
  

 

 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/21106 

 

To cite this version:  

Vo Dong, Phuong Anh  and Azzaro-Pantel, Catherine  and 

Cadene, Anne-Laure  Economic and environmental 

assessment of recovery and disposal pathways for CFRP waste 

management. (2018) Resources, Conservation and Recycling, 

133. 63-75. ISSN 0921-3449  

Official URL: https://doi.org/10.1016/j.resconrec.2018.01.024 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/185271038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1016/j.resconrec.2018.01.024


Economie and environmental assessment of recovery and disposai pathways 

for CFRP waste management 

Phuong Anh Vo Donga,h, Catherine Azzaro-Pantela,b,*, Anne-Laure Cadenea,b 

a Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France 
b Altran RESEARCH, 4 Avenue Didier Daura� Parc Centreda - B/ltiment Synapse, 31700 Blagnac, France 

ARTICLE INFO ABSTRACT 

Keywords: 

Carbon fibre reinforced polymer 
Waste management 
Recycling 
Economie assessment 
GWP 

The high cost and energy intensity of virgin carbon fibre manufacturing constitute a challenge to recover sub
stantial value from carbon fibre reinforced polymers (CFRP). The objective of this study is to assess the en
vironmental and financial viability of several waste management processes for CFRP. Life cycle costing and 
environmental assessment models are developed to quantify the financial and environmental impacts of waste 
treatment pathways comparing a panel of recycling techniques that are now available (grinding, pyrolysis, 
microwave and supercritical water) and that can be used to substitute different grades of both carbon and glass 
fibres by recycled carbon fibres at competitive prices compared to landfill and incineration. GWP assessment 
promotes recycling activities by recovery of carbon fibre due to the high avoided impacts from substitution of 
virgin fibre, thus highlighting the high interest of recycling over conventional production for environmental 
purpose. Fibre recovery rate and recycling capacity are pivotai to decrease the unit cost of recycled fibre as well 
as GWP impacts. The advantages and drawbacks of each technique are analysed through economic and en
vironmental indicators, to better understand the network configuration for optimisation purpose of waste 
management pathway in a holistic viewpoint. 

1. Introduction

Due to their low density and high performance of physico-chemical 

properties, Carbon Fibre Reinforced Polymer Composites (CFRP) are 

increasingly used in structural applications to replace more conven

tional materials (steel, aluminium, alloys ... ) for the design of lighter 

products. According to Black (2012), the global demand of carbon fi

bres was expected to exceed production capacity in 2015 and if growth 

remains at this rate, a huge arnount of waste will be generated. The 

benefits of CFRP recycling are threefold: first, it is necessary to limit the 

accumulation of waste second, recycling could be a fibre supply solu

tion in order to meet future demand (Black, 2012) and third, recycling 

could be expected as a Jess energy-intensive operation with lower en

vironmental impact than the traditional way to produce virgin CFRP, 

due to the bypass of some operation steps. Carbon fibre manufacturing 

is an energy intensive process (183-286 MJ/kg of carbon fibre, (Song 

et al., 2009)) that transforms the precursors with poorly ordered 

structure into a nearly perfect graphite structure in carbon fibre (CF) 

and generates environment and human health impacts due to emissions 

from the oxidation and carbonization fumaces, such as HCN, NH3, 

NOx .. , (Grzanka, 2014). 

Composites recycling is a difficult process due to the heterogeneous 

nature of the matrix and the reinforcement, especially in the case of 

thermoset composite (Pickering, 2006). Only few commercial recycling 

operations for main strearn composite materials are available due to 

technological and economic constraints. The utilisation of recycled 

carbon fibres (RCF) in industry generates some challenges due to their 

lower quality than virgin carbon fibres (VCF) (McConnell, 2010) and 

variability affecting many factors such as, length distribution, surface 

quality (adhesion of fibre and matrix), as well as their origin (different 

grades of fibres are found at various composite scraps from different 

manufacturers) (Oliveux et al., 2015a). This explains why the Jack of 

Abbr<rViations: BMC, bull< moulding compound; CEPCI, chemical engineering plant cost index; CF, carbon fibre; CFC, carbon fibre composite; CFRP, carbon fibre reinforced polymer; D, 
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epoxy; GWP, global warming potential; GWPA, GWP impact of substituted products; GWPP, GWP impact of process; GWPTOT, GWP total of the system; LCA, life cycle assessment; LCC, 
life cycle cost; LP, linear programming; MFA, material flow analysis; MILP, mixed integer linear programming; NPV, net present value; OC, operation cost per mass unit of waste; PAN, 
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markets, high recycling cost, and lower quality of the recyclates versus 
virgin materials still currently constitute major commercialisation 
barriers for composite recycling (Yang et al., 2012). 

Current waste policies served as an incentive to develop composite 
recycling solutions, including general policies (The European Directive 
on Landfill of Waste (Directive 1999/31/EC, 1999)) and application
specific legislation (e.g., the End-of-life Vehicle (Directive 2000/53/EC, 
2000)). 

In parallel, several recycling technologies have been developed for 
composite materials over the past decades. In particular, the recycling 
of thermoset composites is receiving a lot of attention due to the 
technical difficulties to separate the thermoset matrix from the re
inforcement materials (Yang et al., 2012). Different recycling techni
ques of FRP have been studied and developed in order to improve the 
recycling yield and the properties of the recovered fibre by three main 
types of techniques: (1) Mechanical techniques in which fibre and 
matrix are separated by shredding (grinding technique) (Pannkoke 
et al., 1998; Kouparitsas et al., 2002; Ogi et al., 2005, 2007, Palmer 
et al., 2009, 2010; Howarth et al., 2014) or high voltage pressure 
(electrodynamic fragmentation) (Müller, 2013; Mativenga et al., 2016) 
without chemical reactions; (2) Thermal techniques in which matrix is 
decomposed by heat (conventional pyrolysis, fluidised bed) (Fenwick, 
1996; Kennerley et al., 1998; Pickering et al., 2000; Yip et al., 2001; 
Cunliffe et al., 2003; Gosau et al., 2006; Jiang et al., 2008; Meyer et al., 
2009; L6pez et al., 2012, 2013) or microwave radiation (microwave) 
(Lester et al., 2004; Akesson et al., 2013; Obunai et al., 2015) into heat 
or residual liquid; and (3) Solvolysis techniques in which matrix is 
decomposed by chemical reactions in water or in other organic liquids 
at atmospheric pressure or supercritical conditions (Allred et al., 2001; 
Hyde et al., 2006; Pifiero-Hemanz et al., 2008a,b; Jiang et al., 2009; 
Nakagawa et al., 2009; Yuyan et al., 2009; Bai et al., 2010; Kamimura 
et al., 2010; Feraboli et al., 2012; Knight et al., 2012; Morin et al., 2012; 
Onwudili et al., 2013; Oliveux et al., 2013, 2015b; Okajima et al., 2014; 
Yildirir et al., 2014). Other recycling solutions can be found such as 
electrochemical (Sun et al., 2015) and biotechnological (Hohenstein 
Institute, 2015) techniques but they are Jess mature than other ones for 
CF recovery. 

Life cycle assessment of FRP/CFRP has also received a lot of at
tention in order to study the environmental benefits of these composites 
that can be gained from the use of more conventional materials 
(Takahashi et al., 2002; Duflou et al., 2009; Suzuki and Takahashi, 
2005; Song et al., 2009; Das, 2011; Witik et al., 2011, 2012). However, 
these studies focused mostly on the production and utilisation phases of 
such materials. The step of waste treatment is poorly studied and 
generally limited to one technique, e.g. recycling by microwave (Suzuki 
and Takahashi, 2005; Das, 2011) or recovery energy by incineration 
(Witik et al., 2011). 

