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Abstract

A polyellipse is a curve in the Euclidean plane all of whose points have
the same sum of distances from finitely many given points (focuses). The
classical version of Erdős-Vincze’s theorem states that regular triangles can
not be presented as the Hausdorff limit of polyellipses even if the number of
the focuses can be arbitrary large. In other words, the topological closure of
the set of polyellipses with respect to the Hausdorff distance does not contain
any regular triangle, and we have a negative answer to the problem posed
by E. Vázsonyi (Weissfeld) about the approximation of closed convex plane
curves by polyellipses. It is the additive version of the approximation of simple
closed plane curves by polynomial lemniscates all of whose points have the
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same product of distances from finitely many given points (focuses). Here
we are going to generalize the classical version of Erdős-Vincze’s theorem
for regular polygons in the plane. We will conclude that the error of the
approximation tends to zero as the number of the vertices of the regular
polygon tends to the infinity. The decreasing tendency of the approximation
error gives the idea to construct curves in the topological closure of the set of
polyellipses. If we use integration to compute the average distance of a point
from a given (focal) set in the plane, then the curves all of whose points have
the same average distance from the focal set can be given as the Hausdorff
limit of polyellipses corresponding to partial sums.

Keywords: Polyellipses, Hausdorff distance, Generalized conics

MSC: 51M04

1. Introduction

Polyellipses in the plane belong to the more general idea of generalized conics [7], [8],
[9], see also [3]. They are subsets all of whose points have the same average distance
from a given set of points (focal set). The level set of the function measuring the
arithmetic mean of Euclidean distances from the elements of a finite pointset is one
of the most important discrete cases. Curves given by equation

m∑

i=1

d(X,Fi) = c ⇔
∑m
i=1 d(X,Fi)

m
= cm (cm := c/m) (1.1)

are called polyellipses with focuses F1, . . . , Fm, where d means the Euclidean dis-
tance in the plane. They are the additive version of lemniscates all of whose points
have the same geometric mean of distances (i.e. their product is constant). Polyel-
lipses appear in optimization problems in a natural way [5]. The characterization
of the minimizer of a function measuring the sum of distances from finitely many
given points is due to E. Vázsonyi (Weissfeld) [10]. He also posed the problem of
the approximation of closed convex plane curves with polyellipses. P. Erdős and
I. Vincze [1] proved that it is impossible in general because regular triangles can
not be presented as the Hausdorff limit of polyellipses, even if the number of the
focuses can be arbitrary large. The proof of the classical version of Erdős-Vincze’s
theorem can be also found in [6]. The aim of the present paper is to generalize the
theorem for regular polygons. Although a more general theorem can be found in
P. Erdős and I. Vincze [2] stating that the limit shape of a sequence of polyellipses
may have only one single straight segment, the high symmetry of regular polygons
allows us to follow a special argument based on the estimation of the curvature of
polyellipses with high symmetry. On the other hand, we conclude that the error of
the approximation is tending to zero as the number of the vertices of the regular
polygon tends to the infinity. The decreasing tendency of the approximation error
gives the idea to construct curves in the topological closure of the set of polyellipses.
If we use integration to compute the average distance of a point from a given (focal)
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set in the plane, then the curves all of whose points have the same average distance
from the focal set can be given as the Hausdorff limit of polyellipses corresponding
to partial sums. The idea can be found in [2], but it was formulated by some other
authors as well, see e.g. [3].

Definition 1.1. Let R > 0 be a positive real number. The parallel body KR of a
set K with radius R is the union of the closed disks with radius R centered at the
points of K. The infimum of the positive numbers such that L is a subset of the
parallel body of K with radius R, and vice versa, is called the Hausdorff distance
of K and L, i.e.

h(K,L) = inf{R > 0 | L ⊂ KR, K ⊂ LR}.

