Szabó, B; Lengyel, E; Padisák, J; Vass, M; Stenger-Kovács, C. Structuring forces and β -diversity of benthic diatom metacommunities in soda pans of the Carpathian Basin. EUROPEAN JOURNAL OF PHYCOLOGY 53: 2 pp. 219-229. (2018)

1	Structuring forces and β -diversity of benthic diatom metacommunities in soda
2	pans of the Carpathian Basin
3	
4	Beáta Szabó ^{1,2*} , Edina Lengyel ¹ , Judit Padisák ^{1,2} , Máté Vass ³ , Csilla Stenger-Kovács ²
5	
6	¹ MTA-PE Limnoecology Research Group, Hungarian Academy of Sciences, Egyetem
7	str. 10, H-8200 Veszprém, Hungary
8	² Department of Limnology, University of Pannonia, Egyetem str. 10, H-8200
9	Veszprém, Hungary
10	³ Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen
11	18D, 75236 Uppsala, Sweden
12	
13	Short running title: β -diversity of diatom metacommunities in soda pans
14	
15	*corresponding author: e-mail: szabobea@almos.uni-pannon.hu
16	

17 Abstract

18

19 Small soda lakes represent one of the most vulnerable ecosystem types due to their high hydrological sensitivity to climate change and anthropogenic interventions. Since 20 diatoms are excellent bioindicators, determining the β -diversity and the structuring 21 dynamics of diatom metacommunities can provide valuable information for 22 conservation planning of soda pans. In this study, two diatom metacommunities were 23 24 surveyed monthly in a one-year period from distinct regions of the Carpathian basin: the Fertő-Hanság National Park (FH) between 2013 and 2014, and the Danube-Tisza 25 Interfluve (DT) between 2014 and 2015. We explored whether β -diversity of diatom 26 27 assemblages in the two regions is enhanced by species turnover or nestedness (related to richness differences) and investigated the role of deterministic and stochastic processes 28 in shaping β -diversity patterns. Furthermore, we evaluated the contribution of 29 environmental variables, geographic distance and temporal variation to community 30 structure. High β -diversity (> 90%) was revealed for both metacommunities, and was 31 32 maintained primarily by species turnover. Within the metacommunity of the DT where the natural hydrological cycle of soda pans is not disturbed, diatom communities 33 assembled mainly by the selection force of environment at spatiotemporal scale. In the 34 35 soda pans located in the habitat reconstruction area of the FH, besides species-sorting, significant temporal variation in community structure appeared due to the water 36 management and periodic water supply. Our results point to the need for a conservation 37 38 management strategy which maintains the natural hydrological regime of small saline 39 lakes, and therefore their habitat heterogeneity which is of high conservation value.

- 41 Key words: deterministic mechanisms, diatom metacommunities, nestedness, spatial
- 42 and temporal variation, species-sorting, species turnover

44 Introduction

Inland saline lakes develop typically in endorheic basins (closed drainage basins that 45 46 retain water) of arid or semi-arid areas, where the precipitation and evaporation are balanced (Williams, 2002). Limnological characteristics of small (< 50 ha), shallow (< 1 47 m) saline lakes are determined by the degree of precipitation and evaporation 48 49 (Langbein, 1961), geomorphology (Dargám, 1995) and geochemistry (Simon et al., 2011). Soda lakes (or soda pans) can be distinguished as a specific group of saline lakes 50 with high alkalinity and the dominance of sodium, carbonate and hydrogen carbonate 51 52 ions (Boros et al., 2013). Soda pans respond sensitively even to relatively small fluctuations of weather and climate, which may result in irreversible changes in their 53 54 natural properties (Hammer, 1990). Since they are hydrologically sensitive, soda lakes are especially vulnerable and there is an urgent need for conservation management, 55 which focuses on the maintenance or restoration of their natural hydrological cycles 56 (Boros et al., 2013; Stenger-Kovács et al., 2014; Lengyel et al., 2016). 57 Diatoms have short generation times (Rott, 1991) and respond rapidly to 58 59 environmental changes. In alkaline, saline lakes, diatoms have a competitive advantage 60 against other algal groups as many diatom species can tolerate the extreme conditions due to e.g. their ability to osmoregulation, phenotypic plasticity, secondary 61 62 photoprotective pigments (Bauld, 1981; Kirk, 1994; Krumbein et al., 1977), hence they 63 may become dominant. The strong relationship between the diatom assemblages and the 64 main environmental variables supports the use of diatoms for tracking changes in the 65 limnological features of soda pans (Stenger-Kovács et al., 2014). Additionally, they are 66 considered as early warning indicators of both anthropogenic pollution and habitat restoration management (Smol & Stoermer, 2010). To improve the ecological status 67

assessment and the efficiency of conservation management of these unique water

69 bodies, a continuous monitoring of diatoms and their application as bioindicators is

70 highly recommended (Stenger-Kovács *et al.*, 2014).

Studies of diatoms in soda pans of Central Europe have focused mostly on
revealing the relationship between the water chemistry and the community composition
(Stenger-Kovács *et al.*, 2014; Lengyel *et al.*, 2016; Stenger-Kovács *et al.*, 2016).
However, structuring forces of diatom assemblages in space and time have not been
investigated in such ecosystems so far, probably because this is a new and fast

76 developing area in ecology.

77 In general, local environmental conditions, species interactions, species dispersal 78 and stochastic processes influence community structure. The metacommunity framework (Leibold *et al.*, 2004) provides an approach to investigate the dynamics of 79 local communities that are linked by species dispersal within a region forming a 80 metacommunity. The framework involves four different perspectives (Table 1, glossary 81 of terms) concerning the relative importance of local and regional processes that help to 82 83 understand mechanisms supporting β -diversity. β -diversity refers to the variation of 84 community composition among sampling units within a region due to the species replacement and/or the richness differences along environmental, spatial or temporal 85 86 gradients.

Areas with high β-diversity might have high conservation value and their
preservation is essential even if the single sites have low species richness, since they can
host a variety of species assemblages and their high community variation is strongly
related to habitat heterogeneity (Manthey & Fridley, 2009). Thus, β-diversity studies
provide valuable information for developing conservation strategies (Whittaker, 1960)

and also contribute to preservation the high conservation value of heterogeneoushabitats.

