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a b s t r a c t

We present the results of in-situ characterization of the phase transitions in metastable b-Ti alloy Ti5553

by contactless laser-based resonant ultrasound spectroscopy method and electrical resistance mea-

surement in a four probe configuration. Phase transformations were studied during continuous heating

from the room temperature to 700 !C with various heating rates. We showed that both methods provide

complementary results and can be successfully used for observation of phase transitions in metastable b-

Ti alloys.

1. Introduction

Mechanical properties of metastable b-Ti alloys are strongly

dependent on the microstructure which in turn arises from

different thermomechanical treatment. High variability of possible

microstructure and low density result in a wide applicability of this

class of alloys, ranging from orthopedic implants to the structural

parts of aircrafts [1]. For this reason, it is crucial to have a reliable

technique for the in-situ characterization of phase transitions and

their kinetics in the material during thermo-mechanical treatment.

This study is focused on the Ti5553 alloy which belongs to the

class of metastable b-Ti alloys and exhibits various solid-solid phase

transformations. Nano-sized particles of athermal u phase (uath)

form by diffusionless shuffle transformation during quenching

from the temperatures above b-transus temperature. Upon subse-

quent heating, the particles of isothermal (uiso) phase are

chemically stabilized by the diffusion of b-stabilizing elements into

the surrounding matrix [2]. At higher temperatures, uiso particles

serve as nucleation sites for precipitation of finely dispersed par-

ticles of a phase [3e6]. The creation of a phase can be preceded by

formation of orthorhombic a
00

phase which existence was also

observed in Ti5553 alloy [7,8]. During further heating, the a phase

gradually dissolves and thewholematerial is transformed into pure

b phase at temperatures above b-transus temperature.

Measurement of electrical resistance is one of the most

frequently used methods for in-situ observation of phase trans-

formations in metastable b-Ti alloys. This method is well estab-

lished for the study of kinetics of diffusion-driven formation of uiso

particles [9] and it is successfully used for investigation of phase

transitions during continuous heating of Ti15Mo [10], TIMETAL LCB

[11,12], Ti12Mo [13], b-Cez alloy [14] and Ti6Mo5Ta4Fe [15].

Another techniques used for in-situ study of phase transitions

are small angle neutron scattering [16] or high energy synchrotron

x-ray diffraction (SXRD) [17e19]. The advantage of the SXRD

method is the possibility of evaluation of volume fractions of in-

dividual phases. Bruneseaux et al. [20] and Settefrati et al. [7,21]
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proved a good complementarity of electrical resistance and SXRD

measurement of transformation kinetics.

Further options of in-situ techniques are dilatometry [13,22] or

differential scanning calorimetry [23]. The in-situ techniques can

be complemented by post-mortem investigation such as metal-

lography or hardness measurement to obtain a deeper insight into

the mechanisms of phase transformations.

The aim of this study is to compare the applicability of electrical

resistance measurement with resonant ultrasound spectroscopy

(RUS) [24,25] for investigation of phase transformations kinetics in

a selected metastable b-Ti alloy. Recently, RUS was utilized for in-

situ observation of the influence of u phase on the elasticity of

TIMETAL LCB alloy [26]. It was shown that the high sensitivity of

this method enables examination of formation and growth of uath

particles that is quite difficult to observe by previously mentioned

conventional techniques. Furthermore, post-mortem study by RUS

of TIMETAL LCB and Ti15Mo alloys after plastic deformation by high

pressure torsion proved the occurrence of deformation-induced u

phase [27].

2. Material and methods

The experiments were carried out on the titanium alloy Ti5553

(Ti-5Al-5Mo-5V-3Cr wt. %). The alloy was produced by VSPMO and

provided to Institut Jean Lamourwithin the PROMITI project. The b-

transus temperature of this alloy was 845 !C [21]. The alloy in the

as-received state had a duplex microstructure e i. e. consisting of

equiaxed a-particles (so-called primary a) and a mixture of

lamellar a plates surrounded by some remaining b matrix. After-

wards, two initial states of microstructure were prepared. The

specimens were either b solution treated at 890 !C or heat treated

at 800 !C (below the b-transus temperature). In both cases, the

treatment was terminated after 30min by quenching to room

temperature in helium gas. After the solution treatment, the

microstructure at room temperature consisted of metastable b-

matrix with finely dispersed particles of uath particles. The heat

treatment below the b transus resulted in 15 % of equiaxed a phase

and only 85 % of metastable b phase [7].