It is well-known that the Hausdorff metric makes the family of nonempty closed
and bounded (i.e. compact) subsets in the plane a complete metric space. Another
possible characterization of the Hausdorff distance between compact subsets can
be given in terms of distances between the points of the sets: if

max
X∈K

d(X,L) := max
X∈K

min
Y ∈L

d(X,Y ) and max
Y ∈L

d(K,Y ) := max
Y ∈L

min
X∈K

d(X,Y ),

then the Hausdorff distance of K and L is

h(A,B) = max{max
X∈K

d(X,L),max
Y ∈L

d(K,Y )}. (1.2)

2. Polyellipses in the Euclidean plane

Definition 2.1. Let F1, . . . , Fm be not necessarily different points in the plane
and consider the function

F (X) :=

m∑

i=1

d(X,Fi)

measuring the sum of distances of X from F1, . . . , Fm. The set given by equation
F (X) = c is called a polyellipse with focuses F1, . . . , Fm. The multiplicity of the
focal point Fi (i = 1, . . . ,m) is the number of its appearances in the sum.

2.1. A Maple presentation I

with(plottools):
with(plots):
#The coordinates of the focal points#
x:=[0.,1.,1.,0.,.5]:
y:=[0.,0.,1.,1.,1.5]:
m:=nops(x):
F:=proc(u,v)
local i,partial:
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partial:=0.:
for i to m do
partial:=partial+sqrt((u-x[i])^2+(v-y[i])^2)
end do
end proc:
#The list of the level rates#
c:=[3.75,4,4.5,5,5.7]:
graf1:=pointplot(zip((s,t)->[s,t],x,y),symbol=solidcircle,
symbolsize=20, color=black):
graf2:=
seq(implicitplot(F(u,v)=i,u=-2..2,v=-2..2,numpoints=10000,
color=black), i=c):
display(graf1,graf2,scaling=constrained,axes=none,linestyle=dot);

Figure 1: A Maple presentation I

2.2. Weissfeld’s theorems
Using the triangle inequality, it is easy to prove that F is a convex function; more-
over if the focuses are not collinear, then it is strictly convex. It is also clear that
F is differentiable at each point different from the focuses and

DvF (X) = 〈v,N〉, where N := −
m∑

i=1

1

d(X,Fi)

−→
XFi (2.1)

is the opposite vector of the sum of unit vectors from X to the focal points, re-
spectively. Using that the vanishing of the first order derivatives is a sufficient and
necessary condition for a point to be the minimizer of a convex function, we have
the first characterization theorem due to E. Vázsonyi (Weissfeld).
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Theorem 2.2 ([10]). Suppose that X is different from the focal points; it is a
minimizer of the function F if and only if

N = 0 ⇔
m∑

i=1

1

d(X,Fi)

−→
XFi= 0.

A more subtle, but standard convex analysis shows that if X = Fi is one of the
focal points, then

D+
v F (Fi) = ki‖v‖+ 〈v,Ni〉,

where D+
v F (Fi) denotes the one-sided directional derivative of F at Fi into di-

rection v (the one-sided directional derivatives always exist in case of a convex
function),

Ni := −
∑

Fj 6=Fi

1

d(Fi, Fj)

−→
FiFj

and ki is the multiplicity of the focal point Fi. Using that D+
v F (Fi) ≥ 0 for

any direction v is a sufficient and necessary condition for Fi to be the minimizer
of the function F , the Cauchy-Buniakovsky-Schwarz inequality gives the second
characterization theorem due to E. Vázsonyi (Weissfeld).

Theorem 2.3 ([10]). The focal point X = Fi (i = 1, . . . ,m) is a minimizer of the
function F if and only if

‖Ni‖ ≤ ki ⇔ ‖
∑

Fj 6=Fi

1

d(Fi, Fj)

−→
FiFj ‖ ≤ ki.

