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INTRODUCTION 

 

Over the past decades, the measurement, reporting and the continuous improvement of 

corporate environmental performance (CEP) has grown in importance. CEP, defined as the 

outcome of efforts aimed at economising with resources and reducing the environmental harm 

associated with corporate activities in a life cycle perspective, has become not only an 

essential component of corporate communication and reputation building but also an 

important determinant of competitive advantage (Ambec – Lanoie 2008; Hart 1995; Porter – 

Van der Linde 1995). 

Trying to accumulate ‘sustainability capital’ (Figge – Hahn 2005) and to ‘go green’, at 

least in terms of improving eco-efficiency and complying with ever stricter regulations, 

manufacturing companies devote considerable resources. Notwithstanding accelerating 

technological progress in a variety of fields that has enhanced the technical feasibility of CEP 

improvement (e.g. Burritt – Christ 2016; Duflou et al. 2012), and a rapidly growing number of 

environmental methods and tools (Byggeth – Hochschorner 2006), companies’ investments in 

environmentally friendly solutions often deliver below expectations.  

Although the reasons are manifold, the most frequently mentioned one is that 

corporate environmental sustainability management has become extraordinarily complex both 

technologically and contextually. The improvement of CEP requires systems thinking 

(Williams et al. 2017), a high level of absorptive (Cohen – Levinthal 1990) and adaptive 

capability (Váncza et al. 2011) and capability to integrate and manage multidisciplinary 

knowledge (Gold et al. 2001; Ketata et al. 2015).
1
 

These requirements and in particular, the broad scope of the concept of environmental 

sustainability represent formidable challenges ahead of CEP improvement. Adverse side-

effects may surface and materialise with a considerable time lag, and the ultimate impact of 

several apparently environmentally friendly programmes/solutions often remain smaller than 

predicted.  

                                            
1
 Consider the specific example of nanomaterials widely applied in manufacturing: a par excellence example that 

requires the integration of multidisciplinary knowledge. Klaine et al. (2012: 8) suggest that “it is no longer 
sufficient for toxicologists to work with chemists and biochemists” [to explore the potential toxic features of the 
materials to be processed. Research] … “teams must include, among others, material scientists who understand 

the synthesis, structure, and innate properties of each material; physicists who characterize nanomaterial 

behaviour; and specialist areas of life sciences to understand how biomolecules can coat or modify nanomaterial 

surfaces.” 
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Over and above the well-known environmental rebound effect,
2
 a wide variety of 

hidden ecological burdens and unexpected side-effects may prevent the expected 

environmental footprint reductions from materialising. Performance improvement may remain 

confined to a sub-system or to one specific stage of the life cycle, while the adverse side-

effects of environmental sustainability-oriented (ESO) interventions may become apparent in 

other parts of the system or in other stages of the life cycle. 

Against this background, the purpose of this paper is to develop conceptual arguments 

and organise them into a generic framework that could explain the disappointing results of 

ESO interventions, by analysing the adverse side-effects and other associated problems.  We 

argue that the systemic nature of environmental sustainability generates effective barriers to 

corporate environmental performance improvement. Dynamic interactions within the system 

bring about unintended consequences or adverse side-effects, which may (partly) offset the 

benefits of ESO interventions. Accordingly, our research question can be formulated as 

follows: 

 What is the reason of the widely-observed phenomenon that many apparently 

environmentally friendly solutions fail to bring about the expected environmental 

benefits, or at least, the benefits remain much smaller than predicted? 

This research question clearly delimits the topics covered. This study is intended to explain 

why some purposeful and well-intentioned ESO initiatives deliver below expectations. Hence, 

the issue of greenwashing (Delmas – Burbano 2011; Kallio 2007) – whether firms are 

engaging in it for business reasons (i.e. driven by society’s and investors’ expectations, 

market demand or competitive pressure) or for political legitimacy (Banerjee 2008) – are 

outside the scope of this paper, irrespective of the fact that the difficulty to identify (the extent 

of) greenwashing (Ramus – Montiel 2005) is often an important explanatory factor of 

inferior-to-expected performance improvement. Similarly, illusory expectations about 

financial benefits, i.e. about return on ESO investments are not addressed in this paper, as it is 

confined to inferior-to-expectation improvement in corporate environmental performance.  

