Acta Biologica Plantarum Agriensis 6: 108–122 (2018) DOI:10.21406/abpa.2018.6.108 ISSN 2061-6716 (Print), 2063-6725 (Online) http://abpa.ektf.hu/

Research article

INTERRELATION AMONG PRECIPITATION AND ELEMENT-**CONTENT OF GRAPE VITIS VINIFERA L. CV. KÉKFRANKOS, GROWN IN DIFFERENT TERROIRS**

Richárd Nagy1*, Szilárd Szabó², Attila Kerényi³ & Borbála Bálo⁴

¹Eszterházy Károly University, Innoregion Knowledge Centre, H-3300 Eger, Leányka str. 6; ²Department of Physical Geography and Geoinformatics, University of Debrecen, H-4032 Debrecen, Egyetem Sq. 1.; ³Department of Landscape Protection and Environmental Geography, University of Debrecen, 4032 Debrecen, Egyetem Sq. 1.; ⁴Department of Viticulture, Szent István University; *E-mail: nagy.richard@uni-eszterhazy.hu

Abstract: Total nutrient content of soils and quantity of potentially available part in plants are determined in this study. Main affecting factors of nutrient uptake might be the geochemical conditions of soils and the applied agro-technological methods, while the real uptake of plants can be influenced by precipitation and evaporation conditions beside the rootstock and the used grafted scions. The element content of grape berries of Vitis vinifera L. Kékfrankos cultivar was studied in identical rootstocks and scions at different production areas in Northern Hungary, during two consecutive years with somehow contrasting natural precipitation. Significant effect of the precipitation was found on the elements-uptake by the plants in general. Furthermore, it was also found, that the role of production area becomes increasingly important in grape production and quality, as well. Higher precipitation resulting greater elemental content and variability in comparison with the drier years.

Keywords: climate, grapevine, precipitation, trace element

INTRODUCTION

The climatic conditions of a production area are determined as macro-, meso- and micro-climate. While macro-climate determines temperature and precipitation conditions at a regional scale, mesoclimate varies according to local topographic conditions (Gladstones 1992). According to Hunter, Bonnardot (2011), climate has the main role in physiological processes of grapevine and thus

determining the chemical composition of leaves and berries, the colour of the berries and the date of ripening, etc. Drappier *et al.* (2017) pointed out that the composition and character of wine from the vineyards around Bordeaux changes with climatic change. Bartholy, Pongrácz (2010) proved that the frequency of extreme precipitation increased in the Carpathian Basin in the second half of the 20th century while annual precipitation slightly decreased. On the basis of climatic models, they consider that the climate of the region becomes drier at summers and wetter at winters in the 21st century.

The quantity of micro- and macro-elements in the soil are influenced not only by the soil forming processes and geological conditions but by dry and wet deposition from the atmosphere as well. The latter is especially significant in urban environments (Soriano *et al.* 2012), therefore, the monitoring of micro- and macro-elements in soils and plants and studying their uptake are important.

Webb *et al.* (1995) studied the amount of cations regarding the relationship between soil and must and divided them into two groups. Cations belonging to the first group are accumulated in grapes, of exceeding even the concentration values, found in the soils. This group includes K, Na, Mn, Pb, Cu. Cations of the second group appear in the pressed must of the grapes in smaller quantity than in the soil. This group includes Ca, Sr, Zn. As a conclusion of detailed studies Bramley *et al.* (2011) stated that the quantity of the mineral components in the must is only in loose correlation with the pedological and geochemical conditions of the production area. Pepi *et al.* (2016) established a correlation between the rare earth elements (REE) concentration in the berries and REEs available fraction in the soil; which allowed the discrimination between the different origins of grapes.