The literature analysis reveals that the majority of works reported 
are devoted to the development of a specific CFRP recycling process or 
to a specific recycling pathway. As highlighted in (Job et al., 2016), the 
challenge is now to develop appropriate business models, integrating 
with existing waste management supply chains and with associated 
capital investment, to enable commercialisation of what is technically 
proven. The proposed works aim at considering the whole waste 
management supply chain mode! in order to compare the potential 
benefit of each recovery pathway not only from an environmental 
viewpoint but also from an economic one. 

For this purpose, the independent assessment of each pathway 
through its inputs and outputs under economic and environmental 
which is the prerequiste for system modelling is carried out in this study 
to identify the typical features, as well as the advantages and weak
nesses of each recycling/recovery pathway. The composite waste 
treatment technologies that have been identified in the dedicated lit
erature whatever their technology readiness level (TRL), i.e. landfill, 
incineration, co-incineration, mechanical recycling, pyrolysis, micro
wave and supercritical water, are ail assessed in this study with 

economic and environmental indicators in an exhaustive and com
plementary way. Various indicators which represent the different 
viewpoints of the involved stakeholders will also be discussed. 

This paper is organized as follows. First, a brief literature review on 
the Life Cycle perspective situates (see Section 2) the research focus 
within the scope of CFRP recycling/recovery pathways. The methods 
and tools that will be used throughout this study for the development of 
the framework for CFRP waste management and the assessment of 
economic and environmental will be addressed in Section 3. The ana
lysis and results are presented in detail in Section 4. Finally, Section 5 
will conclude this study on CFRP waste management and offer per
spective for CFRP waste supply chain deployment and optimisation. 

2. Literature review on life cycle perspective of CFRP recycling

pathways

The literature analysis reveals that some articles have discussed the 
environmental impacts of transitioning from conventional materials to 
FRPs, as determined by Life Cycle Cost (LCC) and Life Cycle Assessment 
(LCA). The work reported in Hedlund-éistréim (2005) that applied LCC 
and LCA is focused on waste treatments of End-of-life CFRP and other 
composites involving grinding, fluidised bed and incineration. As LCC 
and LCA of waste treatment phase depend on the recovered products, 
not surprisingly, the choice of the replaced material between virgin 
carbon fibre (VCF) and virgin glass fibre (VGF) is particularly sig
nificant for result interpretation. Incineration may have a higher ad
vantage than recycling if the recycled carbon fibre is used to replace 
low value material, such as glass fibre. In reality, the characteristics of 
the recycling process may impact the quality of recovered fibre output, 
besides the type of origin fibre in waste. The studies on CFRP recycling 
techniques have thus reinforced the need of in-depth investigations on 
the structure of CFRP waste treatment (Hedlund-Âstréim, 2005; Witik 
et al., 2013; Li et al., 2016) 

Witik et al. (2013) studied the environmental impacts (climate 
change, resources, ecosystem quality and human health) of three waste 
treatment options, i.e., pyrolysis, incineration and landfilling. A quan
titative mode! for the determination of equivalent quantities of VCF and 
VGF, which are replaced by RCF to achieve mechanical performance 
equivalent to virgin material in Sheet Moulding Compound (SMC) 
through the tensile modulus. However, the utilisation of RCF in 
polymer matrix is a complex process depending on numerous criteria 
apart from the tensile modulus. Although the market of RCF has not 
been mature due to the uncertainty of their mechanical properties 
compared to VCF, their potential applications are numerous, not only in 
reinforcement purpose (Bulk Moulding Compound (BMC), Sheet 
Moulding Compound (SMC), thermoplastic composites, concrete ... ), 
but also in other applications which do not depend much on mechanical 
properties of materials such as electrical and electronic products, e.g. 
electromagnetic shield (Wong et al., 2010). 

Li et al. (2016) carried out a study on LCC and environmental as
sessment (GWP, energy use, final disposai waste) for End-of-life CFRP in 
automotive with three options (landfilling, incineration and mechanical 
recycling) within regulations of UK and EU. In this hypothetical case, a 
landfill tax can be viewed as a useful tool to shift CFRP waste from 
landfill to incineration because of the low GWP impacts and energy use 
in landfilling. Recycling benefits depend on the displacement factors of 
VCF by recycled fibre and on the recycling rate in order to balance the 
energy-intensive recycling process. However, grinding process in me
chanical recycling degrades fibres on reducing their length and cannot 
separate cleanly fibre and matrix from the composite (Kouparitsas 
et al., 2002; Palmer et al., 2009). Increasing recovery rates can improve 
environmental and financial performance of the mechanical recycling 
pathway: in the base case, only 40% of CF present in CFRP waste is 
assumed to be recoverable. Considering higher recovery rates is hy
pothetical for (Li et al., 2016). 

An alternative to LCA and LCC is cost-benefit analysis (CBA) (Leu 



and Lin, 1998; Morrissey and Browne, 2004; Ali et al., 2013; Farel et al., 

2013; Karrnperis et al., 2013). A very interesting contribution is pro

posed in Farel et al. (2013). These authors have developed a framework 

for performance evaluation through a cost and benefit analysis of a 

future End-of-Life Vehicle (ELV) glazing recycling. Technical and eco

nomic details of activities have been discussed. The main barriers and 

potential solutions have been identified from field observation and 

expert interviews. The consistency and complementarity of LCA and 

LCC vs CBA assessment methodologies has been presented in detail in 

Hoogmartens et al. (2014). Traditionally, first, LCA and LCC can be 

viewed as product related assessments while CBA mostly focuses on 

projects or policies (Ness et al., 2007). Second, LCA and LCC focus on 

the whole life cycles of the assessed products while CBA, focusing on 

the lifetime of a particular project, makes the lifetime of used products 

secondary. A third key aspect relates to the use of a reference scenario. 

LCA and LCC are comparative assessment tools that compare products 

while CBA is typically used for autonomous project evaluation. This 

reason motivates the use of a combined LCA-LCC approach in this 

study. lt must also be emphasized that an approach combining en

vironmental assessment and life cycle cost analysis has been recently 

identified to play a crucial role in identifying suitable waste manage

ment strategies to address the emerging waste burden of end-of-life and 

manufacturing scrap CFRP materials and to determine its beneficial 

uses in automotive sector or in other applications (Meng et al., 2017). 

In that context, the main innovation of the work that is targeted 

here is to develop a methodological framework for the design and de

ployment of CFRP waste supply chain considering multiple criteria 

based on economic and environmental assessment and to highlight the 

endogenous variables including the characteristics of each waste 

treatment option as well as the exogenous ones (type of CFRP waste, 

deposit waste, transport distance, market) that will be further studied in 

the modelling and optimization of the global supply chain embedding 

a11 the recovery /recycling pathways of CFRP options. 

