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Abstract

For two families of sets F ,G ⊂ 2[n] we define their set-wise union,
F∨G = {F∪G : F ∈ F , G ∈ G} and establish several – hopefully useful
– inequalities concerning |F ∨ G|. Some applications are provided as
well.

1 Introduction

For a non-negative integer n let [n] = {1, . . . , n} be the standard n-element
set and 2[n] its power set. A subset F ⊂ 2[n] is called a family. If G ⊂ F ∈ F
implies G ∈ F for all G,F ⊂ [n] then G is called a complex (down-set). Let
F c denote the complement, [n] \ F of F . Also let F c = {F c : F ∈ F} be the
complementary family. One of the earliest and no doubt the easiest result in
extremal set theory, contained in the seminal paper of Erdős, Ko and Rado
can be formulated as follows.

Theorem 0 ([EKR]). Suppose that there are no F,G ∈ F satisfying F ∪G =
[n]. Then

(1) 2 · |F| ≤ 2n.

Proof. Just note that the condition implies F ∩ F c = ∅.

This simple result was the starting point of a lot of research.

Definition 1. For a positive integer t let us say that F ⊂ 2[n] is t-union if
|F ∪G| ≤ n− t for all F,G ∈ F .
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An important result of Katona [Ka] was the determination of the maxi-
mum size of t-union families.

In the present paper we mostly deal with problems concerning several
families.

Definition 2. For positive integers t and r, r ≥ 2 and non-empty families
F1, . . . ,Fr ⊂ 2[n], we say that they are cross t-union if |F1 ∪ . . .∪Fr| ≤ n− t
for all F1 ∈ F1, . . . , Fr ∈ Fr.

Definition 3. For families F ,G let F ∨ G denote their set-wise union,

F ∨ G = {F ∪G : F ∈ F , G ∈ G}.

To state our main results we need one more definition. A family F ⊂ 2[n]

is said to be covering if {i} ∈ F for all i ∈ [n]. If F is a complex, it is
equivalent to saying that

⋃
F∈F

F = [n].

Let us use the term cross-union for cross 1-union.

Theorem 1. Suppose that F ,G ⊂ 2[n] are cross-union and covering com-
plexes. Then

(2) |F ∨ G| ≥ 7

8
(|F|+ |G|).

Example 1. Let n ≥ 3 and define A =
{
A ⊂ [n] : |A ∩ [3]| ≤ 1

}
. Then

|A| = 2n−1 and |A ∨ A| = 7
8
2n hold.

The above example shows that (2) is best possible.

Theorem 2. Suppose that F ,G ⊂ 2[n] are non-empty cross-union complexes
and F is covering. Then

(3) |F ∨ G| ≥ 3

4
(|F|+ |G|).

The bound (3) is best possible as shown by the next example.

Example 2. Let n ≥ 2 and define A = {A ⊂ [n] : |A ∩ [2]| ≤ 1}, B = {B ⊂
[n] : B ∩ [2] = ∅}.

Theorem 3. Suppose that F ,G ⊂ 2[n] are cross 2-union and covering com-
plexes. Then

(4) |F ∨ G| > |F|+ |G|.
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2 The proof of Theorems 1 and 2

Let us first note that if F ,G ⊂ 2[n] are cross-union then

(2.1) |F|+ |G| ≤ 2n.

Indeed the cross-union property guarantees F∩Gc = ∅ and thereby |F|+|G| =
|F|+ |Gc| ≤ |2[n]| = 2n.

In view of (2.1) the following statement easily implies Theorem 1.

Theorem 2.1. Let F ,G ⊂ 2[n] be covering complexes. Then

(2.2) |F ∨ G| ≥ min

{
2n,

7

8
(|F|+ |G|)

}
.

Proof. First we consider the case that F ,G are not cross-union. It is easy.
If F and G are not cross-union then there exist F ∈ F , G ∈ G satisfying
F ∪ G = [n]. Since F and G are complexes for all H ⊂ [n], F ∩ H ∈ F ,
G ∩H ∈ H, implying H ∈ F ∨ G. Thus F ∨ G = 2[n], proving (2.2). In view
of (2.1), while proving (2.2) we may assume that |F|+ |G| ≤ 2n.