                                            
2
 Environmental rebound effect refers to the phenomenon that improvements in eco-efficiency would often 

trigger an increase in the demand for the given products or services. Considered from the perspective of the 

overall environmental impact, this offsets the gains in efficiency (e.g. Greening et al. 2000). For example, Davis 

et al. (2014) report the results of a large-scale appliance replacement programme in Mexico that subsidised 

households’ replacing their old refrigerators and air-conditioners with energy-efficient models. These authors 

found that refrigerator replacement reduced electricity consumption considerably less than what had been 

predicted by ex-ante engineering analyses of the World Bank. Moreover, in the case of air-conditioners, 

replacement increased electricity consumption. The authors concluded that changes in appliance utilisation have 

(more than) offset the energy efficiency-driven reductions in electricity consumption. 
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Our analysis draws on the theory of complex systems (see Williams et al. 2017 

employing this perspective with regard to sustainability management), and on the thesis of 

decision-makers’ bounded rationality (Simon 1957), pointing to executives’ (and policy-

makers’) limitations in taking optimal decisions in complex situations.
3
  Another influential 

premise our analysis draws on, is the life cycle assessment (LCA) approach used for 

estimating products’ environmental impact from cradle to grave, i.e. from raw materials 

extraction to final disposal (Pennington et al. 2004).  

The research method of this paper is a review of the business and environment 

literature combined with insights from the environmental science and technology literature. 

This combination, together with the restructuring the explored literature, allows for new 

conceptualisations and it makes also possible to illustrate our arguments with real-life 

examples. We apply exploratory and interpretive research and develop propositions about the 

possible reasons why many ESO interventions in technology, production, energy management 

and business in general, fail to come up to expectations.  

To the author’s knowledge, this paper represents the first attempt to review and 

synthesise the pitfalls associated with a number of ESO solutions. Transcending the anecdotal 

approach of listing real-world examples derived from the literature, we organise the reviewed 

cases into explanatory concepts that may be relevant for both policy-makers and practitioners. 

The remainder of this paper proceeds as follows. First, we present details about the 

applied data gathering and data analysis method. Then, we turn to the results. We present a 

descriptive, thematic analysis and then we introduce and analyse the categories and concepts 

that emerged as an outcome of our data collection exercise. We conclude by summarising our 

arguments and discussing some managerial and policy implications. 

 

DATA GATHERING AND DATA ANALYSIS 

 

We started our data gathering exercise by looking for articles discussing corporate 

environmental sustainability management in general, and the difficulties practitioners would 

encounter when implementing ESO initiatives, in particular. We focussed on studies 

concerned with (a) the systemic features of corporate environmental sustainability, (b) 

challenges in the measurement and definitions of greenness and, in particular, (c) the pitfalls 

                                            
3
 Notice that bounded rationality can be turned also into advantage: limited capabilities of perception and 

reasoning could drive decision-makers towards a cooperative attitude, which, in turn, pays back in improved 

overall performance. The author is indebted to an anonymous reviewer for calling her attention to this point. 
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in ESO interventions, encountered by practitioners, e.g. sustainability officers and other 

executives. 

Since the research question we examine is very specific, and most of the studies that 

present peculiar problems related to the implementation of sustainability measures fall outside 

the business and environment literature (they can be found rather in the environmental science 

and technology literature), we decided to apply a snowball technique (Fink 2012) instead of 

starting with a broad sample of articles and narrowing the sample in successive rounds. In this 

vein, in accordance with the principle of purposeful sampling described by Patton (1990), we 

first surveyed 12 high-impact review articles discussing the above-listed issues.
4
 The selection 

of these studies was based on the author’s prior knowledge and research in the field of eco-

innovations and corporate sustainability management. 

The first round of data gathering yielded valuable insights about key general concepts 

related to the subject of our research. Moreover, it permitted us to identify additional 

references to papers discussing  

 unconsidered environmental overheads;  

 unintended consequences and adverse indirect effects of ESO interventions;  

 illusory beliefs related to the environmentally benign character of specific solutions. 