94 In this study, the goals were (i) to assess the overall β -diversity of two spatially separated benthic diatom metacommunities in soda pans located in different parts of the 95 Carpathian Basin (Fertő-Hanság region and Danube-Tisza Interfluve), and (ii) to 96 97 determine the driving forces of β -diversity in regions with distinct physical and chemical features, and diatom assemblages at both spatial and temporal scales. More 98 99 specifically, we focused on whether dissimilarities are attributable mainly to species 100 turnover or to nestedness, and on the role of deterministic/stochastic processes in 101 establishment of β -diversity and its components (thus in establishment of communities, 102 as well). Furthermore, we discuss our results in context of conservation/restoration 103 management.

104

105 Materials and methods

106

107 Study areas

There are two large regions in the Carpathian Basin where *ex lege* protected (Magyar 108 109 Közlöny, 1996) soda pans can be found: one is in the Kiskunság National Park in the 110 Danube-Tisza Interfluve and the other area is located around Lake Fertő/Neusiedlersee in the Fertő-Hanság National Park. These water bodies are endorheic, shallow waters 111 with Secchi transparency of only a few centimeters (Horváth et al., 2013), pH of 9-10 112 113 (Stenger-Kovács *et al.*, 2014), very high conductivity (may exceed 70,000 μ S cm⁻¹, Boros et al., 2014) and daily temperature fluctuation (nearly 20°C, Vörös & Boros, 114 2010). Despite these similarities, the two main hydrological basins (Danube-Tisza 115

116 Interfluve and Fertő-Hanság) differ substantially regarding some physical and chemical 117 parameters and the biota of the pans (Stenger-Kovács et al., 2014). Water supply of 118 soda pans in the Danube-Tisza Interfluve is provided by saline water from deep-layer 119 aquifers (Mádl-Szőnyi & Tóth, 2009) and precipitation, therefore their hydrological sensitivity is very high (Hammer, 1990). In the Danube-Tisza Interfluve, soda pans are 120 121 either in natural or in degraded status. In this study we sampled only natural soda pans in this region. In contrast, all soda pans sampled in the Fertő-Hanság region (at the 122 123 Hungarian side of Lake Fertő) are under habitat reconstruction (Boros et al., 2013) 124 aiming to ensure sufficient aquatic areas for migratory and nesting waterfowl. However, recent studies conducted on different organisms (Tóth et al., 2014; Lengyel et al., 2016) 125 126 emphasized that the current condition of these reconstructed soda pans is far from the 127 natural ones: they have worse ecological status compared to the reference pans which 128 are located at the Austrian side of Lake Fertő.

129

130 Sampling and processing of samples

131

Benthic diatom samples were collected from soda pans in two different parts of the 132 133 "Hungarian lowlands" ecoregion: Fertő-Hanság (FH) and Danube-Tisza Interfluve (DT) 134 (Fig. 1). Sampling was conducted monthly in the Fertő-Hanság region from three pans between July 2013 and August 2014, and in the Danube-Tisza Interfluve from six pans 135 between August 2014 and July 2015. Sampling sites, their GPS coordinates and the 136 137 sample numbers are summarized in Table 2. Epipelic samples were collected from mud 138 (King *et al.*, 2006) in the littoral region where the water depth varied between 5-10 cm. Samples were treated by hot hydrogen-peroxide method, then diatom valves were 139

140	embedded in $\text{Zrax}^{\mathbb{C}}$ resin (CEN, 2003). To determine the relative abundance of species,
141	at least 400 valves per slide were counted using Zeiss Axio Imager A1 with
142	Planapochromat DIC lense at 1000× magnification under oil immersion (Zeiss, 518N).
143	Small taxa were investigated with a Hitachi S-2600 N scanning electron microscope.
144	Standard and specific taxonomic guides (Krammer & Lange-Bertalot, 1991, 1999a,
145	1999b, 2000; Witkowski et al., 2000; Krammer, 2000, 2002, 2003; Lange-Bertalot,
146	2001; Taylor et al., 2007; Levkov, 2009; Bey & Ector, 2010; Hofmann et al., 2011;
147	Lange-Bertalot et al., 2011; Levkov et al., 2013; Stenger-Kovács & Lengyel, 2015)
148	were used to identify diatoms at species level.
149	During the sampling, conductivity, oxygen saturation (DO%), pH and water
150	temperature were measured in situ with an HQ40d Hach Lange multimeter. Irradiance
151	(LI) was measured by a LI 1400 (LI-COR) apparatus equipped with a 143 spherical (4 π)
152	quantum micro sensor (US-SQS/L, Heinz Walz GmbH) directly above the epipelon in
153	the shoreline. Water samples for laboratory analyses were also collected. Concentration
154	of SRSi (Wetzel & Likens, 2000), nitrogen forms (NO_2^- , NO_3^- , NH_4^+), soluble reactive
155	(SRP) and total phosphorous (TP) were measured with spectrophotometry (APHA,
156	1998) using a Metertech UV/VIS Spectrophotometer, SP8001. CO ₃ ²⁻ , HCO ₃ ⁻ , Cl ⁻ , SO ₄ ²⁻
157	and COD were measured with titrimetric methods (APHA, 1998). To assess the amount
158	of humic substances, intensity of the brown colour in platinum (Pt) units was
159	determined according to Cuthbert & del Giorgio (1992).
160	
161	Statistical analyses

163 Relative abundance data of diatom species were transformed into presence-absence data, and then regional β -diversity was calculated for both regions separately using 164 165 multiple-site Sørensen dissimilarity index (β_{SOR}) (Baselga, 2010). β_{SOR} was partitioned into two components: $\beta_{SOR} = \beta_{SIM} + \beta_{NES}$, where β_{SIM} (Simpson's dissimilarity) is the 166 dissimilarity originating from species turnover and β_{NES} (nestedness-driven 167 dissimilarity) is related to differences in species richness (Baselga et al., 2007; Baselga, 168 2010). Calculation of the regional β -diversity and its components was conducted in the 169 170 betapart R package version 1.3 (Baselga et al., 2013).

