
Accepted Manuscript

Increasing the histidine ‘density’ in tripodal peptides by gradual N-functionali-
zation of tris(2-aminoethyl)amine (tren) with L-histidyl units: the effect on
zinc(II) complexes

Ágnes Dancs, Katalin Selmeczi, István Bányai, Zsuzsanna Darula, Tamás Gajda

PII: S0020-1693(17)30678-3
DOI: http://dx.doi.org/10.1016/j.ica.2017.06.049
Reference: ICA 17698

To appear in: Inorganica Chimica Acta

Received Date: 29 April 2017
Revised Date: 10 June 2017
Accepted Date: 21 June 2017

Please cite this article as: A. Dancs, K. Selmeczi, I. Bányai, Z. Darula, T. Gajda, Increasing the histidine ‘density’
in tripodal peptides by gradual N-functionalization of tris(2-aminoethyl)amine (tren) with L-histidyl units: the effect
on zinc(II) complexes, Inorganica Chimica Acta (2017), doi: http://dx.doi.org/10.1016/j.ica.2017.06.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/185270444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ica.2017.06.049
http://dx.doi.org/10.1016/j.ica.2017.06.049


  

1 
 

Increasing the histidine ‘density’ in tripodal peptides by gradual N-functionalization of 

tris(2-aminoethyl)amine (tren) with L-histidyl units: the effect on zinc(II) complexes 
 
Ágnes Dancsa,b, Katalin Selmeczib, István Bányaic, Zsuzsanna Darulad  and Tamás Gajdaa* 
 
a
 Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-

6720 Szeged, Hungary 
b 

Université de Lorraine ‒ CNRS, UMR 7565 SRSMC, BP 70239, 54506 Vandœuvre-lès-

Nancy, France 
c
 Department of Colloid and Environmental Chemistry, University of Debrecen, Egyetem tér 

1, H-4032 Debrecen, Hungary 
d
 Institute of Biochemistry, Biologial Research Centre, Hungarian Academy of Sciences, 

Temesvári krt. 62, H-6724 Szeged, Hungary 

 

Dedicated to professor Imre Sóvágó, on the occasion of his 70th birthday 

 

Abstract 

Tripodal peptidomimetics have received increasing interest among others as efficient metal 

ion chelators. Most of these studies have focused on symmetrical, tri-substituted ligands. Our 

aim was to establish how the increasing donor group ‘density’, i.e. the gradual N-histidyl 

substitution, alters the coordination chemical properties of the tripodal platform. To this end 

we synthesized mono-, bis- and tris(L-histidyl)-functionalized tren derivatives (L1, L2 and 

L3, respectively), and studied their zinc(II) complexes by pH potentiometry, 1H NMR and 

MS spectroscopy. The three ligands provide a variety of donor sites, and consequently 

different stability and structure for their zinc(II) complexes depending on the pH and metal-

to-ligand ratios. In the neutral pH range histamine-like coordination is operating in all cases. 

Due to the formation of macrochelate between the two/three {Nim,NH2} binding sites, L2 and 

L3 have considerably higher zinc(II) binding ability than histamine, or any other simple 

peptide with N-terminal His unit. The situation is fundamentally different at higher pH. The 

tren-like subunit in L1 acts as an anchoring site for amide deprotonation, and the 

{3NH2,N
‒,Ntert} type coordination, a rare example where zinc(II)-amide N− coordination takes 

place, results in outstanding stability. Although L1 provides tight binding above pH 7, it 

forms only mononuclear species. However, the increasing level of functionalization in L2 and 

L3 allows the formation of oligonuclear complexes, and at threefold zinc(II) excess the three 

ligands share nearly the same amount of zinc(II). Moreover, the high histidine ‘density’ in L2 

and L3 also provides the formation of imidazolato-bridged structures, which has never been 

observed before in zinc(II) complexes of simple linear peptides.  
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Introduction 

Tripodal peptidomimetics have been receiving increasing interest in the last decades in order 

to create chiral receptor molecules [1,2], triple helical biomimetic materials [3], peptide-like 

dendrimers for e.g. drug delivery [4], organic catalysts [4] or metal ion chelators [5-12]. The 

metal ion binding properties of tripodal peptidomimetics can differ significantly from those of 

linear peptides. They have several beneficial attributes such as the pre-organized structure, a 

more favorable spatial distribution of the donor sites induced by the tripodal platform, and 

enhanced chelate effects due to the high ’density’ of donor groups. By adequate substitution 

of the tripodal platform, it is relatively easy to fine-tune the (i) metal ion binding ability, (ii) 

the electronic structure and steric environment of the metal centers, and (iii) the nuclearity of 

the forming complexes. Indeed, by varying the substituents of the tripodal platforms, such 

ligands form both mono- [5-12] and oligonuclear [7,8,10-12] complexes, and provide tight 

binding for a range of metal ions, from Cu(I) [8], Cu(II) [9,12], Zn(II) [7,10,11] to Fe(III) [6]. 

Metal binding tripodal peptidomimetics can be strong metal ion sequestering agents [6-8] or 

may form efficient artificial metalloenzymes [9-12]. 

 Due to the importance of histidine residues in metal ion binding of proteins, the 

coordination chemistry of histidine containing linear peptides is now well established [13,14]. 

Recently, we have synthesized two new non-protected histidine derivatives based on tris(2-

aminoethyl)amine (tren) and nitrilotriacetic acid (nta) as tripodal platforms containing three 

N- (tren3his, L3) or C-terminal histidines (nta3his, Scheme 1), respectively [12]. The high 

donor group ‘density’ of the three histidines attached to the tripodal platforms provides the 

formation of highly stable mono- and oligonuclear copper(II) complexes. According to the 

different donor sets, these ligands behave differently in equimolar solutions. At neutral pH, 

{2Nim,2NH2} and {Nim,N‒,Ntert,O} types of coordination dominate with tren3his and nta3his, 

respectively, while at higher pH the participation of the tertiary amine in the fused chelate 

rings results in a unique {Nim,N‒,Ntert,N
‒+Nim} binding mode in both cases. The different 

number of unbound leg(s) at neutral pH results in different nuclearity of oligonuclear 

complexes [12].  