  

In the second stage, we checked the content of the papers referred in the 12 original 

studies as ones discussing these issues. If they were, indeed, relevant, we expanded the 

sample of the surveyed papers also by scrutinising the articles citing the ones picked in the 

second round of sampling.
5
 This exercise was repeated in successive rounds, resulting in the 

identification of additional relevant studies among the articles cited in or citing the newly 

included ones. If deemed necessary, snowball sampling was complemented with focussed 

searches for studies that highlight particular sub-topics or clarify technical questions that 

emerged over the course of the analysis. Our snowball technique yielded 35 additional papers 

that were analysed using a method of constant comparison. This method, described in Glaser 

(1965), implies a simultaneous collection and analysis of the qualitative data. Data analysis, in 

this case, refers to contrasting the findings of studies included in later stages with the 

                                            
4
 Huesemann 2001; Pennington et al. 2004; Hochschorner 2006; Lopez 2007; Aragón-Correa et al. 2010; Hart – 

Dowell 2011; Searcy 2012; Montiel – Delgado-Ceballos 2014; Adams et al. 2016; WEC 2016; Haffar – Searcy 

2017; Williams et al. 2017. 
5
 This latter exercise was limited to the 20 highest-cited studies, as ordered by Google Scholar’s software. 

Another limitation we applied to avoid inflating the sample is that we imposed a maximum of two articles to 

include that discuss the same subject. 
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framework that was emerging in the previous rounds of data analysis, so as to reinforce or 

refine the emerging conceptual framework. 

Our data gathering strategy, summarised in Figure 1, yielded altogether 47 relevant 

papers, representing a combination of ‘business and environment’ and ‘environmental science 

and technology’ literatures.  

 

Figure 1 

The applied method of data gathering and analysis 

 

1 = Abstract analysis of papers cited in the 12 original studies, that were described as 

concerned with the unintended consequences and the adverse indirect effects of ESO 

interventions. Identification of relevant papers and content analysis. 

2 = Abstract analysis of the 20 highest-impact papers citing the ones selected in the 

previous round. Content analysis of the ones that were considered relevant. 

3, 4, 5 = Repetition of the previous exercise. 

 

A limitation of this methodology is that the final sample is far from being exhaustive. Data 

analysis was limited to a relatively small and skewed sample of relevant studies, in which 

relatively recent papers are overrepresented. Nevertheless, we strongly believe that the quality 

and the depth of the sampled articles can compensate for the modest size of the sample, as the 

selected articles are, indeed, up to the point and insightful.  
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Our data analysis involved three steps, starting with a content analysis of the 

qualitative insights presented in the surveyed papers (first-order analysis) to discover deeper 

structures, and identify key patterns and similarities. In an effort to develop a conceptual 

framework, a second-order analysis was performed, as suggested by Strauss and Corbin 

(2008), and the data were organised into general concepts. Finally, the relation among the 

general concepts was analysed (Doz 2011) and a graphic representation provided. 

 

 

RESULTS 

 

Descriptive thematic analysis 

 

One of the best-known examples of adverse side-effects of ESO solutions is that of catalytic 

converters (CC) reducing the toxicity of emissions from internal combustion engines. But CC 

production is by far the largest user of precious metals (Bossi – Gediga 2017), the extraction 

and refining of which is highly energy-intensive and polluting. Moreover, the functioning of 

CC increases fuel consumption and thus, carbon dioxide emissions.  

The surveyed papers abound in similar examples of adverse indirect effects of 

seemingly environmentally friendly solutions or ESO interventions. In this section we 

summarise some examples.  

a) Remanufacturing, i.e. restoring used products to a ‘like-new’ functional state by 

disassembling, cleaning and rebuilding it, and replacing defective components to ensure 

that remanufactured products meet or exceed the standards of newly manufactured ones 

(Sundin – Brass 2005), is considered a practice of benign environmental impact, since it 

reduces both waste and resource consumption. However, studies calculating the relative 

environmental impact of remanufacturing, compared to new product manufacturing, warn 

that there are some channels, through which this solution represents often-unconsidered 

burden to the environment. In particular, the environmental impact of activities related to 

reverse logistics, to the cleaning of the used components (removing contaminants, such as 

oil and grease), and to re-painting and packaging the remanufactured product need to be 

considered (Liu et al. 2014; Bazan et al. 2015). 

b) Similarly, recycling is also considered environmentally friendly, at least, compared to 

product disposal. Recycling is however highly energy-intensive and involves heavy 

consumption of water. The recycling process often generates polluting smokes and 
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effluent (Aragón-Correa – Rubio-Lopez 2007). Improper recycling and waste 

management methods may be seriously harmful for the environment.
6
 

c) Transition to electric mobility (to battery-powered electric vehicles) is considered a key 

enabler of reducing global greenhouse gas emissions. However, the average carbon 

content of the electricity used for charging the batteries of electric vehicles is currently 

higher than that of high-efficiency gasoline-powered vehicles (Graff Zivin et al. 2014), 

since charging is usually done at night and coal-fired-electricity is used (Tamayao et al. 