3. Materials and methods

3.1. Studied system 

The system boundary considered is presented in Fig. 1. Ali the im

pacts or benefits are assessed from the beginning to the end of operation 

leading to different recovered products until there is no waste left to be 

treated. Two options conceming carbon fibre recovery are considered: 

Recovery Pathways and Non-Recovery Pathways. The techniques in the 

former category allow carbon fibre recycling. In the latter one, although 

i 
/ 

Virgin 
Carbon FI bre 

I Composite 
Fabrication 

carbon fibre cannot be directly recycled, either energy or materials 

recovery may be obtained by incineration or co-incineration techni

ques. Ail the studied techniques will be presented in detail in Section 

3.3. The choice of the techniques that are considered within the scope 

of this work is based both on recent literature review showing the 

current trends of CFRP recycling and on interviews with experts re

presenting the major stakeholders of the CFRP supply chain (aero

nautics, automotive, recycling industries, local and regional adminis

trations, etc.). Technical and economic details of activities have been 

discussed and the main barriers and potential solutions have been 

identified from interviews and active survey carried out by the in

dustrial leader of the ANR SEARRCH project (ALTRAN) (http://www. 

agence-nationale-recherche.fr/Project-ANR-13-ECOT-0005). Interviews 

with stakeholders have been led in order to take into account their 

current constraints and concems. This bottom-up approach has been 

performed in order to build a practical tool, that can be used by current 

and future actors in the CFRP recycling sector, and in the longer term, 

beyond the composites, for stakeholders of the recycling sector. 

An average composite waste of CFRP type composed of 65 wto/o of 

carbon fibre and 35 wto/o of matrix has been considered. The studied 

carbon fibre is assumed to be produced from Polyacrylonitrile (PAN) 

precursor. The formulation of the composite will not be further devel

oped and 100% of matrix is assumed to be composed by Bisphenol A 

epoxy resin without filler. 

As CFRP is the composite of polymer matrix, it is not classified as an 

inert waste regarding organic substances for matrix. In waste man

agement, CFRP can be considered as either non-hazardous waste or 

hazardous waste depending on matrix properties. Prepreg, which is an 

uncured composite, is considered as hazardous waste (PlasticsEurope, 

2006). The cured composite is considered as a non-hazardous waste if it 

does not involve any hazardous substance in its formulation. 

3.2. Methodological framework 

Since the products from the studied waste treatment techniques are 

different in both type and yield, the functional unit (FU) defined for this 

study is 1 kg of waste to be treated by one of the proposed technology. 

Within the boundary of the studied system, three phases of CFRP waste 

management are assessed: plant construction, operation, and applica

tions for recovered products. These three steps are studied com

plementally through economic assessment and environmental assess

ment. 
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Fig. 1. Boundary of the studied system. 



Table 1 

Framework of economic model for Recovery Pathways. 

Cost type Abbreviation Calculation (€/year) 

Depreciation D = Investment divided by the number of 

years of the project) (*)In titis study, the 

life span of project is 10 years 

Raw Material Cost (Cost1) Excluded ( waste cost is assumed to be 

zero) 

Utility Cost (Cost2) Technique dependent 

Operating Labour (Cost3) with 4 operating personnel 

Cost 

Maintenance Cost (Cos4) = 0.02 x Investment 

Supplies (Cost5) = 0.3 x Operating Labour Cost 

Administration (Cost,;) = 0.9 x Operating Labour Cost 

Non-Operating (Cost7) = 0.6 x Operating Labour Cost 

Labour Cost 

Other cost (Cost8) = 0.01 X Investment 

3.2.1. Economie assessment methods 

According to literature, composite recycling suffers from financial 

instability due to the low value of recovered products and the Jack of 

market (Yang et al., 2012). In this context, an economic mode! for CFRP 

waste management is developed here in order to study the profitability 

of recycling techniques. A classical period of 10 years is considered to 

study the economic feasibility of the project. 

lt must be emphasized that the price of CFRP waste has been set 

equal at zero even though it can be considered as a raw material. Even if 

this assumption cannot be viewed as a penalizing one, it can be justified 

here in order to promote the deployment of the market of the recycled 

fibre. 

- The Non-Recovery Pathways are considered as outsourcing ser

vices of the system, their costs are therefore estimated on the basis

of the current fees charged by the government or the concerned

industry.

- For Recovery Pathways, the contribution of variable costs, fixed

capital costs and capital depreciation has been determined using

classical methodologies for early estimates as reported in Anderson

(2009) (see Table 1). A linear 10 year-depreciation is considered.

The investment cost is estimated from the classical six-tenths rule for

a fixed capacity ofwaste input (Seider et al., 2009). The utility costs

including electricity, natural gas, and water have been extrapolated

from literature data. The source and amounts of utilities depends on

the recycling techniques that will be presented in the next section.

Labour cost has been estimated from legislation (Eurostat, 2015a)

(legal working hours of 1607 h per year with an hourly cost of

34.3 €). The recycling plants are assumed to be medium scale with 4

people for operating labour. This assumption will be valid for ail

recycling plants whatever the process and the capacity used.

Three economic indicators are considered in this study (Table 2): 

1. Operation Cost per mass unit of waste (OC) is the cost of input

utilities required by each recycling technique.

2. Average Unit Cost per mass unit of waste (UCW): for Non-Recovery

techniques, this indicator corresponds to the total fees charged by

government or the concerned industry; for Recovery pathways, this

indicator is the breakeven point charged to an amount of waste

through a 10-year horizon time of recycling plant for Recovery

pathways. lt corresponds classically to a zero value of Net Present

Value (NPV) of the project calculated by Eq. (3.1) with a discount

rate (j3) of 10%. This assumption mays be considered as severe but

may prevent from economic difficulties that may be encountered

from deployment to mature sales if the size of the market is not as

large as expected (Yang et al., 2012).

3. Average Unit Cost per mass unit of recovered fibre (UCF) is

Table 2 

Economie indicators. 

Indicator 

Operation Cost per 

mass unit of 

waste (OC) 

Average Unit Cost 

per mass unit 

of waste 

(UCW) 

Formula 

Non-Recovery 

Pathways 

Recovery Pathways 

Utilities Costs 

Fees (charged by REV(at NPV = O) 

government or Waste input capacity 

industry) 

Average Unit Cost 

per mass unit 

of recovered 

fibre (UCF) 

REV(at NPV = 0)- L Revenue of other products 

Recovered fibre capacity 

computed on a different basis. lt only concerns Recovery Pathways, 

which is the average cost of recovered fibre during 10-year horizon 

time so that recycling plants can cover ail their manufacturing cost 

and begin to have profit. 

The profit from by-products (filler, oligomers) is not considered in 

total revenue to estimate the values of UCW and UCF of Recovery 

pathways to avoid the interference on fibre recycling. These two in

dicators reflect the different economic viewpoint of the involved sta

keholder from waste owners with UCW to clients of recycled fibre with 

UCF. 

10 

NPV = -INV + L (REV - TC) x (1 - a) + D 
(1 + {3)1 

1=1 

with NPV: Net Present Value 

H: the horizon time of recycling plant (10 years) 

t: the year index 

a: tax rate (34%) 

j3: discount rate (10%) 

INV: Investment cost 

REV: Annual Revenue of process 

D: Depreciation (D = n;;) 
8 

TC: Total annual costs (TC = D + L Cost;) 
i=l 

3.2.2. Environmental assessment methods 

(3.1) 

Besides the impacts released from operation activities, the impacts 

related to plant construction have been considered as insignificant 

compared to the operating phase: this assumption has been considered 

for valid for a lot of chemical processes (Morales Mendoza, 2013). The 

benefits obtained from recovered products have of course been included 

in environmental assessment with the avoided impacts. Three in

dicators involving GWP are computed: 

1. GWP impact of process (GWPP) encompasses ail the activities of

waste management

2. GWP impact of substituted products (GWPA) includes the GWP

impacts from the utilisation of recovered products to replace virgin

materials. In this study, a quantity of recovered products is assumed

to replace the equivalent quantity of virgin materials (1:1 ratio).

