
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/21389

http:doi.org/10.1109/RTSS.2018.00032

Giroudot, Frédéric and Mifdaoui, AhlemWork-in-Progress: Extending Buffer-Aware Worst-Case Timing Analysis of

Wormhole NoCs. (2019) In: 39th IEEE Real-Time Systems Symposium (RTSS 2018), 11 December 2018 - 14 December

2018 (Nashville, United States).

Work-in-Progress: Extending Buffer-Aware
Worst-Case Timing Analysis of Wormhole NoCs

Frédéric Giroudot
Complex Systems Engineering Dept

ISAE – Université de Toulouse
Toulouse, France

frederic.giroudot@isae.fr

Ahlem Mifdaoui
Complex Systems Engineering Dept

ISAE – Université de Toulouse
Toulouse, France

ahlem.mifdaoui@isae.fr

Abstract—Worst-case timing analysis of Networks-on-Chip
(NoCs) is a crucial aspect to design safe real-time systems
based on manycore architectures. In this paper, we present some
potential extensions of our previously-published buffer-aware
worst-case timing analysis approach to cope with bursty traffic
such as real-time audio and video streams. A first promising
lead is to improve the algorithm analyzing backpressure patterns
to capture consecutive-packet queueing effect while keeping the
information about the dependencies between flows. Further-
more, the improved algorithm may also decrease the inherent
complexity of computing the indirect blocking latency due to
backpressure.

Index Terms—Networks-on-chip, Network Calculus, real time,
worst-case timing analysis, wormhole routing, priority-sharing,
VC-sharing, backpressure, flows serialization.

I. CONTEXT AND RELATED WORK

Wormhole Networks-on-chip (NoC) have become a standard
interconnect for manycore architectures because of their high
throughput and low latency capabilities. Packets transmission
is done by splitting them into constant length words called
flits, then forwarding each flit from router to router, without
having to wait for the remaining flits at each hop. The coun-
terpart is that contention in the network can induce complex
backpressure1 patterns that are difficult to predict. Hence an
appropriate timing analysis of NoCs is crucial for real-time
applications.

Proposed approaches mainly include Scheduling Theory-
based models [1]–[3], CPA-based models [4], [5] and Network
Calculus-based models [6]–[9]. Scheduling Theory (ST) was
used in particular in [1], which was found to be optimistic
in specific cases and further corrected in [2]. This last work,
however, does not consider priority-sharing. A recent work
[3] combines ST with Recursive Calculus, but focuses only
on Round-Robin arbitration.

Compositional Performance Analysis (CPA) was used in [4]
to develop a model supporting priority-sharing and Virtual
Channel (VC)-sharing but ignoring the buffer backpressure.
The latter has been addressed in [5]. However the proposed
analysis is limited to NoCs with a single VC and buffers larger
than the size of one packet.

1A logical mechanism to control the flow on a communication channel and
avoid buffer overflow.

Other works using Network Calculus (NC) [10] include [7]
and [8], but they consider that backpressure does not occur in
the NoC.

In a previous work [9] (referred to as RTAS18 hereafter),
we aimed at overcoming the aforementioned limitations and
presented a model based on NC allowing to (i) analyse com-
mon NoC architectures, supporting priority-sharing, multiple
VCs, arbitrary service policies; (ii) account for limited buffer
size in NoCs and the impact of the resulting backpressure on
end-to-end latencies; (iii) reduce pessimism of delay bounds
by taking into account flow serialization.

Most of the existing approaches taking into account back-
pressure consider only Constant Bit Rate (CBR) traffic, i.e.
one fixed-length packet within a minimum inter-arrival time.
However, there are some traffic types, such as real-time audio,
video and bursty data streams, which do not fulfill the CBR
model.

Contributions: In this work, we present some potential
extensions of our worst-case timing analysis RTAS18 to cope
with bursty traffic.

The remainder of this paper is organized as follows. In Sec-
tion II, we recall and detail our previous approach (II-A,II-B)
and illustrate the method on an example (II-C). We then
propose leads to extend the approach in Section III, starting
from an example to motivate further enhancements (III-A) and
exploring two aspects to work on (III-B and III-C). Section
IV concludes the paper.

II. RECAP OF BUFFER-AWARE APPROACH

A. System Model

We consider the NoC as a set of interconnected input-
buffered routers with Virtual Channels (Figure 1). Each output
of a router is connected to one input of another router. In the
case of 2D-mesh NoCs, routers have 5 inputs and 5 outputs,
referred to as North, South, West, East and Local.