2015). 

d) Although shifting to renewable energy resources is high on the agenda of policy-makers, 

this shift is accompanied by multiple adverse environmental side-effects. For example, in 

the case of 

 solar technology, although the operation of the technology does not generate any 

carbon-dioxide, the extraction, the processing and the disposal of the necessary 

materials are accompanied by relatively high greenhouse gas emissions (Nugent – 

Sovacool 2014). Further, the technology requires rare earth elements, the extraction, 

separation, processing and use of which also entail pollution and involve complex 

environmental concerns (McLellan et al. 2013);
7
  

 wind power: adverse ecological side-effects can be observed, such as noise, impact on 

wildlife, e.g. on marine ecosystem (Mann – Teilmann 2013; Premalatha et al. 2014);  

 biomass: adverse effects include excessive water consumption, water pollution, soil 

degradation and pollution related to the conversion of biomass into energy, (Abbasi – 

Abbasi 2000; Yang et al. 2012); 

e) Interventions aiming at improving material efficiency often trigger side-effects, which 

diminish the benefits gained from eco-efficiency improvement. For example, the 

reduction of yield losses is a good technique of increasing material efficiency; however, it 

cuts the availability of scrap for recycling (Allwood et al. 2013). Material efficiency 

improvement through product life extension is a particularly interesting example of 

unconsidered side-effects. Allwood et al. (2013) showed that maintaining energy using 

durable goods in use will, at the end of the day, involve excess energy use. As technology 

                                            
6
 For example, Sepúlveda et al. (2010) report about the concentration of toxic material (e.g. heavy metal in soil) 

in the neighbourhood of waste electrical and electronic equipment recycling plants in China and India, and 

Tsydenova – Bengtsson (2011) highlight the chemical hazards related to e-waste management. 
7
 The cited authors note that similar problems can be observed with other clean (energy) technologies that also 

require rare earth elements. Examples include wind power technologies, fuel cells, and batteries for energy 

storage. 
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improvement usually materialises in increased energy efficiency of newer generation 

products, late product replacement may retard also these beneficial environmental 

impacts. 

f) The use of nanomaterials in industrial applications is expected to have a variety of direct 

and indirect environmental benefits. Direct benefits stem from the application of 

nanotechnology in energy conversion (of renewable energy resources) and storage 

(Hussein 2015; Liu et al. 2010), while indirect benefits derive from the improved 

functionality of products containing nanotechnology-based high-performance material. 

Improved functionality increases product lifespan, and/or improves its resource/energy 

efficiency. Nanotechnology-based solutions are applied also in environmental remediation 

technologies, e.g. in water filtration and purification. However, occupational health related 

safety concerns and other adverse effects can partly offset the beneficial environmental 

effects of nanotechnology applications.
8
  Moreover, as reported in some studies (Hischier 

– Walser 2012; Pallas et al. 2018), the cumulative energy demand of nanomaterial 

production is by orders of magnitude higher than that of conventional material. 

g) Although additive manufacturing is expected to bring about major reductions in the 

environmental footprint of production, e.g. through (1) increased resource efficiency 

(elimination of waste in production and consumption), (2) reconfigured supply chains 

(localised production, significant reduction of transport-intensity), (3) a move towards 

circular economy (nearly perfect recyclability of metal powder), there are several, often 

unconsidered factors that may moderate the ultimate impact of the technology (Ford – 

Despeisse 2016). First, the energy consumption of additive manufacturing (of the 

production of input material and of the processing itself) may significantly exceed that of 

conventional manufacturing techniques. Second, the toxicity of the material used for 

additive manufacturing is higher than that of conventional material inputs. Further, the 

recyclability of products (in particular of the multi-material ones) produced using an 

additive manufacturing technique is questionable.  

