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Implementation and validation of a slender vortex �lament
code‡: Its application to the study of a four-vortex

wake model

D. Margerit, P. Brancher∗; † and A. Giovannini

IMFT; All�ee du professeur Camille Soula; 31400 Toulouse; France

SUMMARY

A computational code EZ-vortex is developed for the motion of slender vortex �laments of closed 
or open shape. The integro-di�erential equations governing the motion of the vortex centrelines are 
either the Callegari and Ting equations, which are the leading order solution of a matched asymptotic 
analysis, or equivalent forms of these equations. They include large axial velocity and nonsimilar pro�les 
in the vortical cores. The �uid may be viscous or inviscid. This code is validated both against known 
solutions of these equations and results from linear stability analyses. The linear and non-linear stages
of a perturbed two-vortex wake and of a four-vortex wake model are then computed. 
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1. INTRODUCTION

The vortical topology of many �ows consists of several vortex �laments submerged in a 
background potential �ow. The two-vortex aircraft wake is an important example of these 
�ows as it is of industrial interest. The potential hazard related to these coherent vortices 
induces separation distances between aircrafts and associated delay at landing and take-o�, 
which contributes to the congestion of airports [1].
Vortex methods [2] are numerical methods of great interest to study vortical �ows. The 

discretization is of the vorticity �eld, rather than the velocity �eld, and is Lagrangian in 
nature. It consists of a collection of particles (vortex particle methods [VP]) or �laments 
(vortex �lament methods [VF]) which carry concentrations of vorticity. The velocity �eld 
is recovered from the discretized vorticity �eld via the Biot–Savart law and a numerical
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smoothing parameter is introduced to desingularize the Biot–Savart line-integral kernel. The
vorticity �eld is then evolved in time according to this velocity �eld.
The present paper focuses on the implementation of a vortex �lament method adapted to

solve vortical �ows composed of several thin vortex �laments. This method called slender vor-
tex �lament methods [SVF] is based on the equation of motion obtained from an asymptotic
expansion of the Navier–Stokes equations in terms of the small thickness of these vortices.
The implemented code EZ-vortex provides a useful and fast tool for the simulation of aircraft
wakes.
Let us recall that the induced velocity of a curved vortex �lament of zero thickness, i.e.

a line vortex, near its centreline is known to have a binormal component proportional to its
curvature and to the logarithm of the distance to the centreline [3, 4]. The induced velocity
on the centreline is thus in�nite and this line vortex model is not the leading-order part of
the expansion of a slender vortex �lament in terms of its thickness. From the point of view
of perturbation methods the slender �lament corresponds to a boundary layer near its mov-
ing centreline. The original Navier–Stokes equations are then sti� to be solved numerically.
By using a matched asymptotic expansion in terms of the �lament thickness Callegari and
Ting [5–7] have derived an equation of motion for the centreline from the Navier–Stokes
equations. SVF are numerical methods which are based on the numerical discretization of
this equation [8]. These methods may be inviscid or viscous and have the advantage to be
rigorously derived from the Navier–Stokes equations. The thickness of the �laments has to be
small compared to other characteristic length scales. Therefore they do not take into account
short waves along the �lament, the distance between two �laments has to be greater than
their thickness, and so these methods do not allow reconnection of vorticity.
Previous to this matched asymptotic derivation several ad hoc desingularizations of the

Biot–Savart self-induction of a line vortex were proposed [9]. These methods introduce an ad
hoc parameter of desingularization to take care of the �nite thickness of the �lament. In the
cut-o� method [10, 11] the desingularization is obtained by cutting a neighbourhood of the
induced velocity point in the Biot–Savart self-induction of a line vortex: the introduced cut-o�
length is the ad hoc parameter of desingularization. This cut-o� method was used in most
stability studies of slender vortex �laments [10, 12]. By a direct comparison between such ad
hoc equations of motion and asymptotic equation of motion Widnall et al. [13, 14] and then
Moore and Sa�man [15, 4] give the relation between the cut-o� length and the inner structure
of the �lament. More recently Margerit et al. [16] did the comparison with the Callegari
and Ting equation. With this relation the cut-o� line-integral equation of the centreline is
equivalent to Callegari and Ting equation. This comparison can be done with other ad hoc
desingularization methods. The numerical discretization of these equations gives other slender
vortex �lament methods. However, the resulting justi�ed desingularization methods are still
sti� to be solved numerically as the Biot–Savart desingularized integral of these methods is
a singular integral in the parameter of desingularization: the centreline in the neighbourhood
of any point on the �lament is a boundary layer for the induced velocity contribution at this
point and so needs extra discretized elements.
By using the Callegari and Ting equation Klein and Knio [17] have shown that it is not

correct to compute a vortical �ows composed of several thin vortex �laments by a standard
VF method [2] with only one numerical �lament per section of vortex (the so-called thin-tube
model): more than one numerical �lament per section is needed to insure the convergence
of the numerical scheme. However, as it would save computation time to have only one



numerical �lament per section Klein and Knio [17] proposed a cure: they have shown how to
adjust the numerical desingularization parameter (the so-called thin-tube thickness) to physical
thickness of the slender vortex �laments so that the method is correct. This corrected method
is based on a comparison with the Callegari and Ting equation of motion and gives another
slender vortex �lament method. As for the justi�ed desingularization methods and for the
same reason, the resulting corrected thin-tube model is still sti� to be solved numerically.
This sti�ness of the corrected method is now removed in the improved thin tube models
proposed by Knio and Klein [18].
In Section 2 of this paper, we give the governing equations that we have implemented in

the slender vortex �lament code EZ-Vortex for closed or open �laments. We �rst give the
Callegari and Ting equation and the associated core-structure functions. We then successively
give the local induction approximation (LIA) for its historical interest, a simple de-singularized
method and the M1 de-singularized method of Knio and Klein. The numerical schemes used
to discretize such equations and implementation issues such as the storage of �lament are
discussed in Section 3. In Section 4 the code is validated against exact solutions of the
equations and against results of linear stability studies. The code is then used in Section 5
to study the linear and non-linear stages of a perturbed two-vortex wake and in Section 6 of
a perturbed four-vortex wake. The linear stages are compared to known stability results. In
Section 7 we summarize the results and give some concluding remarks.