We use NC to model routers and traffic. We model each
router-output pair r, referred to as a node, as a multiplexer,
with a total processing ability represented by its minimal
service curve:

βr = Rr(t− T r)+

.

inputs outputs

1

2

k

1

2

k

VCs

South

North

EastWest

Local

Fig. 1. Router architecture.

Rr represents the processing capacity of the router in flits per
cycle, T r corresponds to the processing delay (the delay a flit
experiences when it is processed). Similarly, we model each
flow with its maximal arrival curve:

αf = σf + ρf t

It depends only on the flow characteristics: periodicity (or
minimal inter-arrival time), packet length and overhead length,
release jitter (if any). We also denote its path (the list of the
nodes it crosses from source to destination) as Pf .

B. Main Steps of Analysis
To compute the end-to-end latency bound for a flow of

interest (foi) f , we first compute its initial arrival curve αf .
Then, we compute its end-to-end service curve along its path.
It is denoted βf and depends on the contention induced by
other flows that the foi can undergo. Finally, knowing these
two curves, we use one of the fundamental results in NC to
derive a bound on the worst-case end-to-end latency, which
is the maximal horizontal distance between the arrival and
service curves.

The computation of the end-to-end service curve consists
of 4 steps:

1) We compute the “base latency”, i.e. the technological
latency to forward a packet when there is no congestion;

2) We compute the maximum delay induced by flows that
directlty block f , i.e. flows that share resources with f
along their paths. This delay is called “direct blocking
delay” and denoted TDB ;

3) We determine the indirect blocking set (IB set) of f , de-
noted IBf . This set contains {flow index, subpath} pairs
corresponding to flows that may induce backpressure on
the foi when the specified subpath holds a packet or part
of a packet. This is the step where we account for the
limited buffer size. We will detail it in Section II-C;

4) We use IBf to derive a bound on the maximum delay
induced by flows that have at least one {flow index,
subpath} pair in IBf . This delay is called “indirect
blocking delay” and denoted TIB .

Only steps 3 and 4 rely on the CBR traffic assumption
and will be impacted by our model extension. Thus we will
not develop steps 1 and 2 any further. We will illustrate the
computation of IB set through an example in the next section.
More details can be found in [9].

C. An Illustrative Example

1 2 3

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Sa = subpath(P2,P1)

Sb = subpath(P3, Sa)

1 2 3

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Fig. 2. Example configuration (left) and subpath computation (right)

To take into account the buffer size when performing the
IB set computation, we focus on the point where two flows
sharing part of their paths diverge (divergence point), i.e. the
point from where those flows do not compete for the same
outputs any more. We look at how much packets can spread in
the network after the divergence point and still impact the flow
of interest. This critical section, where the head of a packet
is located after a divergence point while part of that packet
still uses shared resources, is called a subpath. It depends on
the packet length and buffer size. We denote such a subpath
S = subpath(Pk,Sl) and call it “subpath of Pk relatively
to Sl”. S is the subpath of flow k after the divergence point
between Pk and Sl (that can be either the whole path or a
subpath of flow l).

Consider the 3-flow configuration on a 6×6 mesh NoC,
represented on Figure 2, to illustrate the IB set computation.
We assume each buffer can hold one flit and all flows have 3-
flit packets, so that each packet can be stored in three buffers.
We also suppose there is only one priority level and a single
VC. Furthermore, we consider all nodes have the same service
curve and all flows have the same initial arrival curve.

We first compute subpaths of contending flows relatively to
the foi, flow 1. As only flow 2 shares resources with flow 1,
there is only one such subpath, which we denote Sa. It is 3-
node long and can contain at most a 3-flit packet of flow 2.
Then, we iterate on the newly found subpath(s). We find that
the path of flow 3 shares resources with Sa, so we compute
the corresponding subpath of flow 3 relatively to Sa, that we
denote Sb.

We only keep subpaths of flows that do not share resources
with the foi. Thus we finally have:

IB1 =
{
{3,Sb}

}
We can then compute TIB using Theorem 4 in [9]. This step
may induce recursive calls to compute needed intermediate
arrival curves. We will detail this in Section III-C.

III. POTENTIAL EXTENSIONS OF BUFFER-AWARE
APPROACH

A. Motivations

Consider the following example (Figure 3). It is similar to
the previous one, but the convergence point between flow 2

and 3 is changed: flow 3 starts at node R7 instead of R6.