In terms of coordinates we have the following formulas:

D1F (x, y) =

m∑

i=1

x− xi√
(x− xi)2 + (y − yi)2

, (2.2)

D2F (x, y) =
m∑

i=1

y − yi√
(x− xi)2 + (y − yi)2

provided that X(x, y) is different from the focuses Fi(xi, yi), where i = 1, . . . ,m.
The second order partial derivatives are

D1D1F (x, y) =
m∑

i=1

(y − yi)2

((x− xi)2 + (y − yi)2)
3/2

,

D2D2F (x, y) =
m∑

i=1

(x− xi)2

((x− xi)2 + (y − yi)2)
3/2

, (2.3)

D1D2F (x, y) = −
m∑

i=1

(x− xi)(y − yi)
((x− xi)2 + (y − yi)2)

3/2
.
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2.3. The main theorem

The classical version of Erdős-Vincze’s theorem states that regular triangles can not
be presented as the Hausdorff limit of polyellipses, even if the number of the focuses
can be arbitrary large, and we have a negative answer to the problem posed by E.
Vázsonyi about the approximation of closed convex planar curves by polyellipses.
It is the additive version of the approximation of simple closed planar curves by
polynomial lemniscates all of whose points have the same product of distances from
finitely many given points1 (focuses). Here we are going to generalize the classical
version of Erdős-Vincze’s theorem for any regular polygon in the plane as follows.

Theorem 2.4. A regular p - gon (p ≥ 3) in the plane can not be presented as the
Hausdorff limit of polyellipses, even if the number of the focuses can be arbitrary
large.

3. The proof of Theorem 3

Let P be a regular p - gon with vertices P1, . . . , Pp inscribed in the unit circle
centered at the point O and suppose, in contrary, that there is a sequence En of
polyellipses tending to P .

3.1. The first step: the reformulation of the problem by cir-
cumscribed polyellipses.

Let ε > 0 be an arbitrarily small positive real number and suppose that n is large
enough for En to be contained in the ring of the circles C−ε and Cε around O with
radiuses 1− ε and 1 + ε. If P−ε is the regular p - gon inscribed in C−ε then En is
a polyellipse around P−ε. On the other hand,

h(P−ε, En) ≤ h(P−ε, P ) + h(P,En) ≤ ε+ h(C−ε, Cε) = 3ε.

Using a central similarity with center O and coefficient 1
1−ε , we have that P−ε 7→

P ′−ε = P and En 7→ E′n, where E′n is a polyellipse around P such that

h(P,E′n) = h(P ′−ε, E
′
n) =

1

1− εh(P−ε, En) ≤ 3ε

1− ε .

Taking ε→ 0 we have a sequence of circumscribed polyellipses tending to P .

3.1.1. Summary

From now on, we suppose that En is a sequence of circumscribed polyellipses
tending to P .

1The approximating process uses the partial sums of the Taylor expansion of holomorphic
functions and the focuses correspond to the complex roots of the polynomials.
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3.2. The second step: a symmetrization process.
Following the basic idea of [1], we apply a symmetrization process to the circum-
scribed polyellipses of P without increasing the Hausdorff distances. Let F1, . . . , Fm
be the focuses of a polyellipse E around P defined by the formula

m∑

i=1

d(X,Fi) = c.

Consider the polyellipse Esym passing through the vertices P1, . . . , Pp of P such
that its focal set is

G := {f(Fi)|i = 1, . . . ,m and f ∈ H}, (3.1)

where H denotes the symmetry group of P . The equation of Esym is

∑

f∈H

m∑

i=1

d(X, f(Fi)) = c′,

where

c′ :=
∑

f∈H

m∑

i=1

d(P1, f(Fi)) =
∑

f∈H

m∑

i=1

d(P2, f(Fi)) = . . . =
∑

f∈H

m∑

i=1

d(Pp, f(Fi))

because of the invariance of the vertices and the focal set under the group H. Note
that f(E) is a polyellipse around P with focuses f(F1), . . ., f(Fm). It is defined
by the equation

m∑

i=1

d(X, f(Fi)) = c and h(P, f(E)) = h(f(P ), f(E)) = h(P,E) (3.2)

because P is invariant under f for any f ∈ H. Then, for example,

m∑

i=1

d(P1, f(Fi)) ≤ c.

Taking the sum as f runs through the elements of H we have that c′ ≤ 2pc. On
the other hand, if X is an outer point of f(E) for any f ∈ H, then

m∑

i=1

d(X, f(Fi)) > c (f ∈ H), i.e.
∑

f∈H

m∑

i=1

d(X, f(Fi)) > 2pc ≥ c′.