2. THE GOVERNING EQUATIONS

In this section we give the integro-di�erential equations governing the motion of the centreline
that we have implemented in the EZ-vortex code. They are either the Callegari and Ting
equations, which are the leading order solution of a matched asymptotic analysis [6], or a
simple de-singularized method, or the M1 de-singularized method of Knio and Klein [17, 18].
Even if these equations are equivalent their discretized form may be more or less advantageous
from the point of view of their numerical stability or of the simplicity of their implementation
as shown in Section 3. For its historical interest the local induction model (LIA) has also
been implemented even if it is not equivalent to the previous equations.

2.1. The Callegari and Ting equation of a closed �lament

The centreline X(s; t) of the �lament at time t is parametrized by s∈ [−�; �[ (see Figure 1).
For each point on the centreline the Frenet frame (t; n; b) is de�ned with, respectively, the
unit tangent, normal and binormal vectors to X(s; t). The Callegari and Ting equation is [6]

@X=@t=
�K(s; t)
4�

[− log �+ log(S)− 1 + Cv(t) + Cw(t)]b(s; t) +A(s; t) (1)

where � is its circulation and K is the local curvature. The small parameter � is the asymptotic
parameter of the expansion and corresponds to the aspect ratio �=L, where � is the radius of
the vortex core and L a typical longitudinal length. S is the length of the closed �lament, and
Cv(t) and Cw(t) are known functions that depend on the orthoradial and axial evolution of the
inner velocity in the core. Equation (1) shows that the self-induced velocity of the �lament



Figure 1. The �lament centreline X(s; t) and the Frenet frame (t; n; b).

is the sum of a local term in the binormal direction and a non-local one A(s; t) given by

A(s; t)=
�
4�

∫ +�

−�
�(s+ s′; t)

[
t(s+ s′; t)× (X(s; t)−X(s+ s′; t))

|X(s; t)−X(s+ s′; t)|3 − K(s; t)b(s; t)
2|�(s; s′; t)|

]
ds′

where �(s; t)= |@X=@s|, and �(s; s′; t)=
∫ s+s′

s �(s∗; t) ds∗.

2.2. The core-structure functions Cv(t) and Cw(t)

The velocity �eld in the core is described by introducing the local curvilinear co-ordinate
system M(r; ’; s) and the curvilinear vector basis (er ; e’; t). This system is de�ned in the
following manner; if P(s) is the projection on the centreline X of a point M near the curve
then PM is in the plane (n; b) and thus polar co-ordinates (r; ’) can be used in this plane
with the associated polar vectors (er ; e’). In the asymptotic theory [6] the relative velocity V
is de�ned by v= @X=@t + V where v is the �uid velocity. We denote by (u; v; w) the radial,
circumferential and axial components of V= uer + ve’ + wt.
The expressions of the core-structure functions Cv(t) and Cw(t) are di�erent depending on

the initial leading-order velocity pro�les in the core and on the viscosity of the �uid. In this
subsection we successively give the velocity pro�les and the core-structure functions Cv(t)
and Cw(t) for an inviscid, similar and non-similar vortex core.

2.2.1. Inviscid vortex core. If the �uid is inviscid the leading-order circumferential and axial
components of the relative velocity �eld are in the form [7]

v( �r; t) = v0( �r= ��)[S0=S(t)]−1=2

w( �r; t) =w0( �r= ��)S0=S(t)



where �r= r=� is the stretched radial distance to the �lament, ��= �=� is the stretched radius,
[v0(�= �r= ��0); w0(�= �r= ��0)] is the initial velocity �eld, and S0 is the initial length of the
�lament. The �-stretched radius �� is

��
2
(t)= ��20S0=S(t)

The inner functions are given by [7]

Cv(t) =Cv(0)− log ��(t)

Cw(t) =Cw(0)[S0=S(t)]3

where Cv(0) and Cw(0) are the associated initial core constants.

2.2.2. Similar vortex core. The circumferential and axial components of the relative velocity
�eld for a similar vortex are [7]

v( �r; t)=
�
2� �r

[1− e−( �r= ��)2 ]; w( �r; t)=
m0

� ��
2

(
S0
S

)2

e−( �r= ��)
2

where �r and �� are de�ned as before, and m0 is the initial axial �ux of the vortex. The stretched
radius �� is given by [7]

��
2
(t) = ��20

[
S0
S(t)

]
1��

1�� =1+
��2��
��20

��2�� =4��
∫ t

0

S(t′)
S0

dt′

where ��= �=�2 is the stretched kinematic viscosity of the �uid of kinematic viscosity �. The
inner functions are given by [7]

Cv(t) = (1 + �− ln 2)=2− ln( ��)

Cw(t) =−2(S0=S)4[m0=(� ��)]2

where � denotes Euler’s constant. The e�ect of the di�usion is easily seen in these ex-
pressions through �� �� (the di�usion-added �-stretched thickness of the core) in �� and the
in�uence of the stretching through the ratio S0=S. The inviscid-similar vortex corresponds
to ��=0.

