
OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20822 

To cite this version:  

Chéret, Véronique and Denux, Jean-Philippe Mapping wildfire 
danger at regional scale with an index model integrating 
coarse spatial resolution remote sensing data. (2007) Journal 
of Geophysical Research, 112 (G2). 11 p.. ISSN 0148-0227

Official URL:  

 https://doi.org/10.1029/2005JG000125 

Open  Archive  Toulouse  Archive  Ouverte 

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/185271021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Mapping wildfire danger at regional scale with an index model

integrating coarse spatial resolution remote sensing data
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[1] Wildfires are a prevalent natural hazard in the south of France. Planners need a
permanent fire danger assessment valid for several years over a territory as large and
heterogeneous as Midi-Pyrénées region. To this end, we developed an expert knowledge-
based index model adapted to the specific features of the study area. The fire danger
depends on two complementary elements: spatial occurrence and fire intensity. Among the
GIS layers identified as input variables for modeling, vegetation fire susceptibility is one
of the most influent. However, the main difficulty at this scale is the scarcity or the lack
of exhaustiveness of the data. In this respect, remote sensing imagery is capable of
providing relevant information. We proposed to calculate an annual relative greenness
index (annual RGRE) that reflects vegetation dryness in summer. We processed times
series of Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION
images over the last six available years (1998 to 2003). The first step was to verify that
these images characterize vegetation types and highlight intraannual and interannual
response variability. It is then possible to identify phenological stages corresponding to the
maximum NDVI (and therefore to maximum photosynthetic activity) during the growing
season, the minimum NDVI at the end of the growing season and the minimum NDVI
during winter period. These phenology metrics ground the annual RGRE calculation.
Values obtained for each observation year show significant correlation (r2 = 0.70) with the
De Martonne aridity index calculated for the same period. A synthesis of yearly index was
integrated in the model as a variable that expresses fire susceptibility.

Citation: Chéret, V., and J. P. Denux (2007), Mapping wildfire danger at regional scale with an index model integrating coarse

spatial resolution remote sensing data, J. Geophys. Res., 112, G02006, doi:10.1029/2005JG000125.

1. Introduction

[2] Wildfires are a prevalent natural hazard in the South
of France. Every year, an average of 23,000 ha of vegetation
burns across forests, heath and scrublands areas, with about
5000 fires occurring. In 2003, the extent of the burnt area
was 73,000 ha as a result of exceptional climatic conditions.
Moreover, fire risks are constantly rising owing to the
changes of land and forest uses. For example, forested areas
are rising because of agricultural set-aside and sylvopastor-
alism decline, residential land encroaches on woodland
areas increasing wildland-urban interface areas. Conse-
quently, fire risk planning authorities have stepped up their
efforts, notably through county- and regional-level fire
protection plans. The Midi-Pyrénées region of southwest
France is not as vulnerable to wildfires as the Mediterranean
departments. Nonetheless it is concerned by the new plan-
ning directives, so we need to identify forest areas where
fire risk exists. A study was done, with the support of the
French National Forestry Office (ONF), to estimate wild-
land fire danger throughout the Midi-Pyrénées region and to

map static and long-term potential fire danger. For Midi-
Pyrénées, as for other regions in the South of France [Chéret
et al., 2003], fire danger mapping is a decision-support tool
of genuine utility. It helps to focus fire prevention planning
efforts on zones where they are really warranted. Planners
need a permanent fire danger assessment valid for several
years. A long-term fire danger map sets a territorial order of
priority for their actions.

1.1. Wildland Fire Danger Assessment

[3] Wildland fire risk is generally considered a combina-
tion of two components: fire danger and fire vulnerability
[Chuvieco et al., 2003b; Jappiot et al., 2001]. The concept
of fire danger is defined as the probability of a fire
happening. The fire danger itself depends on two comple-
mentary elements: spatial occurrence (the probability of a
fire starting or spreading in a given location) and fire
intensity (strength of the flame front and potential burnt
area). Fire vulnerability refers to the potential human,
ecological and economic damages of a fire.
[4] Geographic information systems (GIS) are used in-

creasingly to assess and to map fire risks. Various methods
are applied, some of them complex given the number and
nature of causal factors integrated into models [Bachmann
and Allgöwer, 1998; Castro and Chuvieco, 1998; Farris et
al., 1999; Maselli et al., 1996]. Most of these models
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integrate the main factors related to fire danger, such as
vegetation, topography, fire history and human components.
They are based on expertise and experimentation, with
results often expressed as an index [Chou, 1992; Chuvieco
et al., 2003b].
[5] This paper presents the development and application

of a fire danger index model to produce a fire danger map.
Fire danger analysis is based on the development of an
expert-knowledge-based index model [Chuvieco et al.,
2003b; San-Miguel-Ayanz, 2002] adapted to the scale and
risk typology of this region. Variables integrated into the
model expressed a set of causal factors driving fire occur-
rence and fire intensity. The analysis had to factor in the
region’s varied landscapes as well as the special features of
human activities impacting fire occurrence.