By contraposition, if X belongs to the polyellipse Esym, then it belongs to the
convex hull of f(E) for some f ∈ H. Finally,

Esym ⊂
⋃

f∈H
conv f(E),
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where conv f(E) denotes the convex hull of the polyellipse f(E) (f ∈ H). Since
each polyellipse is around P , it follows that

h(P,Esym) ≤ h


P,

⋃

f∈H
conv f(E)


 ≤ h


P,

⋃

f∈H
f(E)


 = h(P,E)

because the possible distances between the points of the sets P and f(E) are
independent of the choice of f ∈ H (see the minimax characterization (1.2) of
the Hausdorff distance). Figure 2 (left hand side) illustrates an ellipse E with
focuses F1, F2 and its symmetric pairs with respect to the isometry group of the
triangle (p = 3). The focal set of Esym (right hand side) contains three different
points F1, F2, F3 (solidcircles) with multiplicity k1 = k2 = k3 = 2. The constant is
choosen such that Esym passes through the vertices of the polygon.

Figure 2: The symmetrization process

3.2.1. Summary

From now on, we suppose that En is a sequence of circumscribed polyellipses
tending to P such that each element of the sequence passes through the vertices
P1, . . . , Pp of P , and the set of the focuses is of the form (3.1).

3.3. The third step - smoothness.
By the symmetry properties it can be easily seen that

h(P,E) = d(Mi, Qi) (i = 1, . . . p),

where E stands for a general element of the sequence of polyellipses,Mi and Qi are
the corresponding midpoints of the edge2 PiPi+1 of P and the arc PiPi+1 of the

2The indices are taken by modulo p.
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polyellipse, respectively. Note that the line passing through Qi parallel to the edge
PiPi+1 of the polygon supports the polyellipse at Qi because of the symmetry, see
Figure 3. For the sake of simplicity consider the case of i = 1 and

Q := Q1, M := M1.

It is clear that the polyellipse E heritages the symmetries of its focal set, i.e. E
is invariant under the reflection about the horizontal line. So are the supporting
lines at Q. Therefore the line passing through Q parallel to the edge P1P2 of the
polygon supports the polyellipse at Q.

Since the next step of the proof will be the estimation of the curvature of
the polyellipse E at the point Q, but a polyellipse can pass through some of its
focuses (see Figure 1), we need an extra process to avoid singularities. Consider
the equation

∑

f∈H

m∑

i=1

d(X, f(Fi)) = c

of the polyellipse E, where

c :=
∑

f∈H

m∑

i=1

d(P1, f(Fi)) =
∑

f∈H

m∑

i=1

d(P2, f(Fi)) = . . . =
∑

f∈H

m∑

i=1

d(Pp, f(Fi))

and suppose that F1 = Q such that

∑

f∈H

m∑

i=1

d(Q, f(Fi)) = c.

Then ∑

f∈H

∑

Fi=Q

d(Q, f(Q)) +
∑

f∈H

∑

Fi 6=Q
d(Q, f(Fi)) = c,

k1

∑

f∈H
d(Q, f(Q)) +

∑

f∈H

∑

Fi 6=Q
d(Q, f(Fi)) = c (3.3)

and, because of P1 ∈ E,

k1

∑

f∈H
d(P1, f(Q)) +

∑

f∈H

∑

Fi 6=Q
d(P1, f(Fi)) = c. (3.4)

Consider the function
F (X) :=

∑

f∈H
d(X, f(M));

using the triangle inequality, it can be easily seen that F is a strictly convex function
such that

F (P1) = . . . = F (Pn).
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Figure 3: Smoothness

Therefore F (M) < F (P1) because M is the midpoint of the segment P1P2. If Q is
close enough to M then

∑

f∈H
d(Q, f(Q)) ≈ F (M) < F (P1) ≈

∑

f∈H
d(P1, f(Q))

by a continuity argument. Therefore, equations (3.3) and (3.4) show that

c′ :=
∑

f∈H

∑

Fi 6=Q
d(Q, f(Fi)) >

∑

f∈H

∑

Fi 6=Q
d(P1, f(Fi)).