2.2.3. Non-similar vortex core. If the �ow is viscous (�� �=0) and the core is non-
similar, the circumferential and axial components of the relative velocity �eld are in



the form

v( �r; t) =
1

� ��

[
�
2�
(1− e−�2) + e−�2

∞∑
n=1

��20DnPn(�2)1−n
��

]

w( �r; t) =
2
��
2

[
S0
S(t)

]2 [m0
2�
e−�2 + e−�2

∞∑
n=1

��20CnLn(�2)1−n
��

]

where �= �r= �� and the stretched radius �� expression is the same as for a similar vortex. Here,
Ln are the Laguerre polynomials, Pn(�2)=Ln−1(�2) − Ln(�2), and (Cn;Dn) are the Fourier
components of the initial axial velocity w0 and tangential vorticity 	0 = [@( �rv0)=@ �r]= �r:

Cn =
∫ ∞

0
w0(�)Ln(�2)� d�

Dn =
∫ ∞

0
	0(�)Ln(�2)� d�

In particuliar we have C0 =m0=2� ��20 , D0 =�=2� ��
2
0 . The inner functions are given by

Cv(t) =− log ��+ 1
2
(1 + �− log 2) + 4�

2

�2
∞∑

(n;m)∈N2\(0;0)

��40DnDmAnm

n+m
1−(n+m)
��

Cw(t) =− 2
��
2

[
S0
S(t)

]4 [m2
0

�2
+
8�2

�2
∞∑

(n;m)∈N2\(0;0)
��40CnCmAnm1

−(n+m)
��

]

where

Anm =
∫ ∞

0
e−2xLn(x)Lm(x) dx

=
(n+m)!

n!m!2m+n+1

Let us give two examples (Figure 2) of non-similar cores with the same circulation as the
similar vortex 	0(�)=� exp(−�2)=� ��20 of thickness ��0. The �rst one is the Rankine vortex:

	0(�)=




�

� ��20
if �¡1

0 if �¿1

The second one is the witch-hat vortex:

	0(�)=




�

� ��20

(
1− �√

3

)
if �¡

√
3

0 if �¿
√
3
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Figure 2. Vorticity 	0 ��20 =� (left) and circumferential velocity v0 ��0=� (right) versus �= �r= ��0.
The solid line is for the similar vortex, the dotted line for the Rankine vortex and the

dashed line for the witch-hat vortex.

2.3. The Local Induction Approximation (LIA) equation

The local induction approximation (LIA) equation is

@X=@t=
�K(s; t)
4�

[− log �+ log(S)− 1 + Cv(t) + Cw(t)]b(s; t) (2)

In this approximation the non-local self-induction A(s; t) of Equation (1) is not taken into
account. This regular term is indeed negligible in the small � limit.

2.4. A simple de-singularized method for a closed �lament

One of the simplest justi�ed de-singularized equation is [9]

@X=@t=
�
4�

∫ �

−�
�(s′; t)

t(s′; t)× [X(s; t)−X(s′; t)]
[|X(s; t)−X(s′; t)|2 + s2c ]3=2

ds′ (3)

with

sc(s; t)= � exp[−Cv(t)− Cw(t)] (4)

This method is very easy to implement. However, as already explained in the introduction,
this equation is still sti� to be solved numerically and so needs extra discretized elements
near the point on the curve where the velocity is to be computed.

2.5. The M1 de-singularized method of Knio and Klein for a closed �lament

The M1 de-singularized equation of Knio and Klein [17, 18] is

@X=@t= v�1 + (v�1 − v�2)
log(�1=�ttm)
log(�2=�1)

(5)



where

v�i =
�
4�

∫ �

−�
�(s′; t)

t(s′; t)× [X(s; t)−X(s′; t)]
|X(s; t)−X(s′; t)|3 


( |X(s; t)−X(s′; t)|
�i

)
ds′; i=1; 2 (6)

with 
(r)= tanh(r3) and

�ttm = � exp(Cttm + 1− Cv(t)− Cw(t)) (7)

�1 = 3�max (8)

�2 = 2�1 (9)

�max = ds max
s∈[0;2�]

�(s; t) (10)

With the choice of 
(r)= tanh(r3), the Cttm constant is Cttm= − 0:4202 as obtained by Knio
and Klein [18]. It can be computed from Equations (4.23), (4.22) and (3.23) of Klein and
Knio [17] with a change of sign of 	(1); ttm11 in their Equation (4.23).
Through a direct matched asymptotic expansion in �i of (6) and a comparison of the

associated expanded equation of motion with the Callegari and Ting (1) equation of motion
we obtain the following expression of the Cttm constant:

Cttm=− log(4) +
∫ 2

0

(s)=s ds+

∫ ∞

2


(s)− 1
s

ds

for any function 
(s) such that 
(s)=1 at in�nity. The choice of 
(r)=4�
∫ r
0 �2f(�) d� with

f(r)=�−3=2 exp(−r2) can be analytically computed and gives Cttm= − 1 + 0:5� where � is
the Euler’s constant.