The overwhelming majority of the studied metal binding tripodal peptidomimetics is 

symmetrical, tri-substituted derivatives. Our aim was to establish how the increasing donor 

group ‘density’, i.e. the gradual N-histidyl functionalization alters the coordination chemical 

properties of the tripodal platform. Since multihistidine environment around zinc(II) is very 

common in metalloproteins, we selected this metal ion to study the effect of increasing 
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histidine density on complex formation. To this end we performed pH potentiometric, NMR 

and MS studies to determine the solution equilibrium and structural properties of the zinc(II) 

complexes formed in presence of mono-, bis- and tris(L-histidyl)-functionalized tren 

derivatives (L1, L2 and L3, Scheme 1). 
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Scheme 1. Schematic structures of the studied ligands (L1-L3) and the close homolog nta3his 

[12]. 
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2. Experimental section 

2.1. Materials 

Zinc(II) perchlorate (Sigma-Aldrich) stock solution was standardized complexometrically. 

pH-metric titrations were performed using 0.1 M NaOH standard solution (Sigma-Aldrich). 

L-histidine (Sigma-Aldrich), tris(2-aminoethyl)amine (tren, Sigma-Aldrich), N,N’-

dicyclohexylcarbodiimide (DCC, Sigma), N-hydroxybenzotriazole (HOBt, Novabiochem), 

dichloromethane (Molar Chemicals), acetonitrile (VWR), trifluoroacetic acid (TFA, Sigma-

Aldrich) and triisopropylsilane (TIS, Sigma-Aldrich) were analytically pure chemicals and 

used without further purification. 

2.2. Preparation of the ligands 

Starting materials Boc-His(Boc)-OH, monoBoc-tren and diBoc-tren were synthesized 

following literature procedures [15-17]. The synthesis of tren3his (L3) has already been 

reported in a previous work [12]. 

Synthesis of tren1his (L1). 0.42 g Boc-His(Boc)-OH (1.18 mmol) and 0.38 g diBoc-tren 

(1.09 mmol) were dissolved together in 50 ml dichloromethane, 0.25 g DCC (1.20 mmol) and 

0.16 g HOBt (1.20 mmol) were added subsequently. The mixture was stirred overnight at rt. 

After filtration and evaporation of the solvent, the cleavage of Boc protecting groups was 

accomplished by a treatment of 95%-2.5%-2.5% TFA/TIS/water mixture. The cleaving 

mixture was evaporated using liquid nitrogen trap, the oily residue was dissolved in water, 

neutralized and purified by preparative HPLC (RP column: Supelco C18 5 µm, 25 cm × 10 

mm geometry, eluent: 0 to 2% acetonitrile +0.1% TFA/15 min gradient elution mode, 3 

ml/min flow rate, tR’tren1his = 3.7 min). After liophilization the trifluoroacetate salt of L1 

(70.6% yield) was obtained as white solid. 1H NMR (500 MHz, D2O/H2O, pH 7.12) δ (ppm): 

2.53 (t, 2H, J = 7.0 Hz, Ntert-CH2
funct), 2.75 (t, 4H, J = 6.3 Hz, Ntert-CH2

free), 2.94 (m, 2H, 

βCH2), 3.03 (t, 4H, J = 6.3 Hz, CH2-NH2), 3.22 (m, 2H, CH2-NHCO), 3.79 (t, 1H, J = 6.9 Hz, 

αCH), 6.95 (s, 1H, im-C5
H), 7.73 (s, 1H, im-C2

H). 13C NMR δ (ppm): 30.8, 36.5, 37.1, 50.5, 

51.3, 55.2, 117.1, 132.2, 136.2, 173.6. (ESI-MS m/z calcd for C12H26N7O [M + H]+ 284.24, 

found 284.23 (z = 1). ESI MS, COSY, HMBC and HMQC spectra of L1 are depicted in Figs. 

S1.1 and S2.1-3 (see Supplementary Informations).  

Synthesis of tren2his (L2). 0.84 g Boc-His(Boc)-OH (2.36 mmol) and 0.27 g monoBoc-tren 

(1.10 mmol) were dissolved together in 50 ml dichloromethane, 0.47 g DCC (2.30 mmol) and 
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0.31 g HOBt (2.30 mmol) were added subsequently. The mixture was stirred overnight at rt. 

After filtration and evaporation of the solvent, the cleavage of Boc protecting groups was 

accomplished by a treatment of 95%-2.5%-2.5% TFA/TIS/water mixture. The cleaving 

mixture was evaporated using liquid nitrogen trap, the oily residue was dissolved in water, 

neutralized and purified by preparative HPLC (RP column: Supelco C18 5 µm, 25 cm × 10 

mm geometry, eluent: 0 to 3.2% acetonitrile +0.1% TFA/20 min gradient elution mode, 3 

ml/min flow rate, tR’tren2his = 9.2 min). After liophilization the trifluoroacetate salt of L2 

(62.7% yield) was obtained as white solid. 1H NMR (500 MHz, D2O/H2O, pH 6.70) δ (ppm): 

2.47 (t, 4H, J = 6.9 Hz, Ntert-CH2
funct), 2.69 (t, 2H, J = 6.2 Hz, Ntert-CH2

free), 2.98 (m, 4H, 

βCH2), 2.97 (m, 2H, CH2-NH2), 3.17 (m, 4H, CH2-NHCO), 3.91 (t, 2H, J = 7.0 Hz, αCH), 

6.97 (s, 2H, im-C5
H), 7.75 (s, 2H, im-C2

H). 13C NMR δ (ppm): 29.9, 37.0, 37.1, 50.4, 52.0, 

54.0, 117.0, 131.5, 136.1, 171.9. ESI-MS m/z calcd for C18H33N10O2 [M + H]+ 421.26, found 

421.32 (z = 1). ESI MS, COSY, HMBC and HMQC spectra of L2 are depicted in Figs. S1.2 

and S2.4-6 (see Supplementary Informations).  