171 Relationship of turnover and nestedness components to overall β-diversity values expected "under" and "beyond" random community assemblage given an 172 173 Equiprobable-Fixed (EF) null model was investigated (Ulrich & Gotelli, 2007). At first, for the observed presence-absence data overall β -diversity was computed using pairwise 174 Sørensen dissimilarity index (β_{sor}), which was partitioned into β_{sim} and β_{nes} following 175 Baselga's framework (Baselga, 2010) in both regions. Then, EF null models were 176 implemented to randomize the observation data matrix to generate "null" communities 177 178 (permutations = 1000) using the permatfull function in the vegan R package (Oksanen 179 et al., 2015). At the EF null models, observed species richness of sites were maintained (r0 algorithm) during the randomization and sample species from the regional species 180 181 pool equiprobably. Then, pairwise Sørensen dissimilarity index was calculated for each of the 1000 null matrices and their mean was computed ($\beta_{sor-null}$). The differences 182 between the observed β -diversity (β_{sor}) and β -diversity derived from null communities 183 184 $(\beta_{\text{sor-null}})$ were quantified $(\beta_{\text{sor-diff}} = \beta_{\text{sor}} - \beta_{\text{sor-null}})$, thereby the β -diversities independent of and beyond random chance was determined ($\beta_{\text{sor-diff}}$). To explore the relationship of the 185 overall β -diversities (β_{sor}), turnover (β_{sim}) and nestedness (β_{nes}) components to the 186

187 expected β -diversities under ($\beta_{sor-null}$) and beyond ($\beta_{sor-diff}$) null models, significances of 188 the Pearson correlations were computed using Mantel permutation tests (permutations = 189 999). The results of this analysis can provide an insight into whether our observed 190 diatom communities are assembled by deterministic or stochastic processes or by both, 191 in time.

192 We quantified the effect of environmental variables, as well as the spatial and temporal variation on establishment of diatom communities for both regions. Estimates 193 194 were carried out for Hellinger transformed relative abundance (Legendre & Gallagher, 195 2001; Borcard et al., 2011) and presence-absence data. Prior to the final statistical analyses, a model selection procedure of redundancy analysis (RDA) (each term 196 197 analysed sequentially from first to last) was conducted using analysis of variance (ANOVA) to determine which physical and chemical parameters affect significantly the 198 199 variance of diatom communities. During the subsequent analyses, these factors were 200 included in the group "environmental variables". All other physical and chemical parameters were eliminated. Before conducting RDA, all environmental factors were 201 202 standardized. To define the group "spatial distance", a principal coordinate analysis 203 (PCoA) of the geographical distance matrix among the soda pans within both regions 204 was carried out to compute distance-based Moran's eigenvector map (dbMEM) 205 (Borcard & Legendre, 2002; Borcard et al., 2004), then dbMEM eigenvectors were considered as explanatory variables. For "temporal variation", the days elapsed between 206 207 two samplings were used as explanatory variables. Variation partitioning was conducted 208 to reveal the importance of pure and shared effects of the three explanatory variable 209 groups (environmental, spatial, temporal) on the variance of diatom assemblages, resulting in a total of seven fractions and residuals indicating the unexplained variance 210

211	(Anderson & Gribble, 1998). Significance of adjusted R^2 values provided by variation
212	partitioning for testable fractions (pure environmental, spatial and temporal effect) was
213	determined with ANOVA (permutations = 999) of RDA models (Peres-Neto et al.,
214	2006). Variation partitioning was performed with the varpart function in the vegan R
215	package (Oksanen et al., 2015).
216	All statistical analyses were carried out separately for the two regions and were
217	performed in R statistical and computing environment (R. 3.1.1; R Development Core
218	Team, 2014).
219	
220	Results
221	
222	A total of 163 diatom species were identified in the Fertő-Hanság (FH) region ($n = 29$)
223	and 117 in the Danube-Tisza (DT) Interfluve ($n = 47$). Species richness per sample
224	varied between 15 and 57 (average and standard deviation: 34 ± 11) in the FH region,
225	and between 2 and 32 (average and standard deviation: 17 ± 7) in the DT region.
226	Dissimilarity according to the multiple-site framework was fairly high in both regions
227	($\beta_{SOR} > 0.90$). Patterns of β -diversity in the epipelon were mainly attributed to pure
228	species turnover (β_{SIM}), and nestedness (β_{NES}) component was considerably lower in
229	both cases (Table 3).
230	In the FH region, the overall β -diversity (β_{sor}) was not related to the β -diversity
231	values expected under the null model ($\beta_{sor-null}$), but it was strongly positively correlated
232	to that of deviations beyond null model expectations ($\beta_{sor-diff}$) (Figs 2A, 2B). The
233	turnover component (β_{sim}) showed no correlation with $\beta_{sor-null}$, but it was positively
234	related to $\beta_{\text{sor-diff}}$ (Figs 2C, 2D). The nestedness component (β_{nes}) displayed neither a

significant relationship with $\beta_{\text{sor-null}}$ nor with $\beta_{\text{sor-diff}}$ (Figs 2E, 2F). In the DT region, 235 although β_{sor} values were significantly correlated to the predictions of the null model 236 237 $(\beta_{\text{sor-null}})$, it showed a considerably stronger relationship with its residuals ($\beta_{\text{sor-diff}}$) (Figs 3A, 3B). Regarding the turnover component, we found similar results as in the FH 238 239 region: β_{sim} correlated strongly to $\beta_{sor-diff}$ and it displayed non-significant relationship 240 with $\beta_{\text{sor-null}}$ (Figs 3C, 3D). The nestedness component (β_{nes}) was related significantly both to $\beta_{\text{sor-null}}$ and $\beta_{\text{sor-diff}}$, but the positive correlation was stronger with the null 241 242 expectations ($\beta_{sor-null}$) (Figs 3E, 3F). The model selection procedure displayed a significant impact of SRP (Df = 1, F243 = 1.836, P < 0.05) and SRSi (Df = 1, F = 1.724, P < 0.05) in the FH region and that of 244 COD $(Df = 1, F = 2.7401, P < 0.01), NO_3^{-} (Df = 1, F = 3.2104, P < 0.01), CO_3^{2-} (Df = 1, P < 0.01))$ 245

F = 3.2473, P < 0.01) and Cl⁻ (Df = 1, F = 2.6031, P < 0.05) in the DT region. Variation 246 247 partitioning for both regions revealed that establishment of community structure using either abundance or presence-absence data was related mainly to the pure environmental 248 effect, which was significant in each case but explained a higher proportion of the 249 250 variations in diatom communities in the DT (16% and 7.1%) than in the FH region 251 (5.6% and 2.3%). In the FH region, the pure temporal variation also had a significant 252 impact on the community structures, however, the explained variation was lower (3.9% 253 and 2.2%). All the other fractions (pure and shared) of explanatory data sets were negligible in terms of variance explanation. In all models presented, variation in 254 255 community structure was not fully explained, leaving considerable portion of residuals 256 unexplored. Furthermore, the amount of unexplained variation was higher using 257 presence-absence data in both regions (Fig. 4).