Now the polyellipse E′ defined by
∑

f∈H

∑

Fi 6=Q
d(X, f(Fi)) = c′

passes through Q but P1 and, by the symmetry, P2 are in the interior of E′ (see
Figure 3). Since Q (together with all symmetric pairs) has been deleted from the
focal points, we can take the curvature κ of E′ at Q:

κ(Q) ≤ 1

the radius of the circle passing through P1, P2 and Q
.

In case of a sequence of polyellipses tending to P , the point Q can be arbitrarily
close to M , and κ(Q) can be arbitrarily close to zero.

3.4. The estimation of the curvature
From now on, we suppose that the set of the focuses of the polyellipse E is of the
form (3.1) and Q is the corresponding point on the arc of the polyellipse to the
midpoint M of the edge P1P2. To simplify the curvature formula [4] at Q as far as
possible, suppose that

P1(cos(π/p),− sin(π/p)), P2(cos(π/p), sin(π/p)) and M(cos(π/p), 0),
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i.e. the tangent line to the polyellipse at Q is parallel to the y - axis. Therefore
D2F (Q) = 0, where

F (X) =
∑

f∈H

m∑

i=1

d(X, f(Fi)) and κ(Q) =
D2D2F (Q)

D1F (Q)
. (3.5)

Since D1F (Q) is the first coordinate of the gradient vector of F at Q, we have from
(2.1) that

0 < D1F (Q) = ‖
∑

f∈H

m∑

i=1

1

d(Q, f(Fi))

−→
Qf(Fi) ‖ ≤

2pk0 + ‖
∑

f∈H

∑

Fi 6=O

1

d(Q, f(Fi))

−→
Qf(Fi) ‖,

where k0 is the multiplicity of the symmetry center O if it belongs to the set of
focuses F1, . . ., Fm, and k0 = 0 otherwise. Applying Theorem 2.2 to the function

F0(X) :=
∑

f∈H

∑

Fi 6=O
d(X, f(Fi)),

it follows that ∑

f∈H

∑

Fi 6=O

1

d(O, f(Fi))

−→
Of(Fi)= 0.

Therefore

0 < D1F (Q) = ‖
∑

f∈H

n∑

i=1

1

d(Q, f(Fi))

−→
Qf(Fi) ‖ ≤

2pk0 + ‖
∑

f∈H

∑

Fi 6=O

1

d(Q, f(Fi))

−→
Qf(Fi) ‖ =

2pk0 + ‖
∑

f∈H

∑

Fi 6=O

1

d(Q, f(Fi))

−→
Qf(Fi) −

∑

f∈H

∑

Fi 6=O

1

d(O, f(Fi))

−→
Of(Fi) ‖ ≤

2pk0 +
∑

f∈H

∑

Fi 6=O
‖ 1

d(Q, f(Fi))

−→
Qf(Fi) −

1

d(O, f(Fi))

−→
Of(Fi) ‖.

Lemma 3.1. If Q is close enough to M then

‖ 1

d(Q, f(Fi))

−→
Qf(Fi) −

1

d(O, f(Fi))

−→
Of(Fi) ‖ ≤

4

1 + d(O,Fi)

for any Fi 6= O, i = 1, . . . ,m.
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Proof. If Fi is in the interior of the unit circle centered at O, then the same is true
for any point of the form f(Fi) because O is the fixpoint of the elements in the
symmetry group H. Therefore

4

1 + d(O,Fi)
≥ 4

1 + 1
= 2

which is the maximum of the length of the difference of unit vectors. Otherwise,
if Fi (together with its all symmetric pairs) is an outer point of the unit circle
centered at O and Q is in its interior, i.e. Q is close enough to M , then αi :=
∠(Of(Fi)Q) < 90◦ for any f ∈ H. By the cosine rule

‖ 1

d(Q, f(Fi))

−→
Qf(Fi) −

1

d(O, f(Fi))

−→
Of(Fi) ‖2 = 2(1− cosαi) = 4 sin2 αi

2
,

i.e.
‖ 1

d(Q, f(Fi))

−→
Qf(Fi) −

1

d(O, f(Fi))

−→
Of(Fi) ‖ = 2 sin

αi
2
≤ 2 sinαi

because of 0 ≤ αi < 90◦. By the sine rule

d(O,Fi) sinαi ≤ d(O,Q) < 1 ⇒ sinαi <
2

1 + d(O,Fi)

and the proof is complete.

