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Highlights:  

 Arabidopsis SELENOPROTEIN O (SELO) is a chloroplast protein. 

 Absence of SELO increases tolerance to drought and extends photosynthetic activity. 

 The selo mutants have lower ROS content and higher antioxidant capacity. 

 Elevated transcription of chloroplast ROS scavenging enzymes is induced by SELO 

absence. 

 Lack of SELO disturbs stress-induced silencing of transcription of proline catabolic 

enzymes.  

 

ABSTRACT 

The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in 

bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O 

(SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are 

thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline 

analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in 

Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation 

instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-

pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating 

T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal 

homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. 

The protein was co-fractionated with thylakoid membrane complexes, and co-

immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and 

downstream electron flow. The selo mutants displayed extended survival under dehydration, 

accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced 

expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant 

correlated with higher oxidant scavenging capacity and reduced methyl viologen damage.  

The study elucidates SELO as a PSI-related component involved in regulating ROS levels 

and stress responses. 

Abbreviations: 

ETC - electron transport chain, Fd – Ferredoxin, FNR – Ferredoxin NADP+ reductase,  P5C -

Δ(1)-pyrroline-5-carboxylate, P5CDH – P5C dehydrogenase,  P5CS1 – P5C synthase,  

PGRL1A -  Protein Proton Gradient Regulation 5 – Like 1A, ProDH – proline dehydrogenase, 

PS – photosynthetic photosystem,  ROS - reactive oxygen species, RWC - relative water 

content, Sec – Selenocysteine, SELO - Selenoprotein O, STN7 - Regulatory serine/threonine-

protein kinase 7, T4C -  L-thiazolidine-4-carboxylate (γ-thioproline).   
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Selenoprotein O, ROS, Drought tolerance, Proline metabolism, Abiotic stress signaling. 

 

  

1. Introduction  

Plants respond to environmental changes by altering many molecular and physiological 

processes. These responses are tightly controlled at cellular, organ and whole plant levels. 

Key components in this interplay are redox regulation and generation of reactive oxygen 

species (ROS)[1]. Changes in redox homeostasis affect protein structure and enzymatic 

activity, and influence signal transduction [2]. In plants, most of ROS production is modulated 

by changes in the activity of electron transport chains in chloroplasts and mitochondria [3]. 

ROS act as secondary messengers mediating stress responses while their levels are tightly 

controlled to prevent cellular damage [4]. ROS scavenging comprises a large part of cellular 

responses to abiotic stresses. Scavengers include specific enzymes that reduce free radicals 

to water in multi-stage reactions [5], and anti-oxidative metabolites [6]. Proline (Pro) is a 

unique metabolite, which usually accumulates in response to different abiotic and biotic 

stresses, mostly due to stress-induced changes in the transcription of genes that encode 

enzymes of the evolutionary conserved glutamate (Glu)-proline-glutamate cycle [7-12]. In 

mammals and plants, Pro catabolism to Glu occurs in mitochondria concomitantly delivering 

electrons to the mitochondrial electron transport chain (ETC). Intensive oxidation of Pro to 

P5C in mitochondria increases electron flux and elevates ROS generation [8, 10]. Although 

Pro accumulates in plant cells under stress conditions [13, 14], its protective role in 

overcoming stress damages is still under debate [14-18].  

In a forward genetic screen, we isolated Arabidopsis thaliana T-DNA knockout mutants [19] 

capable of growing in the presence of lethal concentration of the Pro analogue L-thiazolidine-

4-carboxylate (T4C, γ-thioproline) in NaCl-containing medium [8]. In Arabidopsis, salt-stress 

and dehydration-induced signaling elevate cellular Pro synthesis and simultaneously prevent 

mitochondrial Pro degradation by blocking the transcription of proline dehydrogenase 1 

(ProDH1) leading to Pro accumulation [17]. Reduced ProDH1 activity during stress inhibits 

Pro oxidation to Δ(1)-pyrroline-5-carboxylate (P5C) and also T4C breakdown. T4C competes 

with Pro incorporation during translation causing protein disfunctioning, and blocking cell 

division and growth. Thus, T4C-tolerant mutants are expected to be impaired in normal 

stress-induced down-regulation of ProDH1 essential for Pro catabolism [8]. 

One of the T4C tolerant mutants, displaying higher tolerance to dehydration, carried a T-DNA 

insertion in the Arabidopsis gene AT5G13030 encoding a plant homologue of 

SELENOPROTEIN O (SELO). Selenoproteins contain selenocysteine (Sec) in their redox 

motifs [20]. Such substitution of sulfur atom with selenium in the cysteine residue increases 

nucleophilicity and redox activity. Conserved selenoprotein families with known functions 

include glutathione peroxidases [21], thioredoxin reductases [22] and deiodinases [23]. As 
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plants lack selenocysteine-tRNA, their selenoprotein homologues contain cysteine residues 

instead of Sec in the redox motifs [20, 24]. Human SELO is located in mitochondria and 

possesses a C-terminal CxxSecSS redox motif, which catalyzes the formation of complexes 

through S-S and S-Se bridges with yet unknown protein partner(s), under oxidative 

conditions. Such redox-dependent complexes are also formed upon changing the motif to 

SxxSecSS, CxxCSS and SxxCSS [25], suggesting that the corresponding C-terminal 

CxxsCSS motif in plant SELO homologues likely maintains a similar redox activity. All 

members of the remarkably conserved SELO family contain a putative ATP-binding Walker-

motive and some internal domains showing distant structural relationship to catalytic domains 

of porcine protein kinase A (PKA), including the archetypical His-Arg-Asp catalytic motif  [26]. 

Nonetheless, the function of SELO, as well as its redox partner(s), remained so far 

unexplored. 

Characterization of Arabidopsis selo mutation and its physiological effects in this study 

provides the first insight into the function of SELENOPROTEIN O in plants. SELO was 

localized to the chloroplast by using SELO-GFP fusion, and by its co-migration with thylakoid 

complexes on Blue-Native gels. Co-immunoprecipitation of proteins from isolated chloroplasts 

showed that SELO-GFP could interact with Ferredoxin NADP Reductase (FNR) and Protein 

Proton Gradient Regulation 5 – Like 1A (PGRL1A), which are involved in electron transport 

from Photosystem I (PSI) [27], and also with the regulatory serine/threonine-protein kinase 

STN7. Lack of SELO in the selo mutant affected the redox poise, maintained in WT plants 

under normal growth conditions, by reducing H2O2 levels and enhancing expression of genes 

coding for ROS scavenging enzymes, mostly active in chloroplasts. A change in plant 

response to dehydration was also observed. The selo mutants were more tolerant to 

dehydration and their photosynthetic activity was extended compared with that of WT plants. 

Furthermore, regular signaling of Pro accumulation in response to stress was impaired in selo 

mutants leading to transcriptional induction, instead of silencing, of genes encoding enzymes 

of mitochondrial Pro catabolism during dehydration. To this end, our data indicate that 

SELENOPROTEIN O is involved in mediating ROS levels, mostly in chloroplasts and thereby 

affecting downstream signaling and stress responses. 

2. Materials and methods  

2.1. Plant material, growth conditions, and stress induction 

Arabidopsis thaliana, ecotype Columbia (Col-0), and its T-DNA insertion mutants were used 

in all experiments. The selo1-1 mutant was identified in the T-DNA-knockout mutant collection 

of Alvarado et al. [19], whereas the selo1-2 (GABI_956D07; [28]) and selo1-3 

(SAIL_776_G08; [29]) mutants were obtained from the Arabidopsis Biological Resource 

Center (ABRC). Overexpression lines were generated using the ABRC cDNA stock 

GC105358 [30]. Plants were grown in growth chamber in pots under 16 h dark/8 h light 

regime (100 µmole·m-2·s-1) at 22.5 °C and 60 % RH. Dehydration stress was imposed by 
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stopping irrigation of 30-day-old plants, grown in pots containing equal soil weight. White light 

stress of 200 µmole·m-2·s-1 photon flux was applied for 30 minutes. Oxidative stress was 

imposed by applying 0.25 µM methyl viologen (Sigma-Aldrich, Merck) to 7-day-old seedlings, 

grown in 0.5 MS medium for 48 h in wells of micro-titer plates (Ducefa Biochemie), without 

sucrose, using light intensity of 100 µmole·m-2·s-1. Stress experiments were repeated three 

times with 15-45 replicates.  

2.2. Generation of overexpression lines. 

SELO cDNA was cloned using EcoRI sites in pART7-GFP downstream to the CaMV 35S 

promoter, and then the expression cassette was shifted to the NotI site of the binary vector 

pART27 [31] yielding pART27-SELO-GFP. The plasmid was introduced into the 

Agrobacterium tumefaciens GV3101 (pMP90RK) strain [32]. Floral dipping was used to 

transform Arabidopsis plants [33]. T1 seedlings were selected on MS containing 50 µg/ml 

kanamycin followed by screening eGFP fluorescence (ex.488 nm, em.560 nm) using Zeiss 

CLSM780 confocal microscope. The T-DNA of pART27-SELO-GFP construct was introduced 

into Arabidopsis overexpressing tpFNR-YFP, which was received from J. Mathur (University 

of Guelph, Guelph, Ontario, Canada). These plants were obtained by introducing the 

CaMV35S promoter-tpFNR:YFP expression cassette cloned in the binary pCAMBIA vector, 

and applying selection for hygromycin resistance. Similar construct, containing tpFNR-

mEosFP, was described by Schattat et al. [34]. Plants expressing SELO-GFP and tpFNR-

YFP were selected on kanamycin and hygromycin containing MS medium. 

