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Abstract: This paper deals with the comparison of robust control approaches for
the level water control of coupled tanks system. A new ultra-local model control
(ULMC) approach leading to adaptive controller is proposed. The parameter
identification of the ultra-local model is based on the algebraic derivation
techniques. The main advantages of this control strategy are its simplicity
and robustness. A comparison study with the integral sliding mode control
(ISMC) approach is carried out. The perfect knowledge of the output variable
degree, which is a standard assumption for sliding modes, is assumed here. The
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presence of external perturbations and parameter uncertainties.
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1 Introduction

The liquid flow control of a single or multiple tanks has been widely investigated via model-

based techniques such as the sliding mode control (SMC) (20), (21) which is a type of

variable structure control where the dynamics of a nonlinear system is changed by switching

discontinuously on time on a predetermined sliding surface with a high speed. The excellent



robustness properties of sliding mode control with respect to perturbations and uncertainties

explain its great popularity (see, e.g., (6), (17), (39)).

We mention that the sliding mode controllers had led to a huge number of exciting

applications involving real systems as in (20), (23), (24), (40). The main drawback of sliding

mode control is the chattering effect which can excite undesirable high frequency dynamics.

Different methods of chattering reduction have been reported. The integral sliding mode

control (ISMC) with the boundary layer (34), (38), is one of these methods. The basic idea

of ISMC is to include an integral term in the sliding surface such that the system trajectories

start on the sliding surface from the initial time instant.

Most of the existing control approaches requires to have a "good" model, i.e., a model

combining simplicity and exactness. The identification of physical parameters involved in

such models is nevertheless a difficult task. Both integral sliding mode control and ultra-

local model control aim to bypass this last step. The ultra-local model control is a recently

introduced approach by M. Fliess and C. Join (7), (8), (9), (11), which does not necessitate

any mathematical modeling. The unknown dynamics are approximated on a very small

time interval by a very simple model which is continuously updated with the aid of online

estimation techniques (10), (13), (14), (25), (29). The loop is closed thanks to an adaptive

PID (a-PID) controller, which provides the feedforward compensation and is easily tuned.

This control approach have already been successfully applied in several case-studies for

different fields (1), (11), (12), (18), (19), (22), (27), (35), (36).

The algebraic derivation method developed in (7) is restricted by the estimation of a single

parameter, and the second parameter is considered constant and imposed by the practitioner.

In practice, this standpoint is a first point that renders a delicate choice for the adaptive PID

control strategy. Therefore, it is more judicious to estimate both parameters of ultra-local

model. The main contribution of this work is to design a new adaptive PID controller able

to estimate the two ultra-local model parameters. A large literature exists on the algebraic

estimation of derivatives for noisy signals. However, a new approach based on the algebraic

derivation has been implemented in this paper in order to increase the control performances.

The strong industrial ubiquity of classical PID controllers (4), and the great difficulty

for tuning them in complex situations is deduced, via an elementary sampling from their

connections with a-PID (26), (37). A comparison between the proposed ultra-local model,

the integral sliding mode control and the classical PID control is developed. This comparison

is kept here in order to clarify the performance improvement and effectiveness of the

proposed controller design. In this paper, the control approaches are applied To control the

water level of a coupled tanks system which is considered as a nonlinear system of first-

order. This implementation is carried out to test the robustness performances with respect

to noises, external disturbances and parameter uncertainties.

This paper is organized as follows. In section 2, the dynamic model of the coupled tanks

system is obtained. In section 3, the integral sliding mode control of considered system

is developed. Section 4 presents the proposed ultra-local model control approach and the

corresponding adaptive PID controller. The simulation results are presented in section 5.

Finally, concluding remarks are given in section 6.