2.6. Mutual induction and open �laments

In case of several �laments Xj their induced velocities

�j
4�

∫
Cj

�j(s′; t)
tj(s′; t)× (X(s; t)−Xj(s′; t))

|X(s; t)−Xj(s′; t)|3 ds′ (11)

are added to the self-induced velocity of X.
A periodic open �lament of wavelength �(t) in the axial ex direction satis�es X(s+ 2�; t)

=X(s; t) + �(t)ex. From Callegari and Ting’s equation [6] one can deduce the following
equation for such a �lament:

@X=@t=�K(s; t)[− ln �+ ln �(t)− 1 + Cv(t) + Cw(t)]b(s; t)=4�+A(s; t) (12)

where A(s; t) is the non-local self-induction of the �lament and is given by

A(s; t)≡ �
4�

∫ +∞

−∞
�(s+ s′; t)

[
t(s+ s′; t)× [X(s; t)−X(s+ s′; t)]

|X(s; t)−X(s+ s′; t)|3

−H
(
�(t)
2

− |�(s; s′; t)|
)

K(s; t)b(s; t)
2|�(s; s′; t)|

]
ds′



where H is the Heaviside function. The expression of the core-structure functions can be
obtained by replacing the �nite length S(t) by the wavelength �(t) of the periodic �lament
in the previous expressions of a closed vortex. In the same way as Equation (1) for closed
�laments becomes Equation (12) for periodic open �laments, one can easily �nd the equations
for periodic open �laments associated to Equations (2), (3) and (5).

2.7. Axial �ow velocity and viscosity

Equations (1), (3) and (5) are indeed di�erent formulations of the same equation. They will
lead to di�erent numerical discretizations with more or less advantages.
All of these equations handle cases where the axial �ow is non-zero (Cw �=0) and the

viscosity is non-zero (�� �=0). Viscosity appears in terms �� and 1�� in the core functions
Cv and Cw (Section 2.2.3), where the thickness �� and the coe�cient 1�� are given in
Section 2.2.2.
This general case is implemented in our code even if we will only present simulations with

non-axial �ow velocity and no viscosity in Sections 4 and 5. The reader can �nd numerical
simulations with axial �ow and viscosity in Reference [8] for closed �laments.

3. NUMERICAL DISCRETIZATION AND IMPLEMENTATION

The code EZ-vortex [19] is the numerical implementation of Equations (1), (2), (3), and (5) for
closed �laments and of the associated versions for open �laments including Equation (12). The
philosophy of the code is to keep programs as simple as possible and to provide documentation
both by way of a text [19] and comments within the code itself. It is available through
the world-wide web and is adapted from the code EZ-Scroll developed by Dwight Barkley
for simulating scroll waves in excitable media [20, 21]. This package uses OpenGL for 3D
rendering or the Mesa library (public domain implementation of most OpenGL routines).
It should be possible to run on virtually any machine supporting X . Setting macros of the
C-preprocessor (de�ned in the main header �le) to 0 or 1 allows to have a conditional
compilation of the code and to have a unique source-code with di�erent equations of motion
and with di�erent spatial and temporal numerical discretizations.
The physical parameters in the simulation are the initial stretched core radius ��0, the initial

axial �ux m0, the circulation �, the aspect ratio parameter �= �=L, and the stretched viscosity
��= �=�2 of the �uid. The numerical parameters for the simulation are the number np of spatial
points (nodes) on each �lament, the time step dt, the number nsteps of time steps and nb the
number of periodic boxes for open �laments (see Figure 3). The integral in the formulation
of A(s; t) (Equation (12)) is evaluated over s′ ∈] − nb�;+nb�[ instead of s′ ∈] −∞;+∞[.
The missing part of the integral quickly decreases when the number of boxes nb increases.
In our computer code open �laments can be therefore considered as in�nitely long periodic
�laments of wavelength �.

3.1. Spatial discretization

The curve X is discretized by putting np points on the centreline, i.e. by an uniform dis-
cretization of the interval s ∈ [−�; �[.
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Figure 3. Periodic part of the �lament, central box around X(s; t) and left and right side boxes.

3.1.1. Derivatives. First-derivative �t= @X=@s and second-derivative Kb= @X=@s× @2X=@s2=
|@X=@s|3 are approximated by second order centred di�erences or spectrally computed via a fast
Fourier transform (FFT). For periodic open �lament in the ex direction [X(s+2�; t)=X(s; t)+
�(t)ex] the following periodic function X̃(s; t)=X(s; t) − �(t)s=(2�)ex is de�ned. As it sat-
is�es X̃(s + 2�; t)= X̃(s; t) its derivatives can be spectrally computed via a FFT as for the
closed �lament. The �rst-derivative is then given by @X=@s= @X̃=@s + �(t)=(2�)ex and the
second-derivative by @2X=@s2 = @2X̃=@s2.

3.1.2. Integrals. The trapezoidal rule is used to compute any integral part of the equation of
motion. In case of a periodic open �lament we take advantage of the periodicity and advance
in time only a part of the �lament (see Figure 3) corresponding to a period �(t) (or an
integer number of periods). The self-induction at point X(s; t) on this part of the �lament
is found by adding two contributions (see Figure 3). The �rst one is the self-induction of
a bit of �lament in a box of length �(t) centred on X(s; t). The second is the induction of
the remaining part of the open �lament in nb boxes of length �(t) from both sides of the
central box. The self-induction part is obtained with one of Equations (1), (2), (3) or (5)
for a closed �lament and the remaining part is obtained with the mutual induction velocity
formula (11) as if it were coming from other �laments.
The spatial discretization can be checked at initial time by testing the convergence of the

Biot–Savart velocity computation with the number of points and with the number of periodic
boxes for open �laments.