In sum, the surveyed papers provided clear evidence of the complexity of environmental 

sustainability, of the uncertainties surrounding its measurement and management, and of the 

prevalence of unconsidered adverse side-effects. The papers emphasised that a broad 

spectrum of environmental impacts needs to be considered and addressed by interventions, 

                                            
8
 For example, according to Gómez-Pastora et al. (2014), the toxicity of these materials or the risk stemming 

from their interaction with natural elements and transforming them into a more hazardous form require further 

investigations.  
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instead of taking a single-dimensional view of environmental performance assessment. The 

papers also showed that a non-negligible part of environmental activities, themselves, imply 

environmental damages. 

 

Emerging concepts 

 

Trying to go beyond the described phenomena and identify deeper dimensions, we organised 

the qualitative data into aggregate concepts. Our second order analysis (Strauss – Corbin 

2008) of the descriptions presented in the previous sub-section suggests five, partly 

interconnected and complementary general concepts that, together, elucidate some key 

reasons, why green interventions would often deliver below expectations. Accordingly, 

overlooked (1) interconnections among resources and environmental impacts, e.g. trade-offs, 

reveal that (2) system boundaries are often ill-defined, which can easily result in (3) problem 

shifting: from one aspect of corporate environmental performance to another or from one 

stage in the life cycle to another. Further, false (4) assumptions and a strong (5) contextuality 

of best practices also overshadow the outcomes of ESO interventions. This section discusses 

these concepts in turn, and illustrates them with real-life examples from the surveyed 

literature. 

 

Interconnections and/or trade-offs: The first general concept we identified is interconnection 

among resources, forms of waste and aspects of CEP.   The interconnection of resources, such 

as water and energy or renewable energy resources and traditional resources is a 

commonplace in environmental science and technology literature (McMahon – Price 2011; 

Allwood et al. 2013; Van den Bergh et al. 2015), but it is often overlooked by corporate 

environmental management practitioners. 

The interconnection of water and energy is obvious if we consider that water is 

necessary for extracting and processing fuels or for cooling power plant equipment. 

Conversely, treating wastewater, pumping groundwater, transporting water, desalinating 

water, or replacing water in manufacturing process (e.g. cooling with air) are highly energy-

intensive (McMahon – Price 2011).  Other interconnections can be identified in the high 

average energy-intensity of some apparently environmentally friendly solutions, such as 

recycling, carbon capture, additive manufacturing. 

In addition to resources, various forms of waste are also interconnected, e.g. material 

waste and excess energy consumption. If excessive in-process inventory (buffer) is kept, this 
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type of material waste may increase throughput eliminating/reducing unplanned equipment 

downtime. In this way, excess buffer reduces excess energy-consumption of machinery in idle 

state. More work in progress will however, increase the likelihood of depreciation (damage, 

oxidation, spoilage) of (unfinished) goods in storage (multiplication of material waste) and/or 

require excessive internal transport, which in turn is associated with excess energy 

consumption (Colledani et al. 2014). Another example of interconnected forms of waste is 

tool wear and auxiliary material waste in the form of excessive lubricants or cutting fluid 

(Sheehan et al. 2016). 

These interconnections suggest two lessons, first that various aspects of CEP jointly 

determine corporate environmental performance: a discrete management of specific impacts 

will fail to deliver the expected results. Second, interconnections cannot be restricted to 

complementarity and synergy among aspects defining CEP: seemingly disparate 

environmental issues often trade off against each other. Trade-offs refer to the situation when 

improvement in one aspect of environmental performance comes at the expense of another 

(Hahn et al. 2010). For example, such trade-offs can be observed, among individual efficiency 

categories (material efficiency, energy efficiency).  

In summary, frequent trade-off situations, driven by the interconnection among 

resources, among forms of waste and among environmental impacts, limit the benefits that 

can be derived from ESO interventions. Minimisation of one form of waste may increase 

another type of waste. Interventions aiming at reducing/eliminating a specific environmental 

impact category may have adverse side-effects: they may trigger other harmful-for-the-

environment impacts. 

 

System boundaries: The second emerging concept within our qualitative database is that of 

‘system boundaries’: their excessively narrow definition, or the consideration of one single 

dimension of the system are behind many illusory beliefs concerning the overall (beneficial) 

impact of ESO solutions/interventions (Korhonen 2005). For example, the environmentally 

friendly character of solar technology is straightforward if its use phase is considered in 

isolation. However, if other stages in the product life cycle are included in the assessment, 

such as raw material extraction, production, or disposal, the ‘green shade’ of this solution will 

already be less brilliant. 