2.3. Physiological measurements  

Wilting was assessed by visualization of turgor loss of 50% of the rosette leaves. Relative 

water content [35] was calculated according to the equation of  RWC (%) = [(W-DW) / (TW-DW)] 

x 100,  by measuring fresh weight of excised leaves (W); turgid weight after dipping in H2O for 

4 h (TW), and dry weight after overnight drying at 80°C (DW). Photosynthetic measurements 

were performed after 2 h of daily illumination (at 10 AM) by using the PlantScreen High-

Through-put Phenotyping system of Photon Systems Instruments as described by Awlia et al. 

[36]. Measurements of PSII quantum yield (Fv/Fm), and electron flow rate (ETR) were 

conducted as described by Rungrat et al. [37]. Chlorophyll Fluorescence decrease ratio (RFd)  

was estimated according to Lichtenthaler et al. [38] based on fluorescence values measured 

according to Rungrat et al. [37]. Stomatal density was determined using epidermis peel 

microscopy [39]. Stomata conductance was measured in 16 replicates by leaf porometer 

(Decagon Devices, Inc.) 2 h after starting daily illumination.  

2.4. qRT-PCR measurements 

RNA was extracted from leaves, two hours after starting daily illumination, using Plant 

RNeasy kit (Qiagen), and used at concentration of 200 ng per reaction for cDNA synthesis by 

the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). Quantitative 

polymerase chain reaction (qRT-PCR) was performed with primers listed in Table A1 and 
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Fast SYBR Green Master mix (Thermo Fisher Scientific), using the StepOnePlus Real-Time 

PCR instrument (Thermo Fisher Scientific). Each type of reaction was performed with 3 

biological replicates and 3 technical replicates. Results were analyzed with StepOne software 

to compare relative quantity of 2-ΔΔCt [40]. Results were calculated relative to expression of 

cyclophilin (AT2G36130) as a constitutively expressed control and WT values obtained under 

unstressed conditions. 

2.5. Measurements of Pro, ROS content in guard cell chloroplasts or in seedlings, and 

antioxidant capacity 

Pro was extracted from leaves and measured according to Bates et al. [41] and Miller et al. 

[8]. ROS measurements in guard cells were performed according to Leshem et al. [42]. 

Leaves were incubated with 5 µM 2′,7′-Dichlorofluorescin diacetate (DCF, Sigma-Aldrich, 

Merck) in EtOH/water for 5 min. Following washing with water for 5 min, prepared slides were 

visualized by CLSM 780 (ex. 490 nm, em. 520 nm). Chloroplast fluorescence data were 

analyzed according to McCloy et al. [43] using ImageJ. To quantify H2O2 in seedlings, 

supernatants from 100 mg extract samples of 7-day-old seedlings ground in 50 mM Na-

Phosphate buffer (pH 7.4) were incubated with equal volume of 100 µM 10-acetyl-3,7-

dihydroxyphenoxazine (ADHP, Sigma-Aldrich, Merck) and 0.2 U/mL HRP (Sigma-Aldrich, 

Merck) for 30 min. Fluorescence was estimated using plate reader (Biotek Synergy, ex. 571 

nm, em. 585 nm), and ROS content was calculated according to standard curve of known 

concentrations of H2O2 [44]. For estimation of antioxidant capacity using TEAC [45], 10 µl 

samples of ground leaf extracts (0.1 gr FW in 0.2 M Na-Acetate buffer, pH 4.3), or 10 µl 1 mM 

Trolox (6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, Sigma-Aldrich, Merck) 

were added each to 1 ml 0.3 µM 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; 

ABTS), 0.15 µM potassium persulfate (Sigma-Aldrich, Merck), and incubated for 15 min. 

Antioxidants from the extracts or Trolox converted the colored ABTS radical to its colorless 

neutral form and changed the solution absorption at 734 nm (Ultrospec 2000 UV/VIS 

Spectrophotometer, GE Healthcare). The extent of ABTS radical elimination in the reactions 

was extrapolated to Trolox equivalents. Each experiment was repeated 3 times and included 

5-10 replicates. 

2.6. Chloroplast isolation and immunoblotting 

Chloroplast isolation was carried out according to Joly and Carpentier [46]. Leaves (1 g fresh 

weight) were ground using Minilys personal homogenizer (Bertin technologies) with 5 mL 

buffer (50 mM HEPES pH 6.9, 0.33 M sorbitol, 2 mM EDTA, 1 mM MgCl2, 1 mM MnCl2). 

Following centrifugation (20000 x g, 10 min) chloroplast pellet was resuspended in 50 µl 1% 

Triton-X100, 750 mM 6-aminocupronic acid and 0.2 % dodecylmaltoside and incubated for 1 

h at 4 °C for partial complex solubilization. Samples (1 µg/µl) were then resolved by SDS-

PAGE and analyzed by western blotting. Blue Native (BN) gel separation was performed 

according to Wittig et al. [47]. In brief, partially solubilized chloroplast complexes were loaded 

on a non-denaturing 4-16 % polyacrylamide gradient gel (250 µg protein in each lane). 
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Separated proteins were then blotted onto PVDF membrane for immunodetection. 

Alternatively, bands were cut out from the gel for proteomics analysis. For immunodetection 

the membranes were incubated overnight with anti-GFP (BioLegend #902601, 1:1000), anti-

TUBULIN (Sigma-Aldrich, Merck #T9026, 1:500) or anti-RbcL ([48], 1:500) antibodies. HRP-

conjugated goat anti-mouse (Jackson ImmunoResearch Laboratories #115-035-003) 

secondary antibodies were used for GFP and TUBULIN detection, whereas anti-RbcL was 

probed with goat anti-rabbit (Jackson ImmunoResearch Laboratories #111-035-003) 

antibodies using ECL protein detection kit (Cyanagen). 

2.7. Identification of SELO protein interactors by Co-immunoprecipitation 

Aliquots of frozen chloroplasts were centrifuged and solubilized for 1 hour in 50 µl 50 mM 

NaCl, 50 mM imidazole, 2 mM 6-Aminhexanoic acid, 1 mM EDTA, pH 7. Each sample 

containing 300 µg chlorophyll was incubated in 950 µl binding buffer (50 mM Na-phosphate 

buffer, pH 7, 50 mM NaCl) with 8 µl GFP-Trap agarose beads (Chromotek) overnight at 4°C 

on a roller. After centrifugation at 2500 g, beads were washed with 1 ml binding buffer by 

rolling for 5 minutes at 4 °C and then centrifugation. The washing step was repeated twice, 

each for 10 minutes. Proteins were then eluted by boiling at 100 °C for 10 minutes with X2 

Sample Buffer [4% SDS, 120 mM Tris-HCl pH 6.8, 0.04 % bromophenol blue (w/v), 0.2 M 

Dithiothreitol]. Tubes were centrifuged at 4 °C for 10 minutes. Supernatant samples (20µl) 

were separated by SDS-PAGE. For immunodetection of pulled-down proteins, the western 

blot was probed with rabbit anti-FNR, anti-PGRL1A, or anti-STN7 antibodies as described in 

section 2.6. 

2.8. Confocal microscopy 

Cellular localization studies were performed using CLSM780 (Zeiss) confocal microscope. 

Each fluorophore was examined separately. Excitation was separately performed with 2% 

laser at 633 nm for chlorophyll auto-fluorescence, 2% laser at 514 nm for tpFNR-YFP, and 

2% laser at 488 nm for SELO-GFP. The settings of emission filters were 639-735 nm for 

chlorophyll, 517-623 nm for YFP and 493-562 nm for GFP. Co-localization was calculated by 

Pearson correlation coefficient using the Coloc 2 algorithm (https://imagej.net/Coloc_2) in 

ImageJ [49]. 

2.9. Proteomics analysis. 

Bands of chloroplast complexes identified in BN gels were excised, and digested with trypsin. 

Peptides were analyzed by LC-MS/MS microsequencing on LTQ-Orbitrap (Thermo). Peptides 

were identified by Compound Discoverer software with two search algorithms, Sequest 

(Thermo) and Mascot (Matrix science), which were used to identify hits in the Arabidopsis 

thaliana Uniprot database [50], and decoy database (for determining the false discovery rate). 

All identified peptides were filtered with high confidence, top rank, mass accuracy, and a 

minimum of 2 peptides per protein. The analysis was performed by the Smoler Proteomics 

Center in the Technion (Haifa 32000, Israel). 
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2.10. Bioinformatics analyses 

Multiple sequence alignments were performed using the BLOSUM62 algorithm in MAFFT 

[51]. Phylogenetic analysis was carried out in the Randomized Axelerated Maximum 

Likelihood program (RAxML; [52]). SELO gene expression data were collected from the eFP 

site [53] derived from the Affymetrix ATH1 array data [54-56]. Transcription data of 

Arabidopsis selenoprotein-like genes were obtained from the Genevestigator site [57]. 

