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Erdős-Ko-Rado theorem for {0,±1}-vectors

Peter Frankl, Andrey Kupavskii∗

Abstract

The main object of this paper is to determine the maximum number of {0,±1}-
vectors subject to the following condition. All vectors have length n, exactly k of the

coordinates are +1 and one is −1, n ≥ 2k. Moreover, there are no two vectors whose

scalar product equals the possible minimum, −2. Thus, this problem may be seen as an

extension of the classical Erdős-Ko-Rado theorem. Rather surprisingly there is a phase

transition in the behaviour of the maximum at n = k2. Nevertheless, our solution is

complete. The main tools are from extremal set theory and some of them might be of

independent interest.

1 Introduction

Let [n] = {1, . . . , n}. Then any subset of the power set 2[n] is called a family of subsets, or
family for short. Another way of looking at families is by associating with a set R ⊂ [n] its
characteristic vector v(F ) = (x1, . . . , xn) with xi = 1 for i ∈ F and xi = 0 for i /∈ F .

This association of a family F with a family of vectors V = {v(F ) : F ∈ F} provides a
fruitful connection between some geometric problems concerning Rn and families of subsets
with restrictions on sizes of pairwise intersections. The by now classic result of Frankl and
Wilson [4] is a good example. Kahn and Kalai [7] gave it a twist to deduce counterexamples
to the famous Borsuk conjecture.

Raigorodskii [12] succeeded in improving the bounds in geometric applications by enlarg-
ing the scope of vectors from {0, 1}-vectors to {0,±1}-vectors.

Extremal problems for {0,±1}-vectors were considered before (cf. [1]), but no systematic
investigation happened so far. The aim of the present paper is to consider extending the
classical Erdős-Ko-Rado Theorem [2] to this setting. Before stating the main results, let us
introduce some definitions.

Definition 1. For 0 ≤ l, k < n define V(n, k, l) ⊂ Rn to be the set of all {0,±1}-vectors
having exactly k coordinates equal +1 and l coordinates equal −1.
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We tacitly assume that n ≥ k + l and also k ≥ l. Indeed, for l > k one can replace a
family V of vectors by −V = {−v : v ∈ V} and have the number of +1’s prevail. Note that

|V(n, k, l)| =

(

n

k

)(

n− k

l

)

. (1)

With this notation families of k-sets are just subsets of V(n, k, 0).
For vectors v, w their scalar product is denoted by 〈v, w〉. If both v and w are {0, 1}-

vectors, then their scalar product is non-negative with 〈v(F ), v(G)〉 = 0 iff F ∩G = ∅.

Definition 2. A family F ⊂ 2[n] is called intersecting, if F ∩G 6= ∅ holds for all F,G ∈ F .

For completeness let us state the Erdős-Ko-Rado Theorem.

Theorem 1 ([2]). Suppose that n ≥ 2k > 0 and F ⊂
(

[n]
k

)

is intersecting. Then

|F| ≤

(

n− 1

k − 1

)

. (2)

For n ≥ 2k the minimum possible scalar product in V(n, k, l) is −2l. Two vectors achieve
this iff the −1 coordinates in each of them match +1 coordinates in the other.

Definition 3. A family V of vectors is called intersecting, if the scalar product of any two

vectors in V exceeds the minimum of the scalar product in V(n, k, l).

By analogy with the Erdős-Ko-Rado Theorem define

m(n, k, l) = {max |V| : V ⊂ V(n, k, l),V is intersecting}.

With this terminology the Erdős-Ko-Rado Theorem can be stated as

m(n, k, 0) =

(

n− 1

k − 1

)

for n ≥ 2k.

The present paper is mostly devoted to the complete determination of m(n, k, 1). The
surprising fact is that the situation is very different from the case l = 0, the Erdős-Ko-Rado
Theorem. Namely, for n > k2 the Erdős-Ko-Rado-type construction is no longer optimal.

Definition 4. For n ≥ 2k define E(n, k, 1) = {(x1, . . . , xn) ∈ V(n, k, 1) : x1 = 1}.

Clearly, E(n, k, 1) is intersecting with

|E(n, k, 1) = k

(

n− 1

k

)

. (3)

Theorem 2. For 2k ≤ n ≤ k2

m(n, k, 1) = k

(

n− 1

k

)

holds. (4)
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The proof of (4) is much simpler in the range 2k ≤ n ≤ 3k − 1. It can be done using
Katona’s Circle Method (cf. [9]). We are going to present this case in Section 5. However,
for n ≥ 3k the proof of (4) is much harder and much more technical. It is postponed till
Section 7.

What happens for n > k2?
Suppose that V ⊂ V(n, k, 1) is intersecting. Adding an extra 0 in the n+1’st coordinate

makes it possible to consider V as a subset of V(n + 1, k, 1). Adding the
(

n

k

)

vectors that
have −1 in the n + 1’st coordinate produce an intersecting family P(V) ⊂ V(n + 1, k, 1).
This implies the following inequality:

m(n + 1, k, 1) ≥ m(n, k, 1) +

(

n

k

)

. (5)

As a counterpart for (5) we prove

Theorem 3. For n ≥ k2 one has

m(n + 1, k, 1) = m(n, k, 1) +

(

n

k

)

. (6)

As an immediate consequence we have the following.

Corollary 4. For n > k2 one has

m(n, k, 1) = m(k2, k, 1) +

(

k2

k

)

+

(

k2 + 1

k

)

+ . . .+

(

n− 1

k

)

.

The paper is organized as follows. In the next section we present a brief summary of
the paper, containing the ideas and the logic of the proofs. In Section 3 we discuss the
constructions of intersecting families. In Section 4 we summarize all the necessary material
from extremal set theory, in particular, concerning shadows, shifting and cross-intersecting
families, and prove several auxiliary statements. In Section 5 we prove (4) in the case
2k ≤ n ≤ 3k − 1. In Section 6 we prove Theorem 3. In Section 7 we prove (4) in the case
3k ≤ n ≤ k2.

Throughout the paper we assume that n ≥ 2k and that k > 1.

2 Summary

First, for the whole proof we assume that the families are shifted, i.e., 1’s normally appear
before 0’s and -1’s, and 0’s appear before -1’s among the coordinate positions of vectors from
our family. The precise definition of shifting and the proof of the fact that it preserves the
property that the family is intersecting is discussed in Section 4.1.
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We start with the sketch of the proof of Theorem 3. The goal is to show that the number
of the vectors containing +1 or −1 on the last coordinate is at most

(

n

k

)

. These vectors fall
into two groups: A, with −1 at the end, and B, with 1 at the end. We fix another coordinate
i < n+1 and take the vectors from A, denoted A(i), that have 1 on i-th position, and vectors
from B, denoted B(−i), that have −1 on i-th position.

For each such i we may treat the resulting families of vectors as two set families of
(k − 1)-sets, which are cross-intersecting. We remark that, due to shifting, B(−i) ⊂ A(i)
and, in particular, B(−i) is intersecting. Then we bound the expression |A(i)| + k|B(−i)|
from above using Theorem 9 from Section 4.4. Finally we average the result over all possible
i, obtaining a desired bound on |A| + |B|. Note that the coefficient k is needed so that we
get the expression |A|+ |B| after the averaging.

Next, we sketch the proof of Theorem 2. For 2k ≤ n ≤ 3k−1 the theorem is obtained via
a direct application of Katona’s circle method. The general form of this method is discussed
in Section 4.3. The only trick is to choose a good subset of vertices to which we can apply
the method.