Corollary 3.2.

0 < D1F (Q1) ≤ 2pk0 + 8p
∑

Fi 6=O

1

1 + d(O,Fi)
≤ 8p

m∑

i=1

1

1 + d(O,Fi)
.

Lemma 3.3. If Q is close enough to M then

D2D2(Q) ≥ 2 cos2 π

p

m∑

i=1

1

1 + d(O,Fi)
,

Proof. Using formula (2.3) we should estimate expressions of type

S(Q,Fi) :=
∑

f∈H

1

d(Q, f(Fi))
cos2 βi (3.6)

for any i = 1, . . . ,m, where βi = ∠(FiQO). By the triangle inequality

d(Q, f(Fi)) ≤ d(Q,O) + d(O, f(Fi)) ≤ 1 + d(O,Fi)

provided that Q is in the interior of the unit circle centered at O, i.e. Q is close
enough to M . Therefore

1

1 + d(O,Fi)

∑

f∈H
cos2 βi ≤ S(Q,Fi). (3.7)
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First of all consider the case of Fi = O. By (3.7)

S(Q,O) ≥
∑

f∈H
1 = 2p ≥ 2 cos2 π

p

1

1 + d(O,O)
. (3.8)

Suppose that Fi 6= O. Since the focal set contains all symmetric pairs of Fi under
the action of the elements in H, there must be at least two focal points of the form
f(Fi) in the sector of the plane with polar angle between π − π/p and π + π/p
(one of them as a rotated and another one as a reflected pair of Fi), see Figure 4.
Therefore

Figure 4: The proof of Lemma 2

S(Q,Fi) ≥
1

1 + d(O,Fi)

∑

f∈H
cos2 βi ≥ 2 cos2 π

p

1

1 + d(O,Fi)
(3.9)

as was to be proved.

Using the curvature formula (3.5), Corollary 3.2 and Lemma 3.3 give that

κ(Q) ≥
cos2 π

p

4p
, (3.10)

independently of the number of focuses. Therefore κ(Q) can not be arbitrarily
close to zero which is a contradiction.

4. Concluding remarks

To present a reach class of curves in the plane as Hausdorff limits of polyellipses
we should use integration to compute the average distance of a point from a given
(focal) set. Let Γ be a plane curve with finite arclength L(Γ) and consider the
function

f(X) :=
1

L(Γ)

∫

Γ

d(X,Y ) dY. (4.1)
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The curve given by the equation f(X) = c is called a generalized conic with focal set
Γ. In what follows we show that such a curve is the Hausdorff limit of polyellipses.
First of all note that f is convex because of the convexity of the integrand. This
means that it is a continuous function, i.e. the level set f−1(c) is closed. On the
other hand it is bounded because Γ is bounded. Therefore a generalized conic is a
compact subset in the plane. Let ε > 0 be a given positive number and consider
the partition of Γ into 2m equal parts (depending on X) such that

0 < S(X,m)− s(X,m) < L(Γ)
ε

2
, (4.2)

where X ∈ f−1(c), S(X,m) and s(X,m) are the upper and lower Riemann sum of
∫

Γ

d(X,Y ) dY

belonging to the equidistant partition. By a continuity argument3 formula (4.2)
holds on an open disk centered X with radius rX . Since f−1(c) is compact we
can find a finite open covering with open disks centered at some points X1, . . .,
Xk ∈ f−1(c). Let

m := max{m1, . . . ,mk},
where mi denotes the power of the partition of Γ into 2mi equal parts. Obviously,
we have a refinement of all partitions under the choice of the maximal value of
mi’s. Therefore

0 < S(X,M)− s(X,M) < L(Γ)
ε

2
(4.3)

for any X ∈ f−1(c), where M := 2m. Let τ1, . . ., τM ∈ Γ be some middle points of
the partition and define the function