Samples for RUS and electrical resistance measurements were

prepared from both above described initial states of the material.

Samples for RUSmeasurement, one from each initial condition, had

a cylindrical shape with 4mm diameter and 2.23mm height. Four

samples from the ’890 !C/30min’ state and one from the ’800 !C/

30min’ state were prepared for electrical resistance measurement.

They had also cylindrical shapes with 4mm diameter and 40mm

height. All samples were subsequently studied in-situ by the two

aforementioned methods in the temperature range from room

temperature to 700 !C.

The temperature evolution of resonant spectra of samples was

recorded by RUS using fully contactless laser-based RUS set-up

described in detail in Ref. [28]. The vibrations of the examined

sample were generated by focused laser pulses and the modal

response was detected by a laser vibrometer. The measured spec-

imen was placed in a temperature chamber filled with low-

pressure nitrogen atmosphere that enabled its temperature con-

trol. The average heating rate of both samples, ’890 !C/30min’ and

’800 !C/30min’, was 1.9 !C/min.

As discussed in Ref. [29], RUS resonant spectra carry mainly

information on shear elastic constants (i.e. shear modulus G in case

of isotropic material). Therefore, the elastic constants related to

longitudinal motion of the material (volumetric changes, unidi-

rectional tension/compression) cannot be determined from reso-

nant spectra with sufficient accuracy. For this reason, only

temperature dependences of shear modulus Gwere evaluated from

the measured resonant spectra by iterative inverse procedure that

is described in detail in Refs. [24,30].

Electrical resistance of all samples was measured by an in-house

built dilatometer using a four-point configuration that allows

simultaneous measurement of voltage and electrical current. The

temperaturewas controlled by S-thermocouple spot-welded on the

surface of the specimen. For the samples ’890 !C/30min’, four

different heating rates were chosen 1.4 !C/min, 1.9 !C/min, 3.9 !C/

min and 6 !C/min. In case of the sample ’800 !C/30min’, the heating

rate of 1.9 !C/min was used.

RUS and electrical resistance measurement can be expected to

bring slightly different but mutually complementary information

on the processes taking place in the material. While electrical

resistance measurements are sensitive both to the phase compo-

sition of the material and to the number and the structure of in-

terfaces due to scattering of conduction electrons, the RUS data can

be assumed as dominantly sensitive only to the volume fractions of

individual phases. Hence, RUS results may help to separate the

effect of the phase composition and the effect of the interfaces for

the electrical resistance measurements.

3. Results and discussion

If the thermal expansion of the sample is neglected, the relative

electrical resistance R=R0 is equal to the relative electrical resistivity

r=r0 (r ¼ ðRSÞ=l), where R and r are immediate resistance and re-

sistivity, R0 and r0 are resistance and resistivity measured at initial

temperature, S is the cross-sectional area of the specimen and l is

the length of the specimen.

The temperature dependence of relative resistivity of samples

’890 !C/30min’ (relative resistivity¼ ðr& r0Þ=r0, where r0 is the

resistivity measured at initial temperature 66 !C) is shown in Fig. 1.

It is obvious that the shape of the relative resistivity curves is

strongly dependent on the heating rate.

The decrease of relative electrical resistivity that is observed at

the beginning of heating for all heating rates is attributed to the

combination of anomalous behavior of b phase due to the phonon

softening and vanishing of the particles of uath phase [10,12,31,32].

Reduction of b=uath interfaces and related stress fields results in a

drop of conduction electron scattering and therefore to the decline

of relative resistivity.

The change of the slope of the decrease can be seen around

220 !C. The small peaks that are visible around this temperature for

all heating rates are results of diffusion-driven formation of parti-

cles of uiso phase. As temperature increases, the precipitation of a=

a
00

phases occurs, while the uiso particles dissolve. The formation of

a=a
00

phase is visible on the relative resistivity curves as a sharp

increase. However, both the position and shape of these peaks

depend strongly on the heating rate; for the lowest heating rate

(1.4 !C/min), the peak is sharper and located to lower temperatures

(' 400 !C), while for the highest studied heating rate (6 !C/min), it

is broader and located to higher temperatures (' 500 !C). The dif-

ference in the position of this peak is clearly caused by the

diffusion-driven mechanism of the formation of uiso and of a=a
00

phases; i.e. at lower heating rates new phases have longer time for

nucleation and growth.