 

2.3. Potentiometry 

The protonation and coordination equilibria were investigated by pH-potentiometric titrations 

in aqueous solutions (I = 0.1 M NaCl and T = 298.0 ± 0.1 K) under argon atmosphere. The 

titrations were performed using a PC controlled Dosimat 665 (Metrohm) automatic burette 

and an Orion 710A precision digital pH-meter. The Metrohm micro glass electrode (125 mm) 

was calibrated by the titration of hydrochloric acid and the data were fitted using the modified 

Nernst-equation [18]: 

]H[
]H[]Hlog[ wOH

H0 +

++ ⋅
+⋅+⋅+=

KJ
JKEE  

where JH and JOH are the fitting parameters representing the acidic and alkaline error of the 

glass electrode, respectively (Kw = 10-13.75 is the autoprotolysis constant of water [19]). The 

parameters were calculated by the non-linear least squares method. The formation of the 

complexes was characterized by the general equilibrium process: 

pM + qH + rL                 MpHqLr

MpHqLr
β
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rqp

rqp
LHM ]L[]H[]M[

]LHM[
rqp

=β  

where M denotes the metal ion and L the fully deprotonated ligand molecule. Charges are 

omitted for simplicity, but can be easily calculated taking into account that the fully 

deprotonated ligands (at pH 11) are neutral. The protonation constants of the ligands and the 

formation constants of the complexes were calculated by the PSEQUAD computer program 

[20] from 4, and 5-7 independent titrations, respectively (ca. 90 data points per titration). The 

metal ion concentrations varied between 0.6-2.6×10-3 M applying 2:1, 1.5:1, 1:1 and 1:2 

metal-to-ligand ratios.  

2.4. 
1
H NMR spectroscopy 

1H NMR titrations were performed on a Bruker Avance DRX400 or Bruker Avance DRX500 

spectrometer at 298 K in aqueous solutions, using a capillary filled with D2O (for L1L1L1L1 and L2L2L2L2) 

or with H2O/D2O 90/10% mixed solvent (L3L3L3L3). The chemical shifts (δ) were measured with 

respect to dioxane as internal reference and converted relative to SiMe4, using δdioxane = 3.70 

(1H) and 66.5 (13C). The initial ligand concentrations were 1.7×10---3
 M, 1.8×10---3

 M and 1.8×10---

3
 M for L1L1L1L1, L2L2L2L2 and L3L3L3L3 ligand systems, respectively. Ionic strength of 0.1 M NaCl was applied. 

The pH was adjusted to the desired values using NaOH solution. 1D 1H NMR spectra were 

recorded by using presat or watergate sequences in order to reduce water signal. The 

assignment of the proton and carbon signals of the ligands was based on COSY, HMQC and 

HMBC 2D spectra (see Electronic Supplementary Information, Section 2). DOSY 

measurements were performed with solvent suppression at 293 K. Three sets of spectra were 

recorded, following the preparation of the complex solution and repeated after 90 and 156 h, 

in order to verify the kinetic stability and reproducibility of the system during the experiment. 

A stimulated spin echo pulse sequence was employed using bipolar gradient pulses to 

decrease eddy currents (BIPLED) at 293 + 0.2 K. A Eurotherm unit was used for stabilizing 

or regulating the temperature with air flow through a Bruker BSCU 05 cooling unit. The 

diffusion coefficient of water (D2O) was determined in every sample in order to check the 

state of the instrument. Typical parameters for diffusion experiments were diffusion times of ∆  

= 15 - 40 ms  and lengths of gradient pulses of δ  = 4 ms . The diffusion data were evaluated  = 4 ms . The diffusion data were evaluated 

according to the equation:  

I = I0 exp(−Dobs( ∆  − δ /3) γ 2
δ

2G2 ) 

The pulsed gradient strength (G) increased with 64 square distant steps from 0 to 

approximately 50 G cm−1. Dobsγ
2 was calculated after fitting the exponential curve on the 
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measured echo intensity, I, as a function of G2 (determined by the number of experiments). 

The real diffusion coefficient D was calculated as κDobsγ
2, where κ is the calibration constant 

of the gradient. The calibration of the gradient was made for D2O, using the known D =1.62 

10-9 m2s-1 [21] (extrapolated to 293K from the T function). Bruker TopSpin 2.0 software was 

used for post processing. Im-C2-deuterated samples of L2L2L2L2 were prepared as following: the 

ligand was dissolved in D2O, 20 eq. NaOD was added, then the solution was incubated at 

50°C. After 24 h the pH was adjusted by DCl and 2 eq. zinc(II) solution was added.  

 

2.5. Mass spectrometry 

Molecular weight analyses of the ligands and their zinc(II) complexes were carried out by 

Electrospray Ionization (ESI) and Matrix-Assisted Laser Desorption/Ionization (MALDI) 

mass spectrometric measurements. Spectra were recorded on a Bruker MicroTOFQ ESI and a 

Bruker Reflex III MALDI-TOF mass spectrometers. All spectra were obtained in positive 

mode. Acquisition parameters for ESI-MS measurements were the following: capillary 

voltage of 4.5 kV, 4.0 l/min dry gas flow, collision cell RF 250.0 Vpp. Samples were prepared 

as aqueous solutions, pH was adjusted, then they were diluted in acetonitrile/water 50%-50% 

mixture. 