258

Discussion

261	This study revealed that high β -diversity of diatom assemblages was enhanced mainly
262	by species turnover due to deterministic processes such as species-sorting. However,
263	structuring forces partly differed in the two investigated regions. Across natural soda
264	pans in the Danube-Tisza Interfluve species replacements were driven chiefly by
265	environmental characteristics of the water and resulted in low α -diversity assemblages.
266	In contrast, in the Fertő-Hanság region, restoration management induced temporal
267	variations in community structure by obstruction of the natural hydrological cycle of the
268	pans acted most through environmental filtering effect. Our results might help to
269	understand which dynamics maintain diatom diversity at regional scale in such extreme
270	environments as soda pans and to assess how to preserve biodiversity by applying an
271	appropriate management strategy in the future.

Main forces in β-diversity

Soda pans located in Central Europe have a rather low α-diversity (species richness and Shannon diversity; Stenger-Kovács et al., 2016) in comparison to other lakes in the region with "average" environmental characteristics (e.g. Stenger-Kovács et al., 2007). The low species richness could promote the importance of β -diversity to a great extent (Chase *et al.*, 2011), which was supported by our results as high overall β -diversity (> 90%) of diatom communities was observed in both study areas. Partitioning of overall β-diversity revealed that dissimilarity of diatom communities originates mainly from the replacement of species in one community by different species in the other community

283 (namely, as a result of high species turnover). Algarte et al. (2016) reported 50% mean 284 β-diversity for periphytic diatoms in lakes connected to the Paraná River, however the 285 authors calculated pair-wise dissimilarity instead of multiple-site dissimilarity because they focused on β -diversity between each pair of lakes among the sampling years. 286 Despite the difference of the applied dissimilarity measures, their findings also 287 288 supported pure species turnover (Algarte et al., 2016), similar to our observations. Moreover, they found that damming on the studied area resulted in new environmental 289 290 conditions compelling replacement processes between species with time, but each lake 291 contributed equally to the regional species-pool as there was no significant richness difference. Maloufi *et al.* (2016) published extremely high β -diversity (> 96%) using 292 293 multiple-site framework for phytoplankton from lakes in the Paris area, which was also 294 driven by high species turnover, whereas the results were mainly explained by distinct 295 local environmental conditions at regional scale due to different anthropogenic impacts 296 and landscape.

Our observations provide a new insight into community ecology with applying 297 298 null models in order to determine the role of deterministic and stochastic processes in 299 diatom community variation. Both in the Fertő-Hanság region and Danube-Tisza 300 Interfluve, overall β -diversity and turnover component values matched much less to 301 random expectations than to deviations beyond null model expectations indicating that 302 epipelic diatom communities are assembled predominantly by deterministic processes 303 (e.g. species-sorting by environmental filters) similarly to periphytic diatoms (Algarte et 304 al., 2016) or to phytoplankton communities (Maloufi et al., 2016) in other studies. In 305 contrast, nestedness component showed a different relationship to the expectations with 306 and beyond null models in the two areas: no correlation was observed in the FH region,

but it showed a strong relation to the expectation with null model indicating a signal of
stochastic processes (a multitude of random processes) in the DT region. However, this
component was quite low in both areas regarding the overall β-diversity.

310

311 Key components of deterministic mechanisms

312

The modern metacommunity concept, which helps ecologists to understand responses to 313 314 environmental changes, is based on four widely used paradigms proposed by Leibold et al. (2004): neutral, mass-effect, patch-dynamic and species-sorting models (Table 1, 315 316 glossary of terms). According to the model selection procedure applied in this study, 317 pure environmental processes affected diatom assemblages but the significant 318 environmental parameters were different for the two sampled areas (SRSi and SRP in the Fertő-Hanság region, and COD, NO_3^{-1} , CO_3^{2-1} and Cl⁻ in the Danube-Tisza 319 320 Interfluve). Furthermore, it was reported that physical and chemical features of the soda pans differ not only between the two regions but also among the soda pans within a 321 322 region (Stenger-Kovács et al., 2014; Lengyel et al., 2016). In the DT region, variation of community structures was associated merely to the pure environmental effects due to 323 324 the unique environmental characteristics of the pans, thus species-sorting can be 325 regarded as perfect. Our findings might originate from the natural status of these soda pans. As their water supply is provided solely by precipitation and groundwater (no 326 327 man-made freshwater ingress), their natural saline features (the decisive physical and 328 chemical parameters) can serve as environmental filters for diatom species. 329 Different observations are presented in the literature regarding the key drivers of

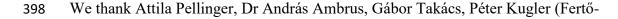
diatom metacommunities in freshwater ecosystems. Vilmi *et al.* (2016) found that

331 diatom community structures in a large, well-connected lake system were determined by 332 shared effects of both spatial and local environmental factors instead of pure 333 environmental effects. They showed that the pure spatial effects interfered with 334 environmental variables due to dispersal processes. Nevertheless, since communities are structured spatially mainly due to dispersal limitation at large scales (e.g. within a 335 336 continent, a region or a watershed), they drew attention to study spatial effects with caution in relatively smaller geographical scales (Vilmi et al., 2016). Dong et al. (2016) 337 338 showed that in high-mountain streams with intense environmental gradients related to steep elevation affect the assembly of diatom metacommunities but spatial factors are 339 also important, since mountains prevent stream corridors to facilitate species dispersion 340 at a small spatial extent ($< 500 \text{ km}^2$). In both of our study areas, soda pans (within each 341 region) are located relatively close to each other (≤ 10 kilometers). Hence there is no 342 343 dispersal limitation of passive dispersion of diatom species, i.e. geographic distance did not play a key role. In such highly and multiply stressed ecosystems where 344 environmental parameters tend to reach extreme values (Stenger-Kovács et al., 2014; 345 346 Lengyel et al., 2016), spatial distance did not affect the variation of community 347 composition (i.e. the difference in community structure was not greater in more distant 348 lakes than in those close to each other): its effect was overcame by the chemical 349 properties of the water supporting species-sorting mechanism. These patterns emerged more prominently when weighted species occurrences 350 351 were used during the analyses than in the analyses of merely presence-absence data. 352 Thus, the abundance dataset magnified the response of abundant taxa to changes along

environmental gradients to a greater extent in both metacommunities. This

354 interpretation of higher explained variance for abundance data is in line with

explanation offered previously by other authors (Beisner *et al.*, 2006; Heino *et al.*,
2010).