The case of 3k ≤ n ≤ k2 is the most difficult part of the proof. The idea is to apply
again the argument with the averaging used for the proof of Theorem 3. However, in this
case there is a major complication. If one takes a look at Theorem 9 with given parameters
(the size of the ground set is n − 1, since i and n + 1 are not present, and the size of
each set in A(i),B(−i) is k − 1), the maximum value of the expression |A(i)| + k|B(−i)|
is (k + 1)

(

n−2
k−2

)

and is attained in the case when both are the trivial intersecting families.
However, if we look at the Erdős-Ko-Rado-type family, which is expected to be maximal in
this range, and the corresponding sets A(i),B(i), then they are indeed the trivial intersecting
families for all i except for i = 1. In that case we have the other extreme: B(1) is empty
and A(1) =

(

[n−1]
k−1

)

. Therefore, if we apply the bound from Theorem 9 for all i blindly, then

after the averaging we get a worse bound, with the difference of (k + 1)
(

n−2
k−2

)

−
(

n−1
k−1

)

from
the size of the Erdős-Ko-Rado-type family.

The idea to circumvent it is as follows. If B(−1) is empty, then we are home. If not, then,
due to the fact that the whole family is shifted, we may conclude that there is a relatively
big set I, I ⊂ [n], such that for all i ∈ I there are many sets in B(−i) that do not contain
element {1}. The precise statement is Proposition 24. The next step is to use Corollary 21 of
a theorem due to the first author from Section 4.7, which roughly states that we can bound
non-trivially the size of the intersecting family from above, provided that we know that it
is far from trivial intersecting family, that is, if there are many sets that do not contain the
element with the biggest degree. By non-trivial we mean a bound that is smaller than the
size of the trivial intersecting family.

The result of the manipulations presented in the previous paragraph is a non-trivial bound
on the size of each B(−i), i ∈ I, provided that B(−1) is non-empty. Finally, we bound the
size of each |A(i)|+ k|B(−i)| using Theorem 18 from Section 4.6, which is a refined version
of Theorem 9. Using this bound, we apply the same averaging as in Theorem 3 and show
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that in all cases the size of |A| + |B| is at most the size of |A| + |B| when B(−1) is empty.
Speaking very roughly, the sets in B(−1) force the sets B(−i) to be small, and thus force the
whole sum |A|+ |B| to be small. The large part of Section 7 is devoted to the calculations
that ensure that it is indeed the case.

Theorem 18, which gives very fine-grained bounds on |A(i)|+k|B(−i)| depending on the
size of B(−i), is itself one of the complicated parts of the proof. First, we do a detailed
analysis of the maximal cross-intersecting families using and refining Kruskal-Katona Theo-
rem in Section 4.5. The results of this section may be interesting in their own right, as they
provide a better understanding of the structure of cross-intersecting families. The language
of truncated characteristic vectors, introduced in Section 4.5 seems to be very convenient.
Lemmas 16, 17 allow us to reduce the wide array of different cross-intersecting families to
a few, one of which is guaranteed to be maximum w.r.t. the expression we maximize. The
proof of Theorem 18 itself is a more technical counterpart.

3 Comparing the constructions

To get some intuition for the problem, we start with the comparison of the constructions of
intersecting families briefly discussed in the introduction.

The first intersecting family E(n, k, 1) is the Erdős-Ko-Rado-type family, mentioned in
the introduction, in which all the vectors have 1 on the first position. We have e(n, k, 1) :=
|E(n, k, 1)| = k

(

n−1
k

)

. Note that we have v(n, k, 1) = |V(n, k, 1)| = (k + 1)
(

n

k+1

)

. Therefore,
we have e(n, k, 1)/v(n, k, 1) = k/n.

The second family P(n, k, 1) consists of all the vectors for which the last non-zero
coordinate is -1. It is easy to see that this is indeed an intersecting family. We have
p(n, k, 1) := |P(n, k, 1)| =

(

n

k+1

)

. Therefore, we have p(n, k, 1)/v(n, k, 1) = 1/(k + 1).

Proposition 5. The inequality e(n+1, k, 1)− e(n, k, 1) ≥ p(n+1, k, 1)− p(n, k, 1) holds iff
n ≤ k2. We have equality iff n = k2.

Proof. The proof is a matter of simple calculations:

e(n + 1, k, 1)− e(n, k, 1) = k

(

n

k

)

− k

(

n− 1

k

)

= k

(

n− 1

k − 1

)

,

p(n+ 1, k, 1)− p(n, k, 1) =

(

n+ 1

k + 1

)

−

(

n

k + 1

)

=

(

n

k

)

=
n

k

(

n− 1

k − 1

)

.

The second construction of intersecting families allows for the following generalization,
described in the introduction. Assume we are given an intersecting family F ⊂ V(n, k, 1).
We can construct an intersecting family P(F) ⊂ V(n + 1, k, 1) in the following way:

P(F) = {(v, 0) : v ∈ F}
⋃

{w = (w1, . . . , wn+1) : w ∈ V (n+ 1, k, 1), wn+1 = −1}.
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Since F is intersecting, P(F) is intersecting as well. We have

|P(F)| − |F| =

(

n

k

)

= p(n+ 1, k, 1)− p(n, k, 1). (7)

We denote by Ps(F) the result of s consecutive applications of operation P(∗) to the
family F . This gives us the following composite construction of an intersecting family
C(n, k, 1) ⊂ V(n, k, 1).

C(n, k, 1) =

{

E(n, k, 1), if n ≤ k2;

Pn−k2
(

E(n, k, 1)
)

, if n > k2.
(8)

We denote the cardinality of C(n, k, 1) by c(n, k, 1). We have c(n, k, 1) = e(n, k, 1) for
n ≤ k2 and, due to to (7), c(n, k, 1) = e(k2, k)−p(k2, k)+p(n, k) for n > k2. By Proposition 5,
C(n, k, 1) is the biggest intersecting family among the ones discussed in this subsection. In
what follows we prove that C(n, k, 1) has maximum cardinality among intersecting families
in V(n, k, 1).

Remark. Due to the fact that equality is possible in Proposition 5, there is a slightly
different intersecting family that has exactly the same cardinality as C(n, k, 1). Its definition
is almost the same, we only have to replace k2 by k2 + 1 in (8).

4 Auxiliaries from extremal set theory

In this section we present several auxiliary results and techniques that we’ll use in the latter
sections. Some of the results presented here are well-known, while the others appear to be
new and may be of independent interest.

4.1 Shifting

We start with shifting (left compression). For a given pair of indices i < j ∈ [n] and a vector
v = (v1, . . . , vn) ∈ Rn we define an (i, j)-shift vi,j of v in the following way. If vi ≥ vj , then
vi,j = v. If vi < vj, then vi,j = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn), that is, it is
obtained from v by interchanging its i-th and j-th coordinate.

Next, we define an (i, j)-shift Qi,j of Q for a finite system of vectors Q ⊂ Rn. We take a
vector v ∈ Q and replace it with vi,j, if vi,j is not already in Q. If it is, then we leave v in
the system. Formally,

Qi,j = {vi,j : v ∈ Q} ∪ {v : v,vi,j ∈ Q}.