Based on the relationship between soil pH and the uptake of nutrients, Candolfi-Vasconcelos *et al.* (1997) found significant differences among production areas with different soil conditions. Such concept of considering soil quality was supported by Bálo *et al.* (2010), and Biró (2015). Numerous vine studies and viticultural research (Swinchatt 2006; Coipel *et al.* 2006) studied the elemental transport in bed rock – soil type – grapevine – wine, however, with very varying results. No direct correlation was detected in the uptake of the different macro-, meso- and micro-elements and the

various environmental factors. Results can be classified into two groups. Some scientists are highlighting the importance of the rootstocks in element-composition, while others are showing the necessity of proper water supply. Numerous studies focused on the joint effects of the two factors. Regarding the nutrient uptake Kocsis *et al.* (2001) associates the greatest effect with rootstockscion relationship, showing also that dry conditions strongly influence element uptake compared to normal, wetter vintage years. In dry years, the potassium content of the grape must show lower values and the effect of the rootstocks are also considered (Brancadoro *et al.* 1995). According to Cus (2004), climatic and soil conditions can modify the properties of the rootstock and scion specifics, therefore, their effects could be different by vintage and production area.

Among factors determining water supply, vintage and the water budget conditions of the soil worth mentioning as these together influence the uptake of nutrients of plants in relation to the stress tolerance of the rootstock. Water supply is influenced by slope and soil conditions apart from precipitation. Andres de Prado *et al.* (2007) studied the chemical composition of wines in the case of soils having different water budget conditions. Beside those parameters, the extreme drought conditions had significant effect also on the characteristics of the wines.

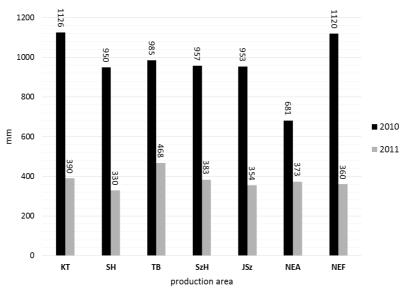
Objective of the present study was to compare different wine grape production sites and the effect of annual variability of natural precipitation regarding some of the elements, taken up by grape fruits.

MATERIAL AND METHODS

The present research was carried out on 9 study plots in the area of the Eger wine region in the north-eastern part of Hungary (*Table 1*). Examinations were performed on *Vitis vinifera L.* Kékfrankos grapevine cultivar grafted on Berlandieri x Riparia, T.5.C. rootstock with vertical shoot positioning (VSP).

Vineyards	GPS Coordinates	Row and vine distance	Training system	Year of planting
Kőlyuktető – KT	N47.864;	3.00 x 1.20 m	Umbrella	1993
	E20.383			
Nagy-Eged-dűlő	N47.920;	3.00 x 1.00 m	Umbrella	1988
lower – NEA	E20.420			
Nagy-Eged-dűlő	N47.922;	3.00 x 1.00 m	Umbrella	1988
upper – NEK	E20.418			
Síkhegy – SH	N47.916;	3.00 x 1.00 m	Umbrella	1989
	E20.431			
Vidra – VD	N47.907;	3.00 x 1.00 m	Guyot	1988
	E20.419			
Juhszalagos –	N47.867;	3.00 x 1.00 m	Guyot	1995
JSZ	E20.483			
Szérűhely – SZH	N47.885;	3.00 x 1.00 m	Umbrella	1995
	E20.496			
Tó-bérc – TB	N47.872;	3.00 x 1.00 m	Medium high	1998
	E20.289		cordon	
Nagy-	N47.867;	3.00 x 1.00 m	Umbrella	1985
galagonyás – NG	E20.365			

Table 1. Main characteristics of plantations in the study areas.


The amount of precipitation was recorded by using a BES-06 tipping bucket rain gauge developed by Boreas Ltd. *(www.boreas.hu)* in automated meteorological stations operating during 7 study areas with the accuracy of 0.1 mm.