 

3. Results 

3.1. Identification of selo knockout mutants and their physiological characterization 

Using a collection of about 20,000 Arabidopsis T-DNA-tagged lines transformed with the 

promoter trap vector pTluc [19], we performed a forward genetic screen to identify mutants 

capable of growing in the presence of 3mM T4C (Pro analogue) and 50mM NaCl. We have 

previously demonstrated that salt-treatment inhibits the transcription of mitochondrial proline 

dehydrogenase (ProDH1), enhances Pro accumulation and ROS production, and prevents 

degradation of T4C that competes with Pro in the translation process, leading to growth arrest 

[8]. Thus, the applied selection aimed at the isolation of mutations, which could relieve the 

inhibition of Pro/T4C degradation under salt-stress. In one of the T4C tolerant lines, we 

identified a T-DNA insertion (selo1-1, Fig. 1A) located in the second exon of the gene 

AT5G13030 encoding a homologue of SELENOPROTEIN O. We obtained two other 

knockout alleles (selo1-2, GABI_956D07, and selo1-3, SAIL_776_G08) from the public 

collections of T-DNA insertion mutants, which carry T-DNA insertions in intron 1, and isolated 

homozygous mutant lines. In each homozygous mutant, the T-DNA insertion site and lack of 

transcription downstream to this site were verified by PCR followed by sequencing and RT-

PCR, respectively, using primers indicated in Fig. 1A and detailed in Table A1. 

According to public compilations of transcript profiling data, SELO expression mainly occurs 

in photosynthetic tissues including rosette and cauline leaves, and flower sepals. In rosette 

leaves SELO expression is upregulated during early stages of drought, cold and heat 

stresses and late stages of osmotic and UVB stresses (Fig. A1 and Fig. A2). Expression of 

other already identified Arabidopsis selenoprotein-like proteins is not specifically stimulated by 

different abiotic stresses as is demonstrated by analysis performed using the Genevestigator 

site (Fig. A3, Table A2, [57]).  

Because transcription of ProDH1 is inhibited in photosynthetic tissues by water deficit 

similarly to salt stress [17, 58], we performed dehydration assays with soil-grown homozygous 

selo mutants comparing them with WT plants. Under normal growth conditions phenotypic 

features and development of the selo mutants were indistinguishable from WT plants and no 

significant differences were observed in all rosette morphological parameters which were 

examined in experiments shown in Fig. 1 B, and Fig. A4, and demonstrated in Fig. A5. 
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However, when exposed to dehydration, wilting of selo1-2 and selo1-3 mutants was delayed 

by about 1 to 3 days compared to WT, as demonstrated in three different kinds of dehydration 

experiments (Fig. 1 B, F and Fig. A4 D).   

Augmentation of dehydration tolerance in selo mutants was confirmed by monitoring leaf 

relative water content (RWC) close to wilting time. Whereas on day 2 following water 

withdrawal selo and WT plants displayed similar leaf RWC (Fig. 1D), both selo1-2 and selo1-3 

mutants retained about 2-fold higher leaf RWC on day 14 of dehydration compared to WT 

(Fig. 1 E). When water content of total rosette was estimated, both selo1-2 and selo1-3 had 

higher rosette water content during dehydration compared with WT plants (Fig. A4 G). 

Although the number of stomata per leaf area was similar in leaves of WT and mutant plants 

(Fig. 1G, t-test, p=0.449), leaf stomatal conductance in the selo1-2 mutant was higher than 

that of WT plants (Fig. 1 H), during normal (Day 4, t-test, p=0.023) and dehydration (Day 11, 

t-test, p=0.01) conditions. These surprising results suggested that the tolerance to water 

deficit in selo1 plants is not directly correlated with stomatal closure as was also observed in 

Arabidopsis bam1 mutant, which lacks beta amylase activity in chloroplasts of guard cells 

[59].  

Photosynthetic activity was longer maintained in selo mutants compared with WT plants 

during dehydration. Several photosynthetic parameters were estimated, including PSII 

efficiency under steady state illumination (Fig. 1I), electron transport rate (ETR; [37]; Fig. A6), 

and Chlorophyll Fluorescence Decrease ratio (RFd), which is linearly correlated with 

photosynthetic CO2 fixation ([38], Fig. A4 F). At the beginning of water withholding period 

there were no difference between WT and selo plants in Fv/Fm in steady state actinic light  

and RFd. values indicating similar activity of PSII and PSI leading to equal rate of CO2 fixation 

(Fig. 1 I and Fig. A4 E, F). ETR measurement showed that WT has a significantly higher ETR 

at high irradiation (PAR in the range of 1500 to 3000 µmole·m-2·s-1) at the beginning of the 

dehydration period (Fig. A6). On the 21th day of dehydration, when dehydrated  WT plants 

had only 60% water content  relatively to irrigated WT plants, photosynthesis activity started 

to decay in WT plants (Fig. 4A E, F) with gradual reduction of Fv/Fm in steady state light, 

reflecting the decrease in activity of both PSs, and also leading to diminishing of  CO2 fixation. 

This decline occurred much later in the mutants (Fig. 4A E, F). They could maintain 

photosynthetic activity longer than WT plants (Fig. 1 I and Fig A4 E), with corresponding 

delayed decrease of RFd (Fig. 4 F) and equal decline of ETR (Fig. A6) compared to WT plants. 

The extended photosynthetic capacity during dehydration, likely delayed the cellular shortage 

of photosynthates, NADPH and ATP in the selo mutants during critical dehydration stages. 

3.2. Inactivation of selo alleviates stress-induced proline accumulation 

In Arabidopsis and many other plants, dehydration and salt stress result in transcriptional 

activation of P5CS1 (Δ(1)-PYRROLINE-5-CARBOXYLATE SYNTHASE 1) and simultaneous 

silencing of PRODH1 (PROLINE DEHYDROGENASE 1) genes of the Glu-Pro-Glu cycle (Fig. 

2 A), stimulating Pro accumulation [8, 9, 12, 17]. The observed capability of selo mutants to 
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grow in the presence of the toxic proline analogue T4C predicted an enhancement of T4C 

degradation by Pro catabolic pathway. In fact, we observed that free Pro levels remained 

unchanged in the selo1-2 and selo1-3 mutants (t-test, p>0.05) compared to 1.5-fold elevation 

of Pro accumulation in WT between days 2 and 8 of dehydration treatment (Fig. 2 B). 

Quantitative real-time PCR (qRT-PCR) measurements of transcript levels (Fig. 2 C) revealed 

10- and 5-fold increases of P5CS1 and P5CS2 transcript levels, respectively, between days 2 

and day 8 of dehydration in both selo1-2 mutant and WT, indicating similar regulation of 

genes involved in the first rate-limiting step of Pro synthesis. Transcript levels of P5CR (Δ(1)-

PYRROLINE-5-CARBOXYLATE REDUCTASE) showed about 2-fold lower increase in the 

selo1-2 mutant compared to WT suggesting a lower enhancement of second step of Pro 

synthesis. As expected, dehydration stress reduced the expression in WT of PRODH1, 

catalyzing the first step of Pro degradation. By contrast, PRODH1 transcription showed over 

10-fold induction by dehydration, correlating with enhanced T4C tolerance and lack of Pro 

accumulation in the selo1-2 mutant. In addition, dehydration-induced silencing of ProDH2, the 

PRODH1 paralogue, did not occur in selo1-2 mutant. Furthermore, transcript levels of P5CDH 

(Δ(1)-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE) catalyzing the second step of 

proline degradation increased to about 3-fold higher level compared to WT in the selo1-2 

mutant during dehydration. Together, these data confirmed that inactivation of SELO results 

in inverse regulation of ProDH1 and ProDH2 transcription during dehydration, leading to 

enhanced mitochondrial Pro degradation and thereby eliminating stress-induced Pro 

accumulation. Notably, in WT plants, Pro degradation is normally increased only during the 

recovery period after the stress, by induction of ProDH and P5CDH expression [16]. 

3.3. SELO is localized to the chloroplast 

Thus far, it is unknown whether in animal cells SELO as a mitochondrial protein has any 

effect on regulation of Pro synthesis, catabolism and related ROS generation. While the 

animal enzymes of Pro synthesis and degradation are localized to mitochondria, in higher 

plants P5CS enzymes are located in the cytosol and partly in chloroplasts [14]. However, 

similarly to animal cells and yeast, Pro degradation by PRODH and P5CDH occurs in plant 

mitochondria, linked to ROS generation by PRODH delivery of electrons to the mitochondrial 

electron transport chain (METC; [8]).  Elevated ROS production induced by different 

processes, including abiotic stresses, photorespiration, and certain pathogen infections, 

appears to differentially regulate the expression of P5CS and PRODH genes in Arabidopsis 

[10, 14]. Considering the effect of SELO deficiency on Pro catabolism in plant mitochondria 

and the mitochondrial location of human SELO, it was intriguing to characterize the cellular 

location of Arabidopsis SELO and its possible role in ROS regulation. 

