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Abstract: This work considers path-planning processes for manipulation tasks such as assembly, maintenance or disas-

sembly in a Virtual Reality (VR) context. The approach consists in providing a collaborative system associat-

ing a user immersed in VR and an automatic path planning process. It is based on semantic, topological and

geometric representations of the environment and the planning process is split in two phases: coarse and fine

planning. The automatic planner suggests a path to the user and guides him trough a haptic device. The user

can escape from the proposed solution if he wants to explore a possible better way. In this case, the interactive

system detects the user’s intention in real-time and computes a new path starting from the user’s guess. Exper-

iments illustrate the different aspects of the approach: multi-representation of the environment, path planning

process, user’s intent prediction and control sharing.

1 Introduction

The industrial product development process is go-

ing faster and faster with more and more complex

products. This leads to a need of tools allowing to

rapidly test a product at all the Product Lifecycle

Management (PLM) stages during the design phase.

There is a particular need for the tasks that involve hu-

man operator manipulation. Here comes the interest

of Virtual Reality (VR) to run these tests with virtual

prototypes instead of expensive and time consuming

real ones (Fillatreau et al., 2013).

The main issue of tasks such as the ones involved

in assembly, dismantling and maintenance is to find

paths for the systems components and parts.

In this context, we propose a collaborative path-

finding system based on the interaction of a user im-

mersed in a VR simulation and an automatic path

planning process inspired from robotics.

Collaboration is defined as follows. The system

provides a initial planned path and the user is guided

along a computed trajectory through an haptic device.

However, the user can disagree with the proposed path

and try to go in another direction. The system must

compute a new path every time the user tries to test

another solution. Thus, it must be able to take into

account the user’s interactions in real-time to update

the suggested path and it requires control sharing be-

tween the user and the planner while performing the

task.

Robotics path planners mainly deal with geomet-

ric aspects of the environment. The VR context of our

planner involves a human in the loop with a different

environment representation. Thus, we chose to split

the planning process in two phases: a coarse plan-

ning dealing with topological and semantic models of

the environment (the places, their semantics and their

connectivity) and a fine planning dealing with geom-

etry and semantics (geometry of obstacles and places

and their complexity). This planning process par-

titioning provides a framework compatible with the

human path planning process described in (Ahmadi-

Pajouh et al., 2007).

Thus, the originality of the proposed interactive

path planner consists in using the information of

a multi-layer environment representation (semantic,

topological and geometric) for path planning, but also

for control sharing. All these environment models are

used by distinct planner layers to perform the coarse

(semantic and topological aspects) and fine (seman-

tic and geometric aspects) planning and to assist VR

user. The actions of the VR user are also taken into

account in real-time to update the proposed path.

This paper first gives, in section 2, an overview

of the state of the art of the different fields involved

(automatic path planning, sharing control, interactive

path planning). The architecture of our novel multi-

layer environment model and multi-layer interactive

planner is presented in section 3. The implementation

of this architecture on our VR platform is described



in section 4. Proof of concepts experiments are pre-

sented in section 5. These experiments show that

our novel multi-layer architecture finds more relevant

paths with faster processing times than the purely geo-

metrical approaches from the state of the art. Thus our

original approach allows a better real-time interactive

planning. Finally, section 6 summarizes the contribu-

tion of this paper and introduces the future steps of

this work to handle real industrial manipulation tasks.

2 State of the art

2.1 Automatic path planning

The automatic path planning issue has been deeply

studied in robotics. These works are strongly based

on the Configuration Space (CS) model proposed by

(Lozano-Perez, 1980). This model aims at describ-

ing the environment from a robot’s Degrees of Free-

dom (DoF) point of view. The robot is described us-

ing a vector where each dimension represents one of

his DoF. A value of this vector is called a configu-

ration. So, all the possible values of this vector form

the CS. This CS can be split into free space and collid-

ing space (where the robot collides with obstacles of

the environment). With this model, the path planning

from a start point to a goal point consists in finding a

trajectory in the free space between these two points

in the CS.

The main strategies for path planning are given in

Table 1 where we distinguish the deterministic from

the probabilistic ones, but also, the ones involving

global approach from the ones involving local one.

More details on path planning algorithms and tech-

niques are available in (LaValle, 2006).