357 Although, physical and chemical factors played a key role in the reconstructed 358 soda pans of the FH region as well, pure temporal variation also influenced the 359 community structure. We assume that this result may be related to the restoration 360 management applied for the soda pans in this area aiming the re-establish migrating and nesting waterfowl population density. Legény-tó has a permanent linkage to one of the 361 362 numerous drainage canals in the region, which results in a more or less constant water 363 level and low conductivity. Lengyel et al. (2016) reported that lack of the natural hydrological regime resulted in high diversity and dominance of freshwater diatoms in 364 365 Legény-tó. Water level and surface area of Borsodi-dűlő and Nyéki-szállás are regulated by sluices built on the Hanság Main Canal and they receive a periodical water supply 366 367 from Lake Fertő and the surrounding area. In addition, due to the proximity, their occasional water supply can be also provided by strong winds from Lake Fertő when its 368 water level is relatively high. Lengyel et al. (2016) stated that repeated shifts or 369 370 reversions in the succession process can appear due to the water management and the occasional water supply originated from Lake Fertő that could provide a reasonable 371 372 explanation for our findings, as well. Algarte et al. (2016) also reported that water 373 management (namely damming) resulted in significant compositional changes in diatom communities due to variation of environmental characteristics in freshwater lakes 374 375 connected to the Paraná River over a ten-year period. Thus, along environmental 376 changes, temporal variation was the most important in terms of assembly, similarly to 377 our observed mechanisms in the FH region.

378

379 In conclusion, diatoms in extremely stressed ecosystems (high conductivity, pH, 380 turbidity and daily temperature fluctuation) such as soda pans, are assembled 381 predominantly by deterministic processes. High β-diversity of diatom metacommunities due to the continuous species turnover along environmental gradients reflects that soda 382 pans within two regions (DT and FH) provide a variety of niches for different diatom 383 384 assemblages. Since single soda pans host a low number of diatom species, these habitats have high conservation value due to their vulnerability. Climate change and 385 386 anthropogenic interventions (e.g. water drainage, dredging, pumping of groundwater) 387 induce irreversible changes in their natural hydrological cycle, thus threatening their good ecological status and even their existence (Williams, 2002; Stenger-Kovács et al., 388 389 2014). As diatom assemblages showed in the FH region, restoration activities applying permanent or periodical water supply tend to cause significant temporal changes in 390 391 diatom communities. Since diatoms proved to be suitable for indicating the changes in limnological characteristics of soda pans, continuous monitoring of diatoms (including 392 β -diversity studies) is suggested and they should be considered during the ecological 393 394 status assessment and the development of a proper conservation management.

395

- 396 Acknowledgements
- 397

399 Hanság National Park), Tamás Sápi, Dr Csaba Pigniczki, Sándor Kovács (Kiskunság

- 400 National Park) for their help in field sampling. We acknowledge the contribution of
- 401 colleagues and students of Department of Limnology, University of Pannonia for their
- 402 technical assistance in laboratory analyses. Dr Krisztina Buczkó (Hungarian Natural

403	History Museum) helped in the electron microscopic analysis. This study was
404	financially supported by the National Scientific Research Foundation (OTKA K81599),
405	the National Research Development and Innovation Office (NKFIH K120595), the
406	European Regional Development Fund (GINOP-2.3.2-15-2016-00019) and the
407	Széchenyi 2020 under the EFOP-3.6.1-16-2016-00015.
408	
409	References
410	
411	Algarte, V.M., Dunck, B. & Rodrigues, L. (2016). Periphytic diatom ecological guilds
412	in floodplain: Ten years after dam. Ecological Indicators, 69: 407-414.
413	Anderson, M.J. & Gribble, N.A. (1998). Partitioning the variation among spatial,
414	temporal and environmental components in a multivariate data set. Australian
415	<i>Journal of Ecology</i> , 23 : 158–167.
416	APHA (American Public Health Association) (1998). Standard methods for the
417	examination of water and wastewater. United Book Press, Baltimore (MD).
418	Baselga, A. (2010). Partitioning the turnover and nestedness components of beta
419	diversity: partitioning beta diversity. Global Ecology and Biogeography, 19:
420	134–143.
421	Baselga, A., Jimenez-Valverde, A. & Niccolini, G. (2007). A multiple-site similarity
422	measure independent of richness. Biology Letters, 3: 642-645.
423	Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. (2013). Betapart:
424	Partitioning Beta Diversity Into Turnover and Nestedness Components. R
425	Package version 1.3.

426	Bauld, J. (1981). Occurrence of benthic microbial mats in saline lakes. In Salt Lakes.
427	Developments in Hydrobiology, Vol. 5. (Williams, W.D., editor), 87-111.
428	Springer Netherlands, Dordrecht.
429	Beisner, B.E., Peres-Neto, P.R., Lindström, E.S., Barnett, A. & Longhi, M.L. (2006).
430	The role of environmental and spatial processes in structuring lake communities
431	from bacteria to fish. <i>Ecology</i> , 87 : 2985–2991.
432	Bey, MY. & Ector, L. (2010). Atlas des diatomées des cours d'eau de la région
433	Rhône-Alpes, Tome 1-6. Direction régionale de l'Environnement, de
434	l'Aménagement et du Logement Rhône-Alpes, Lyon.
435	Borcard, D. & Legendre, P. (2002). All-scale spatial analysis of ecological data by
436	means of principal coordinates of neighbour matrices. Ecological Modelling,
437	153 : 51–68.
438	Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical Ecology With R. Springer,
439	New York.
440	Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the
441	spatial structure of ecological data at multiple spatial scales. <i>Ecology</i> , 85 : 1826–
442	1832.
443	Boros, E., Ecsedi, Z. & Oláh, J. (2013). Ecology and management of soda pans in the
444	Carpathian Basin. Hortobágy Environmental Association, Balmazújváros.
445	Boros, E., Horváth, Z., Wolfram, G. & Vörös, L. (2014). Salinity and ionic composition
446	of the shallow astatic soda pans in the Carpathian Basin. Annales de Limnologie
447	– International Journal of Limnology, 50 : 59–69.