Fruit samples of grapes were all taken on the same day in the ripening season directly before harvesting in the different plots. Sampling was performed on the 3rd of October in 2010 and on the 24th September in 2011 due to differences in ripening. Sampling was performed on the basis of the random walk method. Samples were taken from bunches of various sizes at different heights from both sides of a given wine row. From various parts of bunches around 100 berries were taken from each plot. Samples were washed in distilled water after sampling and then dried in desiccators at 80°C. Finally, grapes were homogenized by using porcelain mortars. Destruction and exposition was made by using 5 ml cc. HNO₃ and 2 ml H₂O₂ (VWR, Hungary Ltd). The substrates were filtered via 228 nm filter-paper and diluted to 30 ml. A Perkin-Elmer 3000 FAAS device was used for destruction and elemental analyses were performed using an ICP-OES device.

RESULTS AND DISCUSSION

The relationship between precipitation and element uptake in different vintages

Automated meteorological stations were placed into 7 production areas out of the 9 plots (Kőlyuktető, Sík-hegy, Tó-bérc, Szérűhely, Juhszalagos, Nagy-Eged-dűlő lower and upper). The amount of precipitation in 2010 was 2-3 times higher than in 2011 (*Figure 1*).

Figure 1. Amount of annual rainfall for 2010 and 2011 at production areas of grapes, assessed by meteorological stations (mm). Further details in text.

Since the amount of precipitation might significantly influences the element uptake of plants, the elemental content of grape samples from the two years were compared.

No significant differences were detected between the two vintages in the case of certain elements like Ba, Mn and Ni. In contrast, Al, Ca, Fe, K, Mg, Na, Zn were present in grapes in a significantly larger quantity in the vintage of 2010. This can be explained by an intensified sap flow in the plants driven by the greater amount of precipitation. As a result, higher amount of elements enter the plant and thus they appear in the berries in higher quantity as well. Cu, Cr, Pb, however, were present in the

berries in significantly greater quantity in the vintage of the drier year, 2011 (Figure 2, Table 2). This can be explained with the fact, that all three elements were deposited from the atmosphere in the greatest quantity. This means mostly spraying in the case of copper which was deposited on the surface of grapes in large quantities (Weng et al. 2003). It can be washed from the berry surface moderately with rain, therefore in drier years it is present in significant amounts on the berry skin (Brun et al. 1998; Deluisa et al. 1996). The quantity of copper measured among the grape samples depends mostly on the type of chemicals used in the course of spraying, on the number of sprayings and on the time passed from the last spraving, till the date of sampling and this was not observed in the present study. Cr appear in the atmosphere as aerosols settling onto the surface of the Earth with either wet or dry deposition. Following dry deposition rain washes it into the soil from the leaves and different plant parts and this explains why it was found in smaller quantity in the sample from 2010 when the amount of precipitation was greater. Pb in the soil can be hardly taken up by plants thus atmospheric deposition has the most important role (Alloway 2012). Pb gets onto the surface of the Earth by dry deposition thus in drier years, it appears on the surface of plants and of grape bunches in greater quantities, that are not washed away by precipitation.

	(Ma		y test, b	olu lette	rs. p<0.05j	•	
	Al	Ba	Са	Cr	Cu	Fe	К
Mann- Whitney U	.000	54.500	8.000	24.500	10.000	30.000	30.000
Z	-4.157	-1.011	-3.695	-2.773	-3.580	-2.425	-2.425
Asymp. Sig. (2-tailed)	.000	.312	.000	.006	.000	.015	.015
	Mg	Mn	N	a	Ni	Pb	Zn
Mann- Whitney U	8.000	55.500).0	00	60.500	.000	18.000
Z	-3.695	953	-4.2	157	666	-4.158	-3.119
Asymp. Sig.	.000	.341		00	.506	.000	.002

 Table 2. Differences of certain elements between vintages from 2010 and 2011

 (Mann-Whitney test; bold letters: p<0.05).</td>

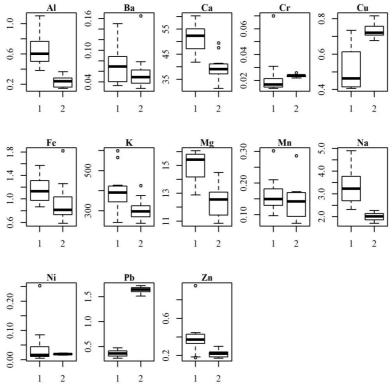


Figure 2. Statistical parameters of the elemental content of berries from vintages of 2010 (1) and 2011 (2) (minimum, maximum, median, lower quartile, upper quartile) as the average of the studied nine area.