This assumption is proposed in order not to limit the applications of

recovered fibre by mechanical properties as proposed in Witik et al.

(2013). The GWPA for an amount ofrecovered products is therefore

equal to GWP impacts of production of the same quantity of virgin

products which the recovered products replace;

3. Finally, GWP total of the system (GWPTOT) which take into

account impacts from both activities and substitution effect:

GWPTOT = GWPP - GWPA
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Fig. 2. Materials flows in the studied system (Hedlund-Âstrêim, 2005; Suzuki and Takahashi, 2005; Palmer et al., 2010; Akesson et al., 2013; Knight, 2013; Witik et al., 2013; Howarth 
et al., 2014). 

3.3. Mode! data 

Ali the studied technologies are assumed to be available to treat 
CFRP waste. The mass and energy balances of each pathway in the 
modelled system are summarised in Fig. 2 and Table 1. Based on lit
erature and on Ecoinvent datatbase v2.2 with ReCiPe impact assess
ment method implemented in SimaPro v7.3, mode! data have been 
collected for being used in economic assessment and environmental 
assessment. The involved variables, their numerical value, and the 
source they corne from can be found in Fig. 2 and Tables 3 and 4. The 
typical features of the studied waste treatment techniques will be 
shortly presented in the two following subsections. 

3.3.1. Non-Recovery pathways 

3.3.1.1. Land.fil!. Landfill can be defined as a specific underground 
storage of waste when there is no available recycling technique for this 
kind of waste. In this study, landfilling is considered as a disposai 
pathway, not as a kind of storage. Therefore, once landfilled, the 
potential recovered products from waste are lost. The composite waste 
that is likely to be landfilled is considered as non-hazardous solid waste. 

No specific process for composite landfilling is defined in Simapro 

v.7.3 databases, e.g. Ecoinvent 2.2. The landfilling of plastics mixture in
sanitary landfill process, which is the closest option to composite
landfilling solutions regarding the similar organic chemical nature of
polymeric composite and plastics, has been adopted in order to evaluate
GWPP of CFRP waste landfilling. The impacts from losing the recyclable
fibre in CFRP waste are considered in order to avoid neglecting the lost
potential in landfilling. These lost impacts are evaluated at negative
GWPA of production for the equivalent quantity of VCF as the quantity
of carbon fibre presented in landfilled CFRP waste. According to GPIC
et al. (2003), the fees of composite landfill are around 76--90 €/tonne.
The same order of magnitude for landfill charge in France in 2015, i.e.,
95 €/tonne has been found in Fischer et al. (2012). This value is used in
this study for economic assessment.

3.3.1.2. lncineration. Incineration is a thermal process, which allows 
recovering energy in heat resulting of waste combustion. Heat can be 
used either directly or converted into electricity. In this scenario, the 
process is assumed to be auto-thermal; heat and ash by-product 
released from the process are estimated at 32 MJ and 8 wto/o of input 
waste respectively according to Witik et al. (2013); the emission of 
combustion is based on the work of Hedlund-Âstrêim (2005). Heat is 



Table 3 

Data of Unit Cost and GWP impact in the modelled system. 

Material/ Activity Unit Cost GWP impact 

Input Electricity 

Input Natural Gas 

Input Pure Water 

Input Cooling Water 

Limestone 

0.091 €/kWh (Eurostat, 2015b) 

0.16€/m3 (Knight, 2013) 

2.20€/tonne (Knight, 2013) 

13.27 €/1000 m3 (Knight, 2013) 

90.91 €/tonne (ICIS, 

www.icis.com) 

0.0262 kg CO2 eq./MJ (Electricity, medium voltage, al grid/FR - Ecoinvent v2.2/ReCiPe 

Midpoint (H) v.1.06) 

0.38 kg CO2 eq./m3 (Natural gas, at long-distance pipeline/RER -Ecoinvent v2.2/ReCiPe 

Midpoint (H) v.1.06) 

0.000679 kg CO2 eq./kg (Water, ultrapure, at plant/GLO - Ecoinvent v2.2/ReCiPe Midpoint 

(H) v.1.06) 

0 

0.0132 kg CO2 eq./kg (Limestone, milled, loose, at plant/CH U - Ecoinvent v2.2/ReCiPe 

Midpoint (H) v.1.06) 

Clinker 

Heat from coal 

/ 

/ 

0.901 kg CO2 eq./kg (Clinker, al plant/CH -Ecoinvent v2.2/ReCiPe Midpoint (H) v.1.06) 

0.131 kg CO,/MJ (Heat, al bard coal, burned industrial furnace, 1-l0MW/MJ/RER -

Ecoinvent v2.2/ReCiPe Midpoint (H) v.1.06) 

Electricity (valorised from heat in 

incineration) 

/ 0.0256 kg CO2 eq./MJ (Electricity, medium voltage, production FR, al grid/FR - Ecoinvent 

v2.2/ReCiPe Midpoint (H) v.1.06) 

Virgin ex-PAN Carbon Fibre 

Virgin Glass Fibre 

/ 31 kg CO2 eq./kg (Das, 2011) 

Recycled Glass fibre 

Oligomers 

1-30 €/kg (Dupupet, 2008) 

0.25€/kg (Job, 2013) 

2.6 kg CO,/kg (Kellenberger et al., 2007) 

/ 

CFRP waste landfilling 

1.52€/kg (ICIS, www.icis.com) 

95€/tonne (Fischer et al., 2012) 

3.86 kg CO,/kg (Phenol, al plant/RER -Ecoinvent v2.2/ReCiPe Midpoint (H) v.1.06) 

0.0897 kg CO2 eq./kg (Disposai, plastics, mixture, 15.3% water, to sanitary landfill/CH -

Ecoinvent v2.2/ReCiPe Midpoint (H) v.1.06) 

Ash landfilling (in incineration) 

Matrix combustion (in pyrolysis) 

95€/tonne (Fischer et al., 2012) 0.0122 kg CO2 eq./kg (Disposai, inert material, 0% water, to sanitary landfill/CH -Ecoinvent 

v2.2/ReCiPe Midpoint (H) v.1.06) 

/ 2.35 kg CO2 eq./kg (Disposai, plastics, mixture, 15.3% water, to municipal incineration/CH -

Ecoinvent v2.2/ReCiPe Midpoint (H) v.1.06) 

then converted to electricity with an efficiency of 35% (Antonini, 

2012). Ash by-product is landfilled as an inert waste. The cost of 

general waste incineration is about 92€/tonne in France in 2015 

according to Fischer et al. (2012). The UCW of this route includes 

this charge as well as the cost of ash landfilling. 

3.3.1.3. Co-incineration. As incineration and co-incineration are both 

based on combustion of waste, the quantity of heat and ash produced in 

co-incineration is assumed to be similar to the respective value involved 

in incineration technique. However, co-incineration allows material 

recovery in addition to energy recovery. Indeed, in co-incineration, 

waste is used as a substituted fuel involved in clinker fabrication where 

coal is normally used as a fuel and the products of waste combustion, 

i.e. heat and ash, are completely valorised in co-incineration. Heat

released from combustion of CFRP waste can substitute the same

amount of heat from coal combustion in fumace. Ash is also mixed

with the raw materials of clinker. According to Halliwell (2006), the

cost of treatment of co-incineration of composite waste charged by the

cernent industry is around 1 €/kg. This cost is considered as UCW for

this technique.