1 2

3R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Sa = subpath(P2,P1)

P3 ∩ Sa = ∅

3

1 2

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Fig. 3. A second example (left) and its subpath computation (right)

When we compute the IB set of the foi (flow 1), IB1,
we find that the computed subpath of flow 2, Sa, does not
intersect any other flow path. This is due to the fact that in
this configuration, the convergence point of flows 2 and 3 is
one hop further than previously, while the way packets may
spread in the network does not change. Hence, if a packet of
flow 2 is blocked by a packet of flow 3, then the packet of
flow 2 must have its head flit right before the convergence
point of flows 2 and 3. This implies the tail flit of flow 2 will
be downstream of the divergence point of flows 1 and 2. Thus,
it cannot block flow 1 and flow 3 is not in IB1:

IB1 =
{}

However, this result relies on the assumption that there is
only one packet of flow 2 in the network. Consider the scenario
depicted in Figure 4. We suppose a packet A of flow 3 is
being transmitted. It requested the North output port of R7
and was granted access. Now its header flit has reached the
input port of R8. At the same time, there is a packet B of
flow 2 which header flit has reached node R7 input. It also
requested the North output of R7, but as A is using it, it has to
wait. B is immediately followed by another packet of flow 2,
denoted C, which header flit is in R4. C previously requested
R3 East output port and was granted it. Here, C has not been
completely injected into the network. In fact, B has its last flit
in R5 buffer, and is blocked. Consequently, C has to wait that
B moves forward to be able to move too. Finally, flow 1 has
injected a packet D into the NoC. D has its header flit in R3
and is requesting R3 East output port. However, as C already
requested and got the use of that same port, D has to wait.

In that case, D is indireclty blocked by A. This means that
under bursty traffic assumption, flow 3 may impact flow 1,
which was not detected when computing IB1.

B. Improving Indirect Blocking Set Computation

The RTAS18 approach takes into account the way one
packet spreads in the NoC. Consequently, as seen on the
previous example, we may not include all flows inducing
backpressure in the IB set under bursty traffic assumption.

An idea to cope with this assumption is to consider several
consecutive subpaths of one flow. We do so by allowing the
algorithm to compute the subpath of a flow relatively to a

1 2

3

packet B of flow 2 waiting

packet C of flow 2 waiting

packet D of flow 1 waiting

packet A of flow 3 moving

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Fig. 4. Packet configuration with two instances of flow 2

subpath of the same flow. An illustration of this extension on
the example of Figure 3 is given on Figure 5. We would add a
subpath of flow 2 right after the existing one (Sa) to model the
possibility that there may be several packets of flow 2 queueing
in line. This subpath would be Sb, and it intersects the path
of flow 3. Then we would necessarily compute subpath Sc as
the subpath of flow 3 relatively to subpath Sb. This way, we
can model scenarios such as the one presented in Figure 4,
where traffic is assumed to be bursty and consequenlty there
are consecutive packets of one flow queueing in the NoC.

1 2

Sa = subpath(P2,P1)

Sb = subpath(P2, Sa)

Sc = subpath(P3, Sb)

3

P3 (path of flow 3)

R1 R2 R3 R4 R5 R6

R7

R8

R9

R10

R11

Fig. 5. Taking into account consecutive packets by computing several
consecutive supaths of one flow

If we take into account the additional subpath of flow 2, the
IB set of foi 1 becomes:

IB1 =
{
{3,Sc}

}
And we can account for the extra indirect blocking delay
undergone by flow 1 because of flow 3.

The main drawback of this extension is that, if we have
several flows with overlapping paths, we may be forced to
compute a lot of overlapping subpaths and end up with an
IB set that might depend on the order in which we compute
the subpaths relatively to other subpaths, or that contains
duplicates. Indeed, using the algorithm we proposed in [9]
(even with the extension) does not allow to keep track of the
dependencies between subpaths.

This fact will likely increase the number of computed sub-
paths, thus it could increase pessimism of computed indirect
blocking delay. To handle such an issue, we will improve the
subpath representation and maintain information about their
dependencies using formal representations such as trees or
another dependency-aware structure. This should allow us to
model indirect congestion patterns in a more accurate way and
avoid the over-pessimism of the computed TIB . Computation
of the IB set may suffer from an additional complexity, but it
is hard to quantify without implementing the method.

C. Refining Indirect Blocking Delay

With the RTAS18 approach, the indirect blocking delay TIB
of the foi depends on the intermediate arrival curves at the
input of each subpath in its IB set. These intermediate curves
account for the impact of the delay upstream the first node of
each subpath in the IB set on the burstiness of the traffic. At the
same time, it induces recursive computations of intermediate
service curves; thus a high computational complexity.

