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STONE TYPE REPRESENTATION THEOREMS VIA

GAMES

TUĞBA ASLAN AND MOHAMED KHALED

Abstract. The classes of relativized relation algebras (whose units are
not necessarily transitive as binary relations) are known to be finitely
axiomatizable. In this article, we give a new proof for this fact that is
easier and more transparent than the original proofs. We give direct con-
structions for all cases, whereas the original proofs reduced the problem
to only one case. The proof herein is combinatorial and it uses some
techniques from game theory.

1. Introduction

Relation algebras are algebras of binary relations that were introduced

by A. Tarski in 1940’s (see, e.g. [6]). The creation of these algebras was

heralded by the pioneering work of A. De Morgan, E. Schröder and C. S.

Peirce in the theory of binary relations. Relation algebras were shown to

be important in various disciplines, e.g. in mathematics, computer science,

linguistics and cognitive science. These algebras were heavily studied by

many scholars in the fields of logic and algebra alike.

Here, we consider some varieties containing the “concrete” relation alge-

bras, namely the relativized relation set algebras. Let H ⊆ {r, s}, where r

and s stand for reflexive and symmetric respectively. A relation W ⊆ U×U

is said to be an H-relation on U if it satisfies the properties in H . For

instance, if r ∈ H then we expect W to contain (u, u), for each u ∈ U .

Definition 1.1. A relativized relation set algebra A is a subalgebra of an

algebra of the form

Re(W )
def
= 〈P(W ),∪,∩, \, ∅,W, ◦,⊗, δ〉,

where W ⊆ U × U , for some set U , and the non-Boolean operations are

defined as follows: δ = {(x, y) ∈ W : x = y}. Let R, S ⊆ W , then

R ◦ S = {(x, y) ∈ W : ∃z ∈ U((x, z) ∈ R and (z, y) ∈ S)}
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2 T. ASLAN AND M. KHALED

and ⊗R = {(x, y) ∈ W : (y, x) ∈ R}. The set W is called the unit of A

and the smallest set U that satisfies W ⊆ U × U is called the base of A.

The class of all relativized relation set algebras is denoted by RRA∅. Let

H ⊆ {r, s}. The class of H-relativized relation set algebras is given by

RRAH = {A ∈ RRA∅ : the unit of A is an H − relation on the base of A}.

The classes of relativized relation algebras were shown to be finitely

axiomatizable. For the special case H = {r, s}, the finite axiomatizability

was established by R. Maddux [4] in 1982. Then, in 1991, R. Kramer [3]

proved the finite axiomatizability for arbitrary H , by reducing the problem

to the case H = {r, s} and then applying Maddux’s result [4]. A different

axiomatization for the case H = {r, s} was also given by M. Marx et al. [5].

In [1, Theorem 7.5], R. Hirsch and I. Hodkinson used a new technique

to simplify Maddux’s proof. They used games and networks to build step

by step representations. Despite the fact that this method was proved to

be effective, it was not used to simplify Kramer’s proof yet. Note that [1,

Theorem 7.5] can not be applied verbatim to the case of arbitrary H , as it

essentially depends on the reflexivity and the symmetry of the units of the

algebras in RRA{r,s}.

In this paper, we give a new proof for the finite axiomatizability of the

class RRAH for any arbitrary H ⊆ {r, s}. We give a direct construction for

all the cases, unlike the original proof [3]. We adapt Kramer’s axioms and

we generalize the method of Hirsch and Hodkinson in a non-trivial way.

Definition 1.2 (R. Kramer [3]). The class REL is defined to be the class

of all algebras of the form

A = 〈A,+, ·,−, 0, 1, ; , ,̆ 1’〉1

which satisfy the axioms (Ax 1) through (Ax 9) listed below.

(Ax 1) BlA = 〈A,+, ·,−, 0, 1〉 is a Boolean algebra.

(Ax 2) (x · y )̆̆ = x̆ · y.