Studying the elemental composition of the berry samples of the two years significant differences were found not only in the average quantity of individual elements and in the minimum and maximum values, but also in the standard deviation of the values (*Tables 3 and 4*). In the wet year of 2010 the standard deviation of values was higher in the case of Al, Ba, Ca, Cr, Cu, Fe, K, Na, Ni, Zn compared to that of 2011. Standard deviation of values of manganese and lead was the same in the two years while in the case of magnesium the values of 2011 showed greater standard deviation. This suggests that besides the effect of vintage, the effect of production area increases when the years show higher annual precipitation values regarding the nutrient quantity of grapes related to dry matter.

Min. 1st Qu. Median Mean 3th Qu. Max.	0.383 . 0.507 n 0.603 0.656 . 0.742		0.033 0.041 0.069 0.070 0.070	41.789 47.477 52.323 51.395	0.014 0.015 0.017 0.023	0.407 0.417 0.463 0.513	0.864 0.978 1.131 1.173	241.280 348.965 390.160	12.880 14.275 15.425	0.097	2.320	0 0 0 5	ro	Zn
1st Qu Mediar Mean 3th Qu Max.			0.041 0.069 0.070 0.084	47.477 52.323 51.395	0.015 0.017 0.023	0.417 0.463 0.513	0.978 1.131 1.173	348.965 390.160	14.275 15.425	0.134		0.000	0.266	0.178
Median Mean 3th Qu Max.			0.069 0.070 0.084	52.323 51.395	0.017 0.023	0.463 0.513	1.131 1.173	390.160	15.425		2.773	0.011	0.318	0.345
Mean 3th Qu Max.			0.070 0.084	51.395	0.023	0.513	1.173	201		0.150	3.230	0.016	0.361	0.371
3th Qu. Max.			0.084	1				396.105	14.957	0.161	3.352	0.044	0.362	0.397
Max.				55.061	0.021	0.597	1.276	420.735	15.758	0.174	3.725	0.033	0.407	0.426
	1.105		0.150	60.300	0.070	0.734	1.572	599.460	16.060	0.302	4.900	0.253	0.475	0.953
Deviation	on 0.214		0.035	5.392	0.016	0.120	0.235	106.168	1.110	0.056	0.817	0.070	0.068	0.196
				Table 4	. standaro	l deviation	values of	the berry sam	ples of 2011	(mg/kg)			0.000	
	Al	Ва		Table 4 Ca	. standard	Cu	values of t Fe	Table 4. Standard deviation values of the berry samples of 2011 (mg/kg) Cr Cu Fe K Mg Mn	ples of 2011 Mg	(mg/kg). Mn	Na	Ni	Pb	Zn
Min.	Al 0.148	Ba 0.028		Table 4 Ca 31.400	4. standard Cr 0.022	Cu 0.676	values of 1 Fe 0.585	he berry sam K 237.300	Mg 10.840	(mg/kg). Mn 0.073	Na 1.710	Ni 0.015	Pb	Zn
Min. 1st Qu.	Al 0.148 0.164	Ba 0.028 0.038		Ca 31.400 0 37.477 0 0	4. standard Cr 0.022 0.023	Cu 0.676 0.708	values of i Fe 0.585 0.733	the berry sam K 237.300 272.018	<u>Mg</u> 10.840 11.535	(<u>mg/kg).</u> Mn 0.073 0.096	Na 1.710 1.870	Ni 0.015 0.017	Pb 1.512 1.600	Zn 0.17