448	CEN (Comité Européen de Normalisation) (2003). Water Quality Guidance Standard
449	for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers. EN
450	13946:2003, Geneva.
451	Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. & Inouye, B.D. (2011). Using null
452	models to disentangle variation in community dissimilarity from variation in α -
453	diversity. <i>Ecosphere</i> , 2 : 1–11.
454	Cuthbert, I.D. & del Giorgio, P. (1992). Toward a standard method of measuring colour
455	in freshwater. Limnology and Oceanography, 37: 1319–1326.
456	Dargám, R.M. (1995). Geochemsitry of waters and brines from the Salinas Grandes
457	basin, Córdoba, Argentina. I. Geomorphology and hydrochemical
458	characteristics. International Journal of Salt Lake Research, 3: 137–158.
459	Dong, X., Li, B., He, F., Gu, Y., Sun, M., Zhang, H., Tan, L., Xiao, W., Liu, S. & Cai,
460	Q. (2016). Flow directionality, mountain barriers and functional traits determine
461	diatom metacommunity structuring of high mountain streams. Scientific Reports,
462	6 : 24711.
463	Hammer, U.T. (1990). The effects of climate change on the salinity, water levels and
464	biota of Canadian prairie saline lakes. Internationale Vereinigung für
465	Theoretische und Angewandte Limnologie, 24: 321–326.
466	Heino, J., Bini, L.M., Karjalainen, S.M., Mykrä, H., Soininen, J., Vieira, L.C.G. &
467	Diniz-Filho, J.A.F. (2010). Geographical patterns of micro-organismal
468	community structure: are diatoms ubiquitously distributed across boreal
469	streams? Oikos, 119: 129–137.
470	Hofmann, G., Werum, M. & Lange-Bertalot, H. (2011). Diatomeen im Süßwasser-
471	Benthos von Mitteleuropa. Koeltz Scientific Books, Königstein.

472	Horváth, Z., Vad, C.F., Vörös, L. & Boros, E. (2013). The keystone role of anostracans
473	and copepods in European soda pans during the spring migration of waterbirds.
474	Freshwater Biology, 58: 430–440.
475	King, L., Clarke, G., Bennion, H., Kelly, M. & Yallop, M. (2006). Recommendation for
476	sampling littoral diatoms in lakes for ecological status assessment. Journal of
477	Applied Phycology, 18: 15–25.
478	Kirk, J.T.O. (1994). Light and Photosynthesis in Aquatic Ecosystems. Cambridge
479	University Press, Cambridge.
480	Krammer, K. (2000). Diatoms of Europe: Diatoms of the European Inland Waters and
481	Comparable Habitats (Vol. 1. The Genus Pinnularia). A.R.G. Gantner Verlag
482	K.G., Ruggel.
483	Krammer, K. (2002). Diatoms of Europe: Diatoms of the European Inland Waters and
484	Comparable Habitats (Vol. 3. Cymbella). A.R.G. Gantner Verlag K.G., Ruggel.
485	Krammer, K. (2003). Diatoms of Europe: Diatoms of the European Inland Waters and
486	Comparable Habitats (Vol. 4. Cymbopleura, Delicata, Navicymbula,
487	Gomphocymbellopsis, Afrocymbella). A.R.G. Gantner Verlag K.G., Ruggel.
488	Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae 4. Teil: Achnanthaceae.
489	Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In
490	Süsswasserflora von Mitteleuropa, Band 2/4 (Ettl, H., Gerloff, J., Heynig, H. &
491	Mollenhauer, D., editors), Spektrum Akademischer Verlag, Heidelberg.
492	Krammer, K. & Lange-Bertalot, H. (1999a). Bacillariophyceae 1. Teil: Naviculaceae.
493	In Süsswasserflora von Mitteleuropa, Band 2/1 (Ettl, H., Gerloff, J., Heynig, H.
494	& Mollenhauer, D., editors), Spektrum Akademischer Verlag, Heidelberg.

495	Krammer, K. & Lange-Bertalot, H. (1999b). Bacillariophyceae 2. Teil: Bacillariaceae,
496	Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa, Band 2/2
497	(Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D., editors), Spektrum
498	Akademischer Verlag, Heidelberg.
499	Krammer, K. & Lange-Bertalot, H. (2000). Bacillariophyceae 3. Teil: Centrales,
500	Fragilariaceae, Eunotiaceae. In Süsswasserflora von Mitteleuropa, Band 2/3
501	(Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D., editors), Spektrum
502	Akademischer Verlag, Heidelberg.
503	Krumbein, W.E., Cohen, Y. & Shilo, M. (1977). Solar lake (Sinai). 4. Stromatolitic
504	cyanobacterial mats. Limnology and Oceanography, 22: 635-655.
505	Langbein, W.B. (1961). Salinity and hydrology of closed lakes. Geological Survey
506	Professional Paper 412. United States Government Printing Office, Washington
507	(DC), USA.
508	Lange-Bertalot, H. (2001). Diatoms of Europe Diatoms of the European Inland Waters
509	and Comparable Habitats (Vol. 2. Navicula sensu stricto. 10 genera separated
510	from Navicula sensu lato. Frustulia). A.R.G. Gantner Verlag K.G., Ruggel.
511	Lange-Bertalot, H., Malgorzata, M. & Witkowski, A. (2011). Diatoms of Europe
512	Diatoms of the European Inland Waters and Comparable Habitats (Vol. 6.
513	Eunotia and some related genera). A.R.G. Gantner Verlag K.G., Ruggel.
514	Legendre, P. & Gallagher, E. (2001). Ecologically meaningful transformations for
515	ordination of species data. Oecologia, 129: 271-280.
516	Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes,
517	M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. & Gonzales, A.

518	(2004). The metacommunity concept: a framework for multi–scale community
519	ecology. Ecology Letters, 7: 601–613.
520	Lengyel, E., Padisák, J., Hajnal, É., Szabó, B., Pellinger, A. & Stenger-Kovács, C.
521	(2016). Application of benthic diatoms to assess efficiency of conservation
522	management: a case study on the example of three reconstructed soda pans,
523	Hungary. Hydrobiologia, 777: 95–110.
524	Levkov, Z. (2009). Diatoms of Europe: Diatoms of the European Inland Waters and
525	Comparable Habitats (Vol. 5. Amphora sensu lato). A.R.G. Gantner Verlag
526	K.G., Ruggel.
527	Levkov, Z., Metzeltin, D. & Pavlov, A. (2013). Diatoms of Europe: Diatoms of the
528	European Inland Waters and Comparable Habitats (Vol. 7. Luticola and
529	Luticolopsis). Koeltz Scientific Books, Königstein.
530	Mádl-Szőnyi, J. & Tóth, J. (2009). A hydrogeological type section for the Duna-Tisza
531	Interfluve, Hungary. Hydrogeology Journal, 17: 961–980.
532	Magyar Közlöny (1996). 1996. évi LIII. törvény a természet védelméről. 53: 3305–
533	3325.
534	Maloufi, S., Catherine, A., Mouillot, D., Louvard, C., Couté, A., Bernard, C. &
535	Troussellier, M. (2016). Environmental heterogeneity among lakes promotes
536	hyper ß-diversity across phytoplankton communities. <i>Freshwater Biology</i> , 61 :
537	633–645.
538	Manthey, M. & Fridley, J.D. (2009). Beta diversity metrics and the estimation of niche
539	width via species co-occurrence data: reply to Zeleny. Journal of Ecology, 97:
540	18–22.