(Ax 3) (x+ y); z = x; z + y; z and x; (y + z) = x; y + x; z.

(Ax 4) 1; 0 = 0 and 0; 1 = 0.

(Ax 5) (x̆ ; y)·z = (x̆ ; (y ·((x̆ )̆ ; z)))·z and (x; y )̆·z = ((x·(z; (y )̆̆ )); y )̆·z.

(Ax 6) 1’; x ≤ x and x; 1’ ≤ x.

(Ax 7) 1’; 1’ = 1’.

1Here, the operations +, ·,−, 0, 1, ; ,˘ and 1’ are the abstract versions of the concrete
operations ∪,∩, \, ∅,W, ◦,⊗ and δ, respectively, in Definition 1.1.
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(Ax 8) (−1̆ ;−1̆ ) · 1’ = 0.

(Ax 9) ((x · 1’); y); z = (x · 1’); (y; z), (x; (y · 1’)); z = x; ((y · 1’); z) and

(x; y); (z · 1’) = x; (y; (z · 1’)).

Let H ⊆ {r, s} be arbitrary. We define RELH to be the class that consists

of those A ∈ REL that satisfy (Ax p) given below, for each property p ∈ H .

Note that REL = REL∅.

(Ax s) 1̆ = 1.

(Ax r) 1’; 1 = 1 and 1; 1’ = 1.

Remark 1.3. We use the convention that−x̆ = −(x̆ ). For example, axiom

(Ax 8) above says that (−(1̆ );−(1̆ )) · 1’ = 0.

For any class K of algebras, IK is the class that consists of all isomorphic

copies of the members of K. As we mentioned before, we aim to reprove the

following theorem.

Main Theorem 1.4. For each H ⊆ {r, s}, we have RELH = IRRAH .

2. Atoms in the perfect extensions

Recall the basic concepts of Boolean algebras with operators (BAO) from

the literature, see e.g. [2]. For any Boolean algebra with operators B, let

At(B) be the set of all atoms in B.

Let A ∈ REL. Denote by A+ the perfect extension of A defined in [2]

(to form this perfect extension, we need to make sure that both operators ;

and ˘ are normal and additive, but this follows from axioms (Ax 3), (Ax 4)

and [3, Theorem 1.3 (i), (iii)]). Clearly, A+ ∈ REL since the negation occurs

only in a constant axiom and in the Boolean axioms, see [2, Theorem 2.18].

If one can show that A
+ is representable, i.e. A+ ∈ IRRA∅, then we can

deduce that A is also representable.

These perfect extensions are complete, atomic and their non-Boolean

operations are completely additive [2, Theorem 2.4 and Theorem 2.15]. So,

we define perfect algebras as follows.

Definition 2.1. An algebra A ∈ REL is said to be a perfect algebra if

and only if A is complete, atomic and its conversion and composition are

completely additive.

Now, we prove several Lemmas that seem to be interesting in their own

right. To represent a perfect algebra A, we roughly represent each atom
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a ∈ At(A) by a tuple (s, e). Geometrically, such a tuple (s, e) can be viewed

as an arrow that starts at s and ends at e. Then, we show that A can be

embedded into the full algebra whose unit consists of all arrows representing

atoms.

The real challenge now is to arrange that the unit has the desired prop-

erties, by adding the converse (e, s), the starting (s, s), or the ending (e, e)

arrows whenever it is necessary. Such new arrows need to be associated to

some atoms to keep the claim that each atom is represented by some arrows

(maybe more than one), and there are no irrelevant arrows. For example,

the following Lemma defines the converse of an “arrow-atom”, if it exists.

Lemma 2.2. Let A ∈ REL be a perfect algebra, and let a, b ∈ At(A) be

such that a˘ 6= 0 and b̆ 6= 0. Then the following are true.

(1) a˘ is an atom in A.

(2) (a )̆̆ 6= 0 and (a )̆̆ = a.

(3) a˘ = b̆ =⇒ a = b.