1.2. Coarse Spatial Resolution Remote Sensing Data
to Assess Vegetation Fire Susceptibility

[6] Acquiring continuous geographic data to consider the
causal factors of fire danger over such a large area, was a
determining obstacle to overcome, in particular to charac-
terize fuel condition. Existing indicators and phenological
metrics derived from coarse resolution remote-sensing data
are not well adapted to assess a long-term (semipermanent)
characterization of vegetation fire susceptibility. We aimed
to calculate an original vegetation phenology index derived
from remote sensing data. A new index based on time series
analysis is well adapted to the static model proposed for
long-term fire danger assessment.
[7] Vegetation indices derived from the visible and near-

infrared bands are commonly used to characterize vegeta-
tion. The Normalized Difference Vegetation Index (NDVI)
was defined by J. W. Rouse [Rouse et al., 1974] as NDVI =
(NIR � R)/(NIR + R), where R is the reflectance in the red
band and NIR is the reflectance in the near-infrared band. It
can be correlated to biophysical vegetation parameters such
as active green biomass, photosynthetic activity, leaf area

index, or percent vegetation ground cover [Maselli et al.,
2004; Pereira et al., 1993; Wang et al., 2005]. Since
vegetative activity and physiological conditions are partly
dictated by water content, NDVI, often combined with other
satellite-derived variables like surface temperature, can be
linked to water content to monitor fuel moisture [Alonso et
al., 1996; Chuvieco et al., 2004; Dauriac, 2004; Desbois et
al., 1997; Deshayes et al., 1998]. NDVI is also used to map
fuel types [Keane et al., 2001; Pereira et al., 1993; Riano et
al., 2002; van Wagtendonk and Root, 2003]. For this reason,
this satellite variable and derived indices are incorporated in
many wildfire risk assessment models [Burgan et al., 1998;
Gabban et al., 2003; San-Miguel-Ayanz, 2002].
[8] NDVI is widely used to monitor vegetation in a range

of ecology applications, especially to detect variations in
vegetation distribution and dynamics due to environmental
disturbances [Pettorelli et al., 2005]. A number of different
methods have been developed to determine seasonal vege-
tation dynamics. Time series NDVI data can be used to
determine the annual cycle of vegetation phenology and
calculate the key phenological metrics of the green-up and
senescence cycle [Reed et al., 1994; Zhang et al., 2003].
[9] The aim of our study was to identify areas where

natural vegetation reaches the highest level of combustibil-
ity during the driest period of the year. Time series of
satellite imagery afford the ability to observe the seasonal
dynamics of vegetation. We sought to calculate a yearly
index from NDVI values measured at given times in the
annual vegetation cycle to represent its drying intensity in
summer. For this purpose, we used time series of SPOT-
VEGETATION NDVI data.

2. Study Area

[10] Covering an area of 45,427 km2, Midi-Pyrénées is
France’s largest administrative region and one of the most
contrasting. Situated in the South of the country, midway

Figure 1. Location map of Midi-Pyrénées region and analysis zones.
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between the Mediterranean and the Atlantic Ocean (Figure 1),
it has a great variety of landscapes and climatic conditions. The
relief is characterized by large landform features running
southwest to northeast, from the lofty peaks of the Pyrenees
forming an east-west chain of contrasting relief (elevation
400 to 3300 m) to the foothills of the Massif Central, with its
hills, ridges and wide plateaus (elevation 300 to 1400 m). A
large basin lies in the centre of the region, where the relief is
relatively flat (elevation 100 to 500 m). The opposing
influences of the Atlantic and Mediterranean climates are
constantly felt, the former bringing mild winters and precip-
itation, and the latter hot summers. Precipitation varies
spatially from 600 mm in the centre of the region to more
than 1100 mm in the mountains.
[11] This broad variety of stational conditions has a direct

bearing on the type and distribution of natural vegetation.
According to the French National Forest Inventory (IFN)
forest covers 26% of the total surface area, and 84% of this
surface area is populated with broadleaf species (high oak
forest and coppices, and miscellaneous species).
[12] For wildland fire danger assessment, we have to take

into account the great variety of natural landscapes and their
vegetation cover. We therefore divided the territory into five
large units corresponding to our analysis zones (Figure 1).
These units exhibit the specific characteristics of ancient
mountain terrain with smoothed peaks, lofty mountain
terrain, large alluvial plains, karst limestone plateaus and
high schist plateaus.