3.2. Temporal discretization

The time stepping of the equation of motion is either an explicit forward Euler �rst-order
scheme, an implicit backward Euler �rst-order scheme with an iterative sequel that converges
to the solution of the non-linear algebraic system, or an Adams–Bashforth second-order explicit
scheme. Explicit schemes can also be done on place, i.e. without a temporary variable for the
co-ordinate positions for the nodes of the �lament.
Explicit schemes for equations with a local Kb term [Callegari and Ting (1) or LIA (2)] are

always unstable [22] and are conditionally stable for the simple de-singularized method (3) or
for the M1 de-singularized method (5) of Knio and Klein. An Adams–Bashforth second-order
explicit scheme can be used with these later methods. Moreover (3) and (5) need not to
compute the local Kb term and are also easier to implement because their non-local integral



term is a simple expression whereas in the Callegari and Ting Equation (1) the integrand of
the integral term A is a subtraction of two terms and needs the computation of the Kb term
and of the integral distance function �(s; s′; t). The M1 de-singularized method of Knio and
Klein (5) is more advantageous than the simple de-singularized method (3) because contrary
to this later method it is not sti� in the small thickness parameter �: as can be seen from
direct numerical computation the simple de-singularized method (3) needs much more number
of points to converge than the M1 de-singularized method of Knio and Klein. It is interesting
to have implemented all these di�erent methods in order to compare their di�erent advantages
from direct numerical computation and to avoid any implementing mistake by checking their
convergence to the same result. The convergence of every simulation is assessed by increasing
the number of points and by decreasing the time step.

3.3. Closed and open �lament storage

In this subsection we explain the choices we did to implement the numerical schemes. It
is of interest for anyone who would like to do such an implementation or go through the
lines of the EZ-vortex code. Cartesian co-ordinates (x; y; z) of nodes i on the �lament j are
successively stored in a pointer u and are managed by three macros Ux(i, j), Uy(i, j), Uz(i, j),
where Ux(i, j) is the co-ordinate x of the node i on the �lament j. The same kind of pointer
(u s, u ss, ...) and macros are used for the �rst and second derivatives, for � and for the
velocity components. The index i ranges from 0 to np+ 1 and the index j from 0 to nf− 1,
where np and nf are respectively the number of nodes and of �laments. Points 0 and np+ 1
are added-�ctitious points which may be of use.
For a closed �lament the point of index np is at the same location as the point of index 1,

whereas for an open �lament the point of index np is the translated point [with period �(t)]
of the point of index 1. In the spectral computation of the derivatives the FFT routine uses
the points from i=1 to i= np− 1 and the index np− 1 is 256. For closed �laments we �nd
the induced velocity on nodes i=1 to i= np− 1 (respectively, i= np for open �lament) and
then move all these points.
For open �laments the self-induced velocity at any point X(s; t) of index i is found as

displayed in Figure 3: temporary pointers (ux tmp, uy tmp, uz tmp) are introduced to store
part of the �lament in the central box around this point i which is stored at the central index
(np+1)=2 of these pointers (the number of points np is an odd number). The same temporary
pointers are also used for closed �laments. With these temporary pointers the same procedure
is then used to compute the velocity whatever point is under consideration. The procedure to
�ll these pointers is di�erent whether the �lament is closed or open because indices have to
be managed di�erently. For open �laments the induced velocity of the nb copies on the left
and right boxes is added to the self-induced velocity of the central part.

4. VALIDATION AGAINST EXACT SOLUTIONS AND LINEAR
STABILITY RESULTS

In this section we validate the code EZ-vortex against known solutions of the equations of
motion for the centreline and results of linear stability studies. We also give the values of
the numerical parameters that give converged numerical results for the di�erent con�gurations



0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

ε
V

Figure 4. Velocity V of the vortex ring versus �. The solid line is from the analytical result and crosses
from numerical computation (Run 1 in Table I).

Table I. Numerical parameters: closed vortices.

Run np dt nsteps CPU time∗(s)

Circular vortex ring (M1) 1 101 0:0016 7000 79:8
Circular vortex ring (CT) 2 101 0:0016 7000 186
Perturbed vortex ring 3 257 0:0016 250 17
Vortex ring pair 4 101 0:00008125 7000 1200

∗ SGI R10000 work-station at 225 MHz.

under consideration. All following simulations use the M1 de-singularized method of Knio
and Klein with the explicit Adams–Bashforth scheme, there is no axial �ow (m0 = 0) and the
�uid is inviscid (��=0). Here, the vortex core is similar and �=1. As the initial reduced
thickness is ��0 = 1 the small parameter � is the initial thickness �0.

4.1. The perturbed circular vortex ring

The velocity of a circular vortex ring of radius R and thickness � is [23]

V =
�
4�R

(
log

8R
�
+ Cv − 1 + Cw

)
(13)

For a similar core without axial velocity Cv=0:442 and Cw=0. In Figure 4 we plot the
velocity V of the vortex ring of radius R=1 as a function of the initial thickness �. Nume-
rical results (crosses) are in excellent agreement with the analytical result (solid line). The
numerical parameters of the computation are given in Table I for the M1 method of Knio
and Klein with the explicit Adams–Bashforth scheme (Run 1) or for the Callegari and Ting
equation with an implicit iteration (Run 2).
The period T of a modal perturbation with azimuthal wave number n is

T =
8�2R2

�
√
[n2Ṽ0 − g�(n)][(n2 − 1)Ṽ0 + g�(n)]

(14)
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Figure 5. Period T for the mode 3 of the perturbed vortex ring versus �. Same legend as in Figure 4.
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Figure 6. Binormal velocity V at initial time for the mode 3 of the perturbed vortex ring �=0:15 versus
the node number i of the �lament. The solid line is the M1 Knio and Klein method and the dashed

line is the Callegari and Ting equation. Same parameters as in Figure 5.