Min. 1st Qu. Median	Al 0.148 0.164 0.242	Ba 0.028 0.038 0.047		Table 4 Ca 31.400 () 37.477 () 39.093 ()	4. standard Cr 0.022 0.023 0.024	1 deviation Cu 0.676 0.708 0.720	values of 1 Fe 0.585 0.733 0.756	he berry sam K 237.300 272.018 296.500	<u>Mg</u> 10.840 11.535 12.555	(mg/kg). Mn 0.073 0.096 0.142	Na 1.710 1.870 2.015	Ni 0.015 0.017 0.019	Pb 1.512 1.600 1.643	Zn 0.17 0.19
Min. 1st Qu. Median Mean	Al 0.148 0.164 0.242 0.238	Ba 0.028 0.038 0.047 0.048		Table 4 Ca 31.400 () 37.477 () 39.093 () 39.735 ()	4. Standard Cr 0.022 0.023 0.023 0.024 0.024	I deviation Cu 0.676 0.708 0.720 0.730	values of Fe 0.585 0.733 0.756 0.841	he berry sam K 237,300 272.018 296,500 303.081	<u>Mg</u> 10.840 11.535 12.555 12.465	(mg/kg). Mn 0.073 0.096 0.142 0.144	Na 1.710 1.870 2.015 2.007	Ni 0.015 0.017 0.019	Pb 1.512 1.600 1.643 1.634	Zn 0.17 0.22
Min. 1st Qu. Median Mean 3th Qu.	Al 0.148 0.164 0.242 0.238 0.277	Ba 0.028 0.038 0.047 0.045		Table 4 Ca 31.400 () 37.477 () 39.093 () 39.735 () 39.735 ()	4. Standard Cr 0.022 0.023 0.024 0.024 0.024	I deviation Cu 0.676 0.708 0.720 0.730 0.757	values of Fe 0.585 0.733 0.756 0.756 0.841 0.927	Ihe berry sam K 237.300 272.018 276.500 296.500 303.081 303.081 318.565	Mg 10.840 11.535 12.555 12.465 13.073	(mg/kg). Mn 0.073 0.096 0.142 0.144 0.169	Na 1.710 1.870 2.015 2.007 2.123	Ni 0.015 0.017 0.019 0.019 0.021	Pb 1.512 1.600 1.643 1.643 1.634 1.634	Zn 0.17 0.22 0.21
Min. 1st Qu. Median Mean 3th Qu. Max.	Al 0.148 0.242 0.238 0.277 0.277	Ba 0.028 0.038 0.047 0.047 0.055 0.055		Table 4 Ca 31.400 () 37.477 () 39.093 () 39.735 () 39.735 () 40.956 () 49.499 ()	Cr 0.022 0.023 0.024 0.024 0.024 0.024 0.024 0.024	Cu 0.676 0.708 0.720 0.730 0.757 0.816	re Fe 0.585 0.733 0.756 0.756 0.841 0.827 0.927 1.260	he berry sam K 237.300 272.018 296.500 303.081 318.565 318.565	Mg 10.840 11.535 12.555 12.465 13.073 14.500	(mg/kg). Mn 0.073 0.096 0.142 0.142 0.144 0.169 0.286	Na 1.710 1.870 2.015 2.007 2.123 2.270		Pb 1.512 1.600 1.643 1.634 1.632 1.682 1.722	Zn 0.171 0.220 0.218 0.238

115

It is clear that according to literature references, the uptake of most elements – even if not all of them – varies from vintage to vintage depending primarily on the amount of annual precipitation.

Impact of rainfall distribution over the year on elements uptake

The second aspect of the present work was to study the variation of the quantity of different elements in the berries within two years with different amounts of precipitation.

