The drawback of this method is that it is inaccurate if the crack growth is unstable.

Then an Infra Red Thermography (IRT) process was applied. This technique enabled fracture toughness to be assessed using the
heat energy dissipated by the crack growth [30 32]. This technique is very promising because it makes it possible to assess GIIC in
unclassical tests for which other techniques are not applicable. Nevertheless, in order to quantitatively evaluate crack growth dis
sipated energy the Taylor Quinney coefficient [33] is needed. This coefficient represents the ratio of energy dissipated as heat to
irreversible energy, and it can be difficult to assess [32 34,38]. This technique was used to estimate fracture toughness during ENF
test with unstable propagation. From its maximum force peak value, GIIC decreased to a value comprised between 0.9 N/mm (ENF9)
and 1.5 N/mm (ENF7).

This high variation in the fracture toughness with crack growth velocity is most likely due to the transition between a ductile
fracture mode for low velocity (stable process) and a brittle fracture mode for high velocity (unstable propagation).

The complementarity between these two experimental techniques made it possible to determine carbon/PEEK GIIC using an ENF
test with stable or unstable crack propagation. The results obtained using the infra red thermography technique show a significant
correlation to GIIC values calculated via the standard compliance method.
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