2.2 Control sharing

There are already existing applications involving

path planning with human interactions (robot tele-

operation, semi-autonomous vehicles, virtual envi-

ronment exploration,...). These applications allow us

to identify two aspects in control sharing:

• Authority sharing: it aims at defining how the au-

thority on the system is shared between automatic

planner and human. To deal with this issue, differ-

ent strategies can be found in the literature. The

use of virtual fixtures (Marayong et al., 2003), the

allocation of the authority to the automatic sys-

tem for fine motion operations (Abbink and Mul-

der, 2010), the progressive transfer of authority

to robot while reaching the goal (Weber et al.,
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Figure 1: Sharing control model in semi-automated plan-
ning.

2009), for an anthropomorphic robot, the control

of Cartesian position and orientation of end ef-

fector by user and joint control by planner (You

and Hauser, 2012). The authority sharing through

haptic devices were studied for semi-autonomous

vehicles driving. In this case, inspired from the

horse riding experience, (Flemisch et al., 2012)

suggests to use an haptic interface with a H-mode

to perceive user’s involvement and allocate the au-

thority according to it (the higher the user involve-

ment is, the more authority he has).

• Intent prediction: it aims at predicting the intent

of the human to define the goal of an automatic

controller and thus to assist the human perform-

ing the task. These techniques are strongly based

on behavior or trajectory recognition (Aarno et al.,

2005; Fagg et al., 2004; Li and Okamura, 2003;

Yu et al., 2005), on minimum jerk criterion (We-

ber et al., 2009), on model predictive control

(Loizou and Kumar, 2007; Anderson et al., 2010).

Dragan also recently proposed to find the targeted

goal among a set of potential ones from the cur-

rent movement direction (Dragan and Srinivasa,

2013).

We summarize these two control sharing aspects

in Fig. 1 where the yellow boxes illustrate the control

sharing.

These techniques allow involving human and au-

tomatic planning system to perform a task. However,

the user’s actions do not affect the automatic planner

strategy to compute the path.

2.3 Interactive path planning

Some works propose collaboration between a human

operator and an automatic planner in the path plan-

ning process. The simpler one (Ladeveze et al., 2010)

uses a potential field strategy. An attractive field to

the goal is computed and used to guide the user thanks

to a haptic device. Another interactive planner from

(Ladeveze et al., 2010) guides the user along a com-

puted trajectory. To compute this trajectory in real-

time, a cell decomposition of the free space is used to

define a 3D tunnel. Then a RDT algorithm computes

a path within this 3D tunnel. The whole trajectory



Global approaches Local approaches

Deterministic

strategies

Cells decomposition

Roadmap
Potential fields

Probabilistic

strategies
PRM RRT and RDT

Table 1: The main path planning approaches

computation process is restarted if user goes away

from the proposed trajectory. Finally, an interactive

planner built from a probabilistic strategy (Taı̈x et al.,

2012), uses the users action to constraint the random

sampling of the configuration space in the RRT grow-

ing.

These three planners do not involve the human

user in the same way. The first one gives a strong

responsibility to the user (it’s up to him to deal with

the obstacles and to avoid collisions). The second one

suggests a whole trajectory the user can go away from

to restart the whole planning process. The last one

allows the user to point a direction that gives to the

planner a preferred direction to explore.

3 Proposed interactive planner

This section presents the concepts of the strategy

used in the interactive planner shown in Fig. 2 where

colors are linked to the environment and planning lay-

ers: yellow for geometry, orange for topology and red

for semantics. The same colors are used in the al-

gorithms to specify the involved layer. The concepts

used are illustrated here with 2D illustrations for clar-

ity, but the model stands identical for 3D simulations.

We argue that involving semantic and topological

aspects in path planning in addition to the common

geometric ones allows adapting the planning strat-

egy to the local complexity of the environment. To

deal with it, a coarse planning is performed first using

mainly semantic and topological information. Then,

heavy geometric path planning strategies are used

merely locally, (according to the place complexity).

This allows us to plan path without disturbing user’s

immersion in the VR simulation, and to take into ac-

count user’s action while performing the task to inter-

actively update the planned path.

The contribution of the work presented here is

thus two-fold:

• Guidance is provided in real-time to the user

by improving the path planning processing times

thanks to the semantic and topological informa-

tion of the environment.

• User’s actions are integrated in real-time in the

planning process and used to update the planned
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P9 P10
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a.2D environment. b.Environment’s places.
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Figure 3: Different perceptions of environment for user and
planner.

path, and so, the guidance submitted to the user.