3.3.2. Recovery pathways 

The techniques that have been investigated here have been selected 

as they are representative of the existing processes: grinding, pyrolysis, 

microwave, and supercritical water (SCW). These techniques have at

tracted a lot of attention from academic and industry and have reached 

a sufficient level of maturity of development. Grinding process is the 

simplest recycling technique with only energy requirement but the re

covered products cannot be used in high-valued applications due to the 

Table 4 

Data of lnvestment Cost for Recovery Pathways. 

Technique lnvestment Cost for Process in literature 

Grinding 

Pyrolysis 

Microwave 

200 000€ for a shredder of capacity of 4000 t/year (Halliwell, 2006) 

10 000 € for capacity of 20 000-80 000 t/year (Krawe2ak, 2012) 

Supercritical water 

9 400 000 f. for capacity of 50 000 t/year (lyres application) 

(Appleton et al., 2005) 

5 770 000 $ for capacity of 150 kg/hour (Knight, 2013) 

strong degradation of recovered fibre and unclear separation of fibre

matrix. Pyrolysis which is the most successful industrialised technique 

for clean CF recycling with high retention of mechanical properties yet 

requires high energy consumption. Microwave, another thermal tech

nique, can recycle CF with Jess energy than pyrolysis and lead to po

tential recovery of matrix. SCW is the recycling technique in trend 

because of the utilisation of water, a cheap and low-hazardous risk raw 

material compared to organic solvents, but this technique requires a 

large amount of energy to operate at supercritical conditions. 

Although the recycling yield of carbon fibre in CFRP waste has not 

reached 100%, the recent results obtained are promising (Oliveux et al., 

2015a). In this study, we consider that CF can be ideally recycled at 

100% yield by pyrolysis, microwave and SCW to study the maximum 

benefit that can be potentially obtained without introducing a bias in 

the analysis since the recycling yield of CF may vary in different works. 

For CFRP based on bisphenol A epoxy resin, the residuals are con

stituted of phenol derivatives principally. Due to the complexity of 

oligomers mixture, the residuals from decomposition of matrix are 

simplified to be reused as phenol in this study. 

Technical, economic and environmental data have been collected 

regarding CFRP applications. Yet, in case of the Jack of data, those re

lative to GFRP will be used. The majority of recycling techniques on 

fibre recovery from FRP waste have been developed for both GFRP and 

CFRP because of the similarity of these two polymeric composites, e.g. 

(Kennerley et al., 1998; Pickering et al., 2000; Yip et al., 2001; Jiang 

et al., 2008) for fluidised bed, or (Lester et al., 2004; Akesson et al., 

2013; Obunai et al., 2015) for microwave, etc. 

The general reviews on global composite recycling have shown 

show that there are still few recycling sites for FRP /CFRP waste, with 

CAPEX used in Economie Assessment (*estimated with six-tenths rule for the studied 

capacity) 

265 000 € of capacity of 40001/year (shredder + harnmer mill) 

1 450 000 € of capacity of 20001/year* 

2 550 000 € of capacity of 2000 t/year* 

6 430 000€ of capacity of 10001/year* 
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Fig. 3. Economie assessment of the studied pathways. 

little available information (capacity, technique, location). The re
cycling capacity of the studied techniques is set at the best performance 
of the current FRP /CFRP recycling industry reported in Pimenta and 
Pinho (2011): 4000 t/year for grinding, 2000 t/year for thermal re
cycling (pyrolysis and microwave) and 1000 t/year assumed for che
mical recycling (SCW). 

3.3.2.1. Grinding. The principle of this technique is to separate fibres 
from matrix by a grinding process. After mechanical process and 
sieving, the obtained products are constituted by a mixture of matrix 
and fibre. They are separated into different fractions in function of fibre 
proportion and length (Kouparitsas et al., 2002; Palmer et al., 2010). 
Palmer et al. (2009) have shown that two products are assumed to be 
recovered from the composite waste, i.e., a matrix-rich powder product 
(29 wto/o), used as filler, and a fibrous fraction (71 wto/o). The process 
energy is estimated at 0.27 MJ/kg by Hedlund-Âstrôm (2005) which is 
in agreement with the value proposed by Howarth et al. (2014) carried 
out at industrial scale. 

In this work, the mechanical technique is based on ERCOM process 
which operates at industrial scale by using a mobile shredder and 
hammer mill. The plant has a capacity of 4000 t/year with a mobile 
shredder of value of 200,000€ (Halliwell, 2006). The capital cost of 
hammer mill is presented in detail and has been assumed to be one 
third of the value of shredder (Schutte Buffalo Hammermill, 2016). 

3.3.2.2. Pyrolysis. In this study, the pyrolysis is modelled as a 
combustion process of the matrix (35 wto/o of CFRP waste) 
environmental impacts. No energy recovery from thermal 
decomposition of matrix has been assumed. The total energy used in 
pyrolysis has been estimated at about 30 MJ/kg composite (Witik et al., 
2013). 

In general, pyrolysis for composite recycling requires a minimum 
amount of 10 million€ for capacities ranging from 20,000 to 80,000 t/ 
year (Krawczak, 2012). An average value (50,000 t/year) has been as
sumed and used to estimate the corresponding capital cost of the stu
died capacity by six-tenths rule. 

3.3.2.3. Microwave. The process energy is estimated at 10 MJ/kg 
according to Lester et al. (2004) and Suzuki and Takahashi (2005). 
According to Lester et al. (2004), oligomers from the decomposition of 
polymeric matrix can be obtained by this technique. Another study on 
GFRP (Akesson et al., 2013) has shown that besides the recovery of 
solid product, i.e. glass fibre, the thermoset matrix (unsaturated 
polyester resin) is decomposed into pyrolysis oil and gas with 56 wto/o 
and 44 wto/o of quantity of matrix in waste respectively. These yields 

will be used to estimate the quantity of oligomers and the emission of 
CO2 released from 35 wto/o of matrix in the studied CFRP waste through 
this process. The pyrolysis oil, which is composed of various aromatic 
substances, is assimilated to phenol in this model. The gas fraction 
which is composed of a rich amount of CO and CO2 with low presence 
of methane and other hydrocarbons reported in the study of Akesson 
et al. (2013) is assumed to be exclusively composed of CO2 considering 
a total oxidation. 

No information of investment cost on FRP recycling is yet available. 
This later is estimated based on the BRC process for tyres scrap treat
ment (Appleton et al., 2005), that is 9,400,000 f for a capacity of 50 
000 t/year. The investment cost of the BRC process reported in 1990s is 
updated from 1995 to 2014 by Chemical Engineering Plant Cost Index 
(CEPCI). 

3.3.2.4. Supercritical water. In supercritical condition (temperature > 
374 •c and pressure > 221 bar), the polymer matrix can be 
decomposed into different oligomers and the carbon fibre is 
recovered in supercritical water. This technique has been 
industrialised for hazardous waste treatment since 1980s (Marrone, 
2013). For composite application, although it has received a lot of 
attention from academics and industry (Oliveux et al., 2015a), 
supercritical water for CFRP waste is still at pilot scale. As 
information of this process is still limited, data used for assessment 
are based on the work of Knight (2013). For an amount of 1 kg of CFRP 
(35 wto/o matrix) waste, the process requires 2.61 kWh of electricity, 
1.64 m3 of natural gas, 3.5 kg of pure water for solvent and 72.07 t of 
cooling water. CFRP waste is assumed to be entirely recovered with 
100% yield of carbon fibre and matrix (in the form of oligomers). A 
capital cost value of 5,770,000$ for 150 kg/hour of capacity has been 
adopted from in Knight (2013) (i.e. 1000 t/year plant). 