We call a system Q shifted, if Q = Qi,j for all i < j ∈ [n]. Any system of vectors
may be made shifted by means of a finite number of (i, j)-shifts. Here is the crucial lemma
concerning shifting:

6



Lemma 6. For any Q ⊂ Rn and any i < j ∈ [n] we have

min{〈v,w〉 : v,w ∈ Q} ≤ min{〈v′,w′〉 : v′,w′ ∈ Qi,j}.

Proof. Take any two vectors v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Q. We denote by v′,w′ the
result of the (i, j)-shift in Q applied to v,w (that is, for v we have v′ = v or vi,j , depending
on whether vi,j is in Q or not). If v′ = v and w′ = w, then, obviously, 〈v′,w′〉 = 〈v,w〉.
Moreover, we have the same if both v′ 6= v and w′ 6= w. Therefore, the only nontrivial case
we need to consider is when v′ 6= v and w′ = w.

The reasons for v′ being different from v are unambiguous: vi < vj and vi,j /∈ Q. For
w′, however, there are two possible reasons not to be shifted. The first one is that wi ≥ wj

and, thus, w = wi,j. Then

〈v′,w′〉 − 〈v,w〉 = viwj + vjwi − viwi − vjwj = (vj − vi)(wi − wj) ≥ 0.

The second possible reason is that wi < wj, but wi,j ∈ Q. Then

〈v′,w′〉 = 〈vi,j,w〉 = 〈v,wi,j〉.

The last scalar product is, in fact, between two vectors from Q. Therefore, in all cases we
have exhibited a pair of vectors from Q, that have a scalar product smaller than or equal to
〈v′,w′〉.

Applied to our case, the lemma states that, given an intersecting family of vectors, we
may replace it with a shifted family of vectors, and the shifted family is intersecting as well.

4.2 Shadows

Given a family F ⊂
(

[n]
k

)

, we define its shadow σ(F) ⊂
(

[n]
k−1

)

as a family of all (k−1)-element
sets that are contained in one of the sets from F . More generally, if l < k, then the l-th
shadow σl(F) is the set of all (k − l)-element sets that are contained in of of F ∈ F . The
famous Kruskal-Katona theorem [8], [11] gives a sharp lower bound on the size of the shadow
of F in terms of k and |F|. We are going to discuss it in the forthcoming paragraphs.

However, we need an analogous relation for the set system and its shadow, but for sets
of specific type. Fix a cyclic permutation π of [n]. Consider the set U(π, k) ⊂

(

[n]
k

)

of n
k-sets, each of which forms an interval in the permutation π. That is, they are composed of
cyclically consecutive elements in the permutation.

Lemma 7. For any set system F ⊂ U(π, k) we have |σl(F)∩U(π, k− l)| ≥ min{|F|+ l, n}.

Proof. It is clearly sufficient to prove that |σ(F) ∩ U(π, k − 1)| ≥ min{|F| + 1, n}. If
|F| = |U(π, k)| = n, then σ(F) = U(π, k − 1) and the statement is obvious. Therefore, we
may assume that U(π, k) \ F 6= ∅.

Split the family F into subfamilies F1, . . . ,Fs, each of which form an “interval”. That
is, each Fi is a maximal sequence of different sets F 1

i , . . . , F
d
i ∈ F , in which each pair of

7



consecutive sets intersect in a (k − 1)-element set. Clearly, this is a partition of F into
equivalence classes. Moreover, sets from different subfamilies intersect in less than k − 1
elements. Therefore, σ(F) =

⊔

i σ(Fi).
For each subfamily we have |σ(Fi)∩U(π, k−1)| = |Fi|+1. This is due to the fact that each

F ∈ Fi contains two (k−1)-element sets from U(π, k−1), while each F ′ ∈ σ(Fi)∩U(π, k−1) is
contained in either one or two sets from Fi, and there are exactly two sets that are contained
in one set from Fi. Informally speaking, these are the “left shadow” of F 1

i and the “right
shadow” of F d

i . These two shadow sets are different, since U(π, k) \ Fi 6= ∅. Knowing the
“degrees” of the sets, we get the desired equality by simple double counting.

Finally, putting the statements for different i together, we get that |σ(F)∩U(π, k−1)| ≥
|F|+ s ≥ |F|+ 1. Repeating the argument l times yields the result.

4.3 General form of Katona’s circle method

For this subsection only we adopt the language of graph theory. Consider a graphG = (V,E),
which is vertex-transitive. That is, the group Aut(G) of automorphisms acts transitively on
V . For a given vertex v ∈ V we denote by Sv the stabilizer of v in Aut(G), which is a
subgroup of all automorphisms of G that map v to itself. A basic observation in group
theory states that the size of the stabilizer is the same for all the vertices of G. Indeed, if
v, w are two vertices of G and σ ∈ Aut(G) maps v to w, then Sv = σ−1Swσ and, therefore,
|Sw| = |Sv|. Moreover, |Sv| = |Svw|, where Svw is the set of elements of Aut(G) that maps v
into w. We have as well |Aut(G)| = |G||Sv|, where |G| is the number of vertices in G.

We remind the reader that α(G) is the independence number of G, that is, the maximum
number of vertices that are pairwise non-adjacent. The following lemma is a special case of
Lemma 1 from [10].

Lemma 8 (Katona, [10]). Let G be a vertex-transitive graph. Let H ⊂ G be a subgraph of

G. Then α(G) ≤ α(H)
|H|

|G|.

Remark. We formulated the lemma for the independence number, since it meets our
demands. However, an analogue of it may be formulated for some other graph characteristics.

Proof. For any σ ∈ Aut(G) we denote an induced subgraph of G on the set of vertices
σ(V (H)) = {σ(v) : v ∈ V (H)} by σ(H). The proof of the lemma goes by simple double
counting. Before doing the crucial double counting step, we remark that the union over all
σ ∈ Aut(G) of σ(V (H)) covers each vertex exactly |H||Sv| times. Take any independent set
I in G.

|I| =
1

|H||Sv|

∑

σ∈Aut(G)

|I ∩σ(H)| ≤
1

|H||Sv|

∑

σ∈Aut(G)

α(H) =
|Aut(G)|

|Sv|

α(H)

|H|
=

α(H)

|H|
|G|. (9)
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There is a natural connection between this lemma and intersecting families, which goes via
Kneser graphs. A Kneser graph KGn,k is graph which set of vertices is

(

[n]
k

)

, and two vertices
are adjacent iff the corresponding sets are disjoint. By definition the value of α(KGn,k) is

the size of a maximum intersecting family in
(

[n]
k

)

.

4.4 An inequality for cross-intersecting families of sets

In this subsection we prove a theorem about two families that we need for the proof of
Theorem 3.

Theorem 9. Let n ≥ 2k, c ≥ 1. Consider two families A ⊂
(

[n]
k

)

, B ⊂ A. Assume further

that for any B ∈ B, A ∈ A we have B ∩ A 6= ∅. Then

|A|+ c|B| ≤ max
{

(

n

k

)

, (c+ 1)

(

n− 1

k − 1

)

}

. (10)

Remark. Informally speaking, the theorem states that the sum is maximized in one of
the two cases: either B is empty and we may take A to be

(

[n]
k

)

, or when A = B, and each
of them is a trivial intersecting family, that is, in which all sets contain a fixed element.

Proof. The proof is an application of Katona’s cyclic permutation method. The following
proposition is the key step.