3.1 Environment representation

The topological information of the environment is

represented as a set of Places (P1 to P7 in Fig. 3.a)

and transition areas between those places, which we

call Borders; Bi, j denotes the transition area between

places Pi and Pj. The topological layer of our environ-

ment model is made of a Topological graph (Fig. 3.c)

connecting places and borders. In this Topological

graph, the nodes correspond to the Borders, and the

edges to the Places. Fig. 4.a shows the distance be-

tween the borders’ centers in place P4. These dis-

tances are attributes set to the edges of topological

graph (Fig. 4.b for place P4).

The semantic information is attached to places.

Semantic attributes are assigned to the places to de-

scribe their complexity (size, shape, cluttering,...) for

path planning.

The geometric environment representation con-

sists in a geometric description of the environment’s

objects and a cell decomposition of the Free space.

The Objects are described with meshes; the free space

decomposition is made thanks to a quadtree (an octree

in 3D) (Fig. 3.d).

This muli-layer environment model is built as
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Figure 2: UML Domain model of environment representation and interactive planner.
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Figure 4: Topological graph building for place P4.

given in algorithm 1. First (line 2), the 3D mesh

of environment Objects are loaded. Second (line 3),

the Free space decomposition is computed. Third

(line 4), the free space decomposition is used to iden-

tify the place. Fourth (line 5), the Places found are

used to define the Borders. Then (line 6), the Borders

are connected building the Topological graph. Last

(line 7), semantic attributes are set to the Places.

Algorithm 1: build environment model

1 begin

2 load Objects 3D Meshes ;

3 build Free space decomposition ;

4 build Places ;

5 build Borders ;

6 build Topological graph ;

7 assign attributes to Places ;

3.2 Planning aspects

According to these environment models, the planning

process is split in two stages: the coarse planning in-

volving semantic and topological layers and the fine

planning involving semantic and geometric layers

3.2.1 Coarse planning

To adapt the geometric planning strategy to local

complexity, the whole path is split in steps. A step

refers to a place of environment representation. A step

also refers to a border to reach to fulfill the step. The

geometric planning strategy is thus chosen according

to the semantic information of step’s place.

Algorithm 2: coarse planning

1 begin

2 update Topological graph (start & goal) nodes ;

3 update Topological graph’s costs ;

4 explore Topological graph ;

5 build Topological path and Topological steps ;

6 for Topological step ∈ Topological path do

7 define milestone for Topological step ;

Algorithm 2 describes this stage. Two nodes cor-

responding to start (S) and goal (G) configurations

are added to the topological graph (line 2). To direct

the graph exploration the Semantic planner, thanks to

the Semantic interpreter, assigns costs (C) to graph’s

nodes (ni, j) and edges (ek) (line 3). These costs are

chosen accordingly to the semantic information of in-

volved places (see (1)).

Cni, j
= f (sem(Pi),sem(Pj))

Cek
= f (dk,sem(P(ek)))

(1)

Where sem(P) is the semantic information of

place P, ek is a graph’s edge, dk its distance attribute
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Figure 5: Steps of a topological path.

and P(ek) its place attribute; ni, j is the node linked to

the border Bi, j between Pi and Pj.

These costs make the cost of a path (Cpath) com-

putation possible (see (2)).

Cpath = ∑
ni, j∈path

Cni, j
+ ∑

ek∈path

Cek
(2)

Then the Topological planner explores the graph

(line 4) thanks to a Dijkstra algorithm (Dijkstra, 1959)

to find the less expensive Topological path between

start and goal nodes. This Topological path is used

to split the trajectory in Topological steps (line 5),

each step corresponding to a place to cross (a edge

of Topological path) and a Border to reach (a node of

topological path). Fig. 5.a shows the Topological path

found in the environment of Fig. 3.a. Fig. 5.b focus

on the edge and the node corresponding to the second

step of this path.