Sample preparation for MALDI-TOF MS measurements were the following: 1 µl of the 

samples was spotted onto the MALDI target plate and let dry before adding 0.5 µl of the 

matrix solution (2,6-dihydroxyacetophenone (DHAP) in acetonitrile-water 50/50%). Mass 

spectra were recorded in the positive reflectron mode collecting 200 shots for each sample 

(m/z range: 250-2000). External calibration affording ±200 ppm mass accuracy was 

performed using peptide standards. DHAP matrix was obtained from Sigma-Aldrich. 
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3. Results and discussion 

3.1. Protonation equilibria of the ligands 

The protonation constants and pK values of L1-L3 derived from pH-potentiometric 

titrations are collected in Table 1. The identification of the deprotonating groups has been 

supported by pH-dependent 1H NMR measurements (Electronic Supplementary Information, 

Figs. S3.1, S3.2 and S3.5). The pK values of tren-NH2 and αCH-NH2 amino nitrogens are 

between pK = 9.04-9.90 and 6.34-7.85, respectively. The increasing overall charge of the 

ligands at acidic pH results in increased acidity of imidazolium rings (pK = 3.87-5.41).  

 

Table 1. Protonation constants and pK values of the studied ligands (I = 0.1 M NaCl, T = 

298 K, estimated error of last digits in parentheses). 

 tren1his (L1) tren2his (L2) tren3his (L3) [12] 

logβ pK logβ pK logβ pK 

H6L   36.46(1) 2.33 35.29(1) 3.87 

H5L   34.13(1) 4.62 31.42(1) 4.82 

H4L 31.04(1) 5.03 29.51(1) 5.41 26.60(1) 5.20 

H3L 26.01(1) 7.07 24.10(1) 6.82 21.40(1) 6.34 

H2L 18.94(1) 9.04 17.28(1) 7.69 15.06(1) 7.21 

HL 9.90(1) 9.90 9.59(1) 9.59 7.85(1) 7.85 

 

The pK of the tertiary amino group could be determined only for L2, which was also 

supported by the pH dependence of 1H NMR spectra (Fig. S3.2). The 1H NMR spectra of L3 

also show considerable shifts between pH 1.8-6.0 for the signals of both imidazole and tren-

CH2 protons (Fig. S3.5), although the pK of the tertiary amino group cannot be determined 

from the potentiometric data. These observations suggest an extensive H-bonding network 

involving the imidazolium/imidazole rings and the neutral tertiary nitrogen in L3. Such shift 

of 1H NMR signals below pH 4 was not observed in case of L1 (Fig. S3.1), which suggests 

low basicity of tertiary nitrogen in L1, similarly to tren itself [22].  
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3.2. Zinc(II) complexes of tren1his (L1) 

 

Four differently protonated mononuclear species could be identified by potentiometry in 

the Zn(II)-L1 system (Table 1, Fig. 1). At the beginning of complex formation (pH 4.5-5.5) 

all 1H NMR signals of histidine unit are significantly broadened (Fig. 2A,B). Even though 

ZnH2L1 complex is not produced in higher quantities than 40%, the selective broadening on 

the 1H NMR spectra indicates that the histidine unit is bound to zinc(II) in this species in a  

 

Table 2. Formation and deprotonation constants of zinc(II) complexes of L1, L2 and L3 (I 

= 0.1 M NaCl, T = 298 K, estimated error of last digits in parentheses). 

 
tren1his (L1) tren2his (L2) tren3his (L3) 

logβ   pK logβ   pK logβ  pK 

ZnH3L     24.76(2) 4.90 

ZnH2L 23.45(3) 6.45 22.37(1) 6.07 19.86(1) 5.42 

ZnHL 17.00(3)  16.30(1) 8.10 14.44(1) 6.49 

ZnL   8.20(3) 8.72 7.95(1) 8.10 

ZnH-1L 4.16(2) 10.73 -0.52(3) 9.92 -0.15(2) 10.24 

ZnH-2L -6.57(4)  -10.44(3)  -10.39(2)  

Zn2H-2L   -2.81(2) 8.53   

Zn2H-3L   -11.34(2) 10.78   

Zn2H-4L   -22.12(4)    

Zn3L2     22.87(4)  

Zn3H-2L2     9.62(3) 8.04 

Zn3H-3L2     1.58(4)  

Zn3H-4L2     -7.32(4) 8.90 
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Fig. 1. Speciation diagrams in Zn(II)-L1 1:1 system (cL1 = cZn(II) = 0.001 M, I = 0.1 M 

NaCl, T = 298 K). 
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Zn(II):L1 = 1:1; pH = 4.9

Zn(II):L1 = 0:1; pH = 4.9

Zn(II):L1 = 0:1; pH = 8.9

Zn(II):L1 = 0:1; 

pH = 8.9

(II):L1 = 

0:1= 8.9

(II):L1 = 

0:1= 8.9

(II):L1 = 

0:1= 8.9

Zn(II):L1 = 0:1; pH = 8.9Zn(II):L1 = 1:1.5; pH = 8.9

 

Fig. 2. pH-dependent 1H NMR spectra of Zn(II)-L1 1:1 system (A,B), 1:1.5 system (D) and 

comparison with the spectra of free ligand (C,E). In H2O, dioxane reference (3.70 ppm), cL1 = 

0.0016 M, I = 0.1 M NaCl, T = 298 K.   

histamine-like binding mode {Nim,NH2} (Scheme 2). The logK value for the process Zn2+ + 

H2L1 = ZnH2L1 (logK = logβZnH2L1 - logβH2L1 = 4.51) also supports this type of coordination 

[23]. 