Another telling example is the case of waste to energy systems (surveyed by Astrup et 

al. 2015). Waste-to-energy solutions are considered eco-friendly if carried out using advanced 

technology. However, if evaluations consider not only the effectiveness of the waste-to-
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energy conversion methods, but calculate also the impact of (a) the associated air pollution, 

(b) residue management (after the thermal treatment process) and (c) the capital goods used in 

the waste-to-energy processes, this ‘broadening of system boundaries’ taints the 

environmentally friendly character of the given solution. 

Finally, consider item (c) from the list of illustrative examples in the previous 

subsection. If greenhouse gas emissions are accounted for only in the use phase of the 

vehicles, electric vehicles are rightly labelled as zero-emission, environmentally friendly 

solutions. If however the electricity generation mix (and the share of coal) used for battery 

charging is also taken into account, overall environmental benefits are far from unambiguous 

(Holland et al. 2016). Further, the high energy costs of battery manufacture and recycling also 

need to be included in the overall assessment (see e.g. Larcher – Tarascon 2015). 

Ill-defined system boundaries assessing the environmental impact of specific solutions 

may also propose a dimmer picture than the reality. For example, focusing on the production 

stage of nanotechnology-enabled products LCAs demonstrate a high cumulative energy 

demand (of nanomaterial production). Conversely focusing on the use phase, LCAs can 

rightly emphasize the large energy-saving potential of nanomaterial-based products (see 

survey by Hischier – Walsen 2012). 

The correct definition of system boundaries is a major issue also in the case of 

industrial symbiosis solutions. One of the major weaknesses of the industrial symbiosis 

concept
9
 for example, is that this approach may be burdened with adverse incentives. Scholars 

and policy-makers hail this concept as a key contributor to ecologically sustainable 

development of industry. However, when key performance indicators concern the exchange of 

waste streams, this moves the focus away from a more traditional pollution prevention 

principle, where waste should rather be prevented and wasteful production processes should 

be substituted. In Korhonen’s (2005) wording this is a ‘system versus its components’ 

controversy. Accordingly, the impact of the whole system will, indeed, be reduced through 

industrial symbiosis, but the impact of the individual components of the system is not 

considered. Focusing solely on the interactions among the constituents of the system (on 

utilisation of each other’s waste material flows and waste energy flows) will provide 

‘perverse’ incentives to economic actors, namely that individual firms should maintain or 

even increase their waste production to supply collaborating partners with raw materials. This 

                                            
9
 A simplified description of this concept is that waste from one industrial process or company can serve as raw 

material for another. The cooperating actors use each other’s material and energy flows, and reduce thereby the 

impact of industry on the environment (Chertow 2000). 
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may “perpetuate a wasteful production rather than motivate development of cleaner 

processes.” (Duflou et al. 2012: 603). 

 

Problem shifting: The next concept, problem shifting, links the previous two general 

constructs. Environmental problem shifting occurs if interventions focusing on one aspect of 

sustainability or one stage in the product life cycle, result in the worsening of another aspect 

(e.g. in trade-off situations) or to problems emerging in another life-cycle stage.  

Problem shifting is closely associated with system boundaries. If these latter are 

defined excessively narrowly, for example, if ESO interventions focus exclusively on 

greenhouse gas emissions, this runs the risk of overlooking equally relevant environmental 

impacts or – even worse – of shifting the problem to other, interconnected environmental 

impacts, as outlined in the case of renewable energy resources in the previous sub-section.  

Problems can be displaced not only from one environmental impact to another but also 

from one component of the system (sub-system) to another, if system boundaries are defined 

too narrowly. For example, interventions aiming at eco-optimisation or resource-efficiency 

maximisation are implemented at a specific level within the manufacturing system: at device 

(machine) level, or at the level of the production cell, the production line, the facility, the 

global corporation, or the global value chain. Obviously, interventions aiming at the 

optimisation of resource consumption at machine or at production-line level (i.e. at process 

level), may not be optimal at facility level (system level), and vice versa (Duflou et al. 2012). 

For example, optimisation of energy consumption at machine level implies its switching to a 

state of reduced power demand (or switching it off) while waiting for parts. However, this 

may compromise system throughput and thus, reduce resource efficiency at system level. 