2 Dynamic model of coupled tanks system

The system, shown in the figure 1, consists of two identical tanks coupled by an orifice. The

input is supplied by a variable speed pump which supplies water to the first tank. The orifice



allows the water to flow into the second tank and hence out to a reservoir. The objective

of the control problem is to adjust the inlet flow rate q (t) so as to maintain the level in

the second tank, h2 (t) close to a desired level water, h2
d (t). The nonlinear model of the

considered system is written as follows:

Sḣ1 (t) = q (t)− q1 (t)

Sḣ2 (t) = q1 (t)− q2 (t)
(1)

where:

q1 (t) = c12
√

2g (h1 (t)− h2 (t)) for h1 > h2

q2 (t) = c2
√

2gh2 (t) for h2 > 0
(2)

and:

h1 (t): the level in the first tank;

h2 (t): the level in the second tank;

q (t): the inlet flow rate;

q1 (t): the flow rate from tank 1 to tank 2;

q2 (t): the flow rate out of tank 2;

g: the gravitational constant;

S: the cross-section area of tank 1 and tank 2;

c12: the area of coupling orifice;

c2: the area of the outlet orifice;

The fluid flow rate q (t) cannot be negative because the pump can only pump water into

the first tank. Therefore, the constraint on the inflow rate is given by:

q (t) > 0 (3)

Now the governing dynamical equations of the coupled tanks system can be written as

follows (2):

ḣ1 (t) = −c12

S

√

2g |h1 (t)− h2 (t)| sgn (h1 (t)− h2 (t)) +
q (t)

S

ḣ2 (t) =
c12

S

√

2g |h1 (t)− h2 (t)| sgn (h1 (t)− h2 (t))−
c2

S

√

2gh2 (t)
(4)

At equilibrium, for constant desired water level, the derivatives must be zero, i.e., ḣ1 =
ḣ2 = 0. Thus, at equilibrium, the following algebraic equations must hold:

−c12

S

√

2g |h1 (t)− h2 (t)| sgn (h1 (t)− h2 (t)) +
q (t)

S
= 0

c12

S

√

2g |h1 (t)− h2 (t)| sgn (h1 (t)− h2 (t))−
c2

S

√

2gh2 (t) = 0
(5)

From the equation (5), and to satisfy the constraint in equation (3) on the input flow rate,

we should have sgn (h1 (t)− h2 (t)) > 0, which implies:

h1 (t) > h2 (t) (6)



Figure 1 Schematic of the coupled tanks system.

Therefore, in order to satisfy the constraint in equation (3) on the input inflow rate for

given values of system parameter c12 and c2, the water levels in the tanks must satisfy the

constraint in equation (6). In addition, for the case when h1 (t) = h2 (t), the system model

is decoupled.

Let: z1 (t) = h2 (t) > 0, z2 (t) = h1 (t)− h2 (t) > 0, u (t) = q (t)

and k1 =
c2
√
2g

S
, k2 =

c12
√
2g

S
Due to the nonlinearity of dynamic model of the coupled tanks system, we will define a

transformation so that the dynamic model given in equation (4) can be transformed into a

form which facilitates the control design.

Let x (t) =
[

x1 (t) x2 (t)
]T

defined as follows:

x1 (t) = z1 (t)

x2 (t) = −k1
√

z1 (t) + k2
√

z2 (t)
(7)

Hence, the dynamic model of the system can be written in a compact form as:

ẋ1 (t) = x2 (t)

ẋ2 (t) = f (t) + φ (t)u (t)

y (t) = x1 (t)

(8)

where:

f (t) =
k1k2

2

(

√

z1 (t)
√

z2 (t)
−
√

z2 (t)
√

z1 (t)

)

+
k21
2

− k22

φ (t) =
k2

2S

1
√

z2 (t)

The dynamic model in equation (8) will be used to design robust control schemes for

the coupled tanks system.



3 Integral sliding mode control (ISMC)

3.1 Basic idea

The integral sliding mode control (ISMC) theory is adopted to design the controllers because

of its robustness. Consider a nonlinear system which can be represented by the following

state space model:

ẋ (t) = f (x (t) , t) + φ (x (t) , t)u (t)

y (t) = x (t)
(9)

where x (t) ∈ R
n is the state vector, f (x (t) , t) and φ (x (t) , t) are nonlinear functions and

u (t) ∈ R is the control input.