Proposition 10. Fix a cyclic permutation π of [n]. Consider the set U(π, k) ⊂
(

[n]
k

)

from

Section 4.2. Consider two subfamilies A(π) = A ∩ U(π, k) and B(π) = B ∩ U(π, k). Denote

a = |A(π)|, b = |B(π)|. Then

a+ cb ≤ max{n, (c+ 1)k}. (11)

Proof. If the set B(π) is empty, then the statement is trivial, since a ≤ |U(π, k)| = n.
Henceforth we assume that |B(π)| = s > 0. We pass to the complements of the sets from
B(π), considering the set B(π) = {B̄ : B ∈ B(π)}. On the one hand, we know that for each
A ∈ A(π) and B̄ ∈ B(π) we have A * B̄. In other words, A /∈ σn−2k

(

B(π)
)

. On the other

hand, by Lemma 7 we have
∣

∣σn−2k
(

B(π)
)
∣

∣ ≥ min{|B(π)| + n − 2k, n} = n − 2k + s, for if
∣

∣σn−2k
(

B(π)
)
∣

∣ = n, then A(π) and, consequently, B(π) is forced to be empty.
Combining these two facts, we get |A(π)| ≤ n− (n−2k+s) = 2k−s. From the following

chain s = |B(π)| ≤ |A(π)| ≤ 2k − s we conclude that s ≤ k. Finally,

|A(π)|+ c|B(π)| ≤ 2k − s+ cs = 2k + (c− 1)s ≤ (c+ 1)k.

Knowing Proposition 10, the rest of the proof of the lemma is a standard double-counting
argument, which was, in fact, carried out in the proof of Lemma 8. We take the circle U(π, k)
as a subgraph H from Lemma 8. In parallel to (9), we get

|A|+ c|B| ≤ max{n, (c+ 1)k}
1

n

(

n

k

)

= max
{

(

n

k

)

, (c+ 1)

(

n− 1

k − 1

)

}

.

9



4.5 Analysis of the Kruskal-Katona’s Theorem

For i ≤ j denote [i, j] = {i, i+ 1, . . . , j}. We introduce a lexicographical order < on the sets
from

(

[n]
k

)

by setting A < B iff either B ⊂ A or the minimal element of A \ B is less than
the minimal element of B \ A. We note that, in particular, A < A.

For 0 ≤ m ≤
(

n

k

)

let L(m, k) be the collection of m largest sets with respect to this order.
In the proof we are going to use the famous Kruskal-Katona Theorem [8], [11] in the form
due to Hilton [5]:

Theorem 11. Suppose that A ⊂
(

[n]
a

)

,B ⊂
(

[n]
b

)

are cross-intersecting. Then the same holds

for the families L(|A|, a),L(|B|, b).

We may demonstrate the power of Theorem 11 immediately, proving the following corol-
lary of it and Theorem 9:

Corollary 12. The statement of Theorem 9 holds even if we replace the condition B ⊂ A
by B ⊂

(

[n]
k

)

, |B| ≤ |A|.

Proof. The proof is straightforward. One has to pass to the families L(|A|, k),L(|B|, k).
Then the condition |B| ≤ |A| is equivalent to L(|B|, k) ⊂ L(|A|, k). After we just have to
apply Theorem 9 to the families L(|A|, k),L(|B|, k).

To avoid trivialities, for the whole section we assume that a+ b ≤ n.
We say, that two sets S and T intersect strongly, if there exists a positive integer j

satisfying: (1) S ∩ T ∩ [j] = {j}. (2) S ∪ T ⊃ [j]. Let S be a finite s-element set and t ≥ s
an integer. Define the set family L(S, t) by

L(S, t) = {T ∈

(

[n]

t

)

: T < S}

Proposition 13. Let A and B be an a-element and a b-element set, respectively. Assume

that n ≥ a+b. Then L(A, a) and L(B, b) are cross-intersecting iff A and B intersect strongly.

Proof. First suppose that L(A, a) and L(B, b) are cross-intersecting. Then A and B intersect.
Let j be the smallest integer contained in both. If A ∪ B contains [j], then both properties
(1) and (2) from the definition of strong intersecting sets are satisfied. Otherwise, there
exists i < j such that i /∈ A ∩ B. since n ≥ a + b, there exists an a-element set C satisfying
C ∩ [i] = A∩ [i]∪{i}, which is disjoint with B. At the same time, C < A, contradicting the
assumption that L(A, a) and L(B, b) are cross-intersecting.

Now suppose that A and B intersect strongly. Let C < A. We claim that C and B
intersect strongly. If C ∩ [j] = A ∩ [j], then it follows directly from (1) and (2). Otherwise,
let i be the first element where they differ. Since C < A, i ∈ C\A, i < j. Now both conditions
(1) and (2) hold for C and B with j = h. Repeating the same argument for any D with
D < B gives that C and D intersect strongly. In particular, they intersect non-trivially.
Consequently, L(A, a) and L(B, b) are cross-intersecting.
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Definition 1. We say that A ⊂
(

[n]
a

)

and B ⊂
(

[n]
b

)

form a maximal cross-intersecting pair,

if whenever A′ ⊂
(

[n]
a

)

and B′ ⊂
(

[n]
b

)

are cross-intersecting with A′ ⊃ A and B′ ⊃ B, then
necessarily A = A′ and B = B′ holds.

Now we are in a position to prove the following strengthening of Theorem 11. We believe
that this proposition is of independent interest. It was definitely of great use in proving
Theorem 2.

Proposition 14. Let a and b be positive integers, a + b ≤ n. Let P and Q be non-empty

subsets of [n] with |P | ≤ a, |Q| ≤ b. Suppose that P and Q intersect strongly in their last

element. That is, there exists j, such that P ∩Q = {j} and P ∪Q = [j]. Then L(P, a) and
L(Q, b) form a maximal pair of cross-intersecting families.

Inversely, if L(m, a) and L(r, b) form a maximal pair of cross-intersecting families, then

it is possible to find sets P and Q such that L(m, a) = L(P, a), L(r, b) = L(Q, b) and P,Q
satisfy the above condition.

Proof. If P and Q satisfy the condition then L(P, a) and L(Q, b) form a pair of cross-
intersecting families by Proposition 13. We have to show that it is a maximal pair. Let A be
the a-set, following L(P, a) in the lexicographical order. Then A is the set obtained from P
by omitting the element {j} and adjoining the interval [j+1, p], where p = a−|P |+1. Note
that A∩Q = ∅ , therefore there are members of L(Q, b) containing Q, which are disjoint with
A. The same argument applies to the set B, following the initial segment L(Q, b). Thus, the
maximality of the pair L(P, a) and L(Q, b) is proved.

Next, let A, B be the last member of L(m, a) and L(r, b), respectively. Let j be the
smallest element of A ∩ B. Note that the cross-intersecting property of the two families
implies that j is well-defined. Define P = A ∩ [j], Q = B ∩ [j].

First we prove that P ∪Q = [j]. Suppose the contrary and let i < j be an element that
is not contained in P ∪Q. Then P ′ = (P − {j}) ∪ i precedes P in the lexicographical order
and hence also P ′ < A. Consequently, all a-element supersets of P ′ precede A as well. Thus
they are all members of L(m, a). However, P ′ ∩ B = ∅ and, since a + b ≤ n we have that
some superset P ′ is disjoint to B, a contradiction.