For examining SELO cellular localization, an expression cassette of SELO-GFP driven by the 

CaMV 35S promoter was cloned in pART27 [31] and introduced into selo mutants, resulting in 

SELO-GFP overexpressing plants. Ectopically expressed SELO-GFP was localized to 

chloroplasts in leaves (Fig. 3 A to H, and Fig. A7), in contrast to mitochondrial location of 
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HsSELO in human cells [25]. To further confirm this observation, SELO-GFP was co-

expressed in plants with a chloroplast marker (tpFNR-YFP), composed of N-terminal 

chloroplast transit peptide of Ferredoxin NADP+ Reductase (FNR) fused to YFP (received 

from Prof. Jaideep Mathur). Confocal microscopy imaging of leaf tissues confirmed co-

localization of chlorophyll A, SELO-GFP, and tpFNR-YFP in chloroplasts (Fig. 3 A to H) by 

fluorescence overlap in chloroplasts in the merged images (white chloroplasts in Fig. 3 D, H) 

with a Pearson correlation coefficient of 0.76. However, presumably due to ectopic expression 

driven by the constitutive 35S promoter, both SELO-GFP and tpFNR-YFP were also detected 

in the cytosol around the large vacuole of leaf cells (Fig. 3 B to D). In addition, confocal 

imaging of ectopically expressed SELO-GFP or tpRbcS-GFP (transit peptide of RUBISCO 

small subunit fused to GFP) in leaves showed similar chloroplast localization of the two 

proteins (Fig. A7). To additionally prove chloroplast localization of SELO, samples of total 

proteins and purified chloroplasts prepared from WT and SELO-GFP seedlings, were 

resolved by SDS-PAGE and subjected to western blotting with anti-GFP and anti-TUBULIN 

antibodies, using a parallel probing with anti-RUBISCO large subunit (RbcL) antibodies as a 

control (Fig. 3 I). Whereas RbcL was detected in all samples, TUBULIN was present only in 

total cell extracts verifying the purity of chloroplast preparations. The SELO-GFP signal was 

detected in extract of total protein and isolated chloroplasts of SELO-GFP seedlings 

confirming its chloroplast localization.  

Next, protein complexes from purified leaf chloroplasts of SELO-GFP plants were resolved on 

blue-native (BN) gels and subjected to parallel western blotting with anti-GFP antibody, which 

revealed their co-fractionation with SELO-GFP (Fig. 3 J). The detected bands of protein 

complexes (left panel) were excised and subjected to LC-MS/MS analysis to determine their 

major components (Table A3). The microsequencing results indicated that SELO-GFP 

occurred in association with relatively fast migrating thylakoid complexes, enriched in PSII 

components, cytochrome b6f and few PSI components (Fig. 3 J, complexes in bands 5, 6, 8, 

and 9, which had high score values in Table A3). These findings are in agreement with 

previously reported large-scale chloroplast proteomics studies, which predicted that SELO 

carries an N-terminal chloroplast transit peptide of 66 amino acids and is present in 

chloroplast stromal fraction [60, 61]. An additional step was taken by conducting co-

immunoprecipitation (Co-IP) analysis, using anti-GFP antibody conjugated to agarose beads 

(GFP-Trap, Chromotek) with partially dissolved complexes from isolated leaf chloroplasts of 

SELO-GFP or WT plants. Firstly, microsequencing of total pulled down fractions was 

conducted, in which FNR was identified as the main interactor of SELO-GFP compared with 

similar analysis of WT fraction.  Thereafter, Co-IP fractions were resolved by SDS-PAGE and 

following blotting, were probed with antibodies recognizing representatives of electron 

acceptors downstream to PSI (Fig. 3 K). Interactions with FNR (35 kDa) (LFNR1 and LFNR2 

are recognized by the antibodies) [62, 63], and PGRL1A (AT4G22890; Protein Proton 

Gradient Regulation 5 – Like 1A) were identified. PGRL1 and PGR5 form a complex that 

controls the major pathway of cyclic electron flow (CEF) in the vicinity of PSI [64, 65]. It is not 
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clear whether in C3 plants PGR5-PGRL1 complex competes with FNR on reduced Fd 

(Ferredoxin), or also interacts with it to mediate CEF and linear electron flow (LEF) activity 

[66]. Since both FNR and PGRL1A were recently reported as being phosphorylated by STN7 

or its paralog STN8, respectively [67], we examined probing with anti-STN7 antibodies, and 

detected interaction of SELO-GFP with STN7 kinase (Fig. 3 K). 

The latter interaction implies that SELO may have a broad influence, since STN7 is the major 

kinase that phosphorylates LHC2,  FNR, and few other chloroplast proteins [67]. Furthermore, 

STN7 activity was found to be controlled by the redox state of the plastoquinone pool [3], and 

therefore PSII activity responsible for plastoquinone reduction might also be involved. STN7 

kinase activity indirectly mediates electron flow through PSI and downstream by being the 

major phosphorylating agent of LHCII thereby enabling its movement to form LHCII/LHCI/PSI  

the detected interactions indicate that SELO might participate in controlling the balance 

between CEF and LEF activities [68]. Nonetheless it should be noted that further 

characterization of SELO interactions is needed order to assess its regulatory role and verify 

the involvement of its putative redox motif and kinase domain [26].  

3.4. Inactivation of SELO lowers ROS levels 

It is well-documented that, in addition to the reduction of NADP+, Ferredoxin-Thioredoxin 

Reductase (FTR) and CEF components, about 10% of PSI electron flux is directed to O2 by 

Fd-mediated generation of superoxide radical (O2˙¯), which is converted to H2O2 by Cu/Zn 

Superoxide Dismutase (Cu/Zn-SOD) under normal growth conditions [3, 69]. Upon drought 

stress, ABA-signaling stimulates stomatal closure, lowering CO2 availability and fixation rate 

[70]. Consequent over-reduction of photosynthetic electron transport components enhances 

production of O2˙¯ and H2O2 at PSI and PQ (plastoquinone), as well as singlet oxygen (1O2) 

generation by PSII, which together impose oxidative stress [11, 71]. According to the notion 

that guard cell chloroplasts are a major source of cellular ROS production [72], we analyzed 

changes in fluorescence of the ROS indicator dye 2′,7′-dichlorofluorescin diacetate (DCF) in 

chloroplasts of stomatal guard cells of leaves in both WT and selo1-2 plants, in response to 

increased light intensity (Fig. 4 A, B). Confocal analysis (Fig. 4 A) and quantification of DCF 

fluorescence (Fig. 4 B) indicated that ROS content of selo1-2 chloroplasts was about 50% of 

that of WT under normal irradiation (100 µmole m-2 s-1). Upon enhancing ROS production by 

exposing plants to 2-fold higher light intensity for 30 min (HLI in Fig. 4 A and B), the DFC 

fluorescence values still remained about 20% lower in the selo1-2 mutant compared to WT 

indicating reduced ROS accumulation. Estimation of whole-seedling content of H2O2, the 

most stable ROS compound in plant tissues [4], showed that 7-day-old selo1-2 seedlings 

contained 50% less H2O2 relative to WT seedlings (Fig. 4C), suggesting that lower levels of 

ROS in selo1-2 mutant is likely a whole plant phenomenon. 

To stimulate ROS production at PSI, 7-day-old selo1-2 and WT seedlings, cultured for 48 h in 

0.5 MS liquid medium, were treated with 0.25 µM methyl viologen (MV, paraquat). Oxidative 

stress-induced decline of PSII quantum yield (Fv/Fm) was monitored for 3 h by automatic 
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chlorophyll fluorescence measurement [73, 74]. Despite the exerted partial hypoxia due to the 

experimental conditions of immersing the seedlings in MS medium and gentle shaking, which 

likely lowered the amount of ascorbate and glutathione content and thus concomitantly 

decreased H2O2 quenching by redox enzymes of the water-water cycle [75, 76], we could 

observe the effect of MV-induced ROS production. MV treatment stimulated a continuous 

decline of PSII quantum yield in WT (Fig. 4 D), which was bigger than that observed in selo1-

2 seedlings. Higher Fv/Fm values in the mutant both before and during MV-treatment indicated 

that selo1-2 mutation could lower the impact of MV-induced oxidative stress on PSII activity, 

likely by elevating antioxidant capacity. Therefore, the level of general oxidant quenching 

capacity was measured using Trolox equivalent antioxidant capacity (TEAC) assay [45]. 

Oxidant-quenching capacity in leaves of 30-day-old well-watered WT plants was lower than 

that of selo1-2 and selo1-3 mutants (Fig. 5 B, left panel).  

Together, the data indicated that absence of SELO lowers ROS levels and increases oxidant 

quenching under normal unstressed conditions, or when plants are exposed to MV or  high 

light intensity.  

3.5. Upregulation of genes involved in ROS scavenging by the selo mutation and dehydration 

effect 

Correlation between higher oxidant scavenging capacity (Fig. 5 B) of the selo mutant and its 

reduced sensitivity to MV raised the possibility that lack of SELO might elevate levels of ROS 

scavenging enzymes which are numerous in plants [77]. Therefore, we decided to focus on 

evaluating transcript levels of representative enzymes involved in scavenging of ROS 

produced by MV effects, photorespiration and Pro catabolism. 

MV competes with Fd as an efficient electron acceptor from FA/FB of PSI. Thus, lower 

oxidative damage of PSII in the selo mutant (Fig. 4 D) suggested that lack of SELO could 

enhance scavenging of superoxide anions (O2˙¯). Several steps are involved in scavenging of 

PSI-produced O2˙¯. Thylakoid Cu/Zn-SOD enzyme (CSD2) dispropotionates O2˙¯ to H2O2, 

which is then reduced to water by the thylakoid Ascorbate Peroxidase (tAPX).  O2˙¯ released 

to the stroma is quenched by Fe-SODs and stromal APX (sAPX). Peroxiredoxins (PRXRs), 

including peroxiredoxin Q (PRXQ), present in thylakoid lumen and stromal side of thylakoid 

membranes, reduce H2O2 after being reduced either by FTR-TRX or NADPH-NTRC 

pathways. Scavenging of ROS generated by the PSII-over-reduction of the PQ pool is 

performed separately, and partially involved Plastid Terminal Oxidase (PTOX), [3, 71, 78, 79].  