3. Methods

3.1. Identification of Variables for the Fire Danger
Index Model

[13] Our study focused on a spatial assessment of fire
danger, looking at the main causal factors: fuel type and
condition, human activities and ignition causes, topography
and fire history. Analysis developed an expert knowledge-

based index model adapted to the scale and risk typology of
the study area. Input variables are considered stable-in-time,
since they change slowly. The aim here was therefore to
design and apply a ‘‘static’’ model, referred to in the litera-
ture as a long-term or structural fire danger index model
[San-Miguel-Ayanz, 2002] different from daily danger esti-
mation for operational use.
[14] The choice of variables to be integrated in the model

and the procedure for GIS combination and weighting were
defined on the basis of expert knowledge of wildland fire
danger characteristics in each of the analysis zones. This
approach was built on an understanding of the context,
causes and nature of fires that occur in the territory studied.
[15] Using an analytical approach, and after performing a

diagnosis for each of the analysis zones with all stake-
holders, we chose variables and mapped them to take into
account the natural and human factors (Table 1). Our choice
was constrained by the observation scale and exhaustive-
ness of the data. Variables were quantified and the value
scale expresses the extent of their contribution to fires
[Kalabokidisa et al., 2002].
[16] To assess the ‘‘potential’’ fire danger, we looked at

factors that have a bearing on spatial occurrence and fire
intensity. Incorporating data on past fires to assess the
‘‘historical’’ fire danger provided additional input for the
model on fire occurrence.
3.1.1. Input Variables for Potential Fire Danger Index
[17] Information on potential fire danger factors, and in

particular vegetation fire susceptibility, remains difficult to
obtain, because data are seldom available, especially at
regional scales. However, this factor is very important,
since it is directly related to fire ignition and propagation.
As a starting point, we used a French National Forest
Inventory (IFN) map to ascertain the nature of forest stands
and their acreages. This forest map provides information
about the combustible surface area. However, this does not
give us direct information on vegetation fire susceptibility,

Table 1. Model Variables and Their Influence on Occurrence and Intensitya

Danger Index Factors Variables

Spatial Occurrence Fire Intensity

Probability of a Fire
Starting in a Given

Location

Probability of a Fire
Spreading in a Given

Location
Potential
Burnt Area

Strength of the
Flame Front

Potential fire
danger

vegetation combustible surface area x xx xx
vegetation fire susceptibility x xx xx x
continuity of combustible area xx x

topographic
conditions

solar exposure x x x x
slope xx x x
exposure to prevailing

wind
x xx x

compounding
human
activities

variation in population
and residential
development

xx xx x

changes in farming
activities (set-aside,
pasture burning),

xx x x

tourist pressure xx x
Historical fire
danger

history of fires number of fires xx
burnt area xx
cause and period of fire

start
xx

aHere x denotes medium influence; xx denotes high influence.
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which exhibits large spatial variations given the type
of vegetation and environmental conditions in the Midi-
Pyrénées region. We therefore used remote-sensing data to
fill the gaps in our information. We used satellite imagery to
map an index showing drought impact on vegetation and
therefore fire susceptibility. Before being integrated in the
model, the annual results had to be synthesized to express a
semipermanent index. The method will be detailed in the
next section.
[18] The centre of the Midi-Pyrénées region is character-

ized by sparse and fragmented woodland areas. The dis-
continuity of vegetation cover was introduced as a factor
that reduces danger levels by slowing fire spread. GIS
spatial analysis capability provides landscape analysis tools,
among them we use the Mesh index [Jaeger, 2000] to
reckon the fragmentation of wildland areas.
[19] The topographic layers taken into account are vari-

ables usually known for their direct effects on fire propa-
gation or indirect effects on vegetation moisture content.
The slope and solar exposure layers were derived from a
digital elevation model generated by the French Mapping
Agency (IGN). Then it was processed with wind data from
the Meteo-France observation network, to build the wind
exposure layer.
[20] Human activities also have a major bearing on fire