Using the daily precipitation data of the plots equipped with a meteorological station, Spearman's rank correlation was performed in order to understand correlation with elemental concentration. In the course of the study, three periods were identified within the two studied years. Apart from annual precipitation data, the amount of precipitation in the growing season and also in the ripening periods was considered, as well (Table 5). As a result of different conditions of the two vintages, the length of the phenological phases and the date of harvest were different. The start of the growing season was taken as 1st April (bud break) while the starting date of ripening was determined to be 1st August. The end of the growing season and the ripening period are indicated by the date of harvest, 5th October in 2010 and 25th September in 2011.

Production area	Total for 2010	Growing season in 2010	Ripening period in 2010	Total for 2011	Growing season in 2011	Ripening period in 2011
КТ	1125.9	793.4	206	389.2	218.6	25.5
SH	949.9	693.5	204.7	329.6	185	16.9
ТВ	985.4	696.6	206	468.1	320.8	43.9
SzH	956.5	652.6	202.8	383.1	226.6	5.8
JSz	952.4	632.1	183.2	354	203.8	6
NEA	680.5	432.3	227.1	372.9	213.2	16.5
NEF	1120.4	805.4	252.9	359.8	186.4	7.9
FD	924.5	603.5	165.8	380.5	219.1	23.8
VP	1058.4	729.5	189.2	505.4	300.1	18.4

Table 5. Amount of annual rainfall in 2010 and 2011, and also for the growing
season and ripening (mm).

In 2010 with relatively high amount of precipitation, the annual amount of it shows weak positive correlation with calcium and nickel, and weak negative correlation with copper. Considering the growing season, weak negative correlation was found with aluminium and copper while weak positive correlation was detected with nickel. Calcium, however, showed medium positive correlation (r=0.567; p=0.112). During ripening the amount of precipitation showed medium positive correlation with calcium (r=0.770; p=0.015), sodium (r=0.603; p=0.086) and lead (r=-0.31; p=0.025) while with iron and zinc weak positive, with barium and chromium weak negative correlations were found (*Table 6*).

In the dry year of 2011, the total amount of precipitation showed significant correlation with chromium (r=-0.767; p=0.016) and copper (r=-0.720; p=0.029), and medium correlation with manganese (r=-0.633; p=0.067). Studying the growing season, significant correlation was found only with copper (r=-0.703; p=0.035), while medium correlation was detected with chromium (r=-0.575; p=0.105) and manganese (r=-0.567; p=0.112). In contrast, in the ripening period significant correlation was found only with aluminium (r=0.750; p=0.20), while weak correlation was detected with calcium, copper, manganese and zinc (*Table 7*).

The amounts of precipitation showed different correlations with different metals in the different studied periods in the two studied years. This enables to draw the conclusion that metal intake and accumulation are much more dependent on the amount of precipitation in the given year than on the distribution of precipitation in time.

		Al Ba Ca Cr Cu Fe K Mg	Ва	Ca	C;	Cu	Fe	к	Mg	Mn	Na	Ni	Pb	
total	Correlation	233	.083	.417	.235	483	.133	.133150	.000	017	.133	.377	.025	126
	Coefficient													
	Sig. (2-tailed)	.546	.831	.265	.542	.187	.732	.700	1.000	.966	.732	.318	.949	.748
	N	9	9	6	9	6	6	9	6	9	9	9	9	
growing season	Correlation Coefficient	417	133	.567	.176	333	.083	183	.017	.150	.183	.427	117	.033
	Sig. (2-tailed)	.265	.732	.112	.650	.381	.831	.637	.966	.700	.637	.252	.764	.932
	N	6	9	6	9	6	9	9	9	9	6	9	6	
ripening period	Correlation Coefficient	.084	452	,770*392	392	.109	.469	126	.117	.159	.603	105	105 -,731*	.361
	Sig. (2-tailed)	.831	.222	.015	.296	.781	.203	.748	.764	.683	.086	.788	.025	.339
	N	9	6	6	9	9	9	9	9	9	9	9	9	