We estimated the transcript levels of nuclear genes encoding representatives of ROS 

quenching enzymes by qRT-PCR measurements. Under well-watered (WW) conditions, 

leaves of 30-days-old plants revealed 1.5 to 2-fold higher expression, in the selo1-2 mutant 

compared with WT, of the nuclear genes CDS2, FDS3 (Fe-SOD), tAPX, sAPX, PRXQ, GR2 

(Glutathione Reductase 2) and MDAR6 (MonoDehydro-Ascorbate Reductase 6) encoding 

chloroplast ROS scavenging enzymes (Fig. 5 A). GR2 was reported to play an important role 

in protecting PSII from H2O2 damage [80]. Less is known about MDAR6, present in both 
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chloroplast stroma and mitochondria, and likely has a broad spectrum of substrates, even 

being capable of generating superoxide from the explosive 2,4,6-trinitrotoluene (TNT, [81]).  

Interestingly MSD1 encoding the mitochondrial Mn-SOD also showed upregulation in 

unstressed selo1-2 mutant, similarly to chloroplast CSD2 and FSD2. However, WT and selo 

plants displayed comparable expression of AOX1A encoding mitochondrial alternative 

oxidase under WW conditions (Fig. 5). AOX1A activity is considered as a key regulator of 

mitochondrial-chloroplast inter-organelle signaling [82]. Its inactivation results in enhanced 

ROS damage of chloroplast photosynthetic apparatus, conferring acute sensitivity to drought 

and light stress [83]. In contrast, transcription of plastid terminal oxidase PTOX and the 

prokaryotic-type thioredoxin TRXm2, involved in chloroplast PSII biogenesis and in 

interactions with mitochondrial and peroxisome/chloroplast targeted proteins, showed lower 

expression in the selo1-2 mutant under WW conditions. Other genes encoding key enzymes 

of ROS inactivation, the peroxisomal CATALASE 2 (CAT2) and cytoplasmic APX2, had 

similar transcript levels in WT and selo1-2 plants under WW conditions, similarly to RBOHD 

gene encoding plasma-membrane NADPH oxidase, which is involved in ROS signaling 

related to osmotic stress, ABA, salicylic acid and pathogen attacks. In summary, higher 

expression of genes encoding key enzymes of chloroplast ROS scavenging by 

SOD/ascorbate/glutathione cycle correlated with lower ROS levels and elevated oxidant 

scavenging capacity in selo mutant compared with WT plants (Fig. 4 and Fig. 5 B).  

Next, we examined how imposition of dehydration stress affects the transcript levels of these 

genes encoding ROS scavenging enzymes. qRT-PCR measurements were performed with 

similarly grown WT and selo1-2 plants subjected to 8 days of dehydration. In contrast to well-

watered conditions, transcript levels of CDS2, FDS3, sAPX, and PRXQ genes were extremely 

reduced in selo1-2 similarly to WT plants (Fig. 5 A, Appendix Table A4), indicating that 

scavenging of PSI-derived O2˙¯ might be significantly lower under dehydration conditions.  

Transcript levels of enzymes participating in chloroplast glutathione-ascorbate cycle were 

higher than those directly involved in O2˙¯ elimination. Transcription of tAPX and MDAR6 was 

induced in WT during dehydration but not in selo1-2, while transcript levels of GR2 showed 

only slight decline in selo1-2 compared to WT under water shortage.  

The PTOX/AOX4 gene encoding the thylakoid alternative Ubiquinol:Oxygen Oxidoreductase 

showed lower expression in the selo1-2 mutant compared to WT, with and without 

dehydration. Transcript levels of the TRXm2, a representative of the FTR-TRX system, were 

notably reduced due to dehydration in selo1-2 compared to WT.  

A drop in mitochondrial MSD1 mRNA levels occurred in both WT and selo mutant during 

dehydration, while the expression of another mitochondrial O2˙¯  scavenger the alternative 

oxidase AOX1A was notably increased to about 3-fold in WT and 10-fold in selo1-2 plants. 

Higher expression of AOX1A thus correlated with the induced expression of ProDH and 

P5CDH genes of ROS-producing, mitochondrial Pro degradation pathway in the selo1-2 

mutant (Fig. 2 C). Transcript levels of cytosolic APX2 and peroxisomal CAT2 were very low in 

both WT and selo mutant under WW conditions, and significantly elevated during dehydration. 
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APX2 transcript levels were 2.6-fold higher but CAT2 levels were about 2-fold lower in selo1-2 

compared to WT during dehydration. Finally, RBOHD expression was repressed in both WT 

and selo1-2 plants by dehydration (Fig. 5, Appendix Table A4).  

These data revealed that nearly all chloroplast ROS scavenging functions, except for tAPX, 

were down-regulated in the selo1-2 mutant during dehydration at similar or higher magnitude 

compared to WT. Nonetheless, in correlation with de-repression of genes of mitochondrial Pro 

degradation during dehydration (Fig. 2), two important ROS scavenging functions defined by 

mitochondrial AOX1A and cytosolic APX2 were transcriptionally upregulated in the selo1-2 

mutant during stress. AOX1A and APX2 belong to a group of co-regulated genes encoding 

chloroplast and mitochondrial redox proteins, which are activated by WRKY63 and repressed 

by WRKY40 transcription factors during ABA-dependent responses to high light and abiotic 

stress [84, 85].  

Considering the influence of additional factors related to ROS scavenging capacity, such as 

post translational changes, regulation of enzymatic activity, high abundance of additional 

ROS scavenging enzymes [77], and cellular content of non enzymatic oxidant quenching  

compounds [71], we also compared the total oxidant scavenging capacity of WT and selo 

plants under well-watered and dehydration conditions (Fig. 5 B). While at the onset of 

dehydration, the total antioxidant capacity of selo mutants compared with that of WT was 6% 

higher, this difference disappeared during dehydration by the decline in selo mutants and 

elevation in WT of antioxidant capacity. Consequently the measured antioxidant capacity of 

selo mutants and WT plants was similar, with no significant difference, on the 8th day of 

dehydration (Fig. 5 B, right panel). Nonetheless, the differential transcription pattern of 

specific genes, e.g. APX2, AOXA, PTOX, MDAR6 and TRX-M2, in selo plants during 

dehydration compared with WT (Fig. 5 A) implies that SELO absence changes the regulation 

of ROS scavenging not only under well watered conditions but also during dehydration stress. 

4. Discussion  

4.1. Changes linked to SELO's absence 

We identified plant SELO in a forward genetics approach designed to detect knockout 

mutants with disturbed abiotic stress signaling. Characterization of selo mutants 

demonstrated changes in ROS content and in transcript levels of nuclear encoded ROS 

scavenging enzymes most of them targeted to the chloroplast. Upon imposition of 

dehydration, selo mutants were more tolerant to the stress, and revealed disturbed Pro 

metabolism. The following sections are centered towards elucidating the linkage between the 

observed changes occurring in the selo mutants towards characterizing SELO role in plants. 

4.2. Selenoprotein O and other selenoprotein-including systems 

Evolutionary studies have identified SELO proteins as highly conserved in all three domains 

of life and suggested that their ancient role was linked to aquatic/anaerobic life that existed 
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well before the appearance of terrestrial organisms (Fig. A8; [20, 86]). SELO homologues 

have a conserved putative redox-active motif, implying their involvement in thiol-disulfide 

exchange redox reactions. Human SELO (HsSELO; 73.4 kDa) was localized to mitochondria 

and found capable of forming a complex of about 88 kDa under oxidative conditions. This 

SELO complex was more stable when the resolving second Cys residue was exchanged to 

Ser in the C-terminal redox motif (SxxC). The identity of redox-dependent interacting partner 

of about approximately 14 kDa has remained unknown [25]. Other classes of mammalian 

selenoproteins are functioning as glutathione peroxidases (GPXs), thioredoxin reductases 

(TRXRs) and deiodinases (DIOs) [87]. In addition to SELO, two other mammalian 

selenoproteins, TRX-reductases (TR2 and 3) and glutathione peroxidase (GPX4) are also 

found in mitochondria and participate in control of redox homeostasis [25, 88, 89].  

Dudkiewicz et al. [26] identified putative kinase-related signatures, which are conserved in all 

SELO proteins. These domains are part of the designated YdiU/UPF0061 family of unknown 

function according to NCBI database. The name of this domain refers to the E. coli SELO 

homologue YdiU, which is transcriptionally activated by IscR, a key redox regulator of Fe–S 

cluster (Isc) biogenesis and other genes encoding Fe–S proteins in E. coli and other bacteria 

[90]. Similarly to bacteria, mRNA and protein levels of numerous human selenoproteins are 

upregulated in response to oxidative stress [91]. In Arabidopsis, no significant changes in 

expression of genes encoding selenoprotein-like proteins other than SELO could be detected 

(Fig. A3), except for the gene encoding mitochondrial GPX6, which is cold-induced. 

Selenoproteins contain a SEC residue in their redox motif, however, except for the 

mitochondrial genome of American cranberry [92], it appears that the selenocysteine insertion 

machinery (tRNA-Sec and SECIS) was lost during the evolution of higher plants. Compared 

to bacteria and animals, only few classes of selenoproteins, owning Cys instead of Sec 

residue in their redox motif, have remained in plants (defined as selenoprotein-like), the rest 

were eliminated throughout evolution [20]. The Arabidopsis genome includes 10 

selenoprotein-encoding genes, most of them have been barely characterized [20, 86]. In 

comparison to animal GPX-selenoproteins, playing essential roles in H2O2 inactivation, the 

redox regulatory functions of plant GPXs have been less explored [93, 94], whereas much 

attention has been focused on catalases, peroxiredoxins and enzymes of the ascorbate/GSH 

cycle, considered as the major H2O2 scavengers in higher plants [71]. Plant selenoprotein-like 

GPXs are NADPH-dependent enzymes, carrying two-Cys-redox motifs, and structurally 

related to animal TRX reductases, the functions of which are replaced in plants by NADPH-

TRX reductases, including chloroplast NADPH-TRX Reductase C (NTRC).  