The proof is almost complete. We have just proved that P andQ are strongly intersecting.
By Proposition 13 the families L(P, a) and L(Q, b) form a pair of cross-intersecting families.
These families contain L(m, a) and L(r, b), respectively. By the maximality of the pair
L(m, a) and L(r, b), L(m, a) = L(P, a),L(r, b) = L(Q, b) must hold.

In what follows we will use the following simple statement:

Proposition 15. Let A ⊂
(

n

a

)

and B ⊂
(

n

b

)

be cross-intersecting. Then we have |A|+c|B| ≤
max

{(

n

a

)

, c
(

n

b

)}

.

Proof. Consider the bipartite graph with one part being
(

n

a

)

and the other part being
(

n

b

)

,
with two sets connected by an edge if one is disjoint from the other. Assign weight 1 to each
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vertex in
(

n

a

)

and weight c to any vertex in
(

n

b

)

. Then the proposition essentially states that
the independent set of the biggest weight in this graph coincides with one of its two parts.
It is an easy consequence of the fact that the graph is regular in each of its parts.

Since we are interested in bounding |L(m, a)| + c|L(r, b)| from above, we may w.l.o.g.
restrict our attention only to maximal intersecting pairs of families, which, by Proposition
14, have the type L(P, a),L(Q, b) for some P,Q ⊂ [n]. Assume that P ∩Q = {i}. Then we
call w = (w1, . . . , wi) a truncated characteristic vector of P and L(P, a), if wj = 1 ⇔ j ∈ P.
We define v = (v1, . . . , vi) analogously w.r.t. Q. We note that wi = vi = 1. We would also
say that the family L(P, a) is defined by w. For a given set R ⊂ [n] its characteristic vector

r = (r1, . . . , rn) is defined as follows: rj = 1 iff j ∈ R.
This easy proposition gives a very useful consequence concerning the size of a maximal

cross-intersecting pair of families L(m, a),L(r, b).

Lemma 16. Consider two maximal cross-intersecting families A = L(P, a), B = L(Q, b).
Let w = (w1, . . . , wi),v = (v1, . . . , vi) be the truncated characteristic vectors of P,Q, respec-

tively. Take any j < i such that (vj, vj+1) = (1, 0).
Consider the following two pairs of cross-intersecting families. The first pair is A′,B′,

where B′ is defined by the vector v′ = (v1, . . . , vj) and A′ is defined by w′ = (w1, . . . , wj−1, 1).
The second pair is A′′,B′′, where B′′ is defined by the vector v′′ = (v1, . . . , vj, 1) and A′′ is

defined by w′′ = (w1, . . . , wj, 1).
Then for any c > o we have

|A|+ c|B| ≤ max{|A′|+ c|B′|, |A′′|+ c|B′′|}. (12)

Before going into the proof of the lemma, we introduce the following notation. For disjoint
X, Y ⊂ [n] and a family F ⊂

(

n

k

)

we define F(XȲ ) = {F −X : X ⊂ F ∈ F , Y ∩ F = ∅}.
For a vector v we define F(v) = F(XȲ ), where X is the set of 1-coordinates of v, and Y is
the set of 0-coordinates.

Proof. We remark that, by definition, we have B′′ ⊂ B ⊂ B′ and A′′ ⊃ A ⊃ A′. It it easier
for us to argue in terms of characteristic vectors rather than sets.

All the vectors u from B′ − B′′ have the first j + 1 coordinates the same as u =
(v1, . . . , vj , 0). Analogously, all the vectors from A′′ −A′ have the first j +1 coordinates the
same as p = (w1, . . . , , wj, 1). Therefore, to prove the lemma one has to show that

|A(p)|+ c|B(u)| ≤ max{|A′′ −A′|, c|B′ − B′′|}. (13)

Since the scalar product of u and p is zero, the families A(p) and B(u) are cross-intersecting.
Therefore, (13) follows immediately from Proposition 15 and we are done.

Using almost identical proof, one may get the following twin of Lemma 16:
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Lemma 17. Consider two maximal cross-intersecting families A = L(P, a), B = L(Q, b).
Let w = (w1, . . . , wi),v = (v1, . . . , vi) be the truncated characteristic vectors of P,Q, respec-

tively. Take any j < i such that (vj, vj+1) = (1, 1).
Consider the following cross-intersecting family. It is a pair A′,B′, where B′ is defined

by the vector v′ = (v1, . . . , vj) and A′ is defined by w′ = (w1, . . . , wj−11).
Then for any c > o we have

|A|+ c|B| ≤ max

{

|A′|+ c|B′|,

(

n

a

)}

. (14)

We remark that in the proof of Lemma 17 instead of A′′,B′′ from Lemma 16 we use
A′′ =

(

n

a

)

,B′′ = ∅.

4.6 A sharpening of Theorem 9

In the proof of Theorem 23 we need a sharpened version of Theorem 9, which proof relies
on the material from the previous subsection.

Theorem 18. Let k, n ∈ N,where k ≥ 2 and n ≥ 2k + 1. Consider two families A ⊂
(

[n]
k

)

,

B ⊂ A. Assume further that for any B ∈ B, A ∈ A we have B ∩ A 6= ∅. Let 2 ≤ i ≤ k and

|B| ≤
(

n−1
k−1

)

−
(

n−i

k−1

)

. Then for any c ≥ 1

|A|+ c|B| ≤ max
{

(c+ 1)

(

n− 1

k − 1

)

− c

(

n− i

k − 1

)

+

(

n− i

k − i+ 1

)

,

(c+ 1)

(

n− 1

k − 1

)

− (c− 1)

(

n− 2

k − 1

)

,

(

n

k

)

}

. (15)

Proof. If B is empty, then the statement is obvious, therefore, we assume the opposite
for the rest of the proof. By Theorem 11, L0 = L(|A|, k) and L1 = L(|B|, k) are cross-
intersecting. W.l.o.g. we may assume that this is a maximal cross-intersecting pair, and,
thus, by Proposition 14, L0 = L(P, k) and L1 = L(Q, k) for some P,Q, |P | ≤ k, |Q| ≤ k.
Consider the truncated characteristic vector v = (v1, . . . , vl) of L1. We know for sure that
v1 = 1, since B is intersecting. We consider several cases depending on the form of v.

(i) Assume that v1 = v2 = v3 = 1. Then, applying Lemma 17 with j = 2, we get that

|L0|+ c|L1| ≤ max
{

|L′
0|+ c|L′

1|,
(

n

k

)

}

, where L′
1 is defined by the characteristic vector (1, 1)

and L′
0 is defined by the vector (0, 1). It is easy to see that

|L′
0|+ c|L′

1| =

(

n− 1

k − 1

)

+

(

n− 2

k − 1

)

+ c

(

n− 2

k − 2

)

= (c+ 1)

(

n− 1

k − 1

)

− (c− 1)

(

n− 2

k − 1

)

.

(ii) Assume that v1 = v2 = 1, v3 = 0. We first apply Lemma 16 with j = 2, obtaining
two possible candidates for maximum cross-intersecting families. One of them is the pair
L′

0,L
′
1. The other one is L′′

0,L
′′
1, where L′′

1 is defined by the characteristic vector (1, 1, 1).
Therefore, for these two families we may apply (i) and we are done.
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(iii) Assume that v2 = v3 = . . . = vj−1 = 0, vj = 1. We either apply Lemma 17
with j directly, or first apply Lemma 16, and then Lemma 17. In either case, we conclude

that |L0|+ c|L1| ≤ max
{

|L̂0| + c|L̂1|,
(

n

k

)

}

, where L̂0 is defined by the characteristic vector

w = (w1, . . . , wj), where w1 = 0 and w2 = . . . = wj = 1 and L̂1 is defined by the characteristic
vector u = (u1, . . . , uj), where u1 = uj = 1, u2 = . . . = uj−1 = 0.