541	Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B.,
542	Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. (2015). Vegan:
543	Community Ecology Package. R Package version 2.2-1.
544	Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation partitioning of
545	species data matrices: estimation and comparison of fractions. Ecology, 87:
546	2614–2625.
547	R Development Core Team (2014). R: A Language and Environment for Statistical
548	Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
549	900051-07-0. http://www.R-project.org
550	Rott, E. (1991). Methodological aspects and perspectives in the use of periphyton for
551	monitoring and protecting rivers. In Use of Algae for Monitoring Rivers
552	(Whitton, B.A., Rott, E. & Friedrich, G., editors), 9–16. Institut für Botanik,
553	Universität Innsbruck, Innsbruck, Austria.
554	Simon, S., Mádl-Szőnyi, J., Müller, I. & Pogácsás, G. (2011). Conceptual model for
555	surface salinization in an overpressured and a superimposed gravity flow field,
556	Lake Kelemen-szék area, Hungary. Hydrogeology Journal, 19: 707–711.
557	Smol, J.P. & Stoermer, E.F. (2010) The Diatoms: Applications for the Environmental
558	and Earth Sciences, 2nd edition. University Press, Cambridge.
559	Stenger-Kovács, C. & Lengyel, E. (2015). Taxonomical and distribution guide of
560	diatoms in soda pans of Central Europe. Studia Botanica Hungarica, 46(Suppl):
561	3–203.
562	Stenger-Kovács, C., Buczkó, K., Hajnal, É. & Padisák, J. (2007). Epiphytic, littoral
563	diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index
564	for Lakes (TDIL) developed in Hungary. Hydrobiologia, 589: 141–154.

565	Stenger-Kovács, C., Lengyel, E., Buczkó, K., Tóth, M.F., Crossetti, O.L., Pellinger, A.,
566	Zámbóné Doma, Z. & Padisák, J. (2014). Vanishing world: alkaline, saline lakes
567	in Central Europe and their diatom assemblages. Inland Waters, 4: 383-396.
568	Stenger-Kovács, C., Hajnal, É., Lengyel, E., Buczkó, K. & Padisák, J. (2016). A test of
569	traditional diversity measures and taxonomic distinctness indices on benthic
570	diatoms of soda pans in the Carpathian Basin. Ecological Indicators, 64: 1–8.
571	Taylor, J.C., Archibald, C.G.M. & Harding, W.R. (2007). An illustrated guide to some
572	common diatom species from South Africa. Water Research Commission,
573	Pretoria.
574	Tóth, A., Horváth, Z., Vad, C.F., Zsuga, K., Nagy, S.A. & Boros, E. (2014).
575	Zooplankton of the European soda pans: fauna and conservation of a unique
576	habitat type. International Review of Hydrobiology, 99: 255–276.
577	Ulrich, W. & Gotelli, N.J. (2007). Null model analysis of species nestedness patterns.
578	<i>Ecology</i> , 88 : 1824–1831.
579	Vilmi, A., Karjalainen, S.M., Hellsten, S. & Heino, J. (2016). Bioassessment in a
580	metacommunity context: are diatom communities structured solely by species
581	sorting? Ecological Indicators, 62: 86–94.
582	Vörös, L. & Boros, E. (2010). Nodularia willei Gardn. tömegprodukció: a planktonikus
583	és bentonikus elsődleges termelés peremfeltételei egy kiskunsági szikes tóban
584	(Kelemen-szék). Acta Biologica Debrecina – Supplementum Oecologica
585	Hungarica, 22 : 139–152.
586	Wetzel, R.G. & Likens, G.E. (2000). Limnological Analyses. Springer-Verlag, New
587	York.

588	Whittaker, R.H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California.
589	Ecological Monographs, 30: 279–338.

- 590 Williams, W.D. (2002). Environmental threats to salt lakes and the likely status of
 591 inland saline ecosystems in 2025. *Environmental Conservation*, 29: 154–167.
- 592 Witkowski, A., Lange-Bertalot, H. & Metzeltin, D. (2000). *Diatom flora of marine*
- 593 *coasts I.* In Iconographia Diatomologica Vol. 7. Annoted diatom micrographs
- 594 (Lange-Bertalot, H., editor), A.R.G. Gantner Verlag K.G., Ruggell.

Table 1. Glossary of terms.

Term	Definition
	A system where species do not differ in their abilities (dispersion,
Neutral theory	competition and fitness) and local communities can be formed by
Neutral tileory	immigration, emigration, speciation and extinction but all these
	processes are considered as random.
	Local population densities strongly depend on the spatial dynamics
Mass-effect	as follows: immigration prevents species with low competitive
Wass-effect	abilities from competitive exclusion, and emigration contributes to
	loss rates of population.
	Population dynamics in a number of identical patches are driven by
Patch-dynamic	colonization and extinction influenced by interactions between
	species.
	Patches are considered as heterogeneous, change in the community
Species-sorting	along environmental gradients are affected by local conditions.
species-soluing	However, dispersal can facilitate changes in the composition to keep
	up with the environmental changes.

Soda pans	Regions	GPS coordinates		No. of samples
1. Borsodi-dűlő	FH	N 47.6815	E 16.8400	10
2. Legény-tó	FH	N 47.6632	E 16.8134	12
3. Nyéki-szállás	FH	N 47.6770	E 16.8328	7
4. Bába-szék	DT	N 46.7405	E 19.1503	8
5. Bogárzó-szék	DT	N 46.8048	E 19.1408	7
6. Böddi-szék	DT	N 46.7608	E 19.1437	9
7. Kelemen-szék	DT	N 46.7974	E 19.1831	9
8. Sósér	DT	N 46.7892	E 19.1470	7
9. Zab-szék	DT	N 46.8375	E 19.1698	7

599 Table 2. The investigated soda pans, their region, GPS coordinates and the number of600 samples.

FH = Fertő-Hanság, DT = Danube-Tisza Interfluve.