The design of ISMC involves two steps such that the first one is to select the switching

hyperplane to prescribe the desired dynamic characteristics of the controlled system. The

second one is to design the discontinuous control such that the system enters the integral

sliding mode s (t) = 0 and remains in it forever (33).

In this paper, we use the sliding surface proposed by J.J. Slotine, and defined as follows:

s (t) =

(

d

dt
+ λ

)n ∫ t

0

e (t) dt (10)

In which e (t) = x (t)− xd (t), λ is a positive coefficient, and n is the system order.

Consider a Lyapunov function:

V =
1

2
s2

V̇ = sṡ

(11)

The simplified first order problem of keeping the scalar s (x, t) at zero can be achieved

by choosing the control law u (t). A sufficient condition for the stability of the system is

written as:

1

2

d

dt
s2 6 −η |s| (12)

where η is a positive constant. The equation (12) is called reaching condition or sliding

condition. s (x, t) verifying (12) is referred to as sliding surface, and the system’s behavior

once on the surface is called sliding mode.

The process of ISMC can be divided in two phases, that is, the approaching phase and the

sliding phase. The integral sliding mode control law u (t) consists of two terms, equivalent

term ueq (t), and switching term us (t).
In order to satisfy sliding conditions (12) and to despite uncertainties on the dynamic

of the system, we add a discontinuous term across the surface s (x, t) = 0, so the integral

sliding mode control law u (t) has the following form:

u (t) = ueq (t) + us (t)

us (t) = −K sgn (s (t))
(13)



where K is the control gain, and the signum function is defined as:

sgn (s) =







+1 if s > 0
0 if s = 0
−1 if s < 0

(14)

3.2 Integral sliding mode control design

To reduce the chattering problem, the integral sliding mode control design for the coupled

tanks system has been developed in the works (2). Let hd
2 (t) be the desired output level of

the system, i.e. yd (t) = hd
2 (t). The sliding surface s (t) developed by Slotine and Li (33)

is defined by:

s (t) =

(

d

dt
+ λ

)n ∫ t

0

x̃1 (t) dt (15)

where x̃1 (t) = x1 (t)− hd
2 (t) is the tracking error and n is the order of system. The sliding

surface can be written as:

s (t) = ẋ1 (t) + 2λ
(

x1 (t)− hd
2 (t)

)

+ λ2

∫ t

0

(

x1 (t)− hd
2 (t)

)

dt

= −k1
√

z1 (t) + k2
√

z2 (t) + 2λ
(

x1 (t)− hd
2 (t)

)

+λ2

∫ t

0

(

x1 (t)− hd
2 (t)

)

dt

(16)

Taking the derivative of the equation (16) with respect to time, we get:

ṡ (t) =
k1k2

2

(

√

z1 (t)
√

z2 (t)
−
√

z2 (t)
√

z1 (t)

)

+
k21
2

− k22

+
k2

2S

1
√

z2 (t)
u (t)

+2λ
(

−k1
√

z1 (t) + k2
√

z2 (t)
)

− λ2
(

z1 (t)− hd
2 (t)

)

(17)

By taking ṡ (t) = 0, we get:

ueq (t) =
1

φ (t)





−f (t)− 2λ
(

−k1
√

z1 (t) + k2
√

z2 (t)
)

−λ2
(

z1 (t)− hd
2 (t)

)



 (18)

Since u (t) = ueq (t)−K sgn (s (t)), the integral sliding mode controller is defined by:

u (t) =
2S
√

z2 (t)

k2

[

−k1k2

2

(

√

z1 (t)
√

z2 (t)
−
√

z2 (t)
√

z1 (t)

)

− k21
2

+ k22

−2λ
(

−k1
√

z1 (t) + k2
√

z2 (t)
)