Due to the inequality |B| ≤
(

n−1
k−1

)

−
(

n−i

k−1

)

it is easy to see that j ≤ i. Calculating the

cardinalities of L̂1, L̂0, we get

|L′
0|+ c|L′

1| = (c+ 1)

(

n− 1

k − 1

)

− c

(

n− j

k − 1

)

+

(

n− j

k − j + 1

)

=: f(j).

Indeed, L̂0 consists of all the sets containing {1}, or [2, j]. The family L̂1 contains all the
sets containing {1} and at least one of [2, j]. Therefore, the last thing we have to show is
that for j ≥ 3 f(j) increases as j increases. We note that for j = 2 the value of f(j) is
exactly the second expression from the maximum in (15). We have

f(j + 1)− f(j) = c
(

(

n− j

k − 1

)

−

(

n− j − 1

k − 1

)

)

−
(

(

n− j

k − j + 1

)

−

(

n− j − 1

k − j

)

)

=

= c

(

n− j − 1

k − 2

)

−

(

n− j − 1

k − j + 1

)

≥ 0.

This is due to the fact that c ≥ 1 and
(

n−j−1
k−2

)

(

n−j−1
k−j+1

) =

j−2
∏

l=2

n− k − l

k − l
≥ 1,

since n > 2k. This completes the proof of the theorem.

For our purposes it would be more convenient to apply the following slightly modified
version of the theorem:

Corollary 19. In the conditions of Theorem 18 let 2 ≤ i ≤ k and |B| ≤
(

n−1
k−1

)

−
(

n−i

k−1

)

+ x
for some natural x. Then

|A|+ c|B| ≤ max
{

(c+ 1)

(

n− 1

k − 1

)

− c

(

n− i

k − 1

)

+

(

n− i

k − i+ 1

)

+ kx,

(c+ 1)

(

n− 1

k − 1

)

− (c− 1)

(

n− 2

k − 1

)

,

(

n

k

)

}

. (16)

Proof. The proof is basically the same, the only thing one has to notice that, if |B| gets
bigger, then |A| can only get smaller. Therefore, if |B| =

(

n−1
k−1

)

−
(

n−i−1
k−1

)

+ y, 1 ≤ y ≤ x,
then one just remove y elements from |B|, applies the same proof, and puts the elements
back, adding cy to the right hand side. Note that we only add cx to the first expression,
since the other two appear in the proof only when |B| is relatively small.
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4.7 Intersecting families with conditions on maximum degree

For a given family F let d(F) = maxl∈[n] |{F ∈ F : l ∈ F}| be the maximal degree of
an element of [n] in F . The other important ingredient of the proof of Theorem 2 is the
following theorem due to Frankl [3]:

Theorem 20. Suppose that n > 2k, 3 ≤ i ≤ k + 1, F ⊂
(

[n]
k

)

, F is intersecting and

d(F) ≤

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

=: h(i).

Then

|F| ≤

(

n− 1

k − 1

)

−

(

n− i

k − 1

)

+

(

n− i

k − i+ 1

)

=: g(i).

It is not difficult to see that g(3) = g(4) and g(i) < g(j) if 4 ≤ i < j. We are interested
in the following corollary of this theorem:

Corollary 21. Let F ⊂
(

[n]
k

)

be an intersecting family. If for some 4 ≤ i ≤ k + 1

|F| − d(F) ≥

(

n− i

k − i+ 1

)

, (17)

Then |F| ≤ g(i) holds. In particular, if |F| − d(F) > 0, then |F| ≤ g(k + 1) holds.

Proof. W.l.o.g. assume that d(F) = |F(1)|. Consider the families F(1̄), F(1). They
are cross-intersecting and |F(1̄)| ≥

(

n−i

k−i+1

)

. By Theorem 11 the families L(|F(1̄)|, k) and
L(|F(1)|, k − 1) are cross-intersecting. By (17) L(|F(1̄)|, k) contains all the sets that con-
tain [2, k], therefore, each set from L(|F(1)|, k − 1) contains one of [2, k] and, consequently,
d(F) = |F(1)| ≤ h(i). We apply Theorem 20 and get the desired conclusion.

5 Proof of Theorem 2 in the case 2k ≤ n ≤ 3k − 1

In this section we show that E(n, k, 1) has the maximum cardinality among intersecting
families for 2k ≤ n ≤ 3k − 1.

The proof is based on the application of the general Katona’s circular method directly
for V(n, k, 1). Consider the following subfamily H of V(n, k, 1):

H = {v = (v1, . . . , vn) : for some i ∈ [n] vi = . . . = vi+k−1 = 1, vi−k = −1}.

We remark that all indices are modulo n. That is, it is a usual Katona’s circle for k-sets,
but in which each k-set gets an extra −1-coordinate, which is at distance k from the 1-part
along the circle.

Take an intersecting family F ⊂ V(n, k, 1). We claim that |F ∩ H| ≤ k. Denote by
F ′ ⊂

(

[n]
k

)

the family of sets of 1’s from F , and similarly for H′. We claim that H′ ∩ F ′ is
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an intersecting family. Assume that there are two sets F ′
1, F

′
2 ∈ H′ ∩ F ′, that are disjoint.

Assume for simplicity that F ′
2 = [k+1, 2k]. Then F ′

1 is obliged to contain {1}, since any cyclic
interval of length k in [n] \ [k+1, 2k] contains {1}, provided that n ≤ 3k− 1. Therefore, the
corresponding vector F1 ∈ F ∩H has 1 on the first coordinate position. At the same time,
by definition of H, the vector F2 has -1 on the first coordinate position. Interchanging the
roles of F1, F2, we get that both of them have -1 in front of 1 of the other vector. Moreover,
their sets of 1’s do not intersect. Therefore, they form a minimal scalar product. Therefore,
H′ ∩ F ′ is indeed intersecting, and |H ∩ F| = |H′ ∩ F ′| ≤ k.

The rest of the argument is an application of Lemma 8 to the following graph. Let G have
the set of vertices V(n, k, 1), with two vertices connected if the corresponding vectors have
scalar product -2. Then |F| ≤ α(G) and the considerations from the previous paragraph
give that α(G|H) = k). On the other hand, by Lemma 8 we have

α(G) ≤
α(G|H)

|H|
|V(n, k, 1)| =

k

n
|V(n, k, 1)| = e(n, k, 1).

The last equality was obtained in Section 3.

6 Proof of Theorem 3

For any intersecting family G ⊂ V(n + 1, k, 1) we introduce the following notations. By
G(i),G(−i),G (̄i) we denote the subfamilies of G, that have 1,−1, 0 as an i-th coordinate,
respectively. It is important to mention that we consider them as families of vectors on the
set of coordinates with the i-th coordinate excluded. The definition extends in an obvious
way on the family G(I1, Ī2,−I3), where I1, I2, I3 ⊂ [n] are non-intersecting sets of indices.

Consider a maximum intersecting family F ⊂ V(n + 1, k, 1). Based on the conclusion
of Section 4.1, we may and will assume that F is shifted. Denote A = F(−(n + 1)) and
B = F(n+ 1).