The formation of ZnH-1L1, a dominant complex between pH 7.0-10.0, occurs through 

three strongly overlapped deprotonations (ZnH2L1 = ZnH-1L1 + 3H+), which are so 

cooperative that ZnL1 could not be detected at all. In parallel (pH 6.0-7.5), remarkable 

changes can be observed on the NMR spectra. All CH2 signals first broaden then sharpen to 

result a complex spectrum in the basic pH range (Figs. 2A,D). The source of this complicated 

peak set is the slow ligand exchange rate of ZnH-1L1, and the inequivalence of all CH2 

protons related to the metal-bound ligand. 2D COSY spectrum of this region supports that 
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both tren-CH2 and βCH2 groups possess strongly inequivalent hydrogens being coupled with 

the neighboring protons (Fig. S5.1).  

The slow ligand exchange observed for ZnH-1L1 indicates that the ‘extra’ deprotonation is 

related to the formation of amide-bound species (and not to mixed hydroxo complexes) [24], 

which is also supported by its ESI-MS spectrum (Fig. S6.1). Besides, the complete formation 

of ZnH-1L1 at pH 7 suggests zinc(II) protomoted deprotonation and coordination of all three 

primary amino groups (their pKs in the free ligand are 7.07, 9.04, 9.90). Although the tertiary 

amino group is deprotonated at pH 7 even in the absence of zinc(II), the preferred formation 

of fused chelate rings and the inequivalence of all tren-CH2 protons support its coordination. 

The simultaneous coordination of amide-, NH2- and imidazole nitrogens is unlikely in the 

case of N-terminal His fragments [13,14], therefore our observations indicate {3NH2,N
‒,Ntert} 

type binding in ZnH-1L1 (Scheme 2), which is in accordance with the well-known preference 

of tren derivatives for the trigonal bipyramidal geometry [22]. The NMR spectrum of 

ZnH−1L1 at ligand excess (Fig. 2D) shows only a slight upfield shift for the αCH signal, 

which is the result of two opposing effects, the coordination of the α-amino group and the 

deprotonation of the nearby amide nitrogen. In consequence of the saturated coordination 

sphere in ZnH−1L1, the pK of the subsequent deprotonation is rather high (10.73), since the 

coordinating hydroxide ion should displace one of the bound nitrogens. 

OH2

NH

O

NH2N
NH

N
NH3

+

NH3

+

Zn
2+

(H2O)n

ZnH2L1 ZnH-1L1

N
-

O
NH2

N

NH

N

NH2

NH2Zn
2+

 

Scheme 2. Proposed structure of the main Zn(II)-L1 complexes.  

3.3. Zinc(II) complexes of tren2his (L2) 

In presence of L2, water soluble complexes are formed even at 2:1 zinc(II)-to-ligand ratio, 

indicating the formation of both mono- and dinuclear complexes. The formation constants of 

the complexes are listed in Table 1, their speciation is depicted in Fig. 3. In the equimolar 

system, monozinc(II) complexes dominate in the whole studied pH range. The complexation 

starts with the formation of ZnH2L2 around pH 4.5. The 1H NMR spectra around pH 5 show 

notable broadening for the imidazole proton signals (Fig. S3.3), indicating their role in the 



  

12 
 

metal binding. Since both imidazole rings and one of the α-amino groups are deprotonated by 

metal ion assistance in ZnH2L2, and the logK for the process Zn2+ + H2L2 = ZnH2L2 (logK = 

logβZnH2L2 - logβH2L2 = 5.09) is higher than for L1, a histamine-type binding with the 

additional coordination of the second imidazole ring {2Nim,NH2} can be assumed in this 

species. The deprotonation of ZnH2L2 (pK = 6.07) results in the formation of ZnHL2, a 

dominant complex between pH 6.0-8.0. The zinc(II)-assisted deprotonation of the remaining 

αCH-NH3
+ results in the formation of bis-histamine-type {2Nim,2NH2} coordination, which  
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Fig. 3. Speciation diagrams in Zn(II)-L2 1:1 (A) and 2:1 (B) systems (cL2 = 0.001 M, cZn(II) 

= 0.001 and 0.002 M, I = 0.1 M NaCl, T = 298 K), dashed lines represent unbound ligand 

(HxL2) species. 

involves a macrochelate between the two His units (Scheme 3). The formation of this 

macrochelate is favorable, since the basicity corrected stability constant of ZnHL2 (logK = 

logβZnHL2 - logβH5L2 = -17.13) is more than 4 units higher than that of the analogous 

Zn(histamine)2 complex (logK = logβZnL2 - 2logβH2L = -21.71 [23]). Interestingly, the 

presence of this macrochelate induces inequivalence of the CH2 protons of the functionalized 

arms, which can be clearly seen on the Ntert-CH2
funct signals at ~ 2.4 ppm (Fig. 4B). The 
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considerable downfield shift of αCH protons, close to the coordinated NH2, as compared to 

the free ligand, is also noteworthy. 

Above neutral pH, three overlapping deprotonation steps take place to result ZnL2,  
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Scheme 3. Proposed structures of main Zn(II)-L2 complexes.  

 

ZnH−1L2 and ZnH−2L2, beside a small amount of dinuclear complexes. During these 

processes the inequivalence of Ntert-CH2
funct protons ceased, and the signals of αCH protons 

are strongly upfield shifted (~3.5 ppm, Fig. 4E) indicating rearrangement in the coordination 

sphere. However, the general broadening of the 1H NMR signals (Figs. 4.D,E and S3.3) 

allows to draw only limited conclusions. Nevertheless, the broad spectra indicate that the 

‘extra’ deprotonations related to the formation of mixed hydroxo species (ZnL2(OH)x, x = 

1,2), since the deprotonation of the amide nitrogen(s) would result in slow ligand exchange 

(i.e. sharp signals, like in the Zn(II)-L1 or Zn(II)-Gly/AlaHis systems [24]).  
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Fig. 4. 1H NMR spectra of L2 (A), Zn(II)-L2 1:1 (B,D,E) and Zn(II)-L2 2:1 (C,F, and G 

after deuteration of im-C2 group) systems (cL2 = 0.0018 M, I = 0.1 M NaCl, T = 298 K). 