Two chloroplast systems control the shift of redox equivalents from PSI to TRXs and 

peroxiredoxins; the FTR/TRX pathway starting with ferredoxin-TRX reductases (FTRA and 

FTRB) that accept electrons from Fd, and FNR-NTRC pathway in which FNR-reduced 

NADPH is used by NTRC to reduce peroxiredoxins and to lesser extent TRXs. Both systems 

display different TRX substrate specificity with certain overlapping [3, 79]. NTRC, FTRs, as 

well as GRXs, were reported to reduce peroxiredoxins, which inactivate a broad range of 
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peroxide-containing substrates [77]. Chloroplast GPXs, such as GPX1 and 7 in Arabidopsis, 

are thought to prefer lipid peroxide substrates and are reduced by TRXs (reviewed by Dietz 

[95]). Notably, Arabidopsis cytosolic GPX3 was found to interact with, oxidize and thereby 

inhibit the activity of PP2C phosphatase ABI2 (ABA INSENSITIVE 2), resulting in activation of 

ABA-signaling, reduced water loss and enhanced drought tolerance [96]. This illustrates that 

plant selenoprotein-like proteins can potentially play a role in modulating the redox status of 

some other proteins, in addition to their well-known substrates. 

4.3. Plant SELO is localized to chloroplasts and interacts with proteins related to PSI 

Our study has provided experimental evidence (Fig. 3) that SELO is a chloroplast protein in 

Arabidopsis. SELO-GFP was localized to chloroplasts by confocal microscopy and by western 

analysis of proteins from purified chloroplasts. It was found in association with partially 

solubilized thylakoid-membrane protein complexes following BN gel separation and 

immunoblotting. Co-immunoprecipitation using anti-GFP antibody and isolated chloroplasts 

revealed direct interactions of SELO-GFP with FNR, PGRL1A and STN7, which did not occur 

in chloroplasts isolated from WT plants. These interactions imply SELO involvement in LEF 

and CEF downstream to PSI [3, 77]. 

SELO was previously identified as unknown protein in the chloroplast stromal fraction by 

large-scale proteomic studies, as well as by bioinformatics identification of proteins with 

predicted chloroplast transit peptides (At_CHLORO database; [60, 61]). The N-terminal 

region, comprising chloroplast transit peptide in plant and algal SELO homologues, shows no 

sequence similarity to animal counterparts. Our subcellular localization data also show SELO-

GFP presence in the cytosol, which is likely the consequence of ectopically expressing SELO-

GFP driven by the strong constitutively active CaMV 35S promoter. C-terminal GFP fused to 

human SELO did not prevent its mitochondrial localization in human cells [25]. However, 

despite our efforts, we could not find so far evidence for mitochondrial localization of SELO in 

any tissue. Database searches indicated that SELO mRNA levels are higher in leaves and 

other photosynthesizing tissues and elevated by oxidative and abiotic stress stimuli, including 

drought, salt stress, ozone and UV irradiation (Fig. A1 and A2).  

4.4. Implication of SELO in regulation of ROS production 

Initial characterization of Arabidopsis selo mutants indicated that absence of SELO decreases 

ROS levels in seedlings, and more specifically in chloroplasts of guard cells by 50% (Fig. 4 A, 

B). It also lowers ROS production and oxidative damage of PSII, which is induced by high 

light or methyl-viologen (MV). As MV competes with ferredoxin (Fd) accepting electrons from 

FA/FB components of PSI reaction center, this observation suggests that SELO might be 

involved in modulating the elimination of PSI-produced superoxide anions [3].  Fd controls the 

redox status of Fe-S components in PSI reaction centers by transferring electrons to Fd-

NADP+ reductase (FNR), Fd-Txr reductase (FTRA and FTRB), and Fd-plastoquinone 

reductases suggested to be the PGR5-PGRL1A and NDH complexes [64, 65, 97]. However, 

Fd cannot secure full redox protection of PSI reaction centers under various intensities of 
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illumination, thus a significant portion of electron flux is directed to O2 thereby producing 

superoxide radicals (O2˙¯), even under optimal photosynthetic conditions [75, 78, 98]. In co-

immunoprecipitation experiments of chloroplast complexes with SELO-GFP, SELO was found 

to interact with FNR and PGRL1 (Fig. 3 K), which are Fd-dependent electron acceptors 

involved in LEF and CEF respectively [3, 65], confirming the prediction of SELO involvement 

in sensing or mediating both types of electron flows. SELO also interacted with STN7 but not 

with its paralogue STN8, or with Fd. STN7 is a thylakoid membrane kinase required for the 

photosynthetic transition from state 1 to state 2. This transition is dependent on LHCII 

phosphorylation by STN7, controlled by the redox state of the plastoquinone (PQ) pool and its 

interaction with Cytb6f [99, 100]. STN7 possesses two two-Cys redox motifs, one of them is 

thought to be a target of TRXf and is situated in the ATP binding pocket, likely responsible for 

STN7 inactivation under high light intensity (HLI). This motif is absent in STN8 in correlation 

with its insensitivity to HLI [101]. Studies comparing stn7 mutant with WT plants demonstrated 

that STN7 is also involved in phosphorylation of FNR and RbcL assuming their accessibility to 

the thylakoid-assembled STN7 [67]. Considering the detected SELO interactions, indicating 

its contact with PSI components, still it could well be presumed that other proteins might 

interact with SELO and therefore additional studies are required to elucidate the functional 

role of SELO in processes downstream to PSI. 

4.5. Transcriptional upregulation of chloroplast ROS scavenging functions  

Our data demonstrated lower H2O2 levels and higher oxidant scavenging capacity in selo 

mutant grown under normal conditions (Fig. 4 C and Fig. 5 B, respectively), which might be 

an outcome of enhanced expression of genes that encode ROS scavenging proteins. 

Elevation of transcript levels of nuclear encoded ROS scavenging enzymes associated with 

PSI activity was observed in selo mutant grown under normal growth conditions (Fig. 5 A, 

WW). The observed increase encompasses chloroplast redox network starting with the 

superoxide scavengers copper/zinc superoxide dismutase (CDS2) and its stromal counterpart 

Fe-SOD (FSD2), as well as the second line of H2O2 scavengers of thylakoid and stromal 

ascorbate peroxidases (tAPX and sAPX), and thylakoid-bound peroxiredoxin (PRXQ). It 

further included other components of the redox circles, such as glutathione reductase (GR2) 

and mono-dehydroacorbate reductase (MDAR6) genes [4]. In addition, the transcript level of 

mitochondrial manganese-SOD was also elevated, indicating superoxide elevated scavenging 

also in mitochondria.  

This concerted elevation seems to be unique, because according to transcript profiling data 

derived from the Genevestigator site (https://genevestigator.com [57]), the overall expression 

of these genes is not stimulated by any of the measured redox changes or in any reported 

mutant, not even by MV treatment that generates superoxide. However, downregulation by 

drought [83] and hypoxia was observed, except for tAPX and MDAR6 [102]. Reports related 

to single enzymes showed that ectopic overexpression of tAPX and sAPX could confer MV 

tolerance [103] and protection against high light-induced oxidative stress [104]. Mutation of 

GR2 could elevate high light sensitivity and increase ROS production [80], whereas PRXQ 

ACCEPTED M
ANUSCRIP

T

https://genevestigator.com/gv/


19 
 

activity was shown to be involved in protection of photosystems and chloroplast redox 

homeostasis [105, 106]. Thus, this general elevation of ROS scavenging capacity in the 

absence of SELO likely indicates a kind of general alarm sensed in PSI vicinity under 

unstressed growth conditions. 

Nonetheless, during exposure to dehydration stress a change in this elevation phenomenon 

was observed, since the enhancement disappeared and either similar or lower expression of 

certain genes could be observed in the selo mutant compared to WT (Fig. 5, “D” treatment). 

The transcript abundance of enzymes related to the glutathione-ascorbate cycle, such as 

tAPX, MDAR6 and GR2 was lower during dehydration in the selo mutant compared with WT. 

Hence, while under normal growth conditions high expression of ROS scavenging enzymes 

correlated with higher capacity of ROS elimination, the change in transcript abundance data 

of dehydrated selo and WT plants suggests that the regular stress-mediated control of these 

genes is more effective in silencing the transcription of superoxide scavenging enzymes in 

PSI vicinity, which can be thought as less needed considering the gradual lowering of ETR 

during stress (Fig. A6). Nevertheless lack-of-SELO effect during dehydration stimulates the 

expression of cytoplasmatic APX2 and mitochondrial AOX1, shifting the influence outside the 

chloroplast where it is likely needed for ROS scavenging due to elevation of Pro catabolism 

that delivers electrons to mitochondrial ETC [8, 10]. Correlatively with the changes in 

transcription profiles of genes encoding ROS scavenging enzymes in the selo mutant during 

dehydration stress,  the recorded total  antioxidant capacity in the mutant  was similar to  WT, 

due to the observed raise in WT and decrease in selo mutants of antioxidant capacity relative 

to the elevated levels in the mutant before the stress (Fig. 5 B). 