Besides problem displacement to a higher hierarchical level, this is, at the same time, a classic 

trade-off situation. Another typical problem-displacement case is resource optimisation at 

business unit level, by way of displacing specific production processes (with the related 

resource consumption and embedded emissions) to pollution havens.
10

 

 

Assumptions: The fourth general concept we identified is the role of assumptions. The idea in 

brief is that the implementation of ESO interventions or the labelling of certain solutions as 

environmentally friendly is always moderated by assumptions. However, in most of the real-

                                            
10

 Note that evidence is mixed with respect to offshoring pollution, i.e. optimising local environmental quality in 

rich countries. A review of arguments for and against this hypothesis is beyond the limits of this paper. (See e.g. 

López et al. 2013; Malik – Lan 2016.) 
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life contexts, these assumptions simply do not hold.  For example, most of the items in the list 

presented in the previous sub-section have the hidden assumption that environmentally 

friendly practices have no adverse environmental consequences, which, as argued previously, 

is not the case. 

Consider, for example, item (a) described in the previous sub-section, i.e. the 

assumptions related to remanufacturing decisions. Sustainability gains from remanufacturing 

stem from saving resources (material and energy) and implementing circular economy 

principles. One of the implicit assumptions here is that it is relatively easy to disassemble the 

product. Obviously, the sustainability impact of remanufacturing is substantially reduced if 

the product had not been designed for remanufacturing (Ferguson – Souza 2010). Additional 

remanufacturing-related, more or less implicit assumptions include  

 that a well-functioning reverse logistics network is available and transportation does 

not add significantly to total energy costs;  

 that the recovered products are all suitable to be remanufactured (in reality, part of 

them needs to be disposed, because of irreparable damages or extreme wear); 

 that the recovery of the products can be repeated infinitely (in reality, access to 

products and components often poses huge problems for remanufacturers, and 

materials often degrade in the process of remanufacturing); 

 that the obsolescence rate of the given product is low (which is not always the case);
11

  

 that the energy consumption of and the CO2 emissions and waste generation related to 

the remanufacturing process are negligible (Bazan et al. 2015). 

These assumptions are often too strong to be realistic. Gutowski et al. (2011) surveyed 25 

case studies for 8 different product categories to find out whether remanufacturing can, 

indeed, save energy. The results were, at best, mixed, with 8 straightforward positive cases 

out of 25.  

Consider item (g). The beneficial environmental impact of additive manufacturing 

depends on the speed of the diffusion of this manufacturing technique, and on the extent it 

really changes the global structure of production (and brings about localised or decentralised 

production). 

 

                                            
11

 If technological progress aiming to improve the use phase energy consumption of new products is above a 

certain speed, recycling would be a better option than remanufacturing, since new, energy efficient vintages 

would make the remanufactured but relatively more energy consuming models obsolete. 
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Contextuality: ESO interventions often involve the imitation of best practice solutions 

implemented elsewhere. Success is, however, usually constrained by contextual factors – the 

fifth aggregate concept that emerged as a result of the second-order analysis of our qualitative 

data. Some of the cases listed in the previous sub-section illustrate the importance of 

contextual factors. For example, in the case of remanufacturing or recycling, the methods 

applied for cleaning the parts to be remanufactured and the development level of the 

technology applied for recycling influence the overall benefits (see footnote 6).  Or, take the 

example of shifting to electric vehicles. The magnitude of the derived benefits depends on the 

cleanness of the electric grid (on the share of coal in the energy mix and in the marginal 

emissions from an increased demand for electric power to charge electric vehicles).  

As for the magnitude of the benefits stemming from shifting to renewable energy 

resources there are huge contextual differences in wind power and solar power technologies 

(Nugent – Sovacool 2014) originating in differences in the material used, in the energy-

intensity and energy composition of wind/solar power manufacturing processes
12

, differences 

in the size and capacity of wind/solar power plants, in the physical and natural conditions of 

the sites where these plants operate, in the frequency and quality of maintenance, and so forth.  

Another example is the non-negligible differences in LCA results of ICT products. 

Comparisons of different LCA results reveal that contextual factors e.g. the patterns of use 

(total use of the product, intensity of use, product lifespan), the average vintage (this 

influences unit electricity consumption), the number of users, the location (e.g. local 

electricity mix), the technological level of local manufacturing and of end-of-life treatment 

can significantly modify the outcome of LCAs (Arushanyan et al. 2014; Suckling – Lee 

2015).  