Proposition 22. We have m(n + 1, k, 1)−m(n, k, 1) ≤ |A|+ |B|.

Proof. First, by definition we have |F| = m(n+1, k, 1). Second, consider a family F(n+ 1).
It is a subfamily in V(n, k, 1), moreover, it is intersecting. Therefore, |F ′| ≤ m(n, k, 1).
Finally, m(n + 1, k, 1) = |F| = |F(n+ 1)|+ |A|+ |B|.

For a given i ∈ [n] consider two families of sets B(−i),A(i). We have B(−i),A(i) ⊂
(

[n]−{i}
k−1

)

. Moreover, B(−i) ⊂ A(i) due to shifting, and we may apply Theorem 9 to these two
families with c = k and obtain

|A(i)|+ k|B(−i)| ≤ max
{

(

n− 1

k − 1

)

, (k + 1)

(

n− 2

k − 2

)

}

.

Summing this inequality over all i ∈ [n], we get

n
∑

i=1

|A(i)|+ k|B(−i)| = k(|A|+ |B|) ≤ nmax
{

(

n− 1

k − 1

)

, (k + 1)

(

n− 2

k − 2

)

}
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|A|+ |B| ≤ max
{

(

n

k

)

,
n(k + 1)

k

(

n− 2

k − 2

)

}

. (18)

Maximum in the right hand side of (18) is attained on the first expression if

(

n

k

)

=
n(n− 1)

k(k − 1)

(

n− 2

k − 2

)

≥
n(k + 1)

k

(

n− 2

k − 2

)

,

which is equivalent to n ≥ k2.

Proof of Theorem 3. The bound m(n+1, k, 1) ≤ m(n, k, 1)+
(

n

k

)

was, in fact, already proven
in this section. In the notations above, consider F ,A,B. On the one hand, by (18) and the
discussion after this inequality, we have |A| + |B| ≤

(

n

k

)

for n ≥ k2. Applying Proposition
22, we get the bound.

The bound m(n + 1, k, 1) ≥ m(n, k, 1) +
(

n

k

)

was already obtained in Section 3 (and
mentioned in the introduction).

7 Proof of Theorem 2 in the case 3k ≤ n ≤ k2

Looking at equation (18) in the case n < k2, we see that m(n + 1, k, 1) − m(n, k, 1) ≤
n(k+1)

k

(

n−2
k−2

)

. On the other hand, from Section 3 we know, that e(n + 1, k) − e(n, k) =

k
(

n−1
k−1

)

= (n−1)k
k−1

(

n−2
k−2

)

. We have n(k+1)
k

− (n−1)k
k−1

= k2−n
k(k−1)

. Using Theorem 18 and Corollary

21, we are going to improve the inequality (18), so that it matches the bound given by
the construction E(n, k, 1). To complete the proof of Theorem 2, it is enough to prove the
following theorem.

Theorem 23. Let k ≥ 3, 3k − 1 ≤ n < k2. We have m(n + 1, k, 1) − m(n, k, 1) =
(n−1)k
k−1

(

n−2
k−2

)

= e(n+ 1, k)− e(n, k).

Before proving the theorem, we state and prove the following proposition:

Proposition 24. There is a subset I ⊂ [n], |I| ≥ n− ⌈3k/2⌉, such that for every l ∈ I we

have |B(1̄,−l)| ≥ 1
3
|B(−1)|.

Proof. Take any B ∈ B(−1). Then, due to the fact that F is shifted, if we swap -1, which is
on the first coordinate position, and some of the 0’s in B, we obtain a set B′ ∈ B(1̄). Since
there are n−k−1 0’s in each B ∈ B(−1), we may obtain n−k−1 sets B′ ∈ B(1̄) out of each B.
Moreover, any two sets obtained are different. Indeed, for B any two vectors obtained out of
it have different positions of -1, while any two vectors obtained from different B1, B2 ∈ B(−1)
have different sets of 1’s. Thus, |B(1̄,−2)|+ . . .+ |B(1̄,−n)| ≥ (n−k−1)|B(−1)|. By pigeon-
hole principle we get that one of the summands must be at least n−k−1

n−1
|B(−1)|. This is the

first element from I.
Once we have found the (i−1)-th element, which satisfies the inequality from the propo-

sition, we add it to I, and delete this element from all the vectors from B(−1) and from
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the ground set. The set of already found elements we denote Ii−1. After (i − 1) steps each
of the sets from the modified B(−1) has at least n − k − i 0’s, while the total number of
coordinates is n− i. Therefore, the inequality from the previous paragraph, modified for this
case, looks like

∑

j∈[2,n]\Ii−1
|B(1̄,−j)| ≥ (n− k− i)|B(−1)|, and by pigeon-hole principle we

can find an element li such that |B(1̄,−li)| ≤
n−k−i
n−i

|B(−1)|, which is bigger than 1
3
|B(−1)|

for i ≤ n− ⌈3k/2⌉.

Proof of Theorem 23. We argue in terms used in Section 6. We consider several cases de-
pending on the size of B(−1).

(i) First, assume that B(−1) is empty. Then, applying Theorem 9 with c = k, we get
|A(i)|+ k|B(−i)| ≤ (k + 1)

(

n−2
k−2

)

for i = 2, . . . , n and |A(1)|+ k|B(−1) ≤
(

n−1
k−1

)

. Therefore,

n
∑

i=1

|A(i)|+ k|B(−i)| = k(|A|+ |B|) ≤

(

n− 1

k − 1

)

+ (n− 1)(k + 1)

(

n− 2

k − 2

)

|A|+|B| ≤
( n− 1

(k − 1)k
+
(n− 1)(k + 1)

k

)

(

n− 2

k − 2

)

=
(n− 1)k

k − 1

(

n− 2

k − 2

)

= e(n+1, k)−e(n, k).

It is apparent from the calculations above that the theorem follows if we succeed to show
that for some I ⊂ [2, n] we have

∑

l∈I

(

|A(l)|+ k|B(−l)|
)

+|kB(−1)| ≤ |I|(k + 1)
(

n−2
k−2

)

. This
is exactly what are we going to do in a range of cases.

(ii) In this case assume that k ≥ 4. Assume that |B(−1)| ≥ 3
(

n−5
k−4

)

. Then, by Proposition

24, we can find I ⊂ [2, n], |I| ≥ n − ⌈3k/2⌉, such that we have |B(1̄,−l)| ≥
(

n−5
k−4

)

. For any
l ∈ I consider the collection B(−l). Due to shifting, we know that the maximum degree
d(B(−l)) is equal to the number of sets from B(−l) that have 1 on the first coordinate
position. Therefore, we know that |B(−l)| − d(B(−l))| = |B(1̄,−l)| ≥

(

n−5
k−4

)

and, thus, we
may apply Corollary 21 to B(−l) with i = 4 and n, k replaced by n − 1, k − 1. We obtain
that

|B(−l)| ≤

(

n− 2

k − 2

)

−

(

n− 5

k − 2

)

+

(

n− 5

k − 4

)

.

For each l ∈ I we apply Corollary 19 to B(−l),A(−l) with c = k and i = 4 and obtain,
that

|A(l)|+ k|B(−l)| ≤ max
{

(k + 1)

(

n− 2

k − 2

)

− k

(

n− 5

k − 2

)

+ (k + 1)

(

n− 5

k − 4

)

,

(k + 1)

(

n− 2

k − 2

)

− (k − 1)

(

n− 3

k − 2

)

,

(

n− 1

k − 1

)

}

.