Although an overall transcription profiling of ROS related enzymes linked to proteomics is still 

required for better understanding of ROS scavenging elevation in the absence of SELO, the 

current data suggest that the longer survival of selo mutants and their extended 

photosynthesis ability, compared with WT during dehydration, is likely not a direct 

consequence of general elevation of antioxidant capacity.  Thus it maybe speculated that the 

dehydration withstanding of selo mutants is likely an outcome of a shift to better energy 

provision in mitochondria by Pro catabolism that delivers electrons to the mitochondrial 

electron chain [107] while utilizing NADPH produced in chloroplasts for maintaining proline 

synthesis and NADP+ provision.    

4.6. Unusual physiological phenomena correlate with perturbed signaling in selo mutants 

Certain irregular events recorded in selo mutants under unstressed or/and stress conditions 

demonstrate differences in signaling caused by lack of SELO:  

The selo mutants are less sensitive to dehydration, compared with WT plants. They show a 

delay of about 3 days in wilting time, which is associated with extended photosynthetic 

activity. Correlatively, selo mutants maintain higher water content relative to WT plants under 

dehydration conditions, and by contrast reveal higher stomatal conductance in leaves along 

the stress. Thus, instead of dehydration-stimulated stomatal closure, which is controlled in 
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WT plants mainly by ABA- and ROS-mediated signaling [69, 70, 108, 109], it seems that lack 

of SELO modulates a different signaling scenario that allows stomata opening and 

maintaining of higher water content under dehydration conditions. Albert et al. [70], have 

summarized the presently available data on regulation modes responsible for stomatal 

closure, illustrating a network of 84 cellular components having 156 interactions among them. 

Therefore, many more parameters related to stomatal closure have to be evaluated in order 

to predict the signaling mode that differentially controls stomata in selo mutants.  

The response of the selo mutant to dehydration does not include net increase in proline 

content despite the always mentioned concept that considers proline as an osmo-protectant, 

scavenger of ROS and essential metabolite for rendering plants tolerant to abiotic and biotic 

stresses [13, 14, 110, 111]. Nevertheless, the role of proline in elevating salt and drought-

stress tolerance is still under debate since increase in Pro is not always correlated with stress 

resistance [10, 15]. Moreover, stress-induced elevation of Pro synthesis that utilizes NADPH 

may change NADP+ to NADPH ratio, allow continuous photosynthesis in chloroplasts, 

enhance oxidative pentose phosphate pathway and provide mitochondria with redox 

equivalents produced in chloroplasts. Therefore, the mentioned metabolic effects of Pro may 

be considered more beneficial under stress conditions rather than the properties of the Pro 

molecule [9, 10]. Upon exposure to dehydration selo mutant shows disturbed Pro catabolism 

signaling that leads to increased expression instead of silencing of ProDH1 and ProDH2, 

encoding the first enzyme in Pro degradation, accompanied by an elevation of P5CDH 

transcription. Consequently, no raise in Pro content occurred despite the increase in Pro 

synthesis. 

In response to inhibition of photosynthesis and glucose limitation, Pro degradation pathway is 

upregulated by AMP-activated kinases in mammals and their SnRK1 homologues in plants 

[112, 113]. Enhancement of mitochondrial proline degradation channels electrons via FAD-

containing ProDH to ubiquinone in the mitochondrial electron transport chain in both plant and 

human cells [114-116]. We have previously shown that the Pro degradation intermediate P5C 

largely enhances ROS production in the absence of P5CDH [8]. Enhanced transcription of 

P5CDH gene in the selo mutant thus likely eliminates P5C accumulation. At the same time, 

about 3-fold higher expression of AOX1A gene of cyanide-resistant mitochondrial alternative 

oxidase suggests higher level of activation of so-called non-energy conserving pathway in the 

selo mutant, which through the inter chloroplast-mitochondrion malate/oxaloacetate shuttle 

lowers the accumulation of chloroplast NADPH, and thereby PSI photoinhibition [117, 118].  

Consequently, this mechanism also suggests that the primary signal affected by the selo 

mutation is related to the NADPH level, which reflects the redox status of Fd in the 

chloroplast. Recently, transcriptional activation of ProDH1 promoter was shown to be 

repressed by chemical inhibition of NADPH oxidases and treatment of plants with the ROS 

scavengers ascorbic acid (AsA) and N,N'-dimethylthiourea (DMTU). In addition, two mutations 

inactivating Cytochrome P450 (CYP86A2) and Long Chain Acyl Synthetase2 (LACS2), which 

catalyze two successive steps in very-long-chain fatty acid (VLCFA) synthesis, were found to 
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activate the ProDH1 promoter under unstressed conditions [119]. These mutations do not 

prevent ProDH1 inactivation by low water potential, while in the selo mutant ProDH silencing 

is cancelled during dehydration. However, examples of ProDH transcription regulation by 

diverse factors such as VLCFAs, which are synthesized in the endoplasmic reticulum and 

involved in phospholipid and sphingolipid signaling [120], or lack of SELO that also increases 

nuclear transcription of ROS scavenging enzymes under unstressed conditions, raise the 

possibility that SELO is likely involved in redox regulation of transcription factors. Such direct 

and indirect regulation as reviewed by Dietz [121], still requires further unraveling of signaling 

components that explain the linkage between SELO presence in PSI vicinity and its exerted 

control of redox status.  

5. In summary 

The thylakoid-associated SELO has been studied by analyzing physiological events derived 

from its absence in the selo mutant. The recorded events include elevated dehydration 

tolerance with extended functioning of photosynthetic photosystems, and low levels of ROS 

under unstressed conditions linked to increased transcript levels of nuclear encoded ROS 

scavenging enzymes acting mostly in chloroplasts. Specific elevation of proline degradation 

occurs in mitochondria of selo mutant during dehydration due to unique increase in 

transcription of ProDHs and P5CDH. Studying genome-wide transcriptional changes in the 

selo mutants, further identification of redox partners and examining the involvement of 

predicted kinase domain and redox motif of SELO should provide additional insights about 

SELO regulatory functions.  
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Figure legends 

Figure 1. Absence of SELO increases dehydration tolerance  

A, Genetic map of selo alleles; selo1-1 mutant was identified in the collection of Alvarado et 

al. [19], selo1-2 (GABI_956D07) and selo1-3 (SAIL_776_G08). Locations for primers of 

mutation identification are marked with red arrows; K/O expression verification was performed 

with primers marked in blue arrows.  B, Comparison of dehydration response of 30-day-old 

plants of WT and selo1-2 or 1-3 plants under well-watered (2nd day) or dehydration (11th or 

14th day) conditions in two experiments performed under similar conditions but the second (F 

to H) contained less soil in the pots used for plant growth. C to E, Comparison of dehydration 

response of 30-day-old WT, selo1-2 and selo1-2.  C Effect of water withholding on wilting time 

(n=20, Waller-Duncan test, F(6,151)=2.538, p=0.023). Relative water content measured on 

the 2nd (D) and 14th day (E) after stopping irrigation. The mutants retained significantly higher 

water content during stress (n=20, Waller-Duncan test). F to H, Stomatal conductance of WT 

and selo1-2 plants whose wilting response is shown in F. G, Similar stomata density in 

abaxial epidermis of mature rosette leaves of WT and selo1-2 plants (n.s., n=30, t-test, 

p=0.449). H, stomatal conductance during dehydration. Although stomatal density is similar 

stomatal conductance in selo plants is significantly higher along the stress (n=16, t-test, 

p=0.0233 and 0.01 on the 4th and 11th days, respectively). I, Elongation of photosynthetic 

activity during dehydration in selo mutant compared with WT. in selo1-2 plants compared with 

WT plants (n=45). The PlantScreen – HighThroughput Phenotyping system was used for 

measuring of 30-day-old plants (n=45) subjected to water withholding in the experiment 

shown in F. 

 

Figure 2. Low accumulation of proline in selo1-2 mutant coincides with elevated 

transcript levels of proline degradation enzymes during dehydration 

A, Glutamate-proline-glutamate cycle. Enzymes involved in proline synthesis in the cytosol 

and likely in chloroplasts or breakdown in mitochondria are indicated.  

B, Comparison of proline content after 2 days (ww - well watered) and 8 days (d - dehydrated) 

of water withholding in leaves of WT (n=10, t-test, p=0.0243), selo1-2 (n=10, t-test, p=0.298) 

and selo1-3 (n=10, t-test, p=0.377) shows no stress-induced elevation of Pro.  

C, Transcript levels of genes encoding enzymes of the glutamate-proline-glutamate cycle in 

leaves of WT and selo1-2 plants, after 2 days (ww) and 8 days (d) of water withholding. Each 

qPCR reaction was performed with 3 biological replicates and 3 technical replicates. 

Transcript levels are relative to the value of well-watered WT. P5C - Δ(1) -pyrroline-5-

carboxylate,  P5CS1 and 2 - Δ(1) -pyrroline-5-carboxylate synthase 1 and 2, P5CR  - Δ(1)-
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pyrroline-5-carboxylate reductase, ProDH1 and 2 - proline dehydrogenase, P5CDH - Δ(1)-

pyrroline-5-carboxylate dehydrogenase. 