Marked* signal corresponds to dioxane reference at 3.70 ppm.  

At metal excess, the evaluation of potentiometric data indicated the formation of three 

dinuclear complexes (Fig. 3B) with compositions of Zn2H-2L2, Zn2H-3L2 and Zn2H-4L2. 

Their formation starts around pH 7 (Fig. 3B), which is in good agreement with the 1H NMR 

spectra recorded at twofold metal excess, since up to pH 7 the spectral features are identical to 

that observed at Zn(II)-L2 1:1 ratio (Figs. 4B,C). Above neutral pH, several αCH proton 

signals can be seen, and more importantly six sharp signals appeared in the aromatic region of 
1H NMR spectrum (Figs. 4.F, 5.A and S3.4). The latter indicates three chemically different 

environments for the imidazole rings with nearly equal populations in the slow exchanging 

oligonuclear complexes. 2D TOCSY measurements (Fig. S5.2) and 1H NMR spectrum of the 

complex(es) deuterated at the imidazole C2 carbon (Fig. 4G) allowed the identification of the 

C2H/C5H pairs. Accordingly, at pH 8.2 the C2H signals are strongly upfield-shifted by 0.29, 

0.46 and 1.05 ppm in the slow exchanging oligonuclear complexes, as compared to the free 

ligand (Fig. 5B).  
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Fig. 5. Aromatic region of 1H NMR spectra of Zn(II)-L2 system. (A): pH dependence at 

Zn(II)-L2 1.9:1 ratio; (B): dependence on the Zn(II)-L2 ratios at pH 8.2 (in H2O, cL2 = 0.0018 

M, I = 0.1 M NaCl, T = 298 K).  

The ‘extra’ deprotonation observed for the oligonuclear species between pH 7-8 could be 

assigned to (i) deprotonation of coordinated water molecule(s), (ii) metal-promoted 

deprotonation of amide nitrogen(s) or (iii) formation of µ-imidazolato-bridge between two 

zinc(II) ions. Among these processes only (ii) and (iii) may lead to slow ligand exchange 
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processes and notable shift of imidazole proton signals. It is worth to mention that the 

strongly related N,N’-di-L-histidylethane-1,2-diamine (dhen) ligand also forms imidazolato-

bridged oligozinc(II) complexes in the same pH range [23]. The increased electron density on 

the imidazolate ring obviously results in remarkable upfield shift of C2H signals (up to ~2.2 

ppm [23,25,26]), as compared to the free ligand. On the other hand, in the Zn(II)-GlyHis 

system [24] the coordination of imidazole ring and the deprotonation of nearby amide 

nitrogen also resulted in 0.2-0.4 ppm upfield shift of the imidazole and αCH signals. In the 

present system, the wide range of chemical shifts of imidazole and αCH signals upon metal 

ion binding (Figs. 4.F, 5) indicates the presence of both amide- and imidazolate-bound 

zinc(II) centers.  

The bis-histamine-type coordination of zinc(II) in ZnHL2 provides a preorganized tren-

like {NH2,Ntert,2N‒} binding site for the second metal ion (Scheme 3), i.e. the deprotonation 

of the amide nitrogens is promoted by the anchoring {NH2
tren,Ntert} chelate. This binding 

mode explains the direct transformation of ZnHL2 into Zn2H‒2L2 (Fig. 3B), and also the fact 

that dinuclear complexes are formed only at metal ion excess (Fig. 5B), in parallel with the 

zinc(II)-promoted deprotonation of NH3
+ of the free tren arm. However, the two imidazole 

moieties in Zn2H‒2L2 cannot exist in three chemically different environments with nearly 

equal populations; therefore, more than one species must be present under these conditions.  

In order to explain the above-mentioned observations, we assume a dimerization process of 

2Zn2H‒2L2 = (Zn2H‒2L2)2, through the formation of two imidazolato-bridges and the re-

protonation of two zinc(II)-bound amide nitrogens (see Fig. S4.1 and a more detailed 

discussion in ESI Section 4). The simultaneous presence of the two complexes (Zn2H‒2L2 and 

(Zn2H‒2L2)2) is probably the simplest way to explain the six sharp signals observed in the 

aromatic region of the NMR spectra at 2:1 Zn(II)-L2 ratio (Fig. 5).  

The characteristic spectral patterns of the oligonuclear complexes are present in the NMR 

spectra over a wide pH range (pH 7-10, Fig. 5.A), meaning that the basic skeletons of these 

species are unchanged during the next observed deprotonation (Zn2H‒2L2 = Zn2H‒3L2 + H+), 

suggesting the formation of mixed hydroxo complexes. On the other hand, new sharp peaks 

appear in the imidazole region around pH 10 (Fig. 5A), which indicates structural 

reorganization within the oligonuclear complexes. However, this deprotonation step 

(Zn2H‒3L2 = Zn2H‒4L2 + H+, pK = 10.78) is complete only above pH 11, therefore detailed 
1H NMR investigations were not performed.  

Consequently, the fitting of potentiometric data by only dinuclear complexes is an 

oversimplified model of the real situation. Nevertheless, it can describe the titration curves 
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correctly, since the equilibrium constants of reaction ZnHL2 + Zn2+ = (1/n)(Zn2H‒xL2)n + 

(x+1)H+ for different values of n and different kind of deprotonation processes are nearly 

identical. 