Note that a covering complex H satisfies |H| ≥ n+1. Thus |F|+ |G| ≤ 2n

cannot hold for n < 3 and even for n = 3 the only possibility is F = G ={
∅, {1}, {2}, {3}

}
. In this case F ∨ G = 2[3] \ {[3]}, proving (2.2).

Suppose n > 3 and apply induction. We distinguish two cases.

(a) |F (̄i)|+ |G (̄i)| > 2n−1 for all 1 ≤ i ≤ n.

Now (2.1) implies
(
[n] \ {i}

)
∈ F (̄i) ∨ G (̄i). Since F (̄i) ⊂ F , G (̄i) ⊂ G,

H ∈ F ∨ G follows for all H $ [n]. Thus |F ∨ G| ≥ 2n − 1 > 7
8
2n for n > 3.

(b) There exists j ∈ [n] satisfying |F(j̄)|+ |G(j̄)| ≤ 2n−1.

Since F(j̄) and G(j̄) are covering the induction hypothesis yields

(2.3) |F(j̄) ∨ G(j̄)| ≥ 7

8

(
|F(j̄)|+ G(j̄)|

)
.

Assume by symmetry that |G(j)| ≥ |F(j)| holds. If G(j) is not covering, i.e.,
for some i ∈ ([n] \ {j}), {i} /∈ G(j) then {i} ∈ F(j̄) implies

|G(j) ∨ F(j̄)| ≥ 2|G(j)| ≥ |F(j)|+ |G(j)| > 7

8

(
|F(j)|+ |G(j)|

)
.
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In this way we obtain

|F ∨ G| ≥ |F(j̄) ∨ G(j̄)|+ |F(j̄) ∨ G(j)| > 7

8
(|F|+ |G|).

On the other hand, if G(j) is covering then we first observe that it is a
complex. Also, |F(j̄)| ≥ |F(j)| follows from the fact F is a complex. Using
the induction hypothesis these yield

|F(j̄) ∨ G(j)| ≥ 7

8

(
|F(j̄)|+ |G(j)|

)
≥ 7

8

(
|F(j)|+ |G(j)|

)
.

Using (2.3) we infer (2.2) again

|F ∨ G| ≥ |F(j̄) ∨ G(j̄)|+ |F(j̄) ∨ G(j)| ≥ 7

8
(|F|+ |G|).

Let us now prove Theorem 2. For n = 1 the statement is void. For n = 2
the only possibilities are F =

{
∅, {1}, {2}

}
and G = {∅} which satisfy (2).

Let now n ≥ 3 and let us apply induction. Replacing if necessary (F ,G)
by (F ∪ G,F ∩ G) we may assume that F ⊃ G, ∅ ∈ G.

Just as above we may assume that for some j ∈ [n], F(j̄) and G(j̄) are
cross-union (on [n] \ {j}). By the induction hypothesis

(2.4) |F(j̄) ∨ G(j̄)| ≥ 3

4

(
|F(j̄)|+ |G(j̄)|

)
.

There are two cases to consider according whether G(j) is empty or not.

(i) G(j) 6= ∅

Since F(j̄) is covering,

|F(j̄) ∨ G(j)| ≥ 3

4

(
|F(j̄)|+ |G(j)|

)
≥ 3

4

(
|F(j)|+ |G(j)|

)
follows from the induction hypothesis. Now (2.4) yields (2).

(ii) G(j) = ∅

Since ∅ ∈ G(j̄),

|F(j) ∨ G(j̄)| ≥ |F(j)| > 3

4
|F(j)|.

Adding this to (2.4) yields (2) with strict inequality. �
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3 The deduction of Theorem 3

We could not prove Theorem 3 directly. We are going to deduce it from the
following recent result of the author

Theorem 3.1 ([F]). Let F ,G,H ⊂ 2[n] be covering complexes that are cross-
union. Then

(3.1) |F|+ |G|+ |H| < 2n.

The proof of Theorem 3 using (3.1) is easy. First note that since F and
G are cross 2-union F ∨ G contains no (n − 1)-element sets. Consequently

H def
= 2[n] \ (F ∨ G)c is covering. Since F and G are complexes, F ∨ G and

therefore H also are complexes. Let us show that F ,G,H are cross-union.
Since all three are complexes, the contrary means that there are F ∈ F ,

G ∈ G, H ∈ H that partition [n]. Thus H = (F∪G)c ∈ (F∨G)c contradicting
H = 2[n] \ (F ∨ G)c. Applying (3.1) gives

|F|+ |G|+ 2n − |F ∨ G| < 2n.