If the maximum of the right hand side is attained on the third summand, then for a single
l ∈ I

|A(l)|+ k|B(−l)|+ |A(1)|+ k|B(−1)| ≤

(

n− 1

k − 1

)

+ (k + 1)

(

n− 2

k − 2

)
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and we are done. If the maximum is attained on the second expression, then |I| ≥ 3 for
n ≥ 3k − 1, k ≥ 4, and for three different l1, l2, l3 we have

3
∑

j=1

(|A(lj)|+ k|B(−lj)|) + k|B(−1)| − (3k + 3)

(

n− 2

k − 2

)

= k

(

n− 2

k − 2

)

− 3(k − 1)

(

n− 3

k − 2

)

≤

≤ (2k − 3(k − 1))

(

n− 3

k − 2

)

≤ 0,

since k ≥ 3, and we are done. Finally, if the maximum is attained on the first summand,
then

1

|I|

(

∑

l∈I

(|A(l)|+ k|B(−l)|) + k|B(−1)|
)

− (k + 1)

(

n− 2

k − 2

)

≤

≤− k

(

n− 5

k − 2

)

+ (k + 1)

(

n− 5

k − 4

)

+
k

|I|

(

n− 2

k − 2

)

. (19)

Before continuing, we need the following two bounds:

(

n−5
k−4

)

(

n−5
k−2

) =
(k − 2)(k − 3)

(n− k − 2)(n− k − 1)
≤

1

4
.

(

n− 2

k − 2

)

=
(n− 4)(n− 3)(n− 2)

(n− k)(n− k − 1)(n− k − 2)

(

n− 5

k − 2

)

≤
27

8

(

n− 5

k − 2

)

.

Using these three bounds, we get

(19) ≤−
(

−
3

4
k +

1

4

)

(

n− 5

k − 2

)

+
27

8

k

n− ⌈3k/2⌉

(

n− 5

k − 2

)

≤

≤
(

−
3

4
k +

1

4
+

27k

8(⌊3k/2⌋ − 1)

)

(

n− 5

k − 2

)

≤ 0,

where the last inequality holds for k = 4, 5 and, thus, for all k ≥ 4. This case is settled.

(iii) Assume that for some 5 ≤ i ≤ k + 1 we have

3

(

n− i− 1

k − i

)

≤ |B(−1)| ≤ 3

(

n− i

k − i+ 1

)

.

Similarly to the previous case, for I ⊂ [n], |I| = n− ⌈3
2
k⌉, we obtain

|B(−l)| ≤

(

n− 2

k − 2

)

−

(

n− i− 1

k − 2

)

+

(

n− i− 1

k − i

)

.

We again apply Corollary 19 for each B(−l),A(−l). Again, if the maximum of the expression
from the inequality (16) is attained on one of the last two expressions, we are done. If it is
attained on the first one, then
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1

|I|

(

∑

l∈I

(|A(l)|+ k|B(−l)|) + k|B(−1)|
)

− (k + 1)

(

n− 2

k − 2

)

≤

≤− k

(

n− i− 1

k − 2

)

+ (k + 1)

(

n− i− 1

k − i

)

+
k

n− ⌈3k/2⌉
|B(−1)| ≤

≤ − k

(

n− i− 1

k − 2

)

+ (k + 1)

(

n− i− 1

k − i

)

+
3k

⌊3k/2⌋ − 1

(

n− i

k − i+ 1

)

. (20)

To proceed further, we need the following bounds:

(

n−i−1
k−i

)

(

n−i−1
k−2

) =

i−1
∏

j=2

k − j

n− k − j + 1
≤

(1

2

)i−2

≤
1

8
.

(

n−i

k−i+1

)

(

n−i−1
k−2

) ≤
(n− i)

∏i−2
j=2(k − j)

∏i−2
j=1(n− k − j)

≤
3

4
.

Now we may continue.

(20) ≤
(

−
7

8
k +

1

8
+

9k

4(⌊3k/2⌋ − 1)

)

(

n− i− 1

k − 2

)

≤ 0,

where the last inequality holds for k = 3 and, thus, for all k ≥ 3.

(iv) The proof so far have covered all the cases for k ≥ 4. Therefore, it remains to
consider the case k = 3. Then the only feasible value of n is n = 8.

Proposition 25. The family B(−1) is 2-intersecting, that is, every pair of sets have at least

two elements in common.

Proof. Assume the contrary: there are two vectors v,w ∈ F , v = (−1, v2, . . . , vn, 1) and
w = (−1, w2, . . . , wn, 1), such there is at most 1 coordinate position in the interval [2, n] in
which both vectors have 1. If there is no such coordinate, then, applying (1, n + 1)-shifting
operation to v, we get two vectors that have scalar product −2. On the other hand, F is
shifted and, thus, v1,n+1 ∈ F . This is a contradiction.

Assume further, that there is one such coordinate, say, i. First we do a (1, i)-shift of v,
obtaining the vector v1,i, which has a common 1 with w in the (n + 1)st coordinate. Since
n + 1 > 2k + 1, there is at least one coordinate position, say, j, on which both v1,i and w
have 0. We apply a (j, n + 1)-shift to w. The vectors v1,i and wj,n+1 have scalar product
−2 and both lie in F , a contradiction.

In case k = 3 each set from B(−1) is a 2-element set and, therefore, Proposition 25
gives that |B(−1)| ≤ 1. Arguing as in the part (i) of the proof, it is sufficient to show that
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|A(1)|+ k|B(−1)| ≤
(

n−1
k−1

)

=
(

7
2

)

. If B(−1) = ∅, then the above inequality is obvious and we

are done. If B(−1) = 1, then |A(1)| ≤
(

n−1
k−1

)

−
(

n−k

k−1

)

=
(

7
2

)

−
(

5
2

)

. Therefore,

|A(1)|+ k|B(−1)| =

(

7

2

)

−

(

5

2

)

+ 3 <

(

7

2

)

.

This concludes the proof of the theorem.
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[9] G. Katona, A simple proof of the Erdős–Ko–Rado Theorem, J. Combin. Theory, Ser. B
13 (1972), 183–184.

[10] G.O.H. Katona, Extremal problems for hypergraphs, Combinatorics, Mathematical Cen-
tre Tracts 56 (1974), Part 2, 13–42.

[11] J.B. Kruskal, The Number of Simplices in a Complex, Mathematical optimization tech-
niques 251 (1963), 251-278.

[12] A.M. Raigorodskii, Borsuk’s problem and the chromatic numbers of some metric spaces,
Russian Math. Surveys, 56 (2001), N1, 103 - 139.

22


	1 Introduction
	2 Summary
	3 Comparing the constructions
	4 Auxiliaries from extremal set theory
	4.1 Shifting
	4.2 Shadows
	4.3 General form of Katona's circle method
	4.4 An inequality for cross-intersecting families of sets
	4.5 Analysis of the Kruskal-Katona's Theorem
	4.6 A sharpening of Theorem ??
	4.7 Intersecting families with conditions on maximum degree

	5 Proof of Theorem ?? in the case 2kn3k-1
	6 Proof of Theorem ??
	7 Proof of Theorem ?? in the case 3knk2
	8 Acknowledgements