 

3.4. Zinc(II) complexes of tren3his (L3) 

Potentiometric titrations, MALDI-TOF MS and 1H NMR measurements were carried out 

in order to gain information on the Zn(II)-L3 complexes. Clear solution was obtained in the 

whole studied pH range at 1:1 and 1.5:1 metal-to-ligand ratio, but precipitation was observed 

above pH 7 at twofold metal ion excess. Accordingly, the evaluation of potentiometric data 

indicated the formation of complexes with ZnHxL3 and Zn3HxL32 stoichiometries, similarly 

to the previously reported Cu(II)-tren3his system [12]. The presence of these species has been 

verified by MALDI-TOF MS measurements. The detected m/z values and isotopic 

distribution patterns are in good agreement with the calculated spectra for [ZnH-1L3]+ (= 

[C24H38N13O3Zn]+) and [Zn3H-4L32(ClO4)]
+ (= [C48H74N26O10ClZn3]

+) (Fig. 6).  
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Fig. 6. MALDI-TOF MS spectra measured in the Zn(II)-L3 1:1 (A) and 3:2 (B) systems. 

Insert: calculated spectra of the corresponding complex ([C24H38N13O3Zn]+ and 

[C48H74N26O10ClZn3]
+, respectively). 
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Fig. 7. Speciation diagrams in Zn(II)-L3 1:1 (A) and 1.5:1 (B) systems (cL3 = 0.001 M, 

cZn(II) = 0.001 and 0.0015 M, I = 0.1 M NaCl, T = 298 K), dotted lines represent trinuclear 

(Zn3H-xL32) species. 

The formation constants of the complexes are listed in Table 2, their speciation is depicted 

in Fig. 7. Between pH 4-7, three overlapped deprotonations take place in equimolar solution, 

leading to the major species ZnHL3 (at pH ~ 5.8) and ZnL3 (at pH ~ 7.2). The 1H NMR 

spectra in this pH range (Figs. 8A,B and S3.6) show similar behavior to that of the Zn(II)-L2 

system (Fig. 4), i.e. downfield shift upon coordination of both imidazole and αCH signals, 

and inequivalence of Ntert-CH2 protons at ~ 2.4 ppm, suggesting the formation of the similar 

macrochelate with bis-histamine-like binding. However, several facts indicate the additional 

coordination of the third histidine ‘pod’, too. First, the pK values of the protonated complexes 

(pKZnH2L3 = 5.42, pKZnHL3 = 6.49) are lower than those of the free ligand (pKH2L3 = 7.21, 

pKHL3 = 7.85), and also than the analogous copper(II) containing species (pKCuH2L = 5.55, 

pKCuHL = 6.92 [12]). Second, the predominance diagram of the Zn(II)-L2-L3 1:1:1 ternary 

system indicates considerably stronger metal binding ability for L3 around pH 6-7 (Fig. S7.1). 

As a consequence, either 5N or 6N coordination can be proposed for ZnL3 (Scheme 4).  
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Fig. 8. 1H NMR spectra of L3 (A) and Zn(II)-L3 1:1 (B,C) systems. pH = 7.2 (A), 7.3 (B) 

and 9.8 (C). (in H2O/D2O, dioxane reference (3.70 ppm), cL3 = 0.0023 M, I = 0.1 M NaCl, T = 

298 K). 

Under basic conditions the complex ZnL3 releases two additional protons (pK = 8.10 and 

10.24). The 1H NMR spectra recorded in equimolar solution above pH 7 (Fig. S3.6) are again 

similar to those of the Zn(II)-L2 system (Fig. S3.3), the inequivalence of Ntert-CH2 protons 

ceased, and the signals of αCH-protons are strongly upfield shifted. The formation of slow 

exchanging complexes was not detected. The coordination of amide nitrogen(s) is indeed 

unlikely, since N-terminal histidines with {Nim,NH2} binding site do not act as anchor for 

amide deprotonations, and such processes have never been observed in Zn(II)-His-Gly and 

related systems [13,27-29]. These deprotonations are more likely related to the formation of 

mixed hydroxo complexes (ZnH‒1L3 = ZnL3(OH) and ZnH‒2L3 = ZnL3(OH)2), similarly to 

the mononuclear zinc(II) complexes of L2.  

Interestingly, considerable amount of trinuclear complexes is formed in equimolar 

solution, according to both potentiometric and NMR data (Figs. 7A and 8C). This indicates 

that L3 is able to bind more than one Zn2+ with nearly equivalent binding affinities, resulting 

a significant amount of unbound L3 above pH 7 in equimolar solution (signals of the free 

ligand and the fast exchanging monocomplexes manifest as an average). At 3:2 metal-to-

ligand ratio, trinuclear complexes become dominant in neutral and basic solutions (Fig. 7B). 

At pH 6 the parent Zn3L32 is formed; this stoichiometry implies that the zinc(II) ions are 

coordinated by two arms of the tripod, originated from either the same or two different ligand 

molecules (Scheme 4). Such M3L2 type cluster formation is well described in the literature 

regarding tripodal ligand complexes [30], and a similar species was detected in the copper(II)-

L3 system, too [12].    
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Scheme 4. Proposed structures of mono- and trinuclear Zn(II)-L3 complexes (one of the 

two bonds indicated by red dashed arrows may be absent in ZnL3). 

 

Since the metal ions in Zn3L32 are coordinated by less nitrogen donors than in ZnL3, the 

trinuclear complex is more prone to deprotonation. The formation of Zn3H−2L32 and 

Zn3H−3L32 results in considerably broadened 1H NMR spectra (Fig. 9).  On the other hand, 

parallel with the formation of Zn3H-4L32 (pH 8-10) numerous narrow signals appear on the 

aromatic region. The great number of peaks cannot be explained by the speciation of 

complexes, since at least 22 different imidazole signals observed at pH 10, which seem to  
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Fig. 9. Aromatic region of the pH dependent 1H NMR spectra of Zn(II)-L3 3:2 system (in 

H2O/D2O, cL3 = 0.0023 M, I = 0.1 M NaCl, T = 298 K). 
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correspond to a single (de)protonation state (at this pH ~95% of zinc(II) is bound in 

Zn3H−4L32). Among them, at least 7 different C2H/C5H imidazole proton pairs can be 

identified on the TOCSY spectrum (Fig. S5.3). 