Proof. Let A ∈ REL be a perfect algebra, and let a, b ∈ At(A) be such that

ă 6= 0 and b̆ 6= 0. Then, by [3, Theorem 1.3 (i), (iv) and (v)], a · 1̆ 6= 0.

(1) The atomicity and the completeness of A imply that

1 =
∑

{a− ∈ A : a− is an atom}.

Since ˘ is completely additive, there exists an atom a− ∈ At(A) such

that a ·(a−)̆ 6= 0. By [3, Theorem 1.3 (ii)], we must also have ă ·a− 6= 0.

Thus, a− ≤ ă and a ≤ (a−)̆ . Hence, by [3, Theorem 1.3 (iii), (iv)],

a− ≤ ă ≤ ((a−)̆ )̆ ≤ a−.

Hence, a− = ă which means that ă is an atom.

(2) We have shown that ă is an atom. Thus, by [3, Theorem 1.3 (v)], we

have ((ă )̆ )̆ 6= 0. By the fact that ˘ is a normal operator, it follows that

(ă )̆ 6= 0. By [3, Theorem 1.3 (iv)], we have (ă )̆ ≤ a. But a is an atom,

thus (ă )̆ = a as desired.

(3) This follows immediately from (2), indeed

ă = b̆ =⇒ a = (ă )̆ = (b̆ )̆ = b.

Thus, we have shown that the conversion operator ˘ is an idempotent bijec-

tion if it is restricted to the set {a ∈ At(A) : ă 6= 0}. �

Similarly, we need to define identity atoms for the starting and the ending

arrows of each atom, if there are such identity atoms. To test whether any
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of the starting arrow or the ending arrow exists for an atom a, we define

the following entities: st(a) = 1’; a and end(a) = a; 1’.

Lemma 2.3. Let A ∈ REL be a perfect algebra, and let a ∈ At(A).

(1) Suppose st(a) 6= 0. Then there is a unique atom a− ∈ At(A) (denoted

by Sa) such that a− ≤ 1’ and a−; a = a.

(2) Suppose end(a) 6= 0. Then there is a unique atom a− ∈ At(A) (denoted

by Ea) such that a− ≤ 1’ and a; a− = a.

Proof. Let A ∈ REL be a perfect algebra, and let a ∈ At(A) be an atom.

(1) Suppose that st(a) = 1’; a 6= 0. The existence of Sa is guaranteed by the

perfectness of A (and axiom (Ax 6)). For the uniqueness, suppose that

there are two atoms a−1 and a−2 such that a−1 ≤ 1’, a−2 ≤ 1’, a−1 ; a = a

and a−2 ; a = a. Then,

a ≤ (a−1 ; 1) · (a
−
2 ; 1) by axiom (Ax 3)

= a−1 ; (a
−
2 ; 1) by [3, Theorem 1.8 (iii)]

= (a−1 ; a
−
2 ); 1 by axiom (Ax 9)

= (a−1 · a−2 ); 1 by [3, Theorem 1.8 (i)].

Thus, by axiom (Ax 4) and the fact that both a−1 and a−2 are atoms, it

follows that a−1 = a−2 .

(2) The proof is similar to the proof of item (1) above: use axiom (Ax 9)

and [3, Theorem 1.8 (i) and (iv)]. �

The following Lemma shows that the processes S and E of defining the

identity atoms are compatible with the conversion of atoms.

s e

a

ă
Sa Ea

Lemma 2.4. Let A ∈ REL be a perfect algebra, and let a ∈ At(A) be an

atom such that a˘ 6= 0.

(1) st(a) 6= 0 =⇒ end(a )̆ 6= 0 and Ea˘ = Sa.

(2) end(a) 6= 0 =⇒ st(a )̆ 6= 0 and Sa˘ = Ea.