where Ṽ0 = 4�RV=� and [g�(n); g�(n)] are given in Margerit et al. [23]. In Figure 5 we plot
the period T for the mode 3 of the perturbed vortex ring as a function of �. Numerical results
(crosses in Figure 5 and Run 3 in Table I) are in excellent agreement with the analytical
result (solid line). The initial amplitude of the perturbation is �0 = 0:01 with the centreline in
a plane. This period is found by using �⊥ the amplitude part orthogonal to the propagating
direction x. It is given by �⊥=abs[

√
Z 2 + Y 2 − mean(√Z 2 + Y 2)] where X=(X; Y; Z) and

where mean is the spatial average on the �lament at time t. The pulsation is then found with
the slope of the temporal function arccos[�⊥=�⊥(0)]. This slope does not depend on the point
of abscisse s that is used. In practice we do not choose any point and use the maximum
of �⊥ over the �lament. It converges with all numerical parameters (time step, number of
points) and with decreasing initial amplitude �0.
The period at �=0:15 is not exactly on the curve. This small di�erence comes from �nite

� e�ect. M1 Knio and Klein method and Callegari and Ting equation has been proved to be
equivalent in the asymptotic small � limit. When �=0:15 we notice (Figure 6) a di�erence of
the Biot–Savart results given by these two methods whereas there is no di�erence for �=0:02.
We believe that this di�erence is due to the next-order correction in � which may no longer
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Figure 7. Velocity V of the vortex ring pair versus � for R=0:5. Same legend as in Figure 4.

be neglected at �=0:15. All methods and stability equations are equivalent at leading order
but may be slightly di�erent due to the e�ect of next-order correction.

4.2. Motion of a vortex ring pair

We consider two circular vortex rings in the same plane with same centre and thickness �.
Let �o, �i, Ro and Ri denote the circulations and the radius of the outer and inner vortices. We
introduce the dimensionless parameters R=Ri=Ro and G=�i=�o. There is an exact stationary
solution of the equation of motion (1) provided that the following relation between G and R
is satis�ed [24]

G=
E(k)=(1− R) + K(k)=(1 + R)− 0:5[log(8R0=�) + Cv − 1 + Cw]

−E(k)=(1− R) + K(k)=(1 + R)− 0:5[log(8Ri=�) + Cv − 1 + Cw]=R
(15)

where k=2
√
R=(1 + R). Here E and K are complete elliptic integrals of second and �rst

kinds. The associated velocity V is

V =
�i
4�Ri

[log(8Ri=�) + Cv − 1 + Cw] +
�o
2�Ro

[E(k)=(1− R) + K(k)=(1 + R)] (16)

In Figure 7 we plot the velocity V of the vortex ring pair as a function of � for R=0:5
and �i=1. Numerical results (crosses in Figure 7 and Run 4 in Table I) are in excellent
agreement with the analytical result (solid line).

4.3. The perturbed straight �lament

The period of rotation of a sinusoidal perturbation on a straight �lament is

T =
8�2

�k 2|1=2− �+ log(2=�k) + Cv − 1 + Cw| (17)

where �=0:577215, � is the core radius, � is the circulation and k=2�=� is the wave
number. This result generalizes to an arbitrary vorticity pro�le the classical Kelvin [25] result
for the bending modes of a Rankine vortex for small wave numbers. Kelvin obtained it by
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Figure 8. Period T for the wavelength �=1:25 of the perturbed straight vortex �lament versus the
initial thickness �. Same legend as in Figure 4.

Table II. Numerical parameters: open vortices.

CPU
Run � np dt nb nsteps time∗(s)

Straight �lament 5 1:25 257 0:00026 8 600 330
Oscillations of a vortex pair 6 1:25 257 0:00026 8 250 516
Instability of a vortex pair 7 10:21 101 0:0019 8 800 240
Instability of a vortex pair (non linear (NL) regime) 8 10:21 101 0:0019 8 7950 2520
Four vortices (most ampli�ed S1 mode) 9 0:8976 61 0:0019 20 250 264
Four vortices (most ampli�ed S1 mode NL regime) 10 0:8976 61 0:0019 20 872 930
Four vortices (long-wave S1 or A mode) 11 7:85 101 0:0019 8 250 306
Four vortices (long-wave S1 or A mode NL regime) 12 7:85 101 0:0019 8 1744 2160

∗ SGI R10000 work-station at 225 MHz.

considering in�nitesimal perturbations to a columnar vortex; we obtained it by in�nitesimal
perturbations to the straight centreline in (12).
In Figure 8 we plot the period T for the wavelength �=1:25 of the perturbed straight vortex

�lament as a function of �. Numerical results (crosses in Figure 8 and Run 5 in Table II)
are in excellent agreement with the analytical result (solid line). The initial amplitude of
the perturbation is �0 = 0:01. This period is found by using �y the amplitude part in the
y direction. It is given by �y=abs(Y − �Y ) where X=(X; Y; Z) and where �Y is the spatial
average on the �lament at time t. The pulsation is then found with the slope of the temporal
function arccos[�y=�y(0)].

5. STUDY OF A TWO-VORTEX AIRCRAFT WAKE

In this section the EZ-vortex code is used to study a two-vortex aircraft wake which consists
in a pair of contra-rotating vortex �laments. It also gives another validation of the code. As in
the previous section all following simulations use the M1 de-singularized method of Knio and
Klein with the explicit Adams–Bashforth scheme and with �= ± 1. There is no axial �ow
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Figure 9. Stability diagram for symmetric (left) and antisymmetric (right) modes of a similar vortex
pair without axial �ow: � is the wavelength and � is the initial thickness.