To show this, we get back to the first example in Figure 2
and we compute TIB with RTAS18 approach using Theorem
4 of [9]. The indirect blocking delay induced by flow 3 on
flow 1 is bounded by the horizontal distance between:
• the maximum arrival curve of flow 3 at the input of the

subpath Sb – this arrival curve takes into account the
impact of all the interferences suffered by flow 3 upstream
the node R7, i.e., it is the propagated arrival curve of flow
3 until the input of R7;
• the granted service curve to flow 3 by its VC along Sb,

called VC-service curve, when ignoring the same-priority
flows. The latter condition is due to the pipelined behavior
of the network: if there are same-priority flows sharing
Sb resources with flow 3 (here, there are none of them),
they are served one after another. Hence, their impact is
already integrated.

To compute the arrival curve of flow 3 at the input of R7,
we need to compute the service curve granted to flow 3 on the
section [R6]. Furthermore, to compute such a service curve,
we need to know the arrival curve of flow 2 at the input of
R6. Thus, we need to compute the service curve of flow 2
granted from its source until the input of R6, i.e. [R3,R4,R5].
For this, we need to know the arrival curve of flow 1 at the
input of R3; thus we need the service curve of flow 1 on [R1,
R2]. Hence, there is a recursive call to the function computing
service curves.

However, when considering the proposed extension allow-
ing multiple subpaths per flow (as many as there can be
simultaneous packet instances of this flow), we would already
take the propagated burstiness into account. Thus we would
not need to get the equivalent burstiness of the traffic with
the intermediate arrival curve. Instead, we may use, at the
beginning of each subpath, the initial arrival curve of the cor-
responding flow for one packet instance. Determining such an
initial arrival curve is an explicit computation with a constant
complexity, whereas computing an intermediate arrival curve
may induce recursive calls.

Hence, a major expected benefit of this extension would be
to decrease computational complexity of the indirect blocking
delay computation step, since we would not need recursive
calls any more.

In the aforementioned example of Section II-C, with the
RTAS18 approach, three recursive calls are needed to get the
arrival curve of flow 3 at the beginning of subpath Sb. These
three calls would be avoided when considering the proposed
extension.

This aspect has to be further investigated to accurately
assess its impact on the overall complexity of the buffer-
aware approach. It could also counter-balance the additional
algorithmic complexity of the subpath computation step.

IV. CONCLUSION

In this paper, we have presented an extension opportunity
for a previous published work addressing worst-case timing
analysis of wormhole Networks-on-Chip to support bursty
traffic. After examining the impact of such an assumption on
our model, we came up with two promising leads. First, we
will extend the indirect blocking set computation algorithm to
capture consecutive-packet queueing effect, while keeping the
information about the dependencies between subpaths. Sec-
ond, the inherent complexity to compute the indirect blocking
latency will be decreased by avoiding recursive computation of
arrival and service curves. In a near future, we plan to explore
more thoroughly these two leads and formally analyze the
underlying concepts, as well as evaluate the gains or losses in
terms of bound tightness and computational complexity.

REFERENCES

[1] Z. Shi and A. Burns, “Real-time communication analysis with a priority
share policy in on-chip networks,” in 21st Euromicro Conference on
Real-Time Systems, pp. 3–12, July 2009.

[2] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis
for wormhole nocs,” IEEE Transactions on Computers, vol. PP, no. 99,
pp. 1–1, 2017.

[3] M. Liu, M. Becker, M. Behnam, and T. Nolte, “Buffer-aware analysis
for worst-case traversal time of real-time traffic over rra-based nocs,” in
27th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, March 2017.

[4] E. A. Rambo and R. Ernst, “Worst-case communication time analysis
of networks-on-chip with shared virtual channels,” in Proceedings of
Design, Automation Test in Europe Conference Exhibition, 2015.

[5] S. Tobuschat and R. Ernst, “Real-time communication analysis for
networks-on-chip with backpressure,” in Design, Automation Test in
Europe Conference Exhibition, 2017.

[6] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in Networks-
on-Chip, 3rd ACM/IEEE International Symposium on, May 2009.

[7] F. Jafari, Z. Lu, and A. Jantsch, “Least upper delay bound for vbr flows
in networks-on-chip with virtual channels,” ACM Trans. Des. Autom.
Electron. Syst., vol. 20, pp. 35:1–35:33, June 2015.

[8] M. Boyer, B. Dupont De Dinechin, A. Graillat, and L. Havet, “Com-
puting Routes and Delay Bounds for the Network-on-Chip of the
Kalray MPPA2 Processor,” in ERTS 2018 - 9th European Congress
on Embedded Real Time Software and Systems, (Toulouse, France), Jan.
2018.

[9] F. Giroudot and A. Mifdaoui, “Buffer-aware worst-case timing analysis
of wormhole nocs using network calculus,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), (Porto, PT),
pp. 1–12, 2018.

[10] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