(3) st(a) 6= 0 =⇒ Sa ≤ a; a .̆

(4) end(a) 6= 0 =⇒ Ea ≤ a ;̆ a.
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Proof. Let A ∈ REL be a perfect algebra, and let a ∈ At(A) be an atom

such that ă 6= 0.

(1) Suppose that st(a) 6= 0. Recall that a = Sa; a. Then,

ă = (Sa; a)̆

= (((Sa)̆ )̆ ; (ă )̆ )̆ by Lemma 2.2 (2) and [3, Theorem 1.8 (ii)]

= ((ă ; (Sa)̆ )̆ )̆ by [3, Theorem 1.8 (v)]

≤ ă ; (Sa)̆ by [3, Theorem 1.3 (iv)]

= ă ;Sa by [3, Theorem 1.8 (ii)]

On the other hand, (Ax 6) implies ă ;Sa ≤ ă . Hence ă ;Sa = ă .

Therefore, end(ă ) 6= 0 and E ă = Sa as desired.

(2) The proof is similar to the proof of item (1) above: use Lemma 2.2 (2),

[3, Theorem 1.8 (ii), (v)] and [3, Theorem 1.3 (iv)].

(3) We note that axiom (Ax 5), Lemma 2.3 (1) and Lemma 2.2 (2) imply

a = (Sa; a) · a = ((Sa · (a; ă )); a) · a. Thus, by axiom (Ax 4), we must

have Sa · (a; ă ) 6= 0. In other words, Sa ≤ a; ă .

(4) The proof is similar to the proof of item (3) above. �

Lemma 2.5. Let A ∈ REL be a perfect algebra. Let a ∈ At(A) be an atom

such that a ≤ 1’. Then, a˘ 6= 0, st(a) 6= 0, end(a) 6= 0, and

a = a˘ = Sa = Ea.

Proof. This follows immediately from [3, Theorem 1.8 (i) and (ii)]. �

Now, we show that S and E are compatible with each other and with

the composition operator in the perfect algebras.

Lemma 2.6. Let A ∈ REL be a perfect algebra, and let a, b, c ∈ At(A) be

some atoms. Suppose that a ≤ b; c, then the following are true.

(1) (i) st(a) 6= 0 ⇐⇒ st(b) 6= 0.

(ii) st(a) 6= 0 and st(b) 6= 0 =⇒ Sa = Sb.

(2) (i) end(a) 6= 0 ⇐⇒ end(c) 6= 0.

(ii) end(a) 6= 0 and end(c) 6= 0 =⇒ Ea = Ec.

(3) (i) end(b) 6= 0 ⇐⇒ st(c) 6= 0.

(ii) end(b) 6= 0 and st(c) 6= 0 =⇒ Eb = Sc.

Proof. Let A ∈ REL be a perfect algebra, and let a, b, c ∈ At(A) be some

atoms. Suppose that a ≤ b; c. We will only show (1) and the other items
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can be shown in the same way. Suppose st(a) 6= 0, then a = Sa; a. Hence,

by axiom (Ax 9),

a = Sa; a ≤ Sa; (b; c) ≤ (Sa; b); c.

Thus, Sa; b 6= 0. Now, by axiom (Ax 6), it is easy to see that Sa; b = b,

hence st(b) 6= 0 and Sb = Sa. Conversely, suppose that st(b) 6= 0. Then

b = Sb; b. Hence, by (Ax 9),

a ≤ b; c = (Sb; b); c = Sb; (b; c).

So by axiom (Ax 5), 0 6= a = (Sb; (b; c)) · a = (Sb; ((b; c) · (Sb; a))) · a. Thus,

by axioms (Ax 4), we have st(b) 6= 0 and (Sb; a) = a, which means that

st(a) 6= 0 and Sa = Sb. Therefore, both (i) and (ii) hold as desired. �

The following Lemma is needed for the constructions in the next section.

Lemma 2.7. Let A ∈ REL be a perfect algebra, and let a, b, c ∈ At(A) be

some atoms. Suppose that a ≤ b; c, then the