Again, studies assessing the performance of solid waste management systems display 

large disparities in terms of the associated benefits. The variability of the results can be 

explained among others with different composition of waste, different efficiency of 

technology use, or different local energy supply mix, i.e. with contextual factors (Laurent et 

al. 2014). 

Following the presentation of the five general concepts that emerged from the second-

order analysis of our qualitative data, we now turn to the relations among these concepts. 

                                            
12

 Quoting Guezuraga et al. (2012), Nugent – Sovacool (2014: 238) remarked that the manufacturing of the same 

wind power plant technology in Germany would result in less than half of the total emissions compared to what 

such a process would entail in China. 
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As suggested previously, these five general concepts are complementary and 

interrelated. Taken together, they reflect the systemic nature of corporate environmental 

sustainability. Systems can be modelled using assumptions concerning their attributes and 

their boundaries. System functioning is influenced by its external and internal environment, 

i.e. by contextual factors. One of the key characteristics of the internal environment is the 

interconnection of the constituents of the system: this accounts for the emergence of trade-

offs or of synergy effects in the case of external interventions in the functioning of the system.  

The dynamic interrelationship of the five concepts is illustrated in Figure 2. Figure 2 

demonstrates that these factors jointly account for the inferior-to-expected effectiveness of 

ESO interventions. 

 

Figure 2 

 

Factors accounting for the inferior-to-expected effectiveness of ESO interventions 

 

 

CONCLUSIONS AND IMPLICATIONS 

 

The purpose of this article was to explain, why the benefits of ESO interventions usually 

remain smaller than expected. In a process of a systematic literature review, we identified five 

complementary and interrelated factors that jointly account for the inferior-to-expected 

effectiveness of ESO interventions. We found that interconnected resources, forms of waste 

and environmental impacts that trade off against each other are among the key explanatory 
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factors of inferior-to-expected results. This phenomenon highlights the importance of a 

correct definition of system boundaries when devising ESO interventions, so as to avoid 

problem shifting from one impact category to another or from one stage in the product life 

cycle to another.   Further, our review of the literature indicates that false assumptions and a 

strong contextuality of best practices also overshadow the outcomes of ESO interventions. 

These five factors are all rooted in the systemic nature of corporate environmental 

sustainability. 

This paper generates a number of implications for practitioners including 

environmental (and other functional) officers and the corporate most important top senior 

executives. A key lesson is that the (size of the) benign outcome of investments into ESO 

solutions is not self-evident: contextual factors and interdependencies among the constituents 

of the broad system may moderate the quality and the quantity of the results of interventions.    

Corporate executives need to bear in mind that the impact of ESO interventions is often 

constrained by unintended side-effects. When devising ESO programmes and interventions 

the interconnection between various environmental impact categories needs to be understood, 

and potential trade-offs taken into account.
13

  

When considering to launch a particular ESO programme or to implement an ESO 

intervention, a systematic thought experiment needs to be performed. The expected and the 

possible impacts of the planned programme/intervention need to be taken into account at 

multiple levels, by broadening the initially considered boundaries of the system.  

Adopting a systems perspective also implies considering the assumptions related to the 

planned programme/intervention: making implicit assumptions explicit in the course of the 

thought experiment. Next, the excessively strong assumptions need to be gradually relieved. 

Finally, the thought experiment also needs to address the context of the planned 

programme/intervention and compare it with that of similar actions implemented elsewhere. 

This helps to identify the specific contextual factors that may moderate (constrain) the 

outcome of an identical programme/intervention. Obviously, thought experiments do not 

necessarily improve the effectiveness of sustainability-oriented corporate interventions, but 

they definitely contribute to avoiding illusory expectations. Moreover, they might direct 

                                            
13

 As a matter of fact, having experimented with the ’business case for sustainability’ (Porter – Van der Linde 

1995) for decades, corporate executives must be well aware of the fact that both the returns on and the results (in 

terms of improvements in CEP) of investments in going green will probably remain inferior to expectations. 

Communicating optimistic expectations is, however, a necessary part of the corporate reputation-building 

exercise. 
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executives’ attention to eventual trade-offs, moderating factors and/or to selected systemic 

interconnections, allowing these aspects to be also addressed.  
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