The observed multiplication of the signals can imply either the inequivalence of imidazole 

protons in the trinuclear species due to the conformational differences, or the formation of 

differently composed (Zn3H−4L32)n (n ≥ 1) oligomer complexes. The size of such oligomers 

would be high enough to have detectable variance in their hydrodynamic radii. Accordingly, 
1H DOSY measurements were performed, which indicate indeed the presence of several 

complexes with moderately different diffusion parameters, clearly distinct from that of the 

free ligand (at 7.61 and 6.85 ppm, Fig. 10). 
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Fig. 10. Aromatic region of 1H NMR spectra in Zn(II)-L 3:2 system, and  the measured 

diffusion coefficients by 1H DOSY NMR. * indicates the C2H signal of the free ligand, the 

corresponding C5H signal at 6.85 ppm is not resolved (pH = 10, cL = 0.0019 M, cZn(II) = 

0.0027 M, I = 0.1 M NaCl, T = 298 K). 

 

This observation supports the presence of several oligomers with different compositions. 

Applying the approximate rule (Dref/Dx)
3 = Mx/Mref (where D, M and ref stand for diffusion 

coefficient, molar mass and reference compound, for which dioxane and acetonitrile were 

used), one can estimate several oligomers formed by the association of 2-8 trinuclear 

complexes (although uncertainties must be taken into account due to the non-spherical 

geometry and different hydration of the ligand and its zinc(II) complexes). 

The TOCSY spectrum (Fig. S5.3) indicates that the imidazole C2H/C5H signals are 

scattered in a wide range, similarly to the case of Zn(II)-L2 2:1 system. Although the presence 

of several oligomers and the complexity of the NMR spectra do not allow doubtless 

identification of the coordinating groups and complex compositions, the broadened signals 

around pH 8 may indicate mixed hydroxo complexes and even their oligomerization through 

hydroxo-bridges. However, it seems clear that the formation of Zn3H−4L32 involves a new 



  

21 
 

type of bridging unit, which results in slow ligand exchange processes. This is in striking 

resemblance to the Zn(II)-L2 2:1 system at basic pH (see Fig. 5 and Electronic Supplementary 

Information, Section 4.), which might support that imidazolato-bridges participate in the 

assembly of (Zn3H−4L32)n complexes.  

Conclusion – Comparison of zinc(II) binding properties  

The studied three ligands provide a variety of donor sites and consequently, different stability 

and structure for their zinc(II) complexes, depending on pH and metal-to-ligand ratios. 

Around pH 5-7, histamine-like coordination is operating in all cases, and the zinc(II) 

sequestering ability depends on the number of histidyl-functionalized arms (Fig. 11A). Due to 

the formation of a macrochelate ring between the two {Nim,NH2} binding sites, the metal ion 

is bound considerably stronger in ZnHL2 than in Zn(histamine)2 or Zn(His-Gly)2. The third 

histidyl-functionalized arm provides even higher zinc(II) binding ability for L3. These 

observations clearly emphasize the benefits of increasing donor group ‘density’ of tripodal 

peptidomimetics.  
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Fig. 11. Predominance diagrams in the Zn(II)-L1-L2-L3 quaternary systems at 1:1:1:1 (A) 

and 3:1:1:1 (B) ratios (cL = 0.002 M). 
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The zinc(II) binding properties are fundamentally different at higher pH. The tren-like 

subunit in L1 acts as an anchoring site for amide deprotonation. The forming {3NH2,N
‒,Ntert} 

type coordination in ZnH‒1L1 results much higher stability as compared with the 

{NH2,N
‒,Nim} bound ZnH‒1(Gly-His) species, a rare example where zinc(II)-amide N− 

coordination takes place.  

Although L1 provides tight binding above pH 7, it forms only mononuclear species; while 

the higher levels of functionalization in L2 and L3 allow the formation of oligonuclear 

complexes. At threefold metal excess the three ligands share nearly the same amount of 

zinc(II) (Fig. 11B). On the other hand, the high histidine ‘density’ in L2 and L3 also provides 

the formation of imidazolato-bridged oligomerization of di- and trinuclear complexes, which 

has never been observed before in zinc(II) complexes of simple linear peptides.  



  

23 
 

Acknowledgements 

 

The research was supported by National Research, Development and Innovation Office-

NKFIH through projects GINOP-2.3.2-15-2016-00038, OTKA 101541 and TÉT_15-1-2016-

0031. The authors are grateful to S. Poinsignon for her assistance in NMR measurements, F. 

Lachaud for ESI-MS measurements and S. Parant for technical help at Université de Lorraine. 

 

Appendix A. Supplementary material 

Detailed supplementary data associated with this article, including mass and 2D NMR spectra 
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In order to establish how the increasing donor group ‘density’, i.e. the gradual N-histidyl substitution, alters the 

coordination chemical properties of the tripodal platform, we synthesized mono-, bis- and tris(L-histidyl)- 

functionalized tren derivatives, and studied their zinc(II) complexes. The three ligands provide a variety of 

donor sites, and consequently different stability and structure for their zinc(II) complexes depending on the pH 

and metal-to-ligand ratios. 
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Highlights 

• The studied ligands provide a variety of donor sites, hence stability and structure for zinc(II) 

• Around pH 5-7, histamine-like coordination is operating in all cases 

• The mono-(L-histidyl)-functionalized tren (L1) forms a unique {3NH2,N
‒
,Ntert} type 

coordination 

• The high histidine ‘density’ in L2 and L3 results in imidazolato-bridged oligomers  

 
 
 
 