118

		ripening period (_	/-	growing (season (_		total		
Z	Sig. (2-tailed)	Correlation Coefficient	Z	Sig. (2-tailed)	Correlation Coefficient	Z	Sig. (2-tailed)	Correlation Coefficient		T
6	.020	,750*	6	.966	017	6	.865	.067	Al	able 7. S
6	.637	183	6	.606	.200	6	.966	017	Ва	pearma
6	.308	383	9	.516	250	6	.516	250	Ca	n's rank
9	.621	192	6	.105	575	6	.016	767*	Cr	correlati
6	.354	351	6	.035	575703*	6	.029	017250767*720*	Cu	Table 7. Spearman's rank correlation test of precipitation in 2011
9	.932	.033	9	.488	.267017	6	.488		Fe	f precip
9	.798	.100	9	.966	017	9	.668	.267167	К	itation i
6	1.000	.000	9	.966	017	6	.798	100	Mg	n 2011.
6	.381	333	6	.112	567	6	.067	633	Mn	
6	.700	.150	6	.798	.100	6	.765	117	Na	
9	.966	.017	9	.402	.319	6	.587	.210	Ni	
6	.637	.183	6	.765	.117	6	.932	.033	Pb	
6	.224	450	6	.460	.283	6	.700	.150	Zn	

119

CONCLUSIONS

The effects of vintage were studied in two years (2010 and 2011) with contrasting climatic conditions. The results supported of preliminary hypotheses, that precipitation can significantly influence on the quantity of elements taken up by grapevine. Statistical analyses revealed that the effect of the production area is more characteristic in years with more precipitation (2010 in this case) regarding the elemental content related to dry matter content of grape berries. At the same time, no significant correlation was found between the uptake of certain elements and the amount of precipitation measured in the growing season and also in the ripening periods. This suggests that the intake and accumulation of the studied elements are much more dependent on the precipitation in a certain year than on the distribution of precipitation in time.

Acknowledgements – Supported by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities.

REFERENCES

- ALLOWAY, B.J. (2012). Sources of Heavy Metals and Metalloids in Soils. In: ALLOWAY, B.J., ed., Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, *Environmental Pollution, Vol. 22*, Springer, Dordrecht, pp. 11– 50. https://doi.org/10.1007/978-94-007-4470-7_2
- DE ANDRES-DE PRADO, R., YUSTE ROJAS, M., SORT, X., ANDRES LACUEVA, C., TORRES, M. & LAMUELA RAVENTOS, R.M. (2007). Effect of soil type on wines produced from Vitis vinifera L cv. Grenache in commercial vineyards. *Journal of Agricultural and Food Chemistry* **55**(3): 779–786. https://doi.org/10.1021/jf062446q
- BÁLO, B., SZILÁGYI, Z., SZŰCS, E., MARSCHALL, M., SIMON, Z. & ZSÓFI, ZS. (2010). Tools for terroir classification for the grape variety Kékfrankos. In: TOMASI, D. (ed.) 8th International Terroir Congress, Soave, Italy, pp. 159-165.
- BARTHOLY, J. & PONGRÁCZ, R. (2010). Analysis of precipitation conditions for the Carpathian Basin based on extreme indices in the 20th century and climate simulations for 2050 and 2100. *Physics and Chemistry of the Earth, Parts A/B/C* 35(1-2): 43–51. https://doi.org/10.1016/j.pce.2010.03.011
- BIRÓ, B. (2015). The soil: Similar and distinct soil characteristics. In: BISZTRAY, GY. D.
 & BODOR P. (eds.): Wine terroirs and grape cultivars in Hungary. Budapesti Corvinus Egyetem, Budapest, pp. 14–18.
- BRAMLEY, R.G.V., OUZMAN, J. & BOSS, P.K. (2011). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. *Australian Journal of*

Grape and Wine Research **17**: 217–229. https://doi.org/10.1111/j.1755-0238.2011.00136.x