603	Table 3. β -diversity and its components of benthic diatom communities in the Fertő-
604	Hanság region and in the Danube-Tisza Interfluve.

		Fertő-Hanság	Danube-Tisza Interfluve
		(n = 29)	(n = 47)
	β_{SOR}	0.902	0.942
β-diversity	β_{SIM}	0.857	0.909
	β_{NES}	0.046	0.033

605	β_{SOR} = overall β -diversity; β_{SIM} =	= turnover component; $\beta_{\text{NES}} =$	nestedness component.
-----	---	--	-----------------------

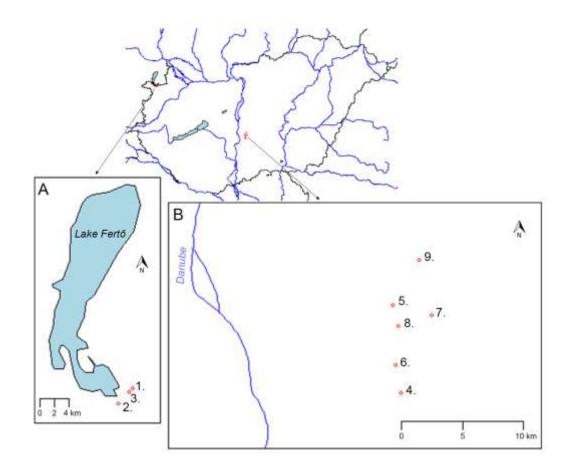
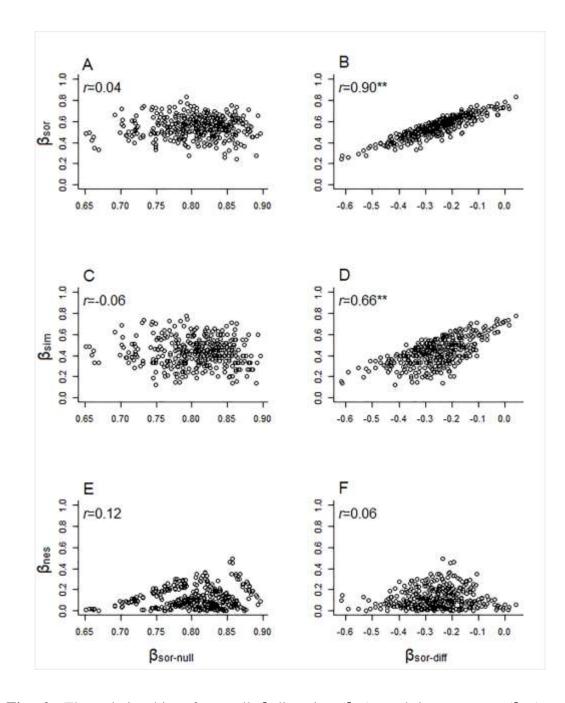
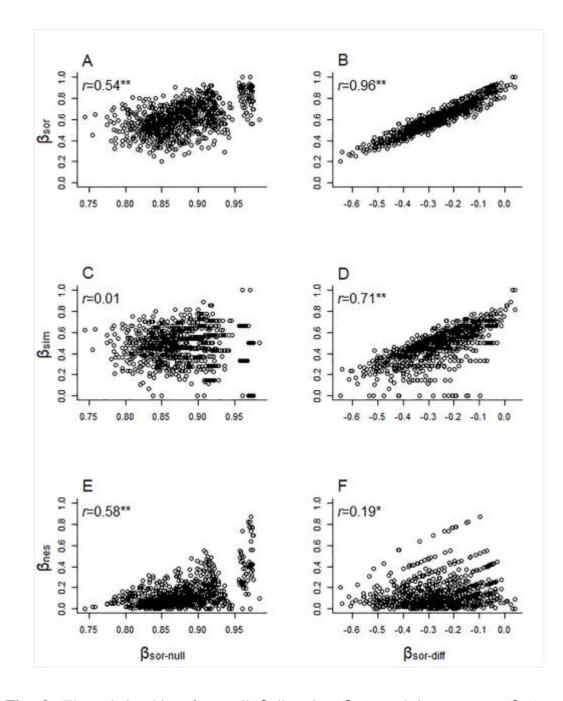




Fig. 1. Sampling sites in the Fertő-Hanság region (A) and in the Danube-Tisza
Interfluve (B). Soda pan numbers are listed in Table 2.

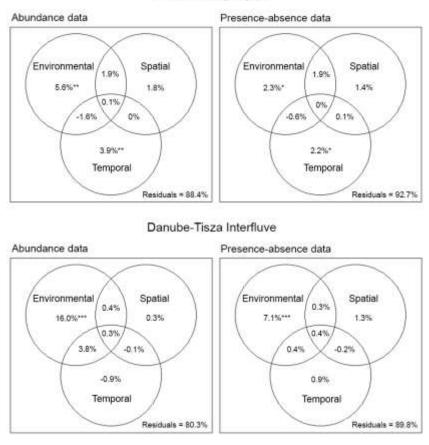


Fig. 2. The relationship of overall β-diversity (β_{sor}), and its turnover (β_{sim}) and nestedness (β_{nes}) components with the overall β-diversity expected under ($\beta_{sor-null}$) and beyond null model ($\beta_{sor-diff}$) in the Fertő-Hanság region. Pearson correlation coefficients (*r*) are shown. *P* values were computed using Mantel tests. Significance codes: '**' 0.01 '*' 0.05.

Fig. 3. The relationship of overall β-diversity (β_{sor}), and its turnover (β_{sim}) and nestedness (β_{nes}) components with the overall β-diversity expected under ($\beta_{sor-null}$) and beyond null model ($\beta_{sor-diff}$) in the Danube-Tisza Interfluve. Pearson correlation coefficients (*r*) are shown. *P* values were computed using Mantel tests. Significance codes: '**' 0.01 '*' 0.05.

624

Fig. 4. Results of variation partitioning for Hellinger transformed relative abundance and presence-absence data in the Fertő-Hanság region and in the Danube-Tisza Interfluve. Fractions are shown as percentages of total variation based on adjusted R^2 values (Environmental = environmental variables, Spatial = spatial distance, Temporal = temporal variation). *P* values for testable fractions were computed using ANOVA of RDA models. Residuals indicate the unexplained variances. Significance codes: '***' 0.001 '**' 0.01 '*' 0.05.