4. Results and discussion

4.1. Economie assessment 

Fig. 3 presents the values of OC, UCW and UCF for a11 the studied 
CFRP waste techniques. Based on UCW indicator, it must be first em
phasized that not surprisingly, the fibre recycling techniques are not 
cost-competitive compared to landfill and incineration routes. These 
options (requiring around 0.1 €/kg of waste) are the most competitive 
ones for CFRP waste treatment without consideration of profits from 
recoverable products in waste. This indicator may reflect the viewpoint 
of the waste producer who will be referred as the « waste owner » who 
may have no economic interest to reuse or stock waste and have to 



Table 5 

Price ranges of carbon fibres and glass fibres in market. 

Type of Fibre 

Virgin conventional CF (low modulus) 

Virgin conventional CF (standard modulus) 

Virgin conventional CF (intermediate 

modulus) 

Virgin conventional CF (high modulus) 

Virgin conventional CF (ultra-high modulus) 

Low-cost CF 

Virgin CF (from lignin precursor) 

Recycled CF (from Thermo-Chemical 

recycling) 

Ground CFRC 

Virgin GF (for general purpose) 

Virgin GF (for high technology applications) 

Recycled GF 

Prices 

< 20 $/kg (Chen, 2014) 

20-55 $/kg (Chen, 2014) 

55-65 $/kg (Chen, 2014) 

65-90 $/kg (Chen, 2014) 

up to 2000 $/kg (Chen, 2014) 

4.5-7.5 €/kg (Berreur et al., 

2002) 

6.6 $/kg (Chen, 2014) 

13-19 $/kg (Oliveux et al., 

2015a) 

5 $/kg (Oliveux et al., 2015a) 

1-3€/kg (Dupupet, 2008) 

3-30 €/kg (Dupupet, 2008) 

0.25€/kg (Job, 2013) 

select one of the ex1snng techniques in order to remove waste at 

minimal cost. So, this may suggest that if no regulation is imposed, 

landfill and incineration will continue to be the dominant economic 

choice in CFRP waste management at current costs despite there is no 

mass recovery in these options. 

Although it cannot recycle carbon fibre, co-incineration allows 

waste recovery considering both energy and material aspects, and 

prevents the use of coal in clinker production. With a cliarge of 1 €/kg of 

waste by cernent industry, co-incineration loses its economic interest 

compared to landfill or incineration and even to other fibre recycling 

tecliniques like grinding and microwave, despite its advantage on waste 

valorisation. However, if this technique is cliarged at the same fee of 

incineration, it is more interesting than incineration and landfill be

cause this technique allows reducing the cost of ash landfilling in in

cineration by material recovery in clinker fabrication. However, the 

choice of non-recovery techniques is temporary and depends largely on 

the acceptance of recycled carbon fibre in market. When RCF become 

profitable, the non-recovery pathways will become obsolete for CFRP 

waste management. 

Grinding that operates with low energy consumption, has the lowest 

value in Operation Cost in the Recovery pathways. Although the UCW 

of this technique is little higher than the cost of landfill and incinera

tion, it is the cheapest one compared to the value of UCW for the three 

other recycling techniques due to simple equipment and high capacity. 

Pyrolysis and SCW which operate at high temperature or high pressure 

respectively, exhibit a high Operation Cast. This factor has an influence 

on the UCW indicator relative to these techniques, especially in SCW 

teclinique. It can clearly be observed that SCW leads to both the highest 

Operation Cost and UCW because of the conjunction of three factors, 

i.e., high utility cost, high investment and small capacity. Microwave

that operates at the same capacity (2000 t/year) is more interesting

than conventional pyrolysis regarding its lower Operation Cost and

UCW principally due to energy reduction in microwave heating which

requires only one third of energy used in pyrolysis. With UCW varying

from 0.18 to 3.53€/kg of waste, the Recovery Pathways cannot com

pete with the Non-Recovery Pathways if there is neither market for

recovered fibres nor regulation constraints.

In this context, UCF indicator is used to study the acceptable price 

range at which recovered fibres can be sold as well as their potential 

applications that can be determined in order to promote recycling and 

markets of recovered fibre. For this purpose, the UCF of recovered fibre 

from the Recovery Pathways will be compared with the average price of 

VCF, VGF and RGF in current market. This evaluation is pivotai to study 

the potential use of recovered fibre in classical applications of VCF, VGF 

and RGF by an economic viewpoint. The price of VCF may vary ac

cording to different grades on mechanical properties, precursors and 

production technique, etc.... from a price less than 20 $/kg (low 

modulus) up to 2000 $/kg (ultra-high modulus) (Chen, 2014). In a 

context where carbon fibre will be popularised in wide applications 

such as automotive, the production of carbon fibre from cheap pre

cursor like lignin can reduce the manufacturing cost of CF at around 

6.6 $/kg (5.92 €/kg). According to Berreur et al. (2002), the ideal prices 

of carbon fibre are estimated at about 4.5-7.5 €/kg. Besides, the price of 

glass fibre is much lower than that of carbon fibre. The price of glass 

fibre is estimated at 1-3€/kg for general purpose and 3-30€/kg for 

high teclrnology applications (Dupupet, 2008), while recovered glass 

fibre is sold at 0.25€/kg (Job, 2013). 

UCF for grinding (evaluated at 0.248€/kg) exhibits a value that is 

very similar to the price of recovered glass fibre. The value of UCF for 

recovered fibre from thermal techniques is higher than the minimum 

price of VGF (1 €/kg), but remains lower than the lowest price (i.e. 

4.5 €/kg) of carbon fibre that is used for general applications (Berreur 

et al., 2002). Based on the assumptions of this study, the UCF of SCW is 

estimated at 5.43 €/kg which is the highest cost among the Recovery 

pathways and exceeds the threshold of 4.5 €/kg for carbon fibre price. 

Mechanical recycling has the least UCF cost, but carbon fibre cannot be 

cleanly separated from the matrix and the recovered products are 

usually used in low value applications. Although SCW has the highest 

UCF, the recovered fibres by this teclrnique have the tensile strength 

which is slightly near the one of virgin fibres. This technique needs yet 

improvement to reduce investment cost and an expansion of capacity is 

required so that this process becomes more competitive than other re

cycling techniques such as pyrolysis or microwave. 

Based on literature, Table 5 presents the price ranges of carbon fibre 

and glass fibre with different quality in market. The UCF value esti

mated in this study is yet lower than the data reported by Oliveux et al. 

(2015a): 13-19 $/kg for RCF from thermo-chemical recycling and 5 $/ 

kg (3.36€/kg) for ground CFRP. The observed gap can be explained by 

several factors: (i) the studied system does not consider exogenous 

factors (type of CFRP waste, transportation, conditioning process, 

packaging, etc.); (ii) average data and fixed capacity are used. How

ever, the reported cost of recycled carbon fibre seems less attractive 

compared to the price of VCF from cheap precursors like lignin, i.e., 

6.6 $/kg, (Chen, 2014). It must be emphasized that, the recycled fibre 

costs have two competitors according to the targeted market, low-cost 

virgin CFRP for low value use and CFRP for high-value applications 

requiring carbon fibres of high-quality (e.g. aerospace applications). 