Rearranging yields

|F|+ |G| < |F ∨ G| proving (4). �

In [F] the following generalisation of Theorem 3.1 is established in a some-
what lengthy way. Here we provide a much simpler proof.

Theorem 3.2. Suppose that r ≥ 2, F1, . . . ,Fr ⊂ 2[n] are cross-union and
covering. Then

(3.2)
∑
1≤i≤r

|Fi| ≤ 2n − (r − 2).

Proof. The case r = 2 follows from (2.1). We apply induction on r and
use (3.2) to prove it for r replaced by r + 1. Without loss of generality let
F1, . . . ,Fr+1 be complexes. Note that Fr ∨ Fr+1 is a covering complex and
that the r families F1, . . . ,Fr−1, Fr ∨ Fr+1 are cross-union.

On the other hand the fact that F1 is covering implies that Fr and Fr+1

are cross 2-union. Applying the induction hypothesis and (4) yield

|F1|+...+|Fr+1| ≤ |F1|+...+|Fr−1|+|Fr∨Fr+1|−1 ≤ 2n−(r−2)−1 = 2n−(r−1)

as desired.
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Actually in [F] only the slightly weaker statement, < 2n is proved.
Especially for n > n0(r) the bound (3.2) seems to be rather far from best

possible.

Example 3.3. Let n > r ≥ 3. Set G1 = {G ⊂ [n] : |G| ≤ n− r}, G2 = . . . =
Gr = {G ⊂ [n] : |G| ≤ 1}. Then G1, . . . ,Gr are covering and cross-union.
Define

g(n, r) = |G1|+ . . . + |Gr| = 2n + (r − 1)(n + 1)−
∑

0≤j<r

(
n

j

)
.

Note that g(n, 2) = 2n. For r ≥ 3 fixed and n→∞ also g(n, r)/2n tends
to 1.

Conjecture 3.1. Suppose that F1, . . . ,Fr ⊂ 2[n] are covering and cross-
union, r ≥ 3. Then for n > n0(r) one has

|F1|+ . . . + |Fr| ≤ g(n, r).

4 Further applications

Let us use Theorems 1 and 2 to give a new proof for the following recent
results from [F].

Theorem 4.1. Suppose that A,B, C ⊂ 2[n] are cross-union and A,B are
covering. Then

(4.1) |A|+ |B|+ |C| ≤ 9

8
2n.

Theorem 4.2. Suppose that A,B, C ⊂ 2[n] are cross-intersecting and A is
covering. Then

(4.2) |A|+ |B|+ |C| ≤ 5

4
2n.

For a family H let H∗ be the complex generated by H:

H∗ = {G : ∃H ∈ H, G ⊂ H}.

In both Theorems, replacing A,B, C by A∗,B∗, C∗ will not change the union
and covering properties and can only increase the size of the families. There-
fore in proving (4.1) and (4.2) we may assume that A,B, C are complexes.
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Proof of (4.1). Apply (2) for A = F , B = G to obtain

(4.3)
7

8
|A|+ |B| ≤ |A ∨ B|.

Since A ∨ B and C are cross-union, we infer from (2.1):

|A ∨ B|+ |C| ≤ 2n.

Combining with (4.3) yields

7

8
|A|+ 7

8
|B|+ |C| ≤ 2n.

Invoking (3.1) to A and B yields

1

8
|A|+ 1

8
|B| ≤ 1

8
2n.

Now adding these two inequalities gives (4.1).

Proof of (4.3). It is very similar. Using (2.1) for the pairs (A,B) and (A ∨
B, C) yields

1

4
|A|+ 1

4
|B| ≤ 1

4
2n,

|A ∨ B|+ |C| ≤ 2n.

Adding these two inequalities and using

|A ∨ B| ≥ 3

4
(|A|+ |B|)

gives (4.3).

Let us mention that without covering assumptions (2.1) implies the bound
|A| + |B| + |C| ≤ 3

2
· 2n which is best possible as shown by the choice A =

B = C = 2[n−1].
One can prove similar statements for r families, r > 3 as well, cf. [F].
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