 

 

Figure 3. SELO is localized to chloroplasts 

A to H, Confocal images of epidermis and mesophyll cells with chloroplasts (A to D) of leaves 

of 7-day-old plants ectopically expressing SELO-GFP and a translational fusion of FNR transit 

peptide and YFP (tpFNR-YFP). E to H, mesophyll chloroplasts. Chlorophyll A fluorescence – 

red (A, E), tpFNR-YFP – yellow (B,F), SELO-GFP – blue (C,G). Merge of tpFNR-YFP and 

SELO-GFP images (D, H). Co-localization of the marker fluorescence appears as white. Bars 

correspond to 10µm in all images.  

I to K, SELO-GFP is co-localized with chloroplast complexes. I, western blot of total (left 

panel) and chloroplast (right panel) proteins extracted from WT and SELO-GFP-expressing 

plants. SELO-GFP (100kDa) was identified by anti-GFP monoclonal Ab, chloroplast large 

subunit of RUBISCO (RbcL), and cytosolic TUBULIN were detected by polyclonal antibodies. 

J, SELO-GFP protein is found in association with partially dissolved complexes derived from 

isolated chloroplasts, separated on BN gel, stained with Coomassie Brilliant Blue (left) or 

probed with antiGFP antibody (right). Protein complexes of the numbered bands (1-3, 5-6, 8-9 

on left side) were cut out and microsequenced (Supplemental Table S1). The highly enriched 

components in each band are indicated on the right. K, Western analysis of proteins from 

isolated chloroplasts co-immunoprecipitated (Co-IP) with SELO-GFP using anti-GFP trap 

indicates interactions with proteins in PSI vicinity. Input – chloroplast proteins prior to Co-IP, IP 

– GFP-SELO interacting proteins identified by specific antibodies. 

 

Figure 4. Absence of SELO alleviates ROS effects.  

A and B, Mutants of SELO contain less ROS under normal and light-stress conditions. A, 

Hydrogen peroxide content in stomata guard cells of WT and selo1 plants exposed to normal 

irradiation (100 µmole·m-2·s-1) or double light intensity (HLI, 200 µmole·m-2·s-1) estimated by 

using DCF dye. DCF fluorescence is in displayed in blue and that of chlorophyll A in magenta. 

B, Hydrogen peroxide levels in chloroplasts, shown in A, quantified using IMAGE J. Hydrogen 

peroxide levels in WT plants significantly exceeded those of selo1 (n=10, Mann–Whitney–

Wilcoxon test). Bar corresponds to 20µm in all images. C, Quantification of hydrogen peroxide 

levels in 7-day-old WT and selo1-2 seedlings grown in liquid MS medium. Oxidation of ADHP 

dye in extracts of seedlings vs. calibration curve of H2O2 revealed higher levels in WT than in 
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selo1-2 (n=5, t-test, t=0.05). D, ROS produced by the PSI electron acceptor methyl viologen 

affect PSII: Seven-day-old WT and selo1-2 seedlings were incubated in 0.5 MS medium with 

methyl viologen (0.25µM) for 5 hours in wells of a micro-titter plate (n=24). The MV effect was 

assessed by comparing photosystem II efficiency (Fv/Fm) using PlantScreen – 

HighThroughput Phenotyping system.  

 

Figure 5. Lack of SELO elevates transcript levels of ROS scavenging enzymes and 

antioxidant capacity under well-watered conditions, but differently affects these 

features under dehydration stress. 

A, Differences in transcript levels of genes encoding ROS scavenging enzymes in selo 

compared with WT plants estimated by qRT-PCR using leaf mRNA isolated from 30-day-old 

well-watered (WW) and 8-day-dehydrated (D) plants. CSD2 -  Plastid copper/zinc superoxide 

dismutase FSD3 - plastid Fe superoxide dismutase, sAPX - plastid stromal ascorbate 

peroxidase, PRXRQ - plastid peroxiredoxin Q, tAPX - plastid thylakoid ascorbate peroxidase, 

GR2 -  plastid glutathione reductase, plastid monodehydroascorbate reductase 6 (MDAR6), 

plastid terminal oxidase (PTOX), TRXM2 - plastid thioredoxin M2, MSD1 - mitochondrial 

manganese superoxide dismutase 1, AOX1A - mitochondrial alternative oxidase 1A, CAT2 - 

peroxisomal catalase 2, RBOHD - plasma membrane respiratory burst oxidase homologue D, 

APX2 -  cytosolic ascorbate peroxidase 2. Each reaction was performed with 3 biological 

replicates and 3 technical replicates. Transcript levels are relative to the value of well-watered 

WT. Estimated values are listed in Table A4. 

B, Comparison of antioxidant capacity of WT, selo 1-2 and selo1-3 leaves of plants grown 

under well-watered conditions (WW, n=6, ANOVA, p=0.01) and after 8 days of dehydration 

(Drought). No statistical difference in antioxidant capacity between WT and mutants was 

observed after 8 days of dehydration (n=6, ANOVA, p=0.76). Estimation by Trolox equivalent 

antioxidant capacity (TEAC) assay. 
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Figure 2. Low accumulation of proline in selo1-2 mutant coincides with 

elevated transcript levels of proline degradation enzymes during 

dehydration 

A Glutamate-proline-glutamate cycle. Enzymes involved in proline synthesis 

in the cytosol and likely in chloroplasts or breakdown in mitochondria are 

indicated.  

B Comparison of proline content after 2 days (ww - well watered) and   days 

(d - dehydrated) of water withholding in leaves of WT (n=10, t-test, p=0.02  ), 

selo1-2 (n=10, t-test, p=0.29 ) and selo1-3 (n=10, t-test, p=0. 77) shows no 

stress-induced elevation of Pro.  

C Transcript levels of genes encoding enzymes of the glutamate-proline-

glutamate cycle in leaves of WT and selo1-2 plants, after 2 days (ww) and   

days (d) of water withholding. Each qPCR reaction was performed with   

biological replicates and   technical replicates. Transcript levels are relative to 

the value of well-watered WT. P C - Δ(1) -pyrroline- -carboxylate,  P5CS1 

and 2 - Δ(1) -pyrroline- -carboxylate synthase 1 and 2, P5CR  - Δ(1)-
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pyrroline- -carboxylate reductase, ProDH1 and 2 - proline dehydrogenase, 

P5CDH - Δ(1)-pyrroline- -carboxylate dehydrogenase. 
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Figure 3. SELO is localized to chloroplasts 

A to H Confocal images of epidermis and mesophyll cells with chloroplasts (A 

to D) of leaves of 7-day-old plants ectopically expressing SELO-GFP and a 

translational fusion of FNR transit peptide and YFP (tpFNR-YFP). E to H 

mesophyll chloroplasts. Chlorophyll A fluorescence – red (A, E), tpFNR-YFP – 

yellow (B,F), SELO-GFP – blue (C,G). Merge of tpFNR-YFP and SELO-GFP 

images (D, H). Co-localization of the marker fluorescence appears as white. 

Bars correspond to 10µm in all images.  

I to K SELO-GFP is co-localized with chloroplast complexes. I  western blot of 

total (left panel) and chloroplast (right panel) proteins extracted from WT and 

SELO-GFP-expressing plants. SELO-GFP (100kDa) was identified by anti-
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GFP monoclonal Ab, chloroplast large subunit of RUBISCO (RbcL), and 

cytosolic TUBULIN were detected by polyclonal antibodies. J SELO-GFP 

protein is found in association with partially dissolved complexes derived from 

isolated chloroplasts, separated on BN gel, stained with Coomassie Brilliant 

Blue (left) or probed with antiGFP antibody (right). Protein complexes of the 

numbered bands (1- ,  - ,  -9 on left side) were cut out and microsequenced 

(Supplemental Table S1). The highly enriched components in each band are 

indicated on the right. K Western analysis of proteins from isolated 

chloroplasts co-immunoprecipitated (Co-IP) with SELO-GFP 

using anti-GFP trap indicates interactions with proteins in PSI vicinity . 

Input – chloroplast proteins prior to Co-IP, IP – GFP-SELO  

interacting proteins identified by specific antibodies. 
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Figure 4. Absence of SELO alleviates ROS effects. A and B, Mutants of SELO 

contain less ROS under normal and light-stress conditions. A, Hydrogen peroxide 

content in stomata guard cells of WT and selo1 plants exposed to normal irradiation 

(100 µmole·m
-2
·s

-1
) or double light intensity (HLI, 200 µmole·m

-2
·s

-1
) estimated by 

using DCF dye. DCF fluorescence is in displayed in blue and that of chlorophyll A in 

magenta. B, Hydrogen peroxide levels in chloroplasts, shown in A, quantified using 

IMAGE J. Hydrogen peroxide levels in WT plants significantly exceeded those of 

selo1 (n=10, Mann–Whitney–Wilcoxon test). Bar corresponds to 20µm in all images. 

C, Quantification of hydrogen peroxide levels in 7-day-old WT and selo1-2 seedlings 

grown in liquid MS medium. Oxidation of ADHP dye in extracts of seedlings vs. 

calibration curve of H
2
O

2
 revealed higher levels in WT than in selo1-2 (n=5, t-test, 

t=0.05). D, ROS produced by the PSI electron acceptor methyl viologen affect PSII: 

Seven-day-old WT and  selo1-2 seedlings were incubated in 0.5 MS medium with 

methyl viologen (0.25µM) for 5 hours in wells of a micro-titter plate (n=24). The MV 
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effect was assessed by comparing photosystem II efficiency (Fv/Fm) using 

PlantScreen – HighThroughput Phenotyping  
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