danger in two ways. First, official statistics realized by the
‘‘Service central des enquêtes et études statistiques’’
(SCEES) of the Ministry of Agriculture and PROMETHEE
fire database (http://www.promethee.com) show that the
main causes of fire are human, either by carelessness or
arson. Second, changes in the way rural lands and farmland
are managed and maintained can increase fire danger, for
example by extending the combustible surface area. As a
result of agricultural set-aside and depopulation, rural lands
are being maintained less and less. Fallow land growing to
wooded areas are gaining ground over fields and pastures,
leading to the gradual spread of a forest continuum with no
natural fire breaks. The enhanced enthusiasm for nature is
bringing increased numbers of tourists and holiday dwelling
in wildland and forested areas, thereby raising the proba-
bility of fire ignition. This is particularly true in the popular
tourist area of northwest Midi-Pyrénées region. Another
causal factor is the burning of grasslands to maintain
summer pasture. This practice is common where pastoral
farming has survived, especially in the Pyrénées, and is the
main cause of fire starts. Burning is often poorly controlled
because the right means of action is lacking, and fire
spreads across heathland in sunny expositions and some-
times to surrounding wooded areas. To take into account
these factors, the variables choices were based mainly on
the analysis of existing statistical data, they were then
integrated to index calculations.
3.1.2. Input Variables for Historical Fire Danger Index
[21] Fire history data are based on real observations

strengthening assessment of fire occurrence. Variables like
number of fires, burnt areas and causes, indirectly express
the human influence, since most fires are of anthropogenic
origin. While certain inventory data sometimes lack preci-
sion, particularly for estimated burnt area, fire history data
tell us what most often caused fires to start and what periods
of the year fire occurrence is most likely, while indicating
the overall extent of areas affected by fire. This kind of

information is vital when defining a fire typology for the
different analysis zones. Frequency of fire occurrence
identifies sites where specific causes are concentrated, such
as pasture burning in mountain zones. If only potential
causal factors related to the natural environment are taken
into account, the fire danger may be underestimated.
[22] A historical fire database has been available since

1992 (SCEES). The statistics office records fires not by
geographic location but by administrative unit (municipal-
ity). Consequently, it is impossible to interpolate using
tried-and-tested methods [de la Riva et al., 2004] and data
can only be combined with other information layers at
municipality level. Most fires are quickly brought under
control, so burnt areas are too small (90% cover less than
5 ha) to be mapped from available remote-sensing data.

3.2. Vegetation Fire Susceptibility Mapping With
SPOT-VEGETATION Imagery

3.2.1. Satellite Data
[23] SPOT-VEGETATION imagery is acquired daily at a

spatial resolution of 1 km. The data set consists in four
optical spectral bands, B0, B2, B3 and SWIR, correspond-
ing to the blue (0.43–0.47 mm), red (0.61–0.68 mm),
near-infrared (0.78–0.89 mm) and short-wave infrared
(1.58–1.75 mm) domains [Arnaud and Leroy, 1991]. To
reduce data errors due to atmospheric noise, clouds, view-
ing conditions and sensor deficiencies, synthesis products
are processed at the Image Processing Centre at Vito in
Belgium [Passot, 2001]. The 10-day synthesis products
acquired since April 1998 are available 3 months after
insertion in the VEGETATION archive from http://free.
vgt.vito.be/. The data set used for this study covers 1998
to 2003.
3.2.2. Analysis of NDVI Time Series for Phenological
Metrics
[24] We began our study by verifying the potential of

NDVI imagery for discriminating vegetation types and
observing variability in intraseasonal and interannual
response. Using the forest boundaries in the IFN map and
the 6-year time series, we extracted a mean NDVI value for
the dominant types of vegetation in each analysis zone.
Since each vegetation type has its own seasonal dynamics,
we can assume that it exhibits a specific NDVI profile. We
calculated the integrated NDVI over the summer season,
which can be interpreted as the photosynthetic activity in
the growing season [Reed et al., 1994]. The integrated
NDVI was then processed for each vegetation type and
for each year from 1998 to 2003. An analysis of variance
was used to verify that they are significantly different.
3.2.3. Estimating Vegetation Status From NDVI
[25] Many indices derived from NDVI are used to syn-

thesize vegetation behavior. The Vegetation Condition
Index (VCI) was proposed by Kogan in 1990 to evaluate the
global weather impact on vegetation, and more particularly
the impact of drought on farming [Kogan et al., 2003]. Also
called the Relative Greenness index (RGRE), this indice is a
relative measurement of the NDVI value at observation date
with respect to extreme conditions estimated by calculating
a maximum and minimum NDVI over a reference period. It
is calculated as follows: RGRE = (NDVI0 � NDVImin)/
(NDVImax � NDVImin), where RGRE is the relative percent
green at observation date, NDVI0 is the NDVI value at
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observation date for a pixel, NDVImax and NDVImin the
maximum and the minimum NDVI value for that pixel
during the whole reference period.
[26] This index subsequently proved useful for evaluating