FM (Z) :=
d(Z, τ1) + . . .+ d(Z, τM )

M
. (4.4)

Since we have an equidistant partition it follows that

1

L(Γ)
s(X,M) ≤ FM (X) ≤ 1

L(Γ)
S(X,M) ⇒ |FM (X)− c| < ε (4.5)

for any X ∈ f−1(c). This means that f−1(c) is between the polyellipses defined
by the equations FM (X) = c− ε and FM (X) = c+ ε, i.e. {X|FM (X) = c− ε} ⊂
f−1(c) ⊂ {X|FM (X) = c + ε}. Taking the limit ε → 0 the sequences of the
polyellipses on both the left and the right hand sides of the previous formula tends
to f−1(c).

3Recall that both the sup-function and the inf-function are Lipschitzian:

inf
ξ
d(X, ξ) ≤ inf

ξ
d(X,Y ) + d(Y, ξ) = d(X,Y ) + inf

ξ
d(Y, ξ),

i.e. | infξ d(X, ξ)− infξ d(Y, ξ)| ≤ d(X,Y ). In a similar way,

sup
ξ
d(X, ξ) ≤ sup

ξ
d(X,Y ) + d(Y, ξ) = d(X,Y ) + sup

ξ
d(Y, ξ).

194 Cs. Vincze, Z. Kovács, Zs. F. Csorvássy



4.1. A Maple presentation II

Since it is hard to find the equidistant partition of a curve in general, we use the
equidistant partition of the parameter interval to present an explicite example: let
Γ : γ : [0, 2π] → γ(t) = (t, sin(t)) be a period of the sine wave. Figures 5 and
6 show the generalized conic f−1(4) in "dot" linestyle (see equation (4.1)). The
approximating polyellipses belong to the equidistant partition of the interval into
M = 23, 24, 25 and 26 equal parts, respectively.

Figure 5: A Maple presentation II: the case of M = 23 and 24

with(plottools):
with(plots):
#The coordinates of the focal points#
x:=[seq((2*Pi*(1/8))*k,k=0..8)]:
y:=[seq(sin((2*Pi*(1/8))*k),k=0..8)]:
m:=nops(x):
F:=proc(u,v)
local i,partial:
partial:=0.:
for i to m do
partial:=partial+\frac{1}{m}sqrt((u-x[i])^2+(v-y[i])^2)
end do
end proc:
#The list of the level rates#
c:=[4]:
graf1:=pointplot(zip((s,t)->[s,t],x,y),symbol=solidcircle,
symbolsize=10, color=black):
graf2:=seq(implicitplot(F(u,v)=i,u=-2..8,v=-5..5,
numpoints=10000,color=black),i=c):
#Integration along the sine wave#
F:=(u,v)->(1/4)*Int(sqrt((u-t)^2+(v-sin(t))^2)*
sqrt(1+cos(t)^2),t=0..2*Pi)/(sqrt(2)*EllipticE((1/2)*sqrt(2))):
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graf3:=implicitplot(F(u,v)=4,u=-2..8,v=-5..5,linestyle=dot,
thickness=3,color=black):
display(graf1,graf2,graf3,scaling=constrained,axes=none);

Figure 6: A Maple presentation II: the case of M = 25 and 26

4.2. A note about the error of the approximation of a regular
polygon by polyellipses

If Γ is the unit circle in the plane then f−1(c) is invariant under any element of the
isometry group because the level sets heritage the symmetries of the integration
domain (focal set). Therefore f−1(c) is a circle centered at the same point as
Γ. Especially, Γ = f−1(c), where c = 4/π. This means that the error of the
approximation of a regular polygon by polyellipses tends to zero as the number of
the vertices tends to the infinity: if P is a regular p - gon inscibed in the unit circle
Γ, then

h(P,Γ) = 1− cos
π

p
and h(P,E) ≤ h(P,Γ) + h(Γ, E) ≤ 1− cos

π

p
+ ε

provided that E is an approximating polyellipse of Γ with error less then ε.
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