- BRANCADORO, L., VALENTINI, L. & REINA, A. (1995). Rootstock effect on potassium content of grapevine. *ISHS Acta Horticulturae* **383**: 115–124. https://doi.org/10.17660/ActaHortic.1995.383.13
- BRUN, L.A., MAILLET, J., RICHARTE, J., HERRMANN, P. & REMY, J.C. (1998). Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. *Environmental Pollution* **102**(2-3): 151–161. https://doi.org/10.1016/S0269-7491(98)00120-1
- CANDOLFI-VASCONCELOS, M.C., CASTAGNOLI, S. & BAHAM, J. (1997). Grape rootstocks and nutrient uptake efficiency. *Proceedings of the Oregon Horticultiral Society* **88**: 221–228.
- COIPEL, J., RODRIGUEZ LOVELLE, B., SIPP, C. & VAN LEEUWEN, C. (2006). "Terroir" effect, as a result of environmental stress, depends more on soil depth than on soil type (Vitis vinifera L. cv. Grenache noir, Cotes du Rhone, France 2000). *International Journal of Vine and Wine Sciences* **40**(4): 177–185.
 - https://doi.org/10.20870/oeno-one.2006.40.4.867
- Cus, F. (2004). The effect of different scion/rootstock combinations on yield properties of cv. Cabernet sauvignon. *Acta Agriculturae Slovenica* **83**(1): 63–71.
- DELUISA, A., GIANDON, P., AICNER, M., BORTOLAMI, P., BRUNA, L., LUPETTI, A., NARDELLI, F. & STRINGALI, G. (1996). Copper pollution in Italian vineyard soils. *Communications in Soil Science and Plant Analysis* 27(5-8): 1537–1548. https://doi.org/10.1080/00103629609369651
- DRAPPIER, J., THIBON, C., RABOT, A. & GENY-DENIS, L. (2017). Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming – Review. *Critical Reviews in Food Science and Nutrition* 1-17. https://doi.org/10.1080/10408398.2017.1355776
- GLADSTONES, J. (1992). *Viticulture and environment.* Winetitles Publishers, Adelaide, 310 pp.
- HUNTER, J.J. & BONNARDOT, V. (2011). Suitability of Some Climatic Parameters for Grapevine Cultivation in South Africa, with Focus on Key Physiological Processes. South African Journal of Enology and Viticulture 32(1): 137–154. https://doi.org/10.21548/32-1-1374
- KOCSIS, L., LEHOCZKY, É., KERESZTES, Z., ANGYAL, M. & WALKER, M.A. (2001). Grape Rootstock – Scion Combination Effects on Leaf Nutrient Status and Yield Under Drought Condition in Hungary. ASEV 52nd Annual Meeting, San Diego, California, USA, 21 pp.
- PEPI, S., SANSONE, L., CHICCA, M., MARROCCHINO, E. & VACCARO, C. (2016). Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. Glera. *Environmental. Monitoring and Assessment* **188**: 477–486. https://doi.org/10.1007/s10661-016-5490-1
- SORIANO, A., PALLARÉS, S., PARDO, F., VICENTE, A.B., SANFELIU, T. & BECH, J. (2012). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. *Journal of Geochemical Exploration* **113**: 36–44. https://doi.org/10.1016/j.gexplo.2011.03.006
- SWINCHATT, J. (2006). Soil or geology? And what's the difference? Some observations from the New World. VI. International Terroir Congress, pp. 128–132.

- WEBB, M.A., CAVALETTO, J.M. & CARPITA, N.C., LOPEZ, L.E. & ARNOTT, H.J. (1995). The intravacuolar organic matrix associated with calcium-oxalate crystals in leaves of Vitis. *The Plant Journal* 7(4): 633–648. https://doi.org/10.1046/j.1365-313X.1995.7040633.x
- WENG, H.X., ZHANG, X.M., CHEN, X.H. & WU, N.Y. (2003). The stability of the relative content ratios of Cu, Pb and Zn in soils and sediments. *Environmental Geology* 45: 79–85. https://doi.org/10.1007/s00254-003-0859-1

(submitted: 16.05.2018, accepted: 13.09.2018)