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Abstract. A profile describes a set of skills a person may have or a set
of required for a particular job. Profile matching aims to determine how
well the given profile fits the requested profile. Skills are organized into
ontologies that form a lattice by the specialization relation. Matching
functions were defined based on filters of the lattice generated by the
profiles. In the present paper the ontology lattice is extended by addi-
tional information in form of so called extra edges that represent some
kind of quantifiable relationship between skills. This allows refinement of
profile matching based on these relations between skills. However, that
may introduce directed cycles and lattice structure is lost. We show a
construction of weighted directed acyclic graphs that gets rid of the cy-
cles, and then present a way to use formal concept analysis to gain back
the lattice structure and the ability to apply filters. We also give sharp
estimates how the sizes of the original ontology lattice and our new con-
structions relate.

1 Introduction

A profile describes a set of properties and profile matching is concerned with
the problem to determine how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for job
requirements, matching buyers’ requirements with goods advertised such as used
cars, etc.

An early idea of profile matching was considering profiles as sets of unrelated
items. Then one tries to measure the similarity or distance of sets. Several ways
of definition of distances of sets were introduced, such as Jaccard or Sørensen-
Dice measures [13] turned out to be useful in ecological applications. However,
skills or properties included in profiles are usually not totally unrelated items,
implications or dependencies exist between them and need to be taken into
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account. For example, in the human resources area several taxonomies for skills,
competences and education such us DISCO [1], ISCED [2] and ISCO [3] have
been set up. These taxonomies organize the individual properties into a lattice
structure. Popov and Jebelean [18] proposed defining an asymmetric matching
measure on the basis of filters in such lattices.

Besides the subsumption relations of the ontology lattice other “horizontal”
relations between skills exist. The existence of some skills imply that the appli-
cant may have some other skills with certain probabilities, or of some (not com-
plete) proficiency level. For example, we may reasonably assume that knowledge
of Java implies knowledge of NetBeans up to a grade of 0.7 or with probability
0.7. This kind of interdependencies were exploited in [19]. The idea is that a job
application is considered better than another one for a given offer profile even if
they match equally using filter methods, if the first one has more skills implied
in the “fractional” way that match the offer, than the second application has.
In this way we get a refinement of the matching hierarchy given by previous
methods.

The subsumption hierarchy of the ontology of skills was considered as a
directed graph with edge weights 1. A lattice filter generated by a profile cor-
responded to the set of nodes reachable from the profile’s nodes in the directed
graph. Then extra edges were added with weights representing the probabil-
ity/grade of the implication between skills or properties. This introduced the
possibility of directed cycles. Filters of application profiles are replaced by nodes
reachable in the extended graph from the profile’s nodes. For each vertex x
reached a probability/grade was assigned, the largest probability/weight of a
path from the profile’s nodes to x. Path probability/weight was defined as the
product of probabilities of edges of the path. This process resulted in a set of
nodes, which we call derived skills, with grades between zero and one, so it was
natural interpreting it as a fuzzy set. It was proved that it’s a fuzzy filter as
defined in [11, 14].

In the present paper we provide a construction that gets rid of directed cy-
cles caused by the extra edges. In doing so we show that all matching results
that can be obtained by exploiting extra edges can also be obtained from an
extended lattice without such extra edges. That is, the theory of profile match-
ing remains within the filter-based approach that we developed in [17], which
underlines the power and universality of this theory. In particular, we empha-
sised how to obtain the lattices underlying the matching theory from knowledge
bases that define concepts used in job and candidate profiles. These knowledge
bases are grounded in description logics, so the lattice extensions provide also
feedback for fine-tuning the knowledge representation, whereas weighted extra-
edges are not supported in the knowledge bases. Furthermore, we also showed
in [17] that under mild plausibility constraints on human-defined matchings ap-
propriate weights can be defined such that the filter-based matchings preserve
the human-defined rankings, which further enables linear optimization to syn-
chronize matchings with human expertise.
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The extension is done by extending the ontology lattice by new nodes and
weighting of the nodes. The result is a directed acyclic graph, whose structure
reflects the different possible path lengths between nodes of the ontology lattice.
A directed acyclic graph naturally represents a poset, however that is not a
lattice in general. In order to gain back the lattice structure formal concept
analysis is used.

While extension of applications by skills derived using extra edges is natural,
as employers may benefit from these skills, it is not so clear whether the offer
profiles should be extended. On one hand, profiles should be handled uniformly,
since a profile could represent both, application, as well as offer. On the other
hand, if offers are also extended with derived skills, than it may happen that an
application scores high match by having only these derived skills, not the ones
in the original offer. This situation may not be so advantageous. In the present
paper we discuss both scenarios, the latter one is treated by applying different
weighting functions for applications and offers.

The paper is organized as follows. Section 2 introduces the basic concepts and
definitions, furthermore the matching functions studied. Section 3 deals with the
construction of directed extension graph and formal concept lattice. We also give
node weightings that preserve the weights of fuzzy filters assuming that offers are
also extended with derived skills. Section 4 discusses related extremal problems,
that is how the sizes of the constructed structures relate to the size of the original
ontology lattice. We show that our obtained bounds are sharp. Section 5 contains
the analysis when offers are not extended by derived skills, just by those that
are reachable via lattice (ontology) edges. In order to preserve the weights of
fuzzy filters we have to give different node weights for offers from the weights of
applications. Section 6 surveys related results, while Section 7 is a summary.

2 Semantic matching

Semantic matching has various application areas from dating applications to on-
line product searching tools. We approach the problem from the field of human
resources, namely we search for the best fitting application for a given job.

Formally, let S = {s1, . . . , sn} be a set of skills. A job offer O = {o1, . . . , ok} is
a subset of S that contains the skills that are required for the job. An application
A = {a1, . . . , al} is also a subset of S that represents skills of the applicant.
Our task is to find the most suitable applicant for a given job. Let match :
P(S) × P(S) → [0, 1] be a matching function that determines how well an
application fits to a job offer. If we know the matching function, then finding
the most suitable applicant is a maximum search over the matching values.

Let � be a specialization relation over the skills such that for all s, s′ ∈ S :
s � s′ iff s is a specialization of s′ or s′ is more general skill than s. This relation
is reflexive, antisymmetric and transitive, so it defines a partial order, a hierarchy
over elements of S. Let us suppose that L = (S,�) is an ontology lattice, i.e. for
each pair of skills has infimum (greatest lower bound) and supremum (least upper
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bound). Note, that we can always add a top (respectively a bottom) element to
the skills that everybody (nobody) possesses.

We can extend the lattice with additional information in form of so called
extra edges that represent some kind of quantifiable relationship between skills.
However, these edges can form cycles in the hierarchy therefore we use directed
graphs to handle them instead of the lattice structure [19].

Let G = (V,E) be a directed graph where V = S and E = Elat ∪ Eext
is a set of lattice edges and extra edges such that for two nodes vi, vj ∈ V :
(vi, vj) ∈ Elat iff vi � vj and (vi, vj) ∈ Eext iff there is an extra edge between
vi and vj . Let wedge : E → [0, 1] be an edge weighting function such that for all
elat ∈ Elat : wedge(elat) = 1 and for all eext ∈ Eext : wedge(eext) ∈ (0, 1) that
represents the strength of the relationship between start and end node of the
edge. Let pF (x, v) denote the set of directed paths from node x to node v using
edges of a subset F ⊆ E of edge set E of G.

We can define a matching function of an application A to an offer O us-
ing the graph in the following way. First, we define function ext to extend the
application and the offer with all the skills that are available from them via
directed path in G. For an arbitrary set of skills X ⊆ S and a subset F ⊆ E
of edges , let extF (X) = {(v, γv) | v ∈ V and ∃x ∈ X : |pF (x, v)| ≥ 1 and γv =
maxx′∈X,p∈pF (x′,v)length(p)} where length of a path p = (v1, . . . , vn) is the

product of the edge weights on p, i.e. length(p) =
∏n−1
i=1 wedge((vi, vi+1)).

It was shown that the extended sets are fuzzy filters [14] in L = (S,�), i.e.
for a set of skills X and for all t ∈ [0, 1] : extE(X)t = {x ∈ X | γx ≥ t} is filter
in L.

It perfectly makes sense to use lattice edges to extend applications and of-
fers as lattice edges describe specialization relation between skills. Namely if an
applicant possesses a special skill then he or she must possess the more general
skills as well. However extra edges are used in the extension as well to get more
selective matching functions that help differentiate applications.

Let us call nodes in extE(X) \ extElat
(X) derived nodes for a set X ⊆ S

of skills. We investigate two approaches or philosophies when extending profiles
using the extra edges. The first one is symmetric, that is the case when offers
and applications are treated in the same way. In this case we use extension func-
tion extE for both, offers O and applications A. The advantage is that we only
have to apply one weighting function and the proof of equivalence of different
representations is simpler than that of the other case. There is a disadvantage,
though. If offers are also extended with derived skills, then an application may
obtain high matching value just having those skills. However, it is not really
advantageous for an employer, as required skills are not in the application.

The second approach called the strict approach is when offers are only ex-
tended with non-derived nodes, that is extE is used for applications but extElat

is
used for offers. This is the approach of [19]. The disadvantage of this case is that
different weighting functions have to be applied for applications and offers, con-
sequently the proofs of equivalences are more complicated. However, the point
of view of employers is better represented in the second way. An application has
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to have good matching in target skills to score high, and the derived skills can
be used to rank applications scoring equally otherwise. Note, that extElat

(X)
is exactly the set of nodes contained in the lattice filter generated by X in the
ontology lattice (S,�).

We adapted the profile matching function proposed by Popov et. al. [18] to
fuzzy sets in [19]. We use the same function here except the different approaches
in extension of offers. So, let the matching value of A to O be

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
(1)

in case of the symmetric approach, and

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
(2)

in case of the strict approach. For two fuzzy sets f, g of S and for a skill s ∈ S
let (f ∩ g)(s) := min{f(s), g(s)}, and ||f || :=

∑
(v,γv)∈f γv, i.e. || · || denotes

sigma cardinality and intersection is defined as the min t-norm. Note, that other
cardinality and intersection functions can be applied in the same way [23][11].

Let wnode : V → [0, 1] be a node weighting function that assigns 1 to every
nodes and let wfset : FS → [0, 1] be a weighting function for fuzzy sets such that
for a fuzzy set f let wfset(f) =

∑
(v,γv)∈f γv =

∑
(v,γv)∈f γv · wnode(v) where FS

denotes all fuzzy sets of S. Note, that wnode is defined only to unify the notations
in the rest of the paper. With this weighting functions, the matching value of A
to O can be given as

matchsym(A,O) =
wfset(extE(A) ∩ extE(O))

wfset(extE(O))
(3)

and

match(A,O) =
wfset(extE(A) ∩ extElat

(O))

wfset(extElat
(O))

, (4)

respectively.

3 Lattice enlargement

In this section, we present a graph transformation method to eliminate extra
edges from extended lattices preserving symmetric matching values of appli-
cations to offers, and then we use formal concept analysis to restore lattice
properties in the transformed graphs.

3.1 Extension graph

Let G = (V,E) be a directed graph with wedge, wnode weighting functions as
defined above and cij be the weight of the longest path from vi to vj where
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vi, vj ∈ V are two nodes. Let vi1j , . . . vikj be the nodes from where vj is available
via directed path such that ci1j ≤ · · · ≤ cikj . Let cj1 , . . . , cjl denote the different
values among ci1j , . . . , cikj , i.e. cj1 < · · · < cjl .

For all cj1 . . . cjl , add new nodes Vj = {vj1 , . . . , vjl} (for simplicity let vjl =
vj) to V and add new lattice edges from vjl to vjl−1

, . . . , from vj2 to vj1 , and
from vj1 to the top to E. The new edges forms a directed path from vj to the top.
Let qj = (vjl , . . . , vj1 , top) denote that path. Assign weight wjk = cjk − cjk−1 to

vjk (k = 1, . . . , l) where cj0 = 0. Note, that
∑l
k=1 wjk = 1 as it is a telescoping

sum. If the length of the longest path from vi to vj was cjk , then add a new
lattice edge from vi to vjk . Finally, remove all extra edges from the graph. Let
G′ = ext(L, Eext) = (V ′, E′) denote the modified graph, called extension graph,
and w′node denote the modified node weighting function.

New nodes of Vj and new edges of qj can be considered as an extension of
vj to a chain because there do not start edges from intermediate nodes to other
chains so out-degrees of intermediate nodes are always one. We call vj the base
node of the chain. Base nodes of such chains are nodes of L, and G as well.

Let qj and qk be two chains with base nodes vj and vk, respectively. Then,
an edge from qj to qk in G′ can go

– from vj to vk and then it represents a directed path in G from vj to vk
containing lattice edges only;

– from vj to an intermediate node vi of qk and then it represents a directed

path pvjvk of G from vj to vk such that length(pvjvk) =
∑i
s=1 w

′
node(vs) if

qk = (vkl , . . . , vs+1, vs, vs−1, . . . , v1, top).

Note, that lattice edges in G are acyclic so the corresponding edges in G′ are
acyclic as well, and newly added edges start from base nodes of chains only. So
G′ is an acyclic graph.

Figure 1 shows an example of the construction of G′. There is the original
graph, called G, on the left. Blue (solid) edges represent lattice edges and orange
(dashed) edges with numbers on them represent extra edges and their weights.
There is the extension graph, called G′, on the right where green edges represent
the newly added edges, and numbers in the top right corners of nodes are weights
of the nodes.

As it can be seen, for example, node A of G has been transformed into the
chain qA = (A,A1, T op) since A is available via lattice edges (i.e. via maxi-
mum length paths) from B,C,Bottom and it is available from D via the path
pDA = (D,C,A) whose length is 0.8 and A is not available from any other nodes.
Therefore A1 got the weight 0.8 and A got the weight 0.2.

Lemma 3.1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, wfset be the fuzzy set weighting function, G′ = ext(L, Eext) =
(V ′, E′) be the extension graph, and w′fset be the modified weighting function.
Let O ⊆ S be an offer and A ⊆ S be an application. Then,
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Fig. 1: Lattice with extra edges and the generated extension graph

matchsym(A,O) =
wfset(extE(A) ∩ extE(O))

wfset(extE(O))
=
w′fset(extE′(A) ∩ extE′(O))

w′fset(extE′(O))
.

(5)

Proof. Let u ∈ G′ and let qz = (zl, . . . , z1, top) be the node chain with base node
z ∈ G that contains u, i.e. zl = z and u = zi for some i ∈ [1..l]. First, we will
show for an arbitrary X ⊆ S that u ∈ extE′(X) iff z ∈ extE(X).

If u ∈ extE′(X), then there is a node a ∈ X ⊆ V ′ and a directed path qau =
(x1, . . . , xi, xi+1, . . . xn) from a to u in G′ where x1 = a and xn = u. If a = z then
z ∈ extE(X). Otherwise let xi+1 be the first node of qau that is an intermediate
node of qz as well. Such node must exist because edges between chains can
start from base nodes only and we cannot reach u from a otherwise. Then for
j ∈ [1..i]: xj , xj+1 are nodes of G, and (xj , xj+1) edges of qau represent directed
paths containing lattice edges only in G. Therefore there is a paz = (x1, . . . , xi, z)

path in G from a = x1 to z such that length(paz) =
∑k
s=1 w

′
node(zs). It means

z ∈ extE(X) in this case as well.

On the other hand, if z ∈ extE(X) with grade γz, then there is a node b ∈ X
and a maximal length path pbz from b to z in G such that length(pbz) = γz.
In that case, there is an edge from b to zr in G′ for some r ∈ [1..l] such that∑r
s=1 w

′
node(zr) = length(pbv) and zr, zr−1, z1 ∈ extE′(X).

Consequently, extE′(A) ∩ extE′(O) contains fragments of chains generated
from base nodes that are available from both A and O in G. Sum of node
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weights in a fragment equals to the minimum of the lengths of the maximal
length paths starting from A or O ending in the base node of the chain. Thus,
wfset(extE(A) ∩ extE(O)) = w′fset(extE′(A) ∩ extE′(O)) and wfset(extE(O)) =
w′fset(extE′(O)), i.e. equation (5) holds. ut

Note, that G′ is acyclic by its construction but does not necessarily define a
lattice. Therefore, we build a concept lattice from G′ in which matching values
of applications to offers will also be preserved.

3.2 Concept lattice

First, we define a formal context and formal concepts based onG′. Let (V ′1 , V
′
2 , T

′)
be a formal context, where V ′1 = V ′2 = V ′ and (vi, vj) ∈ T ′ iff vj is available from
vi via directed path supposing that the relation is reflexive. Consider the element
of V ′1 as start points and the element of V ′2 as end points of directed paths in G′.
Let I ⊆ V ′1 and J ⊆ V ′2 and let us define their dual sets IDs and JDe as follows:

IDs = {b ∈ V ′2 | (a, b) ∈ T ′ for all a ∈ I}
JDe = {a ∈ V ′1 | (a, b) ∈ T ′ for all b ∈ J}

A concept of the context (V ′1 , V
′
2 , T

′) is a pair 〈I, J〉 such that I ⊆ V ′1 , J ⊆ V ′2
and IDs = J , JDe = I. I is called an extent of 〈I, J〉, and J is called an intent
of 〈I, J〉.

Bot B C C1 C2 D D1 D2 A A1 Top

Bot X X X X X X X X X X X

B X X X X X X

C X X X X X X X X

C1 X X

C2 X X X

D X X X X X X X

D1 X X

D2 X X X

A X X X

A1 X X

Top X

Table 1: Formal context (V ′1 , V
′
2 , T

′)

Table 1 shows the formal context (V ′1 , V
′
2 , T

′) that was generated based on
graph G′ of Figure 1. Labels of rows and columns represent the elements of
V ′1 and the elements of V ′2 , respectively. There is an X in row i column j if
(i, j) ∈ T ′, i.e. j is available from i via directed path in G′.

Lemma 3.2. If G′ is an acyclic graph, then
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(1) For every concept 〈I, J〉 of the context (V ′1 , V
′
2 , T

′): I ∩ J = {v} for some
v ∈ V ′ or I ∩ J = ∅

(2) For every v ∈ V ′: there is a concept 〈Iv, Jv〉 in the context (V ′1 , V
′
2 , T

′) such
that Iv ∩ Jv = {v}.

Proof.

(1) Indirectly, suppose that for a concept 〈I, J〉 of (V ′1 , V
′
2 , T

′) and for two dif-
ferent nodes u, v ∈ V ′: u, v ∈ (I ∩ J) holds. In this case (u, v) ∈ T ′ and
(v, u) ∈ T ′ hold as well. It would mean that there is a cycle in G′ which is a
contradiction as G′ is acyclic.

(2) For a node v ∈ V ′ let Jv = {v}Ds be the set of all nodes that are available
from v via directed path (including v itself). Let Iv = JDe

v , then v ∈ Iv. If
Iv = {v}, then 〈Iv, Jv〉 is the concept we are looking for.
Otherwise, suppose that for a node u such that u 6= v: u ∈ Iv = JDe

v =
({v}Ds)De . That means (u, v) ∈ T ′, i.e. v is available from u. As T ′ is a transi-
tive relation {v}Ds ⊆ {u, v}Ds . However {u, v}Ds ⊆ {v}Ds because {u, v}Ds

cannot contain such node that is not available from all nodes of {u, v}. Fol-
lowing this construction we can get that if JDe

v = Iv = {u1, . . . , ui, v}, then
IDs
v = {u1, . . . , ui, v}Ds = {v}Ds = Jv. Therefore 〈{u1, . . . , ui, v}, {v}Ds〉 is

a concept such that {u1, . . . , ui, v} ∩ {v}Ds = {v}. ut

Let B(V ′1 , V
′
2 , T

′) be the set of all formal concepts in the context, and ≤ be
a subconcept-superconcept order over the concepts such that for any 〈A1, B1〉,
〈A2, B2〉 ∈ B(V ′1 , V

′
2 , T

′) : 〈A1, B1〉 ≤ 〈A2, B2〉, iff A1 ⊆ A2 (or, iff B2 ⊆ B1).
(B(V ′1 , V

′
2 , T

′),≤) is called concept lattice [10] and let cl((L, Eext)) denote the
concept lattice obtained from the extension graph ext(L, Eext).

Figure 2 1 shows concept lattice of the context (V ′1 , V
′
2 , T

′) from Table 1. Con-
cepts 〈Iv, Jv〉 where Iv ∩ Jv = {v} are labeled with v. For example, 〈IC2

, JC2
〉 =

〈{Bot, C,C2, D}, {C2, C1, T op}〉. But, concepts 〈I, J〉 such that I ∩ J = ∅ are
unlabeled like the 〈{Bot,B,C}, {A,A1, C1, D1, T op}〉 parent of concepts B and
C. Another, larger example is the ontology on Figure 3 with added extra edges
from [19].

It is worth mentioning that the concept lattice cl((L, Eext)) generated from
ontology L endowed with extra edges Eext coincides with the Dedekind-McNeille
completion [8] of the poset obtained as transitive closure of acyclic directed graph
ext(L, Eext). Indeed, the collection of upper bounds of a subset S of elements of
the poset is exactly the collection of the vertices reachable from the vertices of S
via directed paths in the directed graph. We use the concept lattice formulation
for two reasons. First, a direct construction is obtained skipping the step of
constructing the poset from the directed graph ext(L, Eext). Second, the concept
lattice structure allows us to define node weights properly.

An offerO = {o1, . . . , ok} ⊆ S = V ⊆ V ′ generates a filter FO ⊆ B(V ′1 , V
′
2 , T

′)
in the concept lattice such that FO = {〈I, J〉 | ∃〈Io, Jo〉 ≤ 〈I, J〉 such that Io ∩
1 The concept lattices were generated using the Concept Explorer tool. Web page:
http://conexp.sourceforge.net/
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Fig. 2: Concept lattice of context (V ′1 , V
′
2 , T

′)

Jo = {o} for some o ∈ O}. Similarly, an application A generates a filter FA in
the concept lattice.

Let wcon : B(V ′1 , V
′
2 , T

′) → [0, 1] be a concept weighting function such that
for a concept 〈I, J〉 of B(V ′1 , V

′
2 , T

′):

wcon(〈I, J〉) =

{
w′node(v) if I ∩ J = {v} for some v ∈ V ′,
0 otherwise.

Let wfil be a filter weighting function such that for a filter F ∈ P(B(V ′1 , V
′
2 , T

′)):
wfil(F ) =

∑
〈I,J〉∈F wcon(〈I, J〉).

Theorem 3.1. Let G = (V,E) be a directed graph extending the lattice L =
(S,�) with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lat-
tice constructed from G and wfil be the filter weighting function. Let O ⊆ S be
an offer and A ⊆ S be an application. Then,

matchsym(A,O) =
wfil(FA ∩ FO)

wfil(FO)
. (6)

Proof. Based on Lemma 3.1 it is enough to prove that

wfil(FA ∩ FO)

wfil(FO)
=
w′fset(extE′(A) ∩ extE′(O))

w′fset(extE′(O))
(7)

Let 〈Iu, Ju〉 and 〈Iv, Jv〉 be two concepts such that Iu∩Ju = {u} and Iv∩Jv =
{v} where u, v ∈ V ′, i.e. u and v are nodes of G′ that is generated from G as
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Fig. 3: Ontology with extra edges and the corresponding concept lattice
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defined above. First, we will show that 〈Iu, Ju〉 ≤ 〈Iv, Jv〉 iff there is a directed
path from u to v in G′.

If 〈Iu, Ju〉 ≤ 〈Iv, Jv〉, then Jv ⊆ Ju. But u ∈ Iu and v ∈ Jv ⊆ Ju, and
therefore (u, v) ∈ T ′, i.e. there is a directed path from u to v in G′. On the other
hand, if there is a directed path from u to v in G′, then (u, v) ∈ T ′ therefore
v ∈ Ju = {x | (u, x) ∈ T ′}. However if v is available from u, then all nodes
that are available from v, i.e. elements of Jv are also available from u as T ′ is
a transitive relation. So Jv ⊆ Ju, but then 〈Iu, Ju〉 ≤ 〈Iv, Jv〉. It means that if
v ∈ extE′(O), then 〈Iv, Jv〉 ∈ FO and if 〈Iu, Ju〉 ∈ FO, then u ∈ extE′(O) and
the same holds for extE′(A) and FA.

Since wcon assigns the same weights to concepts of FA and FO in form of
〈Iv, Jv〉 where v ∈ V ′ as w′node assigns to v and wcon assigns 0 to any other
concepts therefore wfil sums up the same values as w′fset, so equation (7) holds.

ut

4 Extremal problems

It is a natural question how the size of the original ontology lattice L = (S,�)
relates to the sizes of the extension graph ext(L, Eext) and the concept lattice
cl((L, Eext)) obtained from ext((L, Eext)). First, let us consider ext(L, Eext).

Proposition 4.1. Let L = (S,�) be an ontology lattice of n+2 nodes. Then for
G′ = ext(L, Eext) = (V ′, E′) we have |V ′| ≤ n2 + 2. Furthermore, this estimate
is sharp, that is for every positive integer n there exists ontology Ln = (Sn,�)
and set of extra edges Eext such that ext(Ln, Eext) has n2 + 2 vertices.

Proof. Let the nodes of L = (S,�) be v0, v1, . . . , vn, vn+1 with v0 = bottom and
vn+1 = top. Then clearly there is no directed path from vi i > 0 to v0 in L∪Eext,
and the maximum weight path from any node vi i > 0 to vn+1 is of weight 1,
so no new nodes are generated from top and bottom. For vj 0 < j < n + 1
there can be at most n distinct cj1 , . . . , cjl values (l ≤ n) that there exists a
maximum weight path to vj of weight cjm , as these paths could come from
nodes vi i ∈ {0, 1, . . . , n} \ {j} only.

On the other hand, let Lc = (S,�) be defined as v1, . . . , vn be pairwise
incomparable elements, furthermore let Ecext = {(vi, vi+1) : i = 1, 2, . . . n} where
i + 1 is meant modulo n. Let the weight of each extra edge in Ecext be a fixed
0 < p < 1 value. Lc ∪ Ecext is shown on Figure 4. The maximum weight path
from vi to vj has weight pj−i if 1 ≤ i < j ≤ n, while the weight is pn−1−(j−i)

if 1 ≤ j < i ≤ n, finally the weight is 1 for i = 0 < j ≤ n. Thus, each node
vj 1 ≤ j ≤ n has exactly n different maximum weight path going into it, so
ext(Lc, Ecext) has exactly n2 + 2 nodes.

ut

Our next goal is to bound the size of concept lattice cl((L, Eext)). The main
question is how many “dummy” vertices are generated, that is concepts 〈I, J〉
such that I ∩ J = ∅.



Semantic Matching and Formal Concept Analysis 13

Fig. 4: Extremal example

Theorem 4.1. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
a set Eext of extra edges |cl((L, Eext))| ≤ 2n + n2 − n + 1 and this estimate is
sharp, that is there exist Ln = (Sn,�) and and set of extra edges Eext such that
|cl((Ln, Eext))| = 2n + n2 − n+ 1.

Proof. It is enough to prove that the number of concepts 〈I, J〉 such that I∩J = ∅
is at most 2n − n − 1 to establish the upper bound by Lemma 3.2 and by
Proposition 4.1. Indeed, Lemma 3.2 tells us that there is a concept corresponding
to each element of ext(Lc, Ecext) and the other concepts 〈I, J〉 of cl((L, Eext))
have the property I ∩ J = ∅.

Let vji be a vertex of ext(Lc, Ecext) such that vji is in the chain with base
node vj and vji 6= vj furthermore assume that i is maximal with respect to
vji ∈ I for some set of nodes of ext(Lc, Ecext). The nodes reachable from vji via
directed paths are {vji , vji−1 , . . . , vj1 , T op}, thus IDs ⊆ {vji , vji−1 , . . . , vj1 , T op}.
This implies that (IDs)De ⊇ {vji , vji−1

, . . . , vj1 , T op}De 3 vj . However, vj 6∈ I
by the maximality of i, so (IDs)De 6= I, that is I cannot be the extent of a
concept of cl((L, Eext)). Suppose now that 〈I, J〉 is a concept and vji ∈ I as
well as vke ∈ I for some j 6= k so that neither vji nor vke is the base node of its
chain. Then IDs ⊆ {vji , vji−1 , . . . , v1, T op} ∩ {vke , vke−1 , . . . , vk1 , T op} = {Top},
so I = {Top}De = S, that is 〈I, J〉 = 〈ITop, JTop〉, i.e., I ∩ J = {Top}. So we
may assume that if 〈I, J〉 is a concept and vji ∈ I for some non-base node of
a chain of ext(Lc, Ecext), then I does not contain non-base element of any other
chain. Let i be minimal such that vji ∈ I, where vj0 is understood to be Top.
We claim that (IDs) = {vji , vji−1 , . . . , vj1 , T op}. Indeed, we have J = IDs and
I = JDe . Let ` be maximal so that vj` ∈ J , then J = {vj` , vj`−1, . . . vj1 , T op},
since if there is a directed path from a node x to vj` , then there is a path to any
vjt for ` > t, as well. Also, if J = {vj` , vj`−1, . . . vj1 , T op}, then for any node x,
there is a directed path from x to every node in J iff there is a directed path
from x to vj` , since J itself forms a directed path from vj` to Top. Now, by
I = JDe we have that vji = vj` and 〈I, J〉 = 〈Iji , Jji〉.
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From this we can conclude that if 〈I, J〉 is a concept such that I ∩ J = ∅,
then I ⊂ S \ {Bottom, Top} and |I| ≥ 2. The number of possible subsets I is
the number of at least 2 element subsets of an n-element set, which is exactly
2n − n− 1.

To prove that the bound is sharp, consider again the extremal example Lc ∪
Ecext shown on Figure 4. We have to show that for any subset I of size at least 2
of {v1, . . . , vn}, 〈I, IDs〉 is a concept, that is I = (IDs)De . Clearly, I ⊆ (IDs)De .
Let ij be defined as ij = max{i : vji ∈ IDs}, that is vjji is the lowest element of

the jth chain that is contained in IDs . Let 1 ≤ j1 < j2 < . . . < jt ≤ n be such
that I = {j1, j2, . . . , jt}. Then it is easy to see that n− ij = min{jk− j : jk > j}
if j < jt, otherwise n − ij = j1 + n − j, that is n − ij is the distance of j from
the cyclically next jk ∈ I. Let j0 6∈ I and let j′ be the element of {1, 2, . . . , n}
cyclically just before j0. Then ij′ > 1, while the only element of the j′th chain
that is an endvertex of a directed path from vj0 is vj′1 , so vj0 6∈ (IDs)De . ut

Another interesting question could be how the average or expected size of ex-
tension graph and the concept lattice relates to the size of the original ontology
lattice. This is the topic of further investigations. The first task is finding a
reasonable probability distribution for the extra edges.

5 Strict approach

As it was mentioned above, extra edges can be used based on different philoso-
phies when extending offers. In this section, we show that strict matching values
of applications to offers can also be preserved in the extension graph and in the
concept lattice.

5.1 Preserving strict matching in extension graph

The main problem of preserving strict matching values in the extension graph
is if extra edges are used to extend the offer, then extra nodes might appear
in the extended offer whose weights are greater then 0. However, to address
this problem, special node weighting functions can be defined depending on the
offers.

For an offer O let wOnode be a node weighting function that preserves the
weights of the nodes that are available from O via lattice edges in G, and the
nodes that were generated from such nodes in G′, and it assigns 0 to the other
nodes, i.e. for a node v ∈ V ′ let

wOnode(v) =

{
w′node(v) if ∃vj ∈ extElat

(O) : v ∈ Vj ,
0 otherwise.

Let wOfset be a fuzzy set weighting function that uses wOnode, so for a fuzzy

set f let wOfset(f) =
∑

(v,γv)∈f γv · w
O
node(v). Note, that computing wOnode is a

preprocessing step that has to be done once for all offers, and then wOnode can be
reused to calculate matching values of applications to the given offer.

With these weighting function a similar result can be shown as in Lemma 3.1.
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Lemma 5.1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, wfset be the fuzzy set weighting function, G′ = ext(L, Eext) =
(V ′, E′) be the extension graph, and w′fset be the modified weighting function. Let

O ⊆ S be an offer with wOnode and wOfset node and fuzzy set weighting functions,
respectively and let A ⊆ S be an application. Then,

match(A,O) =
wfset(extE(A) ∩ extElat

(O))

wfset(extElat
(O))

=
wOfset(extE′(A) ∩ extE′(O))

wOfset(extE′(O))

(8)

Proof. The proof is analogous to Lemma 3.1’s. However, extE′(A) ∩ extE′(O)
may contain chain fragment (vyk , . . . , vy1) of a chain qy = {vyl , . . . , vy1 , top}
with base node vy where vy is only available from O via extra edges in G, i.e.
vy ∈ extE(O)\extElat

(O). But wOnode assigns 0 to such vyk , . . . , vy1 nodes by def-
inition. In addition, G′ contains lattice edges only, so extE′(A) and extE′(O) are
crisps sets, so grades of their elements are always 1. Therefore wOfset(extE′(A)∩
extE′(O)) =

∑
u∈extE′ (A)∩extE′ (O) w

O
node(u) = wfset(extE(A) ∩ extElat

(O)) and

analogously, wfset(extElat
(O)) = wOfset(extE′(O)). Thus equation (8) holds as

well. ut

5.2 Preserving string matching in concept lattice

The same issue appears if we want to preserve strict matching values of ap-
plications to offers in the concept lattice as we solved in case of the extension
graph, namely extended offer might contain new nodes with weight greater than
0. However, the offer specific weighting functions solve this issue as well.

We extend wOnode to be able to use it for concepts. So, let wOcon be a concept
weighting function generated by an offer O such that for a concept 〈I, J〉:

wOcon(〈I, J〉) =

{
wcon(〈I, J〉) if I ∩ J = {v} such that ∃vj ∈ extElat

(O) : v ∈ Vj ,
0 otherwise.

Let wOfil be the filter weighting function based on wOcon, i.e for a filter F ∈
P(B(V ′1 , V

′
2 , T

′)): wOfil(F ) =
∑
〈I,J〉∈F w

O
con(〈I, J〉).

With these weighting functions, we can prove the following theorem similarly
to Theorem 3.1.

Theorem 5.1. Let G = (V,E) be a directed graph extending the lattice L =
(S,�) with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lat-
tice constructed from G and wfil be the filter weighting function. Let O ⊆ S be
an offer with wOcon and wOfil concept and filter weighting functions, respectively
and let A ⊆ S be an application. Then,

match(A,O) =
wOfil(FA ∩ FO)

wOfil(FO)
(9)
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Proof. Analogously to Theorem 3.1’s proof and based on Lemma 3.1 it is enough
to prove that

wOfil(FA ∩ FO)

wOfil(FO)
=
wOfset(extE′(A) ∩ extE′(O))

wOfset(extE′(O))
. (10)

However, FA and FO contain concepts for all nodes of extE′(A) and extE′(O)
respectively. But wOcon assigns 0 to such 〈Iv, Jv〉 concepts where v ∈ V ′ is not
contained in any chain whose base was available from O in G using lattice edges
only. Therefore wOfil sums up the same values as wOfset, i.e. equation (10) holds
as well. ut

6 Related work

The aim of profile matching is to find the most fitting candidates to given profiles.
Due to its various applications areas, it has become a widely investigated topic
recently. Profiles can be represented as sets of elements and then numerous
set similarity measures [5], such as Jaccard or Sørensen-Dice, are applicable to
compute matching values.

There exist methods assuming that elements of profiles are organized into
a hierarchy or ontology. For example, Lau and Sure [12] proposed an ontology
based skill management system for eliciting employee skills and searching for
experts within an insurance company. Ragone et al. [20] investigated peer-to-
peer e-market place of used cars and presented a fuzzy extension of Datalog to
match sellers and buyers based on required and offered properties of cars.

Di Noia et al. [7] placed matchmaking on a consistent theoretical foundation
using description logic. They defined matchmaking as information retrieval task
where demands and supplies are expressed using the same semi-structured data
in form of advertisement and task results are ranked lists of those supplies best
fulfilling the demands. Popov et al. [18] used filters in the ontology hierarchy
lattice to represent profiles and defined matching function based on the filters.

We also assumed a structure among elements of profiles. We supposed this
structure is an ontology that fulfills lattice properties as well and similarly to
Popov’s proposal we also represented profiles with filters. However, we extended
the ontology lattice with extra edges to capture such relationships that sub-
sumptions cannot express. Then we showed how these edges are usable to refine
the ontology.

There are several methodologies to learn ontologies from unstructured texts
or semi-structured data [4][21]. Besides identifying concepts, discovering rela-
tionships between the concepts is a crucial part of ontology construction and
refinement. Text-To-Onto [16] uses statistical, data mining, and pattern-based
approaches over text corpus to extract taxonomic and non-taxonomic relations.
In [22], various similarity measures were introduced between semi-structured
Wikipedia infoboxes and then SVMs and Markov Logic Networks were used to
detect subsumptions between infobox-classes.
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We presented a method to refine ontology based on extra edges that represent
some sort of quantifiable relationship between skills. These relationships can be
given by domain experts, computed from statistics, or resulted by data mining
techniques. For example, in [24] the authors used association rules and latent
semantic indexing over job offers to detect relationships between competencies.
In our method we defined profile extensions and weighting functions as well to
preserve matching values of profiles computed from edge weights.

Formal concept analysis (FCA) [9] is also used to build and maintain formal
ontologies. For example, Cimiano et al. [6] presented a method of automatic
acquisition of concept hierarchies from a text corpus based on FCA. In [15], the
authors used FCA to revise ontology when new knowledge was added to it.

In our method we used FCA to restore lattice properties after added new
nodes and edges to it based on extra edges. However as we focused on preserving
matching values of profiles during the transformations, we adapted our profile
weighting functions to the modified ontology lattice as well.

7 Summary

In this paper we investigated how ontology lattices can be extended by additional
information and used for semantic matching. We focused on the field of human
resources and defined matching functions to find the most suitable applicant to
a job offer, however, our results are applicable in other fields as well.

First, profiles of job applications and offers were represented as filters in an
ontology lattice of skills that was built based on specialization relations between
skills. Then, the ontology lattice got extended by additional information in form
of extra edges describing quantifiable relations between the skills. A directed
graph was built from the lattice endowed with extra edges to handle directed
cycles that the new edges might have introduced and matching functions were
defined based on reachable, or derived, nodes from profiles’ nodes.

Two approaches were presented to extend profiles with derived nodes. In
the first one, the offer and the applications were all extended, since the same
profile can describe an application and an offer as well and these cases should be
handled uniformly. In the second approach, only the applications were extended
to help the employer differentiate better among the applicants.

We presented a method that eliminates directed cycles from the graph. It
constructed an extension graph by adding node chains to the original lattice
based on directed paths between nodes in the directed graph and node weights
got also modified as part of the construction. An extension graph is a directed
acyclic graph and therefore a poset but it is not necessary a lattice. Formal con-
cept analysis was used to extend the poset into a concept lattice so that filters of
this lattice could be used to calculate matching values. Different node weightings
were used to preserve the original matching values in the two approaches.

Comparisons of the sizes of the ontology lattice and the generated acyclic
directed graph, as well as the concept lattice were given.
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11. Peter Hájek. Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht,
1998.

12. Thorsten Lau and York Sure. Introducing ontology-based skills management at a
large insurance company. In Proceedings of the Modellierung, pages 123–134, 2002.

13. M. Levandowsky and D. Winter. Distance between sets. Nature, 234(5):34–35,
1971.

14. Lianzhen Liu and Kaitai Li. Fuzzy filters of bl-algebras. Information Sciences,
173(1):141–154, 2005.

15. Dominic Looser, Hui Ma, and Klaus-Dieter Schewe. Using formal concept analysis
for ontology maintenance in human resource recruitment. In Proceedings of the
Ninth Asia-Pacific Conference on Conceptual Modelling-Volume 143, pages 61–68.
Australian Computer Society, Inc., 2013.

16. Alexander Maedche and Raphael Volz. The ontology extraction & maintenance
framework text-to-onto. In Proc. Workshop on Integrating Data Mining and
Knowledge Management, USA, pages 1–12, 2001.

17. Jorge Mart́ınez Gil, Alejandra Lorena Paoletti, Gábor Rácz, Attila Sali, and Klaus-
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