(m0 = 0) and the �uid is inviscid (��=0). Here, the vortex core is a similar vortex pro�le. The
initial reduced thickness is ��0 = 1 and so the small parameter � is the initial thickness �0. The
velocity of the contra-rotating vortex �lament pair of circulation ±� is V =�=2�b, where b
is the distance between the vortices. We checked that the code reproduces this velocity (data
not shown). The stability diagrams can be deduced from the study of Crow [10] and are
recalled in Figure 9. Here, we chose to display the wavelength instead of the wave number
and to plot the diagrams as a function of the initial thickness � rather than the ad hoc cut-o�
length of Crow [10]. These diagrams are in dimensionless form (b=1 and �= ± 1).
The period of the symmetric stable modes is [10]

T =
4�2b2

�
√
−(1−  + k 2b2!̃)(1 +  − k 2b2!̃)

(18)

where k=2�=� is the wave number and

= k 2b2K0(kb) + kbK1(kb)

= kbK1(kb)

!̃=
(
−1 + log 2

�k
+ 1=2− �+ Cv + Cw

)
=2

Here, K0 and K1 are modi�ed Bessel functions of the second kind. The period of the anti-
symmetric modes is given by [10]

T =
4�2b2

�
√
−(1 +  + k 2b2!̃)(1−  − k 2b2!̃)

(19)

Figure 10 shows the period T for the wavelength �=1:25 of the perturbed contra-rotating
�laments (symmetric stable modes) as a function of the initial thickness �. Numerical results
(crosses in Figure 10 and Run 6 in Table II) are in excellent agreement with the analytical
result (solid line). This period is found in the same way as in Section 4.3.
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Figure 10. Period T for the wavelength �=1:25 of the perturbed contra-rotating vortex pair (symmetric
stable modes) versus its initial thickness �. Same legend as in Figure 4.
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Figure 11. Growth rate �max (left) and planar angle �max (right) versus the initial thickness
� for the most unstable wavelength of the perturbed contra-rotating vortex pair (symmetric

unstable mode). Same legend as in Figure 4.

The growth rate � of the symmetric unstable modes is [10]

�=
1
8�b2

√
(1−  + k 2b2!̃)(1 +  − k 2b2!̃) (20)

The growing perturbations are planar standing waves with planes �xed at angle � to the
horizontal [10]:

�=arctan
(√

(1 +  − k 2b2!̃)=(1−  + k 2b2!̃)
)

(21)

Figure 11 displays the growth rate �max and the planar angle �max for the most unstable
wavelength �(�) (symmetric unstable mode) of the perturbed contra-rotating vortex pair as
a function of the initial thickness �. Numerical results (crosses in Figure 11 and Run 7
in Table II) are in excellent agreement with the analytical results (solid line). The initial
amplitude of the perturbation is �0 = 0:001 and the initial planar angle is deduced from (21).
It has been checked that the planar angle of the mode did not change during the computation:



Figure 12. Vortex �lament simulation of the non-linear instability regime of the most un-
stable mode �=10:21 for the contra-rotating vortex pair. Initial amplitude �=0:05, initial

thickness �=0:02 and initial angle �(t=0)=47:63(deg).

reported crosses are the value of this angle at the end of the computation. The amplitude
�(s; t) is given by �2(s; t)= [Z(s; t)− �Z(t)]

2
+ [Y (s; t)− 0:5]2 where X=(X; Y; Z) and where

�Z(t) is the spatial average on the �lament at time t. The growth rate is given by the slope of
the temporal function log[�(s; t)=�(0)]. It converges with all numerical parameters (time step,
number of points and number of boxes) and with decreasing initial amplitude �0. With an
axial �ux (m0=� �=0) the � axis of the previous �gures is multiplied by exp(−2[m0=�]2). We
checked that analytical and numerical results also agree for m0=�=0:6.
Figure 12 displays the evolution of the Crow instability of the most unstable mode in the

non-linear regime (Run 8 in Table II). For sake of clarity the curve of the centreline is
represented by a tube with an arbitrary core radius.
Viscous and non-similar e�ects are implemented in EZ-vortex but could not be validated by

lack of known analytical results. The linear growth rate � found from the �rst time steps as
before is almost constant with the viscous parameter ��= �=�2 till � 4. The maximum amplitude
on the �lament �(t) as a function of time is weakly a�ected by the viscosity (��=1) in the
non-linear regime. The simulations of the Rankine or the witch-hat pro�les give almost the
same maximum amplitude �(t) evolution as for a similar core.

6. STUDY OF A FOUR-VORTEX AIRCRAFT WAKE

In this section the EZ-vortex code is used to study a four-vortex aircraft wake. It also gives a
last validation of the code. As in the previous sections all following simulations use the M1
de-singularized method of Knio and Klein with the explicit Adams–Bashforth scheme, there
is no axial �ow (m0 = 0) and the �uid is inviscid (��=0). Here, the vortex core is a Rankine
pro�le. The two trailing vortex pairs have the same axis of symmetry. Let us denote �o, �i,
bo; bi, ��o(t=0) and ��i(t=0) the circulations, the distances and the thickness of the outer
and inner vortex pairs. We introduce the dimensionless parameters R= bi=bo and G=�i=�o.
The initial outer reduced thickness is ��o(t=0)=1 and so the small parameter � is the initial
thickness of the outer pair.



Table III. Four-vortex modes: linear stability (th.) and EZ-vortex (num.) results at �=0:1.