wildfire danger [Martin et al., 1994]. Although establishing
a correlation between RGRE and direct measurements of
fuel moisture content in natural vegetation is still proving
difficult [Chuvieco et al., 2003a], efforts are underway to
include this parameter when calculating a daily fire risk
index for operational use, such as the Fire Potential Index
(FPI) or Dynamic Relative Greenness Index (DRGI)
[Burgan et al., 1998; Gabban et al., 2003; Sebastián López
et al., 2002]. Initially designed to monitor vegetation in real
time, in relation to the range of historical NDVI observa-
tions, the RGRE can be adapted to assess drying intensity
during a season. In our study, we were looking for a
semipermanent indicator of vegetation behavior, so we
chose to calculate an original index: the annual RGRE,
evaluating the fuel potential of vegetation as it dries during
the summer months. This vegetation status index is based
on the seasonal characteristics extracted from NDVI time
series. Annual RGRE was mapped for each observation
year and compared with climate data.
3.2.4. Comparison of the Annual RGRE With a
Climatic Index
[27] The susceptibility of vegetation to fire is closely

related to moisture content; fire danger is higher in natural
vegetation affected by water stress. However, conditions
conducive to fire susceptibility are not constant, as they are
driven above all by the intensity of summer drought.
[28] We consider that the annual RGRE reflects fuel

dryness and can be used as a vegetation status input
variable. As vegetation dryness in summer is directly related
to climatic conditions, particularly precipitation levels, we
wanted to verify that the measured index, which varies from
year to year, is consistent with the drought intensity ob-
served each year. We therefore sought to compare annual
RGRE values with a climatic index that expresses the
severity of drought conditions during the growing season.
[29] Research has already shown a close relationship

between a meteorological danger index measured in real
time and indices derived from NDVI [Aguado et al., 2003;
Martin et al., 1994]. For our study, we needed an annual

climatic index. We calculated the De Martonne aridity index
[de Martonne, 1926; Moisselin et al., 2002] over the
growing season from May to September, which is the period
used to calculate the annual RGRE. This index is a simple
ratio of precipitation by temperature: IMgs P/T+10, where
IMgs is the aridity index of the growing season, P(mm) the
total precipitation from May to September, and T (deg C)
the mean temperature over the same period. The climatic
index was calculated for 13 weather stations of the Météo-
France network, selected to characterize variations in cli-
matic conditions across Midi-Pyrénées region and located
near wildland or forest stands (Figure 5 in section 4.2).
[30] We also extracted average annual RGRE values

within a radius of 6 km around the weather stations. Only
one or two types of vegetation predominate at each location.
We also consider that the 13 observation points selected are
sufficiently representative of the variety of landscapes and
environments. We can thus compare RGRE values extracted
around these locations, with the aridity index calculated
from the weather station data.

3.3. Modeling Wildland Fire Danger With a
Long-Term Index

[31] The method used to combine all of the quantitative
input variables must weight their relative influence on fires.
Given the geographic heterogeneity of Midi-Pyrénées re-
gion, in terms of its environment, human activities and
urban density, intermediate indices were calculated specif-
ically for each analysis zone. The principle used was to
apply different ‘‘danger weights’’ at each overlaying step
[Kalabokidisa et al., 2002] and according to the influence of
the variable on fire danger, as presented in Table 1. Results
were adjusted for the territory as a whole when calculating
the potential fire danger index.
[32] The structure of the fire danger model is presented in

the Figure 2. The vegetation status map resulting from the
remote sensing images processing is combined with topo-
graphic conditions to define a fuel condition index. This
intermediate index overlaid with the wildland surface index
map then integrating human activities as an aggravating fac-
tor lead to a potential fire danger index map. First processed
at pixel level this layer is summarized by municipality to be

Figure 2. Structure of wildland fire danger model.
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combined with the historical fire danger index to give the
final wildland fire danger index.

4. Results

[33] We begin by presenting the elements used to map
vegetation fire susceptibility. This layer was then integrated
into the model. The model’s components and structure are
successively described. The end result is the fire danger map
covering the entire study area.