Finally, it must be said that although the economic benefit that may 

result from the by-product release for some specific markets is not 

considered, the associated environmental benefit is taken into account 

via the concept of avoided impacts. The key factors from this economic 

assessment include recycling capacity and carbon fibre recovery that 

will be assessed in the sensitivity study section. 

4.2. Environmental assessment 

Three indicators for the evaluation of GWP impacts are used in this 

assessment: GWPP, GWPA and GWPTOT (see Section 2). The obtained 

results are displayed in Fig. 4. 

The thermal techniques, i.e. pyrolysis, co-incineration and in

cineration are the pathways that exhibit the highest values for GWPP 

impacts. The combustion in pyrolysis involves the decomposition of the 

polymeric part, so that a lower GWPP impact is released than the one 

resulting from the combustion of the entire composite in incineration 

and co-incineration. Co-incineration induces slightly lower impacts 

than incineration because it does not need ash landfilling like in

cineration. For the other techniques with no or very low GHG emis

sions, the GWPP impacts depend majorly on the consumption of uti

lities in the process. Conceming GWPP impacts, the processes can be 

ranked in increasing order, that is, mechanical recycling, landfill, mi

crowave, SCW. Although microwave and pyrolysis belong to thermal 

recycling, the recovery of oligomers from matrix in microwave reduces 

the GWP impacts compared to pyrolysis by avoiding the combustion of 



25 

20 

15 

... 
·O 10 

5 
., 

M 

0 0u

!!, 
!l -5 
,., 
"' 

J-10

e,. � -15 
0 

-20

-25

■GWPP 

■GWPA

0 
-c◊ ■GWPTOT 

,;!>� 
·,$>,, 

,,,,Çj 

Fig. 4. Environment assessment of the CFRP waste treatment techniques. 

the entire matrix. 

GWPA assessment is pivotai to study the outcome of waste treat

ment activities. If only the GWP impacts of the activities are assessed in 

the system, the potential benefit from materials recovery by recycling 

techniques or the Joss of materials in landfill can be under-evaluated. 

The materials that can be replaced by the recovered products that can 

be generated by each technique are presented in detail in Section 4. 

Despite its low GWPP impacts, landfill has high GWPTOT impacts since 

landfilling activity !oses the recycling potential of carbon fibre in CFRP 

waste. In spi te of a higher UCW cost, the interest of co-incineration over 

incineration is shown through GWPA evaluation. The benefit from re

covery of entire CFRP waste on energy and material in co-incineration 

allows compensating over the GWP impacts produced in the process 

(GWPP), so that GWPTOT impacts become negative. Yet due to the 

specific situation of France that is explored in the study, the heat re

covery from electricity conversion in incineration is not very profitable 

towards GWP impacts: the avoided impacts are too low to compensate 

ail GWPP of this technique since the GWPA impacts of incineration are 

evaluated from GWP from an electricity mix in France which is pro

duced principally from nuclear power (75%) and others (hydropower -

12%, hard coal - 4%, natural gas - 4% and imported - 2%) (Itten et al., 

2012). 

The GWPA evaluation of recycling techniques depends strongly on 

replaced materials. The production of VCF is extremely energy in

tensive and so emits much higher GHG than the production of glass 

fibre or of the other recovered products (limestone, phenol). Therefore, 

the avoided impacts from replacement of VCF by RCF constitute an 

important contribution of GWPTOT for the studied techniques, which 

recycle carbon fibre cleanly such as pyrolysis, microwave and super

critical water. The effect of the low-value applications of recovered 

products from mechanical recycling (glass fibre and limestone) is in

deed recognised in the GWPA assessment. This technique is the least 

interesting option among the recycling pathways despite its low GWPP 

impacts. The recovery of by-products in addition to carbon fibre con

stitutes a key advantage for microwave and supercritical water. 

However, a variant of pyrolysis process equipped with a section for 

recovery of condensable decomposed polymeric matrix from the in

complete oxidation could exhibit similar GWPTOT performances with 

microwave and supercritical water. 

For ail the studied recycling techniques, the GWPP impact is low 

enough so that the avoided impact from the recovered products com

pensates for GWPP impacts and GWPTOT is negative. GWPA impact 

assessment promotes the implementation of recovery pathways while 

the market of recycled carbon fibre is not yet mature. 

To evaluate the potential benefit of recovered products, ail the 

studied indicators, i.e., GWPA GWPP, UCW and UCF are com

plementary indicators in the study of the whole CFRP recycling system 

from plant deployment to waste recovery. 

4.3. Sensitivity analysis 

The study results are sensitive to a number of key parameters, in

cluding recycling capacity and carbon fibre recovery rate and the ma

terial type replaced by recovered fibre through the variation of UCF and 

GWPTOT. Sensitivity analysis results are presented here. 

4.3.1. Capacity of recycling techniques 

The economic assessment has highlighted that UCF depends on the 

installed capacity of the recycling techniques: UCF varies in function of 

capacity due to waste quantity input and the capital cost. This study is 

aimed to analyse the impact of this factor on UCF of each technique. 

Three levels of recycling capacity have been selected, i.e., 1000, 2000 

and 4000 t/year that correspond to small, medium and large range of 

FRP recycling industry. 

Not surprisingly, an increase in recycling capacity reduces the UCF 

of recovered fibre (Fig. 5). The UCF of grinding for three scales (lower 

than the UCF of other techniques) are ail lower than 1 €/kg and even 

down to 0.25 €/kg. This result promotes the use of grinding in the 

classical applications of glass fibres, even in the lowest grade (recovered 

glass fibre) with a threshold of 0.25 €/kg. However, the UCF values for 

pyrolysis, microwave and SCW are ail greater than 0.25 €/kg. The re

covered fibre from these techniques cannot be reused in the same grade 

as recycled glass fibre. For the recovered fibre from pyrolysis and mi

crowave, the application range may include at least the substitution of 

the general purpose grade of glass fibre with their UCF range from 

1.6-2.4€/kg (pyrolysis) and 1-1.9€/kg (microwave). With a capacity 

range of 1000- 4000 t/year, the range of UCF of SCW is around of 

1-3 €/kg of general purpose glass fibres. The UCF value are 5.4, 4.4 and

3.8 €/kg for 1000, 2000 and 4000 t/year respectively which are lower

than the price of VCF from lignin (5.9€/kg, (Chen, 2014)). The re

covered fibres from this technique are thus competitive with limestone

or low grade of glass fibre. Yet some recent studies have highlighted the

high retention of properties of carbon fibre that can be obtained by this

recycling technique (Oliveux et al., 2015a) so that the reuse ofrecycled

carbon fibres from SCW is promising.

4.3.2. Carbon fibre recovery rate 

The impact of carbon fibre recovery rate in recycling techniques is 
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Fig. 6. Sensitivity study of Economie Assessment by Carbon Fibre recovery rate. 
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Fig. 7. Sensitivity study of Environmental Assessment by Carbon Fibre recovery rate. 

now studied with UCF for economic assessment (Fig. 6) and GWPTOT
for environmental assessment (Fig. 7). This parameter will be varied
from 10% to 100% in a fixed capacity of 2000 t/year for ail the recovery
pathways. In this scenario, the recovered fibre fraction which can be
used as carbon fibre applications is characterized by a carbon fibre
recovery rate (y) of total recovered fibre quantity; the remaining part of
recovered fibre (1-y ), which cannot be used as carbon fibre, is

considered to substitute glass fibre. The UCF indicator is evaluated by
considering the profit from by-products (filler, oligomers, low-valued
fraction of recovered fibre (1-y )).