− λ2
(

z1 (t)− hd
2 (t)

)

]

−K sgn (s (t))

(19)



where λ and K are strictly positive constant. 
Consider the Lyapunov function:

V =
1

2
s2

V̇ = s
[

f + φu+ 2λ (−k1
√
z1 + k2

√
z2)− λ2

(

z1 − hd
2

)]

(20)

By using the equation (19), the following Lyapunov function is obtained:

V̇ = s
[(

f − f̂
)

−K sgn (s)
]

= Fs−K |s| where

∣

∣

∣
f − f̂

∣

∣

∣
6 F

(21)

with f̂ is estimation of f . If the control gain K = F + η, then, we get:

V̇ = −η |s| (22)

where η is a strictly positive constant. The equation (22) shows that the ISMC technique

guarantees the asymptotic stability of the closed loop system.

In order to remove the chattering effect, we consider the boundary layer solution proposed

by (34), which seeks to avoid control discontinuities and switching action in the control loop.

The discontinous control law is replaced by a saturation function which approximates the

sgn (s) term in a boundary layer of the sliding manifold s (t) = 0. The saturation function

is defined as:

sat (s (t)) =







sgn (s (t)) for |s (t)| > ε

s (t)

ε
for |s (t)| 6 ε

(23)

From the equation (23), for |s (t)| > ε, sat (s (t)) = sgn (s (t)). However, in a small ε-

vicinity of the origin, the so-called boundary layer, sat (s (t)) 6= sgn (s (t)) is continuous.

4 Ultra-local model control (ULMC)

4.1 Ultra-local model

For the sake of notational simplicity, let us restrict ourselves to single-input single-output

(SISO) systems. The unknown global description is replaced by the following ultra-local

model:

y(ν) (t) = F̂ (t) + α̂ (t)u (t) (24)

where:

• The control and output variables are respectively u (t) and y (t),

• The derivation order ν of y (t) is generally equal to 1 or 2.



• The time-varying functions F̂ (t) and α̂ (t) are estimated via the input and the output

measurements. These functions subsume not only the unknown structure of the system,

which most of the time will be nonlinear, but also of any disturbance.

Remark 1: In all the existing concrete examples, ν = 1 or 2. In the context of ultra-local

model control, the only concrete case-study where such an extension was until now needed,

with ν = 2, has been provided by a magnetic bearing (see (5)). This is explained by a very

low friction (see (8)).

4.2 Adaptive Controllers

Consider the case where ν = 2 in (24):

ÿ (t) = F̂ (t) + α̂ (t)u (t) (25)

The corresponding adaptive Proportional-Integral-Derivative controller, or a-PID, reads:

u (t) =

−F̂ (t) + ÿd (t) +Kpe (t) +KI

∫

e (t) +KD ė (t)

α̂ (t)
(26)

where:

• yd (t) is the output reference trajectory, obtained according to the precepts of the

flatness-based control (15), (31);

• e (t) = yd (t)− y (t) is the tracking error;

• KP , KI , KD ∈ R are the usual tuning gains (3), (28).

Combining the equations (25) and (26) yields:

ë (t) +KD ė (t) +KP e (t) +KI

∫

e (t) = 0 (27)

where F̂ (t) and α̂ (t) do not appear anymore. the gain tuning becomes therefore quite

straightforward. This is a major benefit when compared to "classic" PIDs.

Set ν = 1 in the equation (24):

ẏ (t) = F̂ (t) + α̂ (t)u (t) (28)

The corresponding adaptive Proportional-Integral controller, or a-PI, reads:

u (t) =

−F̂ (t) + ẏd (t) +Kpe (t) +KI

∫

e (t)

α̂ (t)
(29)

The combination of the two equations (28) and (29) gives:

ë (t) +KP ė (t) +KIe (t) = 0 (30)

The tracking condition is therefore easily satisfied by an appropriate choice of KP and KI .