4.1. Seasonal NDVI Profiles

[34] Annual NDVI profiles allow us to understand the
foremost seasonal characteristics and identify the main
phenological metrics, such as the start and duration of the
active growing season [Reed et al., 1994]. Temporal NDVI
variations indirectly reflect an increase or decrease in active
biomass. The amplitude of variations depends on plant
species and may vary from one year to another, particularly
during senescence in dry climatic conditions.
[35] Seasonal NDVI profiles were established for the

6 years of observation (1998 to 2003). During this period
the climatic conditions were varying, with a wet summer
(2002) and a extremely dry summer (2003) and more mod-
erate conditions the other years (1998, 2000 and 2001). The
results are presented using the example of 2000 (Figure 3)
as a baseline, considered as a typical year with respect to the
fire history and yearly climatic conditions. The curves show
NDVI variation from March to November 2000 for seven
vegetation types in the Northeast of Midi-Pyrénées region,
highlighting the transition dates that define the key phases
of vegetation phenology during the active growing season.
We see that NDVI peaks in late spring/early summer, when
maximum greenness is reached. It then falls regularly to a
minimum in September, at the end of the greenness period.
The increase in NDVI in early autumn can be explained by
renewed rainfall. NDVI measurements during this period

can also be affected by regained vegetation vigor, particu-
larly in herbaceous vegetation. This seasonal dynamic is
apparent in all our analysis zones.
[36] In the same analysis zone and for the same vegeta-

tion types, total greenness was calculated by integrating
NDVI from May to September for 5 years (1998 to 2002).
2003 was excluded, as the summer drought and heat wave
in Europe were exceptional that year in terms of their extent,
duration and intensity [Black et al., 2004].
[37] The purpose of comparing integrated NDVI values is

to ensure that vegetation types are correctly discriminated.
An analysis of variance confirms that the vegetation types
are significantly different. The Student test with a = 0.05
shows a F value of 79 for a limit value of 2.45. We therefore
identified four significantly different groups (Figure 4):
heath and grassland; pine (black and Scots pine); high oak
forest and coppices (pubescent and pedunculate oak); beech
and Douglas fir. Comparing mean values shows that the
integrated NDVI does not distinguish beech and Douglas
fir, the two mountain species. This would no doubt have
been possible by including the winter period in total
greenness calculations. Similar results were obtained for
the other analysis zones.
[38] NDVI profiles and phenological metrics clearly

illustrate variability of vegetation behavior over time in
the study area, and correctly discriminate vegetation types.
These initial results confirm that it is possible to use these
variables to follow different types of vegetation. We ob-
served that the dryer the summer period is, the more sharply
the NDVI value decline at the end of the growing season.
Our objective was to exploit this intraseasonal dynamic to
calculate a vegetation drying intensity index. We propose to
calculate and map an annual relative greenness index
(annual RGRE) based on the decrease of NDVI during
the summer period.

4.2. Vegetation Status Mapping With Annual RGRE

[39] To calculate an annual RGRE, reference periods
were derived from seasonal NDVI profiles and observation
of phenological metrics corresponding to the maximum
NDVI during the growing season and the minimum NDVI
at the end of the growing season (Figure 3). We consider

Figure 3. Seasonal variation of NDVI (2000).

Figure 4. Mean of integrated NDVI with 95% confidence
interval (1998–2002).
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that the drop in NDVI recorded after the late spring–early
summer peak indicates reduced vegetation vigor related to
the drop in vegetation moisture content. The more NDVI
falls in summer, the more vegetation water stress and fire
susceptibility increase.
[40] We use an annual RGRE index adjusted to the

vegetative growing season. The NDVI values taken to cover
this period are those obtained from May to September. The
annual index is normalized by the winter minimum to
take into account vegetation behavior outside the summer
period.
[41] For a given pixel, the annual RGRE is obtained from

the maximum NDVI observed at the start of the season
(May–June), the minimum NDVI attained during the driest

period (August–September), and the minimum measured in
winter (December–February):

Annual RGRE ¼ NDVImin � NDVIwinterð Þ
= NDVImax � NDVIwinterð Þ

NDVImax � NDVIwinter indicates, for a pixel, the amount of
living biomass produced during the growing season, while
NDVImin � NDVIwinter gives the amount of biomass that is
still green at the driest time of the period studied. The ratio
between the two (the annual RGRE) corresponds to the
proportion of biomass produced during the year that is still
green at the end of the dry season. The lower the annual
RGRE, the more dead biomass there is and the higher its