For economic assessment, three ranges of carbon fibre price are
determined by the minimum ideal cost that the industry aims to reach,
i.e., 4.5 €/kg according to Berreur et al. (2002) and the lowest price of
VCF from lignin (the cheapest precursor for carbon fibre) (i.e., 5. 9 €/kg,



(Chen, 2014)): 0-4.5€/kg, 4.5-5.9€/kg and above 5.9€/kg. These 

three ranges are separated by the dotted lines of 4.5€/kg and 5.9€/kg 

in Fig. 6. The UCF values in the first range can be viewed as the most 

competitive prices to substitute virgin carbon fibre by recycled carbon 

fibre. The second one can be considered as a kind of "safe" price that 

recycled fibre can be accepted to replace conventional carbon fibre. The 

recycled carbon fibre with an UCF above the cost of lignin-based carbon 

fibre (5. 9 €/kg) may have difficulties to win over this carbon fibre type 

from an economic viewpoint. 

In this sensitivity study, the profits from by-products included in 

UCF evaluation cannot cover ail the recycling costs. 

Logically, an increase in carbon fibre recovery rate reduces the UCF 

for recovered carbon fibre fraction. Whatever the value of carbon fibre 

recovery rate, the UCF exhibits the highest value for SCW, followed in 

decreasing order by pyrolysis, microwave and grinding. This can be 

explained by high operation cost and investment cost in SCW tech

nique. For low carbon fibre recovery rates (10% and 20%) of SCW, the 

estimated costs of recycled carbon fibre is higher than the price of the 

virgin PAN carbon fibre (15.5-19.5€/kg, (Chen, 2014)). This could 

suggest to adopt recycled carbon fibre from SCW in carbon fibre market 

if the carbon fibre recovery rate of this technique reaches around 60% 

and preferably 80% from which UCF is below 4.5 €/kg. 

In the thermal recycling techniques, the recovery of oligomers al

lows reducing largely the UCF of microwave, which has moderate op

eration cost, compared to the UCF of pyrolysis, which does not recover 

any by-products and requires high energy for operation. Grinding is the 

most modest technique for which UCF values are always below 4.5 €/ 

kg, from 2.1 €/kg to 0.43 €/kg at 10% and 100% carbon fibre recovery 

rate respectively. Even at very low yield of recycled carbon fibre (e.g. 

10%), this technique can still offer low prices for utilisation of recycled 

fibre in carbon fibre applications. For the most expensive techniques, 

i.e. SCW and pyrolysis, a high carbon fibre recovery rate is important to 

get competitive prices of recycled carbon fibre.

In the assessment of GWP impacts, the GWPTOT values of ail re

cycling techniques are negative due to the high value of avoided im

pacts from replacement of virgin materials by recovered products. 

Furthermore, the high gap in GWP impacts between carbon fibre pro

duction (31 kg CO2 eq./kg, (Das, 2011)) and glass fibre production 

(2.6 kg CO2/kg (Kellenberger et al., 2007)) promotes yield increase for 

recycled carbon fibre instead of using recovered fibre for substitution of 

glass fibre in order to gain important avoided GWP impacts. 

Less GWP impact results from pyrolysis among the recovery path

ways because of the high energy consumption, the combustion of ma

trix and the absence ofby-products recovery. By contrast, grinding with 

low energy input has the most significantly reduced GWP impacts, 

especially at high carbon fibre recovery rates. Although grinding is the 

most environmental friendly process, the use of fibre fraction at high 

yield is difficult due to an important degradation of fibre properties 

through this process. For microwave, the oligomers recovery makes this 

technique attractive with similar GWPTOT with the low-energy tech

nique, i.e. grinding, at low carbon fibre recovery rates (10% and 20%). 

However, the oligomers yield released from SCW is higher than from 

microwave, the avoided impacts of the additional oligomers in SCW 

compensate for the gap in GWPP between microwave and SCW. From 

90% of carbon fibre recovery rate, GWPTOT of SCW is lightly lower 

than microwave. 

5. Conclusion

The objective of this study was to study the potential benefits for 

CFRP waste management in economic and environmental viewpoints. 

Multiple pathways are assessed ranging from the options which cannot 

recover fibre in composites (i.e., landfill, incineration, co-incineration) 

to the recycling techniques (i.e., grinding, pyrolysis, microwave and 

supercritical water). In this study, fibre quality is indirectly taken into 

account through the knowledge of the involved recycling process and 

the substitution market of the recycled fibre. 

The cost and GWP assessments of the modelled pathways show two 

main trends: 

1. The Non recovery techniques apart from incineration, i.e. landfill

and incineration are the cheapest options but have high GWP im

pacts due to the Joss or the low value of recovered products.

2. The techniques with high yield of recovery require more capital,

especially supercritical water, than other pathways, but allow im

portant reduction of GWP impacts by consideration of the avoided

impacts.

These results highlight the potential conflicts between economic 

and environmental indicators as there is no technique having both low 

cost and GWP impacts. 

The economic assessments show highly potential for substitution of 

VCF /VGF by recycled carbon fibres. The prices of recovered fibres from 

the recycling techniques are found to be competitive compared to the 

prices of virgin fibres. However, the reutilisation of RCF in different 

markets of glass fibres and carbon fibres depend on recycling technol

ogies, plant scale, and recovery rate. Due to the simplicity of the in

volved process, RCF from grinding can be sold at a low price, about 1 €/ 

kg at low capacity (1000 t/year ). Even with low substitution rate of 

carbon fibre (10%) at moderate capacity (2000 t/year), grinding can be 

competitive (2.1 €/kg) for carbon fibre market. However, in the ad

vanced recycling technologies, high recycling capacity and high carbon 

fibre recovery rate are required to overcome both the price of virgin 

fibre and recycled fibre from cheaper techniques. Indeed, recycled fi

bres from SCW are not competitive in recycled glass fibre market due to 

the very high treatment cost (over 3.5€/kg of fibre) even at high ca

pacity of 4000 t/year. 

Considering the avoided impacts, GWP assessment clearly promotes 

recycling activities by recovery of carbon fibre and avoids utilisation of 

Non recovery routes. This assessment also shows the high interest of 

recycling over the conventional production of carbon fibre and glass 

fibre with negative GWP impacts. Yet, waste treatment techniques are 

complex processes which produce not only GHG emissions but also 

noise pollution, human toxicity impacts, etc., so that a complete LCA 

assessment is needed to have a complete cartography of the environ

mental impacts. 

Besides, the CFRP waste streams are composed not only of the cure 

composite that is considered here but also of the uncured production 

composite (prepreg) and of the End-of-life waste which may contain 

metallic inserts or other contaminants. Each waste stream may require 

specific treatment so that the choice of the technique depends on waste 

composition and on the market for recovered fibre. The modelling of 

the whole system embedding ail the different sources for CRFP waste 

and options for recycling process via (Linear Programming)/MILP 

(Mixed Integer Linear Programming) formulation is a perspective of the 

proposed work. The objective is to design a CFRP waste management 

system which is a good compromise between economic and environ

mental issues with the variability ofwaste flows and the different waste 

treatment techniques. 
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