If KI = 0 in Equation (29), we obtain the adaptive proportional controller, or a-P, which

turns out until now to be the most useful adaptive controller:

u (t) =
−F̂ (t) + ẏd (t) +KP e (t)

α̂ (t)
(31)



4.3 Parameter identification method

According to the algebraic parameter identification developed in (13), (14), where the

probabilistic properties of the corrupting noises may be ignored, a simultaneous estimation

of both parameters F̂ (t) and α̂ (t) is proposed. The main idea of the linear integrated filter

is to apply a successive integrations on the studied model equation (28) (see e.g. (29)).

However, the integrations are carried out over a sliding window of length T .

Assume that F̂ and α̂ are constant from t0 = t− T to t in the following ultra-local

model:

ẏ (τ) = F̂ + α̂u (τ) (32)

with τ ∈ [t0, t]. In order to conclude that the parameter identification process is independent

of any initial conditions, we multiply the previous equation (32) by (t− t0) as follows:

(t− t0) ẏ (τ) = F̂ (t− t0) + α̂ (t− t0)u (τ) (33)

We once integrate the expression (33) between t0 and t using the integration formula by

parts to get:

(t− t0) y (t)−
∫ t

t0

y (τ) dτ = F̂
(t− t0)

2

2
+ α̂

∫ t

t0

(τ − t0)u (τ) dτ (34)

Note that in this case, we succeeded to achieve the initial conditions independence.

Considering T = t− t0, the first linear relation between the two parameters F̂ and α̂ is

obtained by the following equation:

Ty (t)−
∫ t

t0

y (τ) dτ = F̂
T 2

2
+ α̂

∫ t

t0

(τ − t0)u (τ) dτ (35)

We integrate once more to obtain a second relation. For this, the equation (34) is rewritten,

for µ ∈ [t0, t]:

(µ− t0) y (t)−
∫ µ

t0

y (τ) dτ = F̂
(µ− t0)

2

2
+ α̂

∫ µ

t0

(τ − t0)u (τ) dτ (36)

The integration of (36) between t0 and t, gives the following expression:

t
∫

t0

(µ− t0) y (µ) dµ−
t
∫

t0

µ
∫

t0

y (τ) dτdµ

= F̂

t
∫

t0

(µ− t0)
2

2
dµ+ α̂

t
∫

t0

µ
∫

t0

(τ − t0)u (τ) dτdµ

(37)

Taking into account the fact that:

∫ t

t0

∫ µ

t0

f (τ) dτdµ =

∫ t

t0

(t− τ) f (τ) dτ (38)



the following equation is obtained:

t
∫

t0

(τ − t0) y (τ) dτ −
t
∫

t0

(t− τ) y (τ) dτ

= F̂
(t− t0)

3

6
+ α̂

t
∫

t0

(t− τ) (τ − t0)u (τ) dτ

(39)

Since t− t0 = T , the second linear relation is then obtained between F̂ and α̂ which is

defined by:

∫ t

t0

(2τ − t− t0) y (τ) dτ

= F̂
T 3

6
+ α̂

∫ t

t0

(t− τ) (τ − t0)u (τ) dτ

(40)

From the two previous relations (35) and (40), we can generate a linear system of equations

in the following matrix form:









T 2

2

t
∫

t0

(τ − t0)u (τ) dτ

T 3

6

t
∫

t0

(t− τ) (τ − t0)u (τ) dτ









[

F̂

α̂

]

=









Ty (t)−
t
∫

t0

y (τ) dτ

t
∫

t0

(2τ − 2t+ T ) y (τ) dτ









(41)

The unknown parameters F̂ and α̂ are estimated by solving the linear system of equations

(41). Noting:

∆(t) =
T 2

6

∫ t

t0

(3t− 3τ − T ) (τ − t0)u (τ) dτ (42)

the solution of the linear system (41) is defined as follows:
[

F̂

α̂

]

=
1

∆(t)








∫ t

t0

(t− τ) (τ − t0)u (τ) dτ −
∫ t

t0

(τ − t0)u (τ) dτ

−T 3

6

T 2

2

















Ty (t)−
∫ t

t0

y (τ) dτ
∫ t

t0

(2τ − 2t+ T ) y (τ) dτ









(43)

The proposed ultra-local control approach will be compared to the integral sliding mode

control for the considered coupled tanks system control.