Comparison of the evolution of resistivity and elasticity of

sample ’890 !C/30min’ is plotted in Fig. 2. As it can be seen, vari-

ations of shear modulus present two distinctive peaks that are

clearly associated with the formation of uiso phase and a=a
00

. The

shear modulus increase is caused by the higher shear modulus of

the uiso phase and a=a0 0 phase as compared to that of the b matrix,

so their formation has well-detectable impact on the elastic prop-

erties of the whole material. The peaks of resistivity and shear

modulus attributed to diffusional formation of uiso phase are

approximately located at the same temperature. Nevertheless, the



peak corresponding to a=a
00

formation is shifted to a higher tem-

perature by approximately 80 !C in RUS data. It can be observed

that the temperature for which there is a peak of relative resistivity

coincides with the largest variation of the shear modulus. This

agrees well with the assumption that the relative resistivity evo-

lution with temperature is dependent not only on the phase

composition (i.e. volume fraction of the a=a
00

phase), but also on the

number and effective cross-section of the interfaces between the b-

matrix and the a particles, as these parameters are probably the

highest somewhere in the middle of the transition process.

However, some part of this discrepancy could be also explained

by the different way of temperature regulation of the experimental

techniques. The temperature during electrical resistance mea-

surement was measured by a thermocouple that was directly spot-

welded on the specimen surface. The temperature was controlled

by a PID regulator with four halogen lamps that were source of

thermal radiation. This way of temperature regulation enabled

rapid and precise control of temperature. As the loop time was

equal to 10ms, the time evolution of temperature during resistivity

measurement was nearly linear. In contrast, the temperature of the

sample during the RUS measurement was regulated via the nitro-

gen atmosphere by thermal conduction. This manner of tempera-

ture control was slower and the used heating rate of 1.9 !C/minwas

in fact an average rate; during the RUS measurement the depen-

dence of temperature had a ’staircase’ shape (heating to desired

temperature and stabilization at this temperature). Formation of

uiso and a=a
00

phases could be very sensitive to this difference

because, as was shown in Fig. 1, even a slight change in the heating

rate can significantly influence the kinetics of their formation. Such

an interpretation is supported by the fact that the location of the

shear modulus peak for a=a
00

phases from RUS measurements

corresponds well to the resistivity peak for 3.9 !C/min, as is also

shown in Fig. 2. Nevertheless, in order to reliably separate the effect

of the phase composition and the effect of the interfaces, it would

be necessary to accompany the RUS and electrical resistance

measurement by in-situ observations of the microstructure.

The complementarity of the RUS and electrical resistance

measurement was also confirmed in case of sample ’800 !C/30min’

(see Fig. 3). The b/u and b/a=a
00

phase transformations were

successfully detected by both methods. In the material heat treated

Fig. 1. Temperature dependence of relative resistivity of samples ’890 !C/30min’ during various heating rates e 1.4 !C/min, 1.9 !C/min, 3.9 !C/min and 6 !C/min. The peaks cor-

responding to formation of uiso and a=a
00

phases are marked.

Fig. 2. Comparison of relative resistivity (black curve) and shear modulus G of samples ’890 !C/30min’ during heating with heating rate 1.9 !C/min. For the purpose of comparison,

the relative resistivity (grey curve) of the sample ’890 !C/30min’ with heating rate 3.9 !C/min is also plotted.



under the b-transus temperature, the formation of uiso phase and

a=a0 0 phase takes place at higher temperatures in comparison with

the ’890 !C/30min’ sample that initially contained only b and uath

phases. Similarly to sample ’890 !C/30min’, peaks of relative re-

sistivity and shear modulus corresponding to a=a
00

do not coincide

(the difference is roughly 40 !C). Moreover, the shear modulus of

the sample ’800 !C/30min’ in the initial state at room temperature

is higher in comparison to the sample ’890 !C/30min’ due to the

fraction of a phase that causes stiffening of the whole material.

4. Conclusions

In summary, the results prove the complementarity of two

experimental methods e resonant ultrasound spectroscopy and

electrical resistance measurement. These methods were success-

fully utilized for the in-situ characterization of phase trans-

formations of metastable b-Ti alloy Ti5553 during continuous

heating from room temperature to 700 !C. It was shown that the

phase transitions in this alloy are strongly dependent on the

heating rate. The temperature of b/u phase transformation

determined by both methods roughly correspond. In case of the

temperature of b/a=a
00

transformation, the shift of peaks was

observed which can be explained by the difference in temperature

regulation or by the different sensitivity to the composition and

effective cross-section of interfaces.
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