� � �o(deg) �i(deg) %= �i=�o

Most ampli�ed S1 mode (th.) [27]∗ 0.8976 2.91 105.86 131.24 57.4
Most ampli�ed S1 mode (num. Run 9 in Table II) 0.8976 2.94 111.04 130.20 52.8
Long-wave S1 mode (th.) [27]∗ 7.85 1.55 145.45 103.85 9.72
Long-wave S1 mode (num. Run 11 in Table II) 7.85 1.56 145.68 103.73 9.80
Long-wave A mode (th.) [27]∗ 7.85 1.469 116.90 167.03 9.58
Long-wave A mode (num. Run 11 in Table II) 7.85 1.511 118.72 166.39 9.73

∗Results given by D. Fabre.

There is an exact stationary solution of the equation of motion (12) provided that the
following relation between G and R is satis�ed [26]

G= − 3R+ R3

3R2 + 1
(22)

The associated velocity V is

V =
�i
2�bi

+
2�o
�bo

1
1− R2

(23)

We checked that the EZ-vortex code reproduces this velocity for the ratio R=0:14 (associated
G is −0:4.) used by Fabre and Jacquin [27].
As for the contra-rotating vortex pair sinusoidal unstable modes exist. The growing pertur-

bations are planar with planes �xed at angles �o (outer trailing pair) and �i (inner trailing pair)
with respect to the horizontal [27]. Let %=�i=�o be the ratio of the amplitudes. Fabre and
Jacquin [27] carried out the linear stability study of this wake and gave results for R=0:14
(G= −0:4), �=0:1, ��o(t=0)=1, ��i(t=0)=0:5, �o=1 and bo=1. The growth rates and the
associated modes of the most ampli�ed S1 mode �=0:8976 and for the long-wave S1 and A
modes �=7:85 are given in Table III. We have reproduced these results with the EZ-vortex
code by starting from a perturbation amplitude �0 = 0:001. The growth rate � is obtained from
the slopes of the temporal functions log[��(s; t)=��(0)] with the amplitudes �o(s; t) and �i(s; t)
measured by

�2o(s; t) = [Zo(s; t)− �Zo(t)]2 + [Yo(s; t)− �Yo(t)]2

�2i (s; t) = [Zi(s; t)− �Zi(t)]2 + [Yi(s; t)− �Yi(t)]2
(24)

where X�=(X�; Y�; Z�) and �Z�(t) and �Y�(t) are the spatial averages on the �lament �= o
or i at time t. We start with the linear stability results and carry out several computations
starting with �0 = 0:001 and with (�o; �i; %=�i=�o) from the �nal values of previous com-
putation. It converges to �xed values reported in Table III. We have carried out the same
comparison for �=0:02 and shown that the small di�erence between numerical and linear
stability results disappears (Table IV). This di�erence is thus due to �nite � e�ects. Figure
13 displays the evolution of these modes in the non-linear regime. The numerical parameters
of the computation are given in Table II (Runs 10 and 12).



Table IV. Four-vortex modes: linear stability (th.) at �=0:02.

� � �o(deg) �i(deg) %= �i=�o

Most ampli�ed S1 mode (th.)∗ 1.2566 3.07 82.81 132.53 48.5
Long-wave S1 mode (th.)∗ 7.85 1.62 140.36 104.35 10.00
Long-wave A mode (th.)∗ 7.85 1.40 110.13 167.54 9.35

∗ Results given by D. Fabre.

Most amplified S1 mode  Λ = 0.8976

Long-wave S1 mode  Λ = 7.85.

Long-wave A mode  Λ = 7.85.

Figure 13. Vortex �lament simulation of the non-linear instability regime of typical modes for the
four-vortex wake. Initial amplitude �0 = 0:001 and initial thickness �=0:1. (The visualization of the

�laments uses equal core radius even if the computation uses unequal sizes.



7. CONCLUSION

A code EZ-vortex has been developed to compute the motion of slender vortex �laments of
closed or open shape. The implemented equation is the M1 de-singularized method of Knio
and Klein but other equivalent equations are also implemented as a useful comparison. The
�uid may be inviscid or not, the vortex core is similar or not, and there can be an axial �ow or
not. The validity of all these equations are based on the Callegari and Ting asymptotic results.
The advantages of the di�erent formulations and discretizations of the associated equations
are discussed. The di�erence between the closed and open �lament for the �lament centreline
storage has been explained.
The philosophy of EZ-Vortex code is to keep programs as simple as possible and to provide

documentation both by way of a text and comments within the code itself. It is available
through the world-wide web.
This code has been validated against known solutions of these equations and results of

linear stability studies. We recall known analytical results for a vortex ring, a vortex ring pair
and a perturbed straight �lament. The comparisons between these results and the EZ-vortex
simulations are excellent. We give the optimal values of the numerical parameters that give
converged results with the code.
The linear and non-linear stages of a perturbed two-vortex wake and of a four-vortex

wake model are then studied till the reconnection phase, which is outside the validity of the
asymptotic analysis and of the associated integro-di�erential equations. In the linear phase the
comparison with analytical stability results is also excellent.
This code may be used to study other non-stationary four-vortex wake con�gurations as

the one studied in the linear regime by Crouch [28] or the non-linear stage of two rotating
vortices of di�erent circulations. The higher order asymptotic result obtained by Margerit [29]
may be implemented in order to get higher order results, i.e. thicker vortex core, and to o�er
the possibility of a quantitative comparison with a direct numerical simulation of the Navier–
Stokes equations. Simple reconnection models [7] may be also implemented to go through
the reconnection phase.
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