5 Simulation results

The dynamic model of the system has taken from (2), in which area of the orifices c12 =
0.58 cm2 and c2 = 0.24 cm2 are given. The cross-section area of tank 1 and tank 2 are found

to be S = 208.2 cm2. The gravitational constant is g = 981 cm
/

s2. The desired trajectory

hd
2 (t) is generated to ensure a transition from hd

2 (t0) = 5 cm to hd
2 (tf ) = 10 cm with

t0 = 150 s and tf = 500 s.

The controller parameters used in the case of ISMC simulations are taken to beλ = 0.05,

K = 80 and ε = 0.15. For the ULMC approach, the parameters of adaptive controller are

chosen KP = 30 and KI = 10. These gains are tuned by a placement of two poles in

the functional equation (30) in order to stabilize the tracking error with good dynamics.

Moreover, we have chosen the sampling time Te = 0.1 s and the sliding window T = 5Te.

To properly show the robustness of the proposed algebraic approach, a performance

comparison with a classical PID controller is implemented. The PID controller parameters,

KP = 12, KI = 2 and KD = 7, are settled by applying the Cohen-Coon method.

A centered white noise with variance of 0.001 is added to the system output h2 (t) in the

different control approaches. At t = 550 s, a level water perturbation of 0.5 cm is applied

to the output measurement in order to test the robustness of our proposed approach.

The figures 2 and 3 show the simulation results for the two control approaches. Figure

2 shows that the output h2 (t) converges to its desired value in about 120 s. However, the

system output converges to the desired trajectory hd
2 (t) in about 40 s in the case of ULMC

(see the figure 3). The best performances obtained thanks to the our proposed approach

are shown in the figure 3. It is clear that, with the proposed adaptive PI controller, the

consequence of the level water perturbation is smaller and rejected faster than the classic

PID controller and the ISMC. In the figure 3, we can observe that the tracking error of new

a-PI controller converge to zero despite the severe operating conditions.

For the different approaches comparison, the system dynamics is tested in the case of

parameter uncertainties. For this, the parameters k1 and k2 are decreased by −50% when

the time t > 300 s. In the simulation results shown in the figures 4 and 5, we can see

that the effect of parameter uncertainties is more significant in the case of integral sliding

mode control. Consequently, the numerical simulation show the superiority of the proposed

control technique in terms of trajectory tracking and robustness with respect to external

disturbances and parameter uncertainties.

6 Conclusion

The contribution of the paper has allowed the design of a new adaptive PID controller

based on the ultra-local model concept which is easily applied for the level water control

of coupled tanks system. The proposed control strategy, extended from the algebraic

derivation techniques, provides an improvement in terms of robustness and trajectory

tracking performances. The most important benefit of this work is the online estimation of

the both ultra-local model parameters which allows to obtain a control approach more robust

and effective. Due to its properties of robustness, adaptability and simplicity, the ultra-local

model control provides outstanding performance with a very short time of implementation.

In addition, the new adaptive PID controller is more easier to tune than the classic PID

controller.
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Figure 2 Simulation results of comparison between a-PI control and ISM control.

The numerical simulation results show that the proposed adaptive controller provides a

better performance with respect to the integral sliding mode control approach and the classic

PID control in the presence of external perturbations and uncertainties parameters. Due to

its simplicity implementation, the ultra-local model control appears particularly adapted to

industrial environments. It is straightforward to extend the adaptive PID control approaches

to some Multiple-Input Multiple-Output systems. An interesting future works consist to

compare the ultra-local model control against active disturbance rejection control (ADRC)

(16) and some other existing approaches (30), (32).
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