3.2.2 Fine planning

This planning stage consists in finding the concrete

geometrical path. To do so, each Topological step is

used to define a milestone configuration within the

border to reach (line 6-7). Then, accordingly to the

semantic information of the place to cross, we adapt

the geometric path planning strategy. Indeed, the aim

of our architecture is to be able to choose the best geo-

metric planning method among a set of available ones

for each step. For now, we use two geometric plan-

ning strategies. These two strategies deal with the

two distinct geometric environment models (Obsta-

cles and Free space description). Depending on the

semantic attribute describing the place’s cluttering,

the geometric planner can perform an A* algorithm

(when the place is cluttered) on the part of the octree

corresponding to the step’s place to set intermediate

milestones within the step. When all the milestones

have been defined, the Local planner guides the user

toward the next milestone. It computes a linear in-

terpolation between current configuration and mile-

stone’s configuration, and uses this interpolation to

apply a torsor on a haptic device.

3.2.3 Coarse and fine planning organization

The coarse and fine planning are used to manage the

whole planning. The Topological path and its steps

are concepts allowing saving the necessary informa-

tion for each planning layer. When the Topological

path is found and the Topological steps are defined,

the steps information is used by the Semantic planner

to set the geometric layer accurately.

3.3 Process monitoring

The Topological path and its steps are concepts al-

lowing the different planning layers sharing the infor-

mation. When the Topological path is found and the

Topological steps are defined, the step information is

used by the Semantic planner to accurately set the ge-

ometric layer.

Algorithm 3 shows how the planning layers are

involved to monitor the planning process. While the

user is performing the task, he is guided toward the

next milestone configuration thanks to the haptic de-

vice. This next milestone is updated while the user

moves along the path. On the geometric layer, the

next milestone is set to the Local planner for the guid-

ance computation when the current one is considered

as reached (line 11-12). The goal is considered as

reached when the distance between the goal and the

current position is smaller than θd . On the topologi-

cal layer, the milestone is a Border, so even if the user

is guided toward a geometric configuration set within

the Border, the milestone is considered as reached as

soon as the user enters the Border. When the target

Border is reached (line 2), the next Topological step

is used to set the Local planner (line 7-9), except if

the current step was the last one. In this case, the

last milestone must be reached to consider the task as

achieved (line 3-5).

3.4 Control sharing aspects

The planner provides user with a guidance torsor

through the haptic device used for object manipula-

tion. This Local planner computes the guidance tor-

sor.

For each layer of such a planner architecture, spe-

cific ways to share control can be proposed as shown

in Table 2.

In Table 2 it appears that the intent prediction for

the geometric layer is directly linked to the authority

sharing of topological layer. Indeed, within a Place,

the set of potential goals to get out of this Place is

made of the corresponding Borders. The intent pre-

diction is made with geometric movement and geo-



Authority sharing Intent detection

Semantic

layer

Learn from users action new semantics information or

means to deal with them to accurately set the topological

and geometric planners

Interpret planning query expressed in natural language

(assemble this part on this one, bring this object on this

one,...)

Topological layer

Check if user agrees with the proposed topological path.

Trying to predict his intents on the topological layer

(which place he is targeting)

Learn the kind of paces the user prefers to cross to advan-

tage them during the topological path planning process

Geometric layer

Dynamically balance the authority on the object manip-

ulation (between human and automatic planner) by mod-

ulating the automatic planner guidance norm

Find the targeted next place to redefine the geometric

planner goal

Table 2: Interaction means on the diferent layers

Algorithm 3: process monitoring

1 begin

2 if Topological step = achieved then

3 if current step = last step then

4 if Milestone reached then

5 achieved = true;

6 else

7 set next Topological step in Local planner ;

8 if Topological step’s Place cluttered then

9 run A* on Topological step ;

10 else

11 if Milestone reached then

12 set next milestone to Local planner ;

metric information on Borders. The re-planning is

made by the Topological planner for a new Topologi-

cal path definition.

The same logic applies for the intent prediction

of the topological layer and the authority sharing of

the semantic layer. Cost functions of (1) may be

learned from the places the user prefers to cross. In-

deed the preferred places attributes can be identified

from all the re-planning done due to users action. The

new cost values defined with these functions will thus

change all the incoming topological re-planning.

The control sharing of the proposed planning ar-

chitecture is focused on the geometric and topological

layers. We implemented A H-mode from (Flemisch

et al., 2012) for geometric authority control. We also

developed an intent prediction inspired from (Dragan

and Srinivasa, 2013) to make the topological path re-

planning available.

3.4.1 Authority sharing

To share authority, we chose to use a strategy inspired

from H-mode introduced in (Flemisch et al., 2012).

This strategy aims at modulating the guidance torsor

G norm according to the user’s involvement as shown

in equation 3.

Guser = gmod .G (3)

Where gmod is a measure of user’s involvement

from gmodmin
(not involved) to 1 (strongly involved).

The lower limit gmodmin
is chosen to keep the user

aware of automatic planner state as suggested by

(Marayong et al., 2003). In our application of H-

mode, we chose to compute gmodi
on each process

loop i from the scalar product of instantaneous guid-

ance force (−→gi ) by the instantaneous movement direc-

tion (−→mi) as shown in equation 4.

gmodi
=

1−gmodmin

2

( −→gi .
−→mi

‖−→gi ‖‖
−→mi‖

+1

)

+gmodmin
(4)

The coefficient obtained with 4 is filtered to obtain

a smooth transfer of the authority with g f modi
compu-

tation given in equation 5.

g f modi
= αmod .g f modi−1

+(1−αmod)gmodi
(5)

Where αmod is chosen from 0 to 1 accordingly to

the loop rate and the transfer time needed. The g f modi

coefficient obtained is applied to equation 3 to have

our effective authority control given in equation 6.

Guseri
= g f modi

Gi (6)

3.4.2 Intent prediction

Algorithm 4 shows the process used to define if a

coarse re-planning is necessary or not. On line 2, if

the user is not following the guidance (angle between

guidance direction and movement direction greater

than threshold angle and movement amplitude greater

than a given threshold), it means the user does not

agree with the proposed path. He may have found an-

other one or at least needs a new proposal.

To deal with it, the intent prediction we use al-

lows us to define, in a step, for each border of the

current Place, the probability that the user is target-

ing it (line 3). These probabilities are used to define

if the user is targeting another border than the one de-

fined in his current step (line 4). In this case a new
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Figure 6: Border representative point problem.

topological path is defined taking into account user’s

will.

Algorithm 4: intent prediction and replanning

1 begin

2 if user’s movement 6= guidance then

3 compute Borders’ probabilities ;

4 if prediction 6= proposal then

5 coarse planning;

6 set first Topological step in Local planner ;

7 if Topological step’s Place cluttered then

8 run A* on Topological step ;

To manage it, we decided to adapt Dragan’s strat-

egy (Dragan and Srinivasa, 2013) using the set of bor-

der of the current step’s place as the set of potential

goals. Indeed, to predict user’s intent, Dragan com-

putes probabilities for all potential goals thanks to a

scalar product of the movement −→mi by the goal direc-

tion
−−→
SiGn (where Si is the current position and Gn the

position of nth goal). In our simulations, the potential

goals (the borders) are not punctual. Thus the point

chosen to compute the scalar product must be care-

fully chosen. Indeed, as shown in Fig. 6, if the cen-

ters Ci of borders Bi are taken as representative points,

the probability to target borders B1 and B2 will be the

same. However, it seems that B2 is more suited to the

user. To deal with this issue, we chose to select the

borders’ nearest points Ni of the movement axis.

With such elements, the probability that the border

B j,k is targeted is given in (7) where a scalar product

is scaled to fit between 0 and 1.

With such elements, the probability that the border

B j,k is targeted is given in equation 7 where a scalar

product is scaled to fit between 0 and 1.

P(B j,k) =
1

2

−→mi.
−−−→
SiN j,ki

‖−→mi‖‖
−−−→
SiN j,ki

‖
+0.5 (7)

Fig. 7 is an example of the points chosen for intent

prediction in place P4 where Si is the instantaneous

position on sample i, −→mi its movement direction, and

N j,ki
the point chosen to consider border B j,k. In this

×
SiN4,6i

N4,9i

N4,8i

N4,10i

×

×

×

×

−→mi

Figure 7: Border probability computation elements

example, the borders classified by probability to be

targeted are: B4,10, B4,9, B4,8 and B4,6.

When the probability of all the borders have been

computed, if the following condition of (8) is satis-

fied, a new topological path computation in done.

max(P(Bi, j))–P(Bstep)≥ θreplanning (8)

Where P(Bstep) is the probability computed for

the border chosen as goal of the current step and

θreplanning is the threshold used to decide if a topo-

logical re-planning is needed or not.

3.4.3 Coarse re-planning

When a coarse re-planning is necessary (line 5 of

Algorithm 4) the start node of the topological graph

is updated to match with the current object posi-

tion. The borders’ costs are also updated to add costs

Cnk,li
corresponding to the intent prediction (see (2)).

These new costs direct the next topological graph

exploration toward the user’s targeted border. The

new topological path computation is done adding new

costs Cnk,li
to the nodes linked to the borders. The

costs added are chosen accordingly to the correspond-

ing borders as given in (2).











Cnk,li
= k

max(P(Bi, j))–P(Bk,l)

max(P(Bi, j))
if Bk,l 6= Bstep

Cnk,li
=Ch if Bk,l = Bstep

(9)

Where k is a multiplicative coefficient and Ch a

specific cost used to avoid the border of previous

Topological path when computing a new one.

These new costs, being heavy on the previously

chosen border, and light on the high probably targeted

ones will tend to explore paths through user’s targeted

borders and thus define a topological path crossing

one of these borders.



3.5 Interactive path planning

simulation

Algorithm 5 summarizes the operations made for the

interactive path planning. First, an initialization pro-

cess including environment building and first coarse

planning is processed (line 2-7. Then, the proper

interactive planning is done in a loop (line 9-14).

This loop includes the performed trajectory record-

ing (line 9), the user’s intent prediction and the re-

planning to fit with his intent (line 11), the process

monitoring (line 12) and the guidance modulation and

update (line 13-14).

Algorithm 5: Interactive planning simulation

1 begin

2 build environment model;

3 coarse planning;

4 achieved = f alse;

5 set first Topological step in Local planner ;

6 if Topological step’s Place cluttered then

7 run A* on Topological step ;

8 while achieved = f alse do

9 record sample configuration ;

10 compute user’s movement direction ;

11 intent prediction and replanning;

12 process monitoring;

13 update authority ;

14 update guidance ;

4 Implementation

We implemented our proposed path planning and

environment modeling architecture in VirtoolsTM4.1

software through libraries developed in C++ lan-

guage. We developed 3 distinct libraries: 2 au-

tonomous libraries corresponding to environment

model and path planner and an interface library.

4.1 Environment representation built

The environment model is implemented in a dedi-

cated library interfaced to VirtoolsTMwith a specific

library.

The environment representation we use is made of

4 models:

• The objects of the environment represented

through meshes and positioning frames. To build

this part of environment model, we use the CGAL

project (CGAL, 2014). Semantic attributes are at-

tached to the objects. One of them describes if

the object is fixed or not to be able to exclude the

moving ones while identifying the places (static

mapping of the environment).

• The free space description through an octree de-

composition of the 3D scene (in this case also, the

nodes colliding with fixed object are distinguished

from those colliding with only moving objects)

• The topological graph to model the places con-

nectivity (the graph’s nodes are the borders, and

the edges the places)

• The set of places and their borders. We de-

fined some procedures to automatically identify

the places from the octree structure. The semantic

attributes are characters strings. Their attachment

to the places is manually made, choosing for each

place the right attributes among a set of available

ones. One attribute is automatically set: ”clut-

tered” if the place contains moving obstacles

The attributes available in our simulations allow

describing the level of complexity of a place as ”low”,

”average”, ”high”, and ”very high”. Another attribute

is used to define if a place is ”cluttered”. Finally,

”square”, ”triangular”, ”round” and ”pentagonal” at-

tribute can be set to describe place’s shape.

4.2 Planner implementation

The planner is also implemented in a dedicated library

and interfaced to VirtoolsTM using the same interface

library used to interface the environment.

4.2.1 Planning classes

Four classes had been defined corresponding to the

four planners. Each of these planner classes deals

with an environment model. The local planner pro-

vides the user with the guidance. The geometric plan-

ner finds, if necessary, a path on the octree. The topo-

logical planner explores the topological graph to build

the path and the steps managed by the local and the

geometric planner. The semantic planner coordinates

the whole planning process, asking the topological

planner for the topological path and planning which

strategy will be used on the geometric layer.

For the weights computation, we defined the func-

tion of (1) assigning the weights as given in (10).

Cni, j
=

Ccomplexity

2

Cek
= dk.Ccomplexity

(10)

Where Ccomplexity sums two costs:



• the first one is set according to the traversability

of the involved places 0, 0.5, 1 and 5 for low, av-

erage, high and very high complexity.

• the second one is set according to the shape at-

tribute: 0 if empty, 0.5 if the shape match with the

handled object’s shape, and 5 if not.

4.2.2 Control sharing classes

Two main classes improve the planner for the con-

trol sharing. The first one is related to the Author-

ity Controller. It aims at modulating the guidance

norm according to the user’s involvement. It allows

user to feel free when he is exploring others ways.

The second one is the Intent Predictor. It detects the

user intents to compute a new Topological Path when

the user goes away from the proposed one. These

two classes and there computation are strongly based

on the instantaneous movement computation made

thanks to the Trajectory Step Trajectory.

The geometric authority sharing is set as follow:

• the minimal guidance norm is set to 10% of the

nominal norm. Thus the gmodmin
parameter of

equation 4 is set to 0.1.

• the guidance modulation filter parameter αmod of

equation 5 is set to 0.9 to process the filtering on

some twenty samples

4.2.3 Processes and threads

The guidance submitted to user being provided in

real-time through a haptic device, the corresponding

computations are done in the main thread of simula-

tion. This inclusion in the simulation loop updates the

guidance about 60 times per second.

The intent prediction and the new topological path

computation are run when needed on a dedicated

thread to not disturb the main thread and thus not de-

crease the sample rate. Both processes are synchro-

nized thanks to flags notifying states changes.

5 Simulations and results

The following simulations were implemented on

our VR platform (Fillatreau et al., 2013) (see Fig. 8).

The VR devices used here are a large screen using

passive stereoscopy for the 3D visualization and im-

mersion, an AR Track system for the user view-point

capture and a Virtuose 6D 35-45 as haptic device for

the part handling.

The first simulation is a 3D instance of the 2D ex-

ample used to illustrate the principles of our planning

Figure 8: Simulation on VR platform.

strategy. It has been used for development and al-

lowed to test the collaboration of the planners. The

second simulation shows a richer semantics of the en-

vironment (semantic attributes that describe the shape

of objects and places). This has allowed showing

how the control of the planning process, thanks to the

semantic information, increases the reliability of the

planned path while reducing the processing time.

5.1 First simulation

5.1.1 Simulation scene

To test the multi-layer structure on the laboratory’s

VR platform, the environment used is a 3D instance

of the environment described in section 3. This en-

vironment is a cubic workspace with four obstacles

cluttering the scene (3 fixed and 1 moving). Different

environment configurations have been tested moving

the fixed obstacles to change the complex passages lo-

cations (O1 and O2 are moved vertically and O3 hor-

izontally). The corresponding topological graphs are

given in Fig. 9. This figure also illustrates the plan-

ning query in these environments. It aims at bring-

ing a piece from a start point S in place P1 to a goal

point G in place P2. The topological paths found by

the topological planner are also displayed in bold blue

lines in the topological graphs.

5.1.2 Path planning

Fig. 10 shows the real path computed in the environ-

ment illustrated in Fig. 9. The object to move is the

red cube and the targeted goal is the green one. The

path is displayed in green. The paths on place P3

avoid mobile obstacle O4 thanks to the A* algorithm

performed on this cluttered place. To find such paths,

the computational time for the Dijkstra algorithm in

the topological graph was about 1ms, and the A* al-

gorithm when necessary to cross the cluttered place

took from 50ms to 750ms depending on the path to

find. Thus, the whole path is find in less than 1s when
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Figure 9: Experimental environments.
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Figure 10: Planning results.

using the A* algorithm alone without any semantics

or topology planning process takes about 3.5s without

avoiding complex passages (in this case the past com-

puted is the shortest but not the easiest to perform).

5.1.3 Path re-planning

Fig. 11 illustrates the topological re-planning includ-

ing real-time detection of user’s intent. In Fig. 11.a, in

the first step, the user seems to prefer the narrow pas-

sage. Detecting it, the topological path is recomputed

taking into account this intent. In Fig. 11.b, the user

doesn’t follow the guidance along the A* path in the

third step. Thus, the topological planner computes a

new topological path. The path re-planning including

a.Re-planning in step 1. b.Re-planning in step 3.

Figure 11: Topological re-planning in environment 1.

A* process is done in less than 150ms in this case.

5.2 Second simulation

5.2.1 Simulation scene

Our simulation scene (see Fig. 12) is made of a cubic

workspace divided in three large places by two walls.

The wall in the foreground is an obstacle with four

holes. Each hole has a characteristic shape (square,

triangular, round and pentagonal). The wall in the

background is an obstacle leaving a passage on each

side (a large one on the left and a narrow one on the

right). A moving obstacle clutters the place between

these two walls.

The topological places of this environment are:

the three large places, the two passages around the

background wall, and the holes through the fore-

ground wall (each hole corresponds to a place). The

semantic attributes attached to the places are: ”low

complexity” for the three large places; ”high com-

plexity” for the large passage around the background

wall, and ”very high” for the narrow one. Attributes

are also set to the wall holes to describe their shape

(”square”, ”triangular”, ”round” and ”pentagonal”).

The additional ”cluttered” semantic attribute is as-

signed to the places containing moving objects.

The planning query here consists in passing the

two walls to move the shaped object (in red) from one

side of the cube to the other.

5.2.2 Path planning

Fig. 12 shows the path computed with our proposed

architecture. Fig. 12.a shows the path planned for the

red cylindrical object, and Fig.12.b the path planned

for the triangular one. In both cases, a path is found,

and the computed path crosses the wall in the fore-

ground through the hole having the same shape as the

moved object. Furthermore, the computed path goes

through the large passage beside the wall in the back-

ground rather than the narrow one.



a.Path for cylinder. b.Path for triangle.

Figure 12: Planning results.

The computational time to find these paths is 1s

when moving the triangular object and 7s when mov-

ing the cylindrical one. The A* search is more com-

plex for the cylinder. In Fig. 12.b, after the triangu-

lar moved object has crossed the triangular hole, the

path through the large passage besides the wall in the

background is quite simple. The path computed for

the cylinder is more complex. When the cylinder has

crossed the round hole, it is located on the wrong side

of the background wall to reach the large passage.

We compared our results to the results obtained

using the A* planning algorithm. The processing

times obtained were 24s and 26s for the triangle ob-

ject and the cylinder respectively; in both cases, the

A* algorithm failed to find a feasible path as the pro-

posed hole to get through the wall in the foreground

had the wrong shape.

These results show the advantage brought by our

architecture; controlling a classical geometrical path

planner using the semantic and topological informa-

tion leads to improve the planning results qualitatively

(success vs failure), while reducing drastically pro-

cessing times.

5.2.3 Path re-planning

Fig. 13 illustrates the topological re-planning in the

case of the cylinder manipulation. Here, the user does

not follow the haptic guidance along the A* path be-

tween the two walls, and targets the narrow passage to

perform a simpler path. Thus, the topological planner

computes a new topological path, through the narrow

passage instead of the large one, according to the user

intent. The path re-planning (topological re-planning

and geometrical A* re-planning) is done in less than

2s in this case.

6 Conclusion

This paper presents a novel multi-layer architec-

ture for interactive path planning in VR simulations.

This architecture is based on a multi-layer environ-

Figure 13: Coarse re-planning with cylinder.

ment model and a multi-layer planner. Each layer

deals with specific information (semantic, topological

and geometric). The contribution of such an architec-

ture is two-fold :

• First, it provides the user with real-time manip-

ulation guidance thanks to path planning involv-

ing the semantic and topological information. The

path planning process is accelerated by splitting

the path in steps and then by adapting the geo-

metric planning strategy to the local complexity

of each step.

• Second, it integrates efficiently a human in the

loop: path re-planning is computed based on real-

time user’s intent detection and motion control is

shared by the user and the planner.

The interest of such a planner architecture had

been demonstrated here with semantic information of

the environment based on ”complexity”, ”shape” and

”clutter”. This information allowed this novel archi-

tecture to deal efficiently with an abstract example us-

ing only simple geometrical path planning techniques.

However, real manipulation task for industrial

processes involves more complex semantic informa-

tion (functional surface, multi-physics interactions,

surfaces or material properties). Future work will be

done to further define both the meaningful semantic

information needed for such tasks and the correspond-

ing planning strategies. The proposed architecture

meets the requirements for such semantic informa-

tion. For instance, in assembly tasks, sliding motions

are commonly used. We are planning to develop in-

teractive geometric path planning methods with con-

tact. We also plan to enrich the topological and se-

mantic layer of our environment model in order to use

our global architecture to choose to interactively plan

paths with or without contact according to the func-

tional context of the assembly tasks (or subtasks) to

be performed.

Moreover, with an accurate semantic description,

such a planner structure seems also well suited for off-

line path planning allowing to rapidly find hard pas-

sages using the topological planning and to rapidly



adapt the geometric planning strategy according to the

local planning context.
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