Figure 5. Annual RGRE maps for Midi-Pyrénées region (2000–2003).
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fire susceptibility. Factoring in NDVIwinter allows us to
better discriminate broadleaf trees from conifers, since
conifers maintain a higher NDVI in winter when broadleaf
species shed their leaves.
[42] Annual RGRE layers were generated from time

series of decadal NDVI data, extracted for wildland areas.
For high terrain with snow cover throughout winter, the
minimum NDVI is hard to measure; the annual RGRE was
therefore not calculated for the highest areas in the Pyrenees.
The maps obtained for the 4 most recent years are shown
in Figure 5. Comparing years, the index exhibits substantial
spatial and temporal variability. The lowest values, in red
on the maps, indicate locales where vegetation drying
intensity was highest. Areas most sensitive to drought are
mainly in the north and northeast of Midi-Pyrénées
region, where soils are shallow and calcareous, and rainfall
is low. These results are consistent with the known locale
characteristics, i.e., climate, elevation and soils. Some of
these locales are shown in the 2000 map (Figure 5). 2003 is
an illustration of extreme summer drought conditions.
During summer 2003, water availability was extremely
low [Trigo et al., 2005] and the annual RGRE reflects
drought-impacted vegetation across the region, with the
exception of high terrain and a few wetter areas.
[43] We extracted mean annual RGRE values for the

dominant types of vegetation: predominantly oak coppices
and high stands, conifers (except firs) and limestone plateau
heath. In the study area fir grows above 1000 m in areas

where fire risks are low owing to climatic conditions. Firs
stands rarely affected by fire were not taken into account.
The places of extraction are presented in Table 2.
[44] As Figure 6 and Table 3 show, the sequence is

virtually the same from one year to the next: maximum
values are found for high broadleaf and minimum values for
calcareous heath. For these types of vegetation the results
are consistent with the levels of fire susceptibility defined
by expert knowledge. However, large interannual variations
can be measured in particular for coppices and heath (more
than 200% between 2002, a year when no drought effects
were felt, and 2003 when there was a high water deficit).
High broadleaf stands exhibited the lowest index variation;
for 2001 and 2002, vegetation behavior was identical,
whereas a difference, even small, is observed for the other
types of vegetation.

4.3. Correlation of the Annual RGRE With
De Martonne Climatic Index

[45] Interannual variability of vegetation status is related
to the severity of drought conditions. We can verify that the
lowest annual RGRE values (drought-impacted vegetation)
extracted around the weather stations (Figure 5) match the
lowest values of the De Martonne aridity index, indicating
high drought intensity. Seven stations are shown as an
example (Figure 7); the elevation and surrounding types
of vegetation are indicated for each. The shape of the curves
of annual RGRE from 2000 to 2003 confirms what we have
noted about the indices of different types of vegetation and
the range of interannual variations: values are high at
mountain stations where broadleaf species predominate,
with low interannual variations (stations 5 and 7); values
are low (maximum = 5.8) for calcareous heath on shallow
soil (station 6); there are large interannual variations where
coppices predominate (station 1); moderate variations for
conifers (station 4); and intermediate variations for com-
bined vegetation types (stations 2 and 3). In every case, the
low vegetation index values in 2003 are related to the
exceptional dryness that year. In 2002, no water deficit
was noticeable (high IMgs) and vegetation index values
were maximum at all stations.
[46] Broadly speaking, the curves of both indices exhibit

the same trend (Figure 7). However, year 2000 is notewor-
thy for stations 2 and 6. The monthly distribution of
precipitation at these stations shows that the high IMgs
value is due to a peak recorded in September, that is, at the
end of the vegetative growing season. This late water supply
did not affect vegetation behavior and, therefore, the annual
RGRE. This is confirmed by calculating the De Martonne
index only for July and August (IMss). The IMss curve
closely matches that of the annual RGRE. We can also see
that for high IMgs values (station 5), according to the
observed data when IMgs is higher than 16, moisture

Table 2. Types of Vegetation and Their Locations for Annual

RGRE Extraction

Type of Vegetation Location

High broadleaf forest north and south
Coppice northeast and northwest
Conifer (pine) northeast
Heath northeast

Figure 6. Mean annual RGRE values by type of
vegetation.

Table 3. Interannual Variation of Annual RGRE Values

Rate of Interannual Variation, %

2000–2001 2001–2002 2002–2003

High broadleaf forest 21 0 54
Coppice 20 18 271
Conifer (pine) 34 2 134
Heath 40 5 213

G02006 CHÉRET AND DENUX: MAPPING WILDFIRE DANGER G02006

9



conditions have little influence on the vegetation index. We
observe a similar situation at stations at high altitude that
only rarely experience a water deficit. As a general rule,
annual RGRE variations at the 13 stations are high for IMgs
values below 16.
[47] We calculated a linear regression between the two

indices. The IMgs values are used as the dependent variable
of the regression, and the annual RGRE as the independent
variable. Taking all index values, the linear regression
coefficient is statistically significant at 99% confidence
level, with r2 = 0.41 for n = 51. Moreover selecting IMgs
values less than 16, we obtain a linear regression coefficient
of r2 = 0.70 for n = 30 (Figure 8), which demonstrates a
highly significant correlation at 99% confidence level.
These results show that measuring vegetation status with

the annual RGRE reflects variations in weather conditions
due to precipitation.

4.4. Mapping the Fire Danger Index

[48] An average annual RGRE index was mapped from
observed data except year 2003. According to the previous
results, this average index can be chosen as a variable that
expresses fire susceptibility related to vegetation dryness.
[49] Data on environmental conditions and human param-

eters were combined according to the model (Figure 2). In
the final map (Figure 9), fire danger is classified as none,
low, moderate or high. This map spatially quantifies the fire
danger at a regional scale and is quite relevant for defining
priority areas for fire prevention and mitigation plans
mandated by forestry regulations. Forest stands where fire

Figure 7. Interannual comparison of climatic indices values and annual RGRE extracted around
weather stations (IMgs: De Martonne aridity index of the growing season from May to September; IMss:
De Martonne aridity index of the summer season from July and August).
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danger is classified as ‘‘none’’ or ‘‘low’’ need not be
included in such plans. In areas where fire danger is higher,
priority actions can be undertaken to reduce risk factors and
choose appropriate fire fighting management and resources.

5. Discussion and Conclusion

[50] In response to changing public perceptions, fire risk
planning and mitigation are being strengthened, now in-
cluding regions where wildfire risks are low and scattered.
For these territories, assessment of fire danger requires the
index model to be adapted to the specific features of the
natural and human environment. The choice of weighting
variables and a scheme for integrating them is based on
expert knowledge. This is the strength of the process and at
the same times its limitation. Likewise, results validation
relies mainly on expertise. Unlike in other studies [Burgan
et al., 1998; Castro and Chuvieco, 1998; Gabban et al.,
2003], we cannot use fire history statistics to validate results
because these data are already integrated in the model.
[51] Remote-sensing data, used to calculate the annual

RGRE qualifying summer vegetation dryness, yielded de-
tailed and homogeneous information on vegetation fire
susceptibility that no other database could have provided
over such a large area. The annual RGRE, complemented
by existing forest maps, was directly incorporated in the
wildfire danger assessment model. We were also able to
show that annual RGRE variations are consistent with the
De Martonne aridity index measured over the same period.
However, the analysis of monthly distribution of precipita-
tion may be required to evaluate this relationship. Water
supply during winter and early spring is not taken into
account, therefore moisture conditions before the start of
growing season may influence vegetation behavior in sum-
mer. Likewise, heavy precipitation toward the end of the
summer will have little effect on vegetation phenology, but

impact the aridity index. These results illustrate the diffi-
culties to establish a relationship between meteorological
indices and vegetation indices measured by remote sensing
[Maselli, 2004].
[52] We were able to show for the study area that vege-

tation is strongly influenced by the variations of moisture
conditions and that temporal NDVI profiles are contrasting
from one species and one year to another. Vegetation types
studied exhibit relatively typical phenological characteris-
tics, with a cycle of growth and decline from May to
September. In Mediterranean environments, we can suppose
that vegetation behavior is more complex because species
are more adapted to drought, with less NDVI variability in
summer and a possible growth phase in autumn. The
development of fire danger assessment based on the annual
RGRE is an interesting challenge for Mediterranean regions,
where the fire risk is high. However, it will be necessary to
adjust the annual RGRE calculation to drought-adapted
vegetation using specific phenology metrics. Like for the
Midi-Pyrénées region, we could establish a benchmark of
annual vegetation dryness maps. A posteriori analysis of
these data, related to statistics on fire events and climatic
data, would be useful to fire managers to review planning
and firefighting resources implemented in previous years. A
purpose could also be to assess the capability of vegetation
phenology metrics to provide early information on potential
fire danger at the beginning of the dry period.
[53] SPOT-VEGETATION imagery is available for all

years since 1998, so we can establish a genuine benchmark
of annual RGRE maps by vegetation type. Besides being
used to assess wildland fire danger, these data can also bring
direct benefits for forest managers. For example, in Midi-
Pyrénées region they are currently seeking to locate and
monitor forest stands that have been repeatedly affected by
high water stress in recent dry years. Pre-2003 data can pro-
vide an appropriate NDVI baseline reference. The analysis

Figure 8. Linear regression between levels of annual
RGRE and values of the aridity index of the growing season
(IMgs) less than 16 (significant at 99% confidence level).

Figure 9. Final map.
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of changes in post-2003 vegetation phenology metrics
could then allow us to map areas where forest decay fol-
lowing the abnormally dry summer of 2003 and the drought
of 2005 is suspected.
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