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Abstract. Epidemic propagation is controlled conventionally by vaccination or by quar-
antine. These methods have been widely applied for different compartmental ODE
models of epidemic propagation. When epidemic spread is considered on a network,
then it is natural to control the propagation process by changing the network struc-
ture. Namely, SI links, connecting a susceptible individual to an infected one, can be
deleted. This would lead to a disconnected network, which is not realistic, hence new
SS links can be created in order to keep the network well connected. Thus it seems to
be promising to drive the process to a target with no infection and a prescribed average
degree by deleting SI links and creating SS links in an appropriate way. It was shown
previously that this can be done for the pairwise ODE approximation of SIS epidemic
propagation. In this paper this is extended to the original stochastic process by using
the control signals computed from the ODE approximation.

Keywords: SIS epidemic, pairwise model, adaptive network, nonlinear model predic-
tive control, individual-based simulation.

2010 Mathematics Subject Classification: 34H20, 05C82, 65C40, 92D30.

1 Introduction

Deriving mathematical models of epidemic propagation was primarily and originally moti-
vated by the need of controlling the spread of a disease. This demand has led to several
modeling approaches starting from compartmental models to network-based models with
different complexity, such as mean-field, pairwise, compact pairwise, degree based or indi-
vidual based models [1, 10, 13, 15]. All of these models are systems of non-linear differential
equations, placing the problem of epidemic control into control theory [8,19], a well-developed
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field of mathematics motivated mainly by engineering problems. Similarly to other questions,
the control of epidemics can be formalised in the language of optimal control. The target is to
drive the number of infected individuals to zero (or at least decreasing it as much as possible).
This could be simply achieved by separating all the individuals from each other or vaccinating
or treating all of them. This intervention obviously generates a cost that can be quantified by
a cost function, the value of which is minimised.

Most models use vaccination or treatment as control measures, hence the cost function
incorporates the cost of the vaccine or medical treatment [3, 9, 12]. Since the literature of
epidemic control is extremely rich, we mention here briefly only those results that are signifi-
cantly relevant from the point of view of our study. The optimal time dependent vaccination
was investigated in a susceptible-infected-recovered (SIR) model under minimising a cost
function that measures the cumulative amount of infected and vaccinated people [16]. Clancy
and Piunovsky [3] computed optimal control based on isolation in a variant of the classical
SIR model with nonlinear infection rate function. Hansen and Day [9] considered optimal
control in the presence of limited resources using isolation, vaccination and mixed control
strategies for the SIR dynamics. The application of optimal control theory to SIR propaga-
tion on networks in a real world situation is presented in [17]. The effect of vaccination in an
SIRS model on heterogeneous networks is studied in [2]. These models are typically based
on compartments of individuals in different states of the disease, in different age or place of
working and living. Quarantine and contact tracing offer another control measure that uses
information about the relation among the individuals in a certain sense [11, 14].

An alternative is to incorporate the contact structure of the individuals and use the dele-
tion or creation of links between them as control measure [18]. This has been carried out
for the pairwise SIS (susceptible–infected–susceptible) model in [18], where nonlinear model
predictive control was applied to drive the number of infected nodes in the network to zero
while keeping the network well connected. In that paper, the SI edges (connecting a suscep-
tible and an infected node) are cut to eradicate disease and SS edges are created to maintain
a given average degree in the network.

In this paper, we make a further step towards network-based epidemic control. The differ-
ential equation models of epidemic propagation on networks are approximations of the real
process since all of them contain closure relations. Thus it is natural to ask how the original
process can be controlled. The full stochastic model has an enormously large state space (for
SIS epidemic on a network with N nodes, the state space has 2N elements), hence individual
based stochastic simulation is used to follow the process. Our goal in this paper is to con-
trol the stochastic simulation itself. We will study to what extent the control predicted by a
network-based reduced ODE model results in good control of the full stochastic model. Stud-
ies in this direction already exist, and the first signs are positive. Namely, control computed
from mean-field models seem to translate well, at least for some cases, for the control of the
stochastic simulation counterpart [4, 20]. Our approach is motivated also by the fact that the
cost of computing control from ODEs is much smaller than that of working out control from
stochastic models. The main idea of our approach can be summarised briefly as follows. The
process is controlled by cutting SI and creating SS edges in the stochastic simulation. The
number of edges to be created or to be deleted is determined from the pairwise ODE model
by updating its initial condition at the time instants k∆t, with an appropriately chosen time
step ∆t, by using the values obtained from the stochastic simulation.

The results of our study are the following. On the one hand, we found that computing
the values of the control parameters from the ODE approximation can be used to control
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the stochastic simulation. On the other hand, the success of the control strongly depends
on the epidemic parameters, the infection and recovery rate, and on the control parameters,
the length of the time horizon, the time step ∆t, of updating the control parameter values,
and the parameters of the optimisation process in the model predictive control. We will
show numerical evidence that the stochastic simulation can be controlled by using the control
signals obtained from the ODE approximation, if the time step ∆t is small enough. The effect
of the control bounds on the controllability will also be studied in detail.

The paper is structured as follows. In Section 2 our stochastic model for SIS epidemic
propagation on an adaptive network and its pairwise ODE approximation are introduced.
The detailed description of the control method is given in Section 3 both for the stochastic
simulation and for the pairwise ODE. The results about the controllability of the simulation
are presented in Section 4.

2 Model formulation

In this section the mathematical model of SIS epidemic propagation on an adaptive network
with link-type dependent link activation and deletion is presented. To describe the model con-
sider an undirected simple graph with N nodes, where each node can be either susceptible (S)
or infected (I). A susceptible node can become infected when contacted with an infected one,
and an infected one can recover and become susceptible again. In order to avoid infection, it
is reasonable to assume that susceptible nodes break their links to infected ones and reconnect
to a randomly chosen susceptible node, moreover susceptible nodes may cancel their links to
other susceptible ones in order to avoid a possible infection if the neighbour becomes infected.
Hence in our model it is possible to create new links and to delete existing connections leading
to changes in the network structure.

In the standard adaptive SIS model, infection, recovery, link activation and link deletion
are governed by independent Poisson processes. A susceptible node becomes infected at rate
kτ, where k is the number of its infected neighbours and τ > 0 is a given constant, called
infection rate. Each infected node recovers at rate γ, where γ > 0 is called the recovery rate.
A non-existing link between two nodes of type A ∈ {S, I} and B ∈ {S, I} is activated at
rate αAB . Similarly, an existing link between a node of type A ∈ {S, I} and a node of type
B ∈ {S, I} is terminated at rate ωAB . The graph is assumed to be undirected, therefore we
assume that αSI = αIS and ωSI = ωIS.

The mathematical model of the process is a system of ordinary differential equations,
called master equations that consists of differential equations for the time dependent proba-
bilities of each state. The state space of the adaptive SIS model on a networks with N nodes
contains

2N︸︷︷︸
nodes

· 2
N(N−1)

2︸ ︷︷ ︸
edges

elements, because every node can be either susceptible or infected and every link can be
either existing or non-existing. Therefore, even writing down the differential equations is not
feasible for large N. To demonstrate the complexity of the problem let us take a look at the
case N = 2. Let XAB denote the probability of the state, in which the first node is of type A
and is connected to the second one, which is of type B. Similarly, the probability of the state
where there is no link between the nodes is denoted by XAB . The master equations take the
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following form:

ẊSS = γ
(
XSI + XIS

)
+ αSSXSS −ωSSXSS,

ẊSS = γ (XSI + XIS) + ωSSXSS − αSSXSS,

ẊSI = γXI I + αSI XSI − (γ + τ + ωSI)XSI ,

ẊSI = γXI I + ωSI XSI − (γ + αSI)XSI ,

ẊIS = γXI I + αSI XIS − (γ + τ + ωSI)XIS,

ẊIS = γXI I + ωSI XIS − (γ + αSI)XIS,

ẊI I = τ
(
XSI + XIS

)
+ αI I XI I − (2γ + ωI I)XI I ,

ẊI I = ωI I XI I − (2γ + αI I)XI I ,

where dot denotes differentiation with respect to time.
In order to overcome this difficulty, approximating non-linear differential equations have

been derived for coarse-grained variables. This can be done at the individual level or at the
population level. One of the latter is presented in the next section.

2.1 Pairwise model

A widely used population level approximation is the so-called pairwise model. This is for-
mulated in terms of the number of nodes and edges in different states, hence it is suitable for
incorporating the control action as creating and deleting certain types of links. The pairwise
model for the expected values of the number of nodes and links takes the form (see Chapter 8
in [15])

˙[I] = τ[SI]− γ[I], (2.1)
˙[SI] = −(τ + γ)[SI] + τ([SSI]− [ISI]) + γ[I I] + αSI ([S][I]− [SI])−ωSI [SI], (2.2)
˙[SS] = 2γ[SI]− 2τ[SSI] + αSS([S]([S]− 1)− [SS])−ωSS[SS], (2.3)
˙[I I] = −2γ[I I] + 2τ([ISI] + [SI]) + αI I([I]([I]− 1)− [I I])−ωI I [I I], (2.4)

where [I](t) and [S](t) are the expected values of the number of infected and susceptible
nodes at time t, ([S](t) + [I](t) = N holds for all t), [SI](t), [I I](t), [SS](t) denote the expected
number of SI, I I and SS edges and [SSI](t), [ISI](t) denote the expected number of SSI, ISI
triples at time t. System (2.1)–(2.4) is not self-contained in this form, since there are no equa-
tions for the number of triples. Instead of deriving differential equations for those variables,
an approximating algebraic relation is used typically to express the number of triples in terms
of the pairs and singles. The most frequently used and widely accepted approximation is the
following [10]:

[SSI] =
n− 1

n
[SS][SI]

[S]
=

n− 1
n

[SS][SI]
N − [I]

,

[ISI] =
n− 1

n
[SI][SI]

[S]
=

n− 1
n

[SI][SI]
N − [I]

,

where N is the size of the population and n = n(t) is the actual mean degree of the network,
i.e.

n(t) =
[SS] + 2[SI] + [I I]

N
.
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2.2 Network-based stochastic model

The stochastic simulation is based on the Gillespie algorithm ([6], [7]), which we have imple-
mented in MATLAB. Let [0, T] be the time interval of the simulation. Moreover, let G = (V , E)
be the initial graph, where V and E represent the nodes and the edges of the graph, respec-
tively. A node v ∈ V can be susceptible or infected and an edge e ∈ E can be of type SI, SS
or I I. Let us assume that the parameters N = |V|, τ, γ, αSS, αSI , αI I , ωSS, ωSI and ωI I are all
given.

The simulation is based on an accurate book keeping of all possible events, i.e. a node may
become infected or susceptible, or an edge is created or removed. The most important step
of the algorithm is to compute the rates of all possible events. These rates can be represented
with a vector r of size

N︸︷︷︸
nodes

+
N(N − 1)

2︸ ︷︷ ︸
edges

,

where the first N elements correspond to the events related to the nodes (infection and recov-
ery) and the remaining N(N − 1)/2 elements of r refer to the edges (creation and deletion).
For instance, in case a node v is infected, i.e. it may recover, the rate corresponding to this
node is γ. In case v is susceptible with k infected neighbours, its corresponding rate is kτ.
An existing link AB ∈ {SS, SI, I I} can be removed, therefore the corresponding rate is ωAB .
Furthermore a non-existing link AB ∈ {SS, SI, I I} can be created, therefore the rate belonging
to it is αAB .

Let R denote the sum of the rates, i.e. R = ∑i r(i). The next step is to specify the time t
of the next event. To determine this we choose a random number from an exponential dis-
tribution with parameter R. Next we determine which event will be performed. The event
is chosen randomly but proportionally to its rate and may correspond to either a node or an
edge. Once the event is chosen we update the graph G, i.e. the states of the nodes and the
edges. After that using the new graph G the rates of the events are calculated, then a new
time step t is determined and the next event is chosen randomly again.

Given that all existing and non-existing links need to be accounted for, the algorithm which
includes the storage, update and referencing back and forth between rates and events becomes
more complex.

3 Dynamic control of the adaptive SIS model

Now we turn to the main goal of the paper, to investigate the controllability of the adaptive SIS
epidemic on a network by creating and deleting edges. Our aim is to eradicate the epidemic
and keep the network well connected as well, i.e. to lead the system to the state when the
expected number of infected nodes is [I](T) = I∗ and the average degree is n(T) = n∗ for
some finite T > 0 and target values I∗ = 0 and n∗ = n(0).

In order to achieve our goal we change the rates of creation and deletion of SS links and
deletion of SI links from time to time. This process models that healthy people terminate their
connections to infected ones and try to find connections to other healthy individuals in order
not to be disconnected socially. Thus in our control process we have

αSI = αI I = ωI I = 0, ωSI = u1 (3.1)

and
αSS = u2, if u2 > 0, ωSS = −u2 if u2 < 0, (3.2)
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where u1 and u2 are our control parameters. Since we use time dependent control, u1 and
u2 will be piecewise constant functions. We fix a step size ∆t > 0 determining how often we
intervene and change the values of the control parameters. That is the control functions u1

and u2 will be constant in each time interval [(k− 1)∆t, k∆t), for k = 1, 2, . . . , K with K∆t = T.
Furthermore we assume that the control parameters are bounded, namely there exist pos-

itive numbers M1 and M2, such that

0 ≤ u1(t) ≤ M1, |u2(t)| ≤ M2 for all t ∈ [0, T]. (3.3)

We define the controllability of our system as follows.

Definition 3.1. The system is ε-controllable to the target values I∗ = 0 and n∗ = n(0) with pa-
rameters T, ∆t, M1, M2, if there are piecewise constant functions u1, u2: [0, T] 7→ R, such that
(3.3) holds and u1 and u2 are constants in the intervals [(k− 1)∆t, k∆t) for all k = 1, 2, . . . , K,
furthermore

|[I](T)− I∗| ≤ ε, |n(T)− n∗| ≤ ε.

In practice, the case ε = 0, i.e. perfect controllability is not expected.
In the next subsections we show how the control functions u1 and u2 are determined for

the pairwise model and for the stochastic simulation.

3.1 Time dependent control of the pairwise model

Using the parameter values given in (3.1)–(3.2), system (2.1)–(2.4) takes the following form:

˙[I] = τ[SI]− γ[I], (3.4)
˙[SI] = −(τ + γ)[SI] + τ([SSI]− [ISI]) + γ[I I]− u1[SI], (3.5)
˙[SS] = 2γ[SI]− 2τ[SSI] + max{u2, 0}([S]([S]− 1)− [SS]) + min{u2, 0}[SS], (3.6)
˙[I I] = −2γ[I I] + 2τ([ISI] + [SI]). (3.7)

Our aim now is to determine the values of the piecewise constant functions u1 and u2 in such
a way that system (3.4)–(3.7) becomes ε-controllable. This has already been carried out in [18]
by using nonlinear predictive control. Here we only briefly summarize the main steps of the
method because these control signals will be used to control the stochastic simulation in the
next subsection.

The Nonlinear Model Predictive Control (NMPC), which is a variant of Model Predictive
Control (MPC), is an optimization based method for the feedback control of nonlinear systems.
It is widely applied to stabilization and tracking problems, see [8].

First, we discretize system (3.4)–(3.7) in order to apply the NMPC algorithm. In order to
make the equations simpler use the following vectorial notations:

X = ([I], [SI], [SS], [I I]), U = (u1, u2).

Let us denote the output variables, i.e. the number of infected individuals and the mean
degree, by Y = ([I], n). We use Xi and Yi for the i-th coordinate of X and Y respectively,
and x(k) = X(k∆t), y(k) = Y(k∆t), u(k) = U(k∆t). Let us denote the solution operator of
system (3.4)–(3.7) by φ, that is the solution starting from the initial condition X(0) is given by
X(t) = φ(t, X(0), U(t)). Now, the control is constant in a time interval of length ∆t, hence we
will use the discretized solution function

F (x, u) = φ(∆t, x, u), (3.8)
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where x ∈ R4 and u ∈ R2 are given vectors. Furthermore, we introduce the discretized output
function as

H(x) = (x1, (x3 + 2x2 + x4)/N), (3.9)

the first coordinate of which is [I] and its second coordinate is the average degree.
Following [18], we compute the control action u at time k∆t in the following way. First, we

set a prediction horizon of length P steps and denote by ui(k+ j) for i = 1, 2, j = 0, 1, . . . , P− 1
an arbitrary admissible future control action chosen at time k∆t. Given this control sequence,
the solution at the end points of the time steps starting from x(k) = X(k∆t) is given as

x(k + 1) = F (x(k), u(k)), x(k + 2) = F (x(k + 1), u(k + 1)), . . .

i.e. in general

x(k + j) = F (x(k + j− 1), u(k + j− 1)), for j = 1, 2, . . . P.

The output variables are simply given as

y(k + j) = H(x(k + j)), for j = 1, 2, . . . P.

Now comes the most important step, to compute the sequence of control values u(k), u(k+ 1),
. . ., u(k + P− 1) in such a way that the output values y(k + 1), y(k + 2), . . ., y(k + P) get as
close to the target value (I∗, n∗) as possible. This can be achieved by minimising the objective
functional J : R2P → R given as

J (u(k), . . . , u(k + P− 1))

=
P

∑
j=1

λ1 (y1(k + j)− I∗)2 +λ3 (∆u1(k + j))2 + λ2 (y2(k + j)− n∗)2 + λ4 (∆u2(k + j))2 ,

where λ1, λ2, λ3, λ4 are parameters (damping parameters) and ∆ui(k + j) = ui(k + j) −
ui(k + j− 1) is the change of control value from the k-th time step to the next one. We solve
the above nonlinear optimization problem using the so-called lsqnonlin optimization routine
in MATLAB, yielding values for the control values u(k), u(k + 1), . . ., u(k + P− 1). Then the
control signal u(k) is used in the time interval [k∆t, (k + 1)∆t) and the whole computation is
repeated at time (k + 1)∆t to obtain the control signal in the interval [(k + 1)∆t, (k + 2)∆t) and
so on until the end of the time interval, T, is reached.

It was shown in [18] that choosing the control parameters appropriately, system (3.4)–(3.7)
is ε-controllable for small values of ε, i.e. Y(T) will be sufficiently close to the target value
(I∗, n∗). In the next subsection, this result is applied to control the stochastic simulation.

3.2 Control of the network-based stochastic model

Now our aim is to control the network-based stochastic model. The question is how to choose
the control parameters in order to control the simulation. The idea for controlling the pairwise
model was to determine the output for an arbitrary admissible control sequence and then
minimising the objective function to get the best control signal. In the case of the stochastic
simulation, the difficulty is in computing the output for several different control sequences.
Hence the idea is to use the control values obtained for the pairwise model in order to control
the simulation.
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Let us assume that the model parameters N, τ, γ, I(0), n(0) and the control parameters
P, λ1, λ2, λ3, λ4, T and ∆t are given. We determine the control values u1 and u2 in the time
intervals [(k− 1)∆t, k∆t), for k = 1, 2, . . . , K with K∆t = T in two different ways.

(A) One way of doing so is simply determine u(k) for k = 1, 2, . . . , K from the pairwise
model by using the above described NMPC algorithm and starting from the initial state.
These control values can then be used in the stochastic simulation in the time intervals
[(k − 1)∆t, k∆t). This will be presented in Section 4.1. However, as we will see in the next
section, these control values will not work well since the pairwise model is not an accurate
approximation of the stochastic simulation.

(B) The second way of determining the control signals, presented in Section 4.2, is the
following. Compute u(1) from the pairwise model by using the NMPC algorithm described
above and starting from the initial state. Then apply u(1) in the time interval [0, ∆t) for the
stochastic simulation and denote by x(1) the state to which the simulation arrives at time
∆t. In the next stage compute u(2) from the pairwise model by using the NMPC algorithm
described above and starting from the state x(1). Then apply u(2) in the time interval [∆t, 2∆t)
for the stochastic simulation and denote by x(2) the state to which the simulation arrives at
time 2∆t. These steps are repeated until the end of the time interval, T, is reached. Thus, in
each time step, the state of the system is determined by using the stochastic simulation and
the control values are determined from the pairwise ODE model.

4 Simulation results

In this section we present numerical results for controlling the stochastic simulation, for which
we showed two methods in Section 3.2. In the first subsection we show that the first method
is not able to lead the system to the target. Then, in the second subsection, successful control
results, obtained by the second method, are presented.

4.1 Control of the stochastic model by using method (A)

Extensive numerical simulations were carried out for the pairwise model in [18]. These
showed that for fixed value of τ and M2 there is a critical value of M1, such that the con-
trol is effective when M1 is larger than this threshold. First, we chose a value of τ, M1 and M2,
for which the control of the pairwise model is effective and determined the control values for
each time step. Then we applied these control signals to the stochastic simulation. The result
is presented in Figure 4.1 showing that the solution of the pairwise model reaches the target
values (I∗ = 0 and n∗ = 10), while prevalence obtained from the simulation does not drop
to zero and the average degree is well above the target. This means that the control signal
obtained from the pairwise model is not effective for the stochastic simulation.

We repeated this experiment with several values of τ, M1 and M2. For each triple, we de-
termined the control signals from the pairwise model and then applied these in the stochastic
simulation. The difference of the actual and target values of the prevalence and average de-
gree at time T are shown in Table 4.1. One can see that the pairwise model is controllable
when τ is not too large, while the stochastic simulation does not reach the target even for
small values of τ.

This shows that the first method does not yield effective control for the stochastic simula-
tion. This has led us to the application of the second method.
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Figure 4.1: Time evolution of the prevalence (red) and average degree (blue)
in the pairwise model (dashed) and in the stochastic simulation (continuous
curves) for N = 100, τ = 2, γ = 1, I(0) = 10, I∗ = 0, n(0) = n∗ = 10, ∆t = 0.1,
λ1 = λ2 = 104, λ3 = λ4 = 1, M1 = M2 = 100.

τ M1 M2 Is(T)− I∗ ns(T)− n∗ Ip − I∗ np − n∗

0.1 1 1 0 2.38 0.0044 0
0.5 1 1 0 76.93 54.04 -4.03
1 1 1 0 41.48 52.53 -6.66
2 1 1 0 -2.76 44.94 -7.98
3 1 1 2.05 -10 84.31 -7.40

0.1 10 10 0.96 1.72 0.0005 0
0.5 10 10 0.0019 3.78 0.0009 0
1 10 10 0 21.02 0.0409 0
2 10 10 0 70.70 32.87 -4.72
3 10 10 0 5.75 26.87 4.01

Table 4.1: Difference between the prevalence and average degree and their target
for different values of τ, M1 and M2 for N = 100, γ = 1, I(0) = 10, I∗ = 0,
n(0) = n∗ = 10, ∆t = 0.1, λ1 = λ2 = 104, λ3 = λ4 = 1.

4.2 Control of the stochastic model by using method (B)

Now we present successful control results obtained by applying the second method. We
recall that in this case the control signal in the time interval [(k− 1)∆t, k∆t) is computed from
the pairwise model but the initial condition at time (k − 1)∆t is taken from the stochastic
simulation.

A successful control process is shown in Figure 4.2, where the time dependence of the
prevalence, average degree and the control signals are shown. One can see that the link
deletion rate, u1 is at the maximum value, M1 in the first part of the process. The creation and
deletion of SS links, u2, shows an interesting time dependence. First, it is negative, that is SS
links are deleted (in order to prevent strong propagation), then SS links are created in order



10 Á. Bodó and P. L. Simon

to achieve the target value of the average degree. We note that this seems to be the result of
intentional planning, however, this is simply given by minimising the objective function.
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Figure 4.2: Time evolution of the prevalence, the average degree and the control
values u1, u2 for N = 100, τ = 2, γ = 1, I(0) = 10, I∗ = 0, n(0) = n∗ = 10,
M1 = 2, M2 = 0.01 ∆t = 0.1, λ1 = λ2 = 104, λ3 = λ4 = 1.

This numerical experiment is repeated with a longer time step, ∆t. As it is expected,
the control is not effective when the time step is not small enough, that is when the initial
condition of the pairwise model is rarely updated from the stochastic simulation. In Figure 4.3
the time evolution of prevalence, network connectivity and control signals are shown for the
same parameter combination as in Figure 4.2, but with ten times bigger time steps. One can
see that the average degree does not reach its target value.

Now we will investigate the effect of the control parameter M1 with fixed values of τ and
M2. In [18] it was shown that for a fixed value of τ and M2 there is a critical value Mc

1 such
that if M1 is below this critical value, then the control is ineffective, while for M1 values above
Mc

1, the control is effective for the pairwise model. It turned out that a similar threshold
value of M1 exists when the stochastic simulation is controlled, but in this case the threshold
depends also on the length of the time step, ∆t. Fixing a value of M2 and ∆t, we determined
the threshold of M1 for several values of τ. The results are shown in Figure 4.4. For a given
value of τ, the curves yield the threshold of M1, that is the control is effective when M1 is
above the curve.

We observed that for several parameter combinations, also for those shown in the figure,
the critical value of M1 in the pairwise model is larger than that for the stochastic simulation,
which means that the control of the stochastic model is ”cheaper“ than the control of the
pairwise model.
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Figure 4.3: Time evolution of the prevalence, the average degree and the control
values u1, u2 for N = 100, τ = 2, γ = 1, I(0) = 10, I∗ = 0, n(0) = n∗ = 10,
M1 = 2, M2 = 0.01, ∆t = 1, λ1 = λ2 = 104, λ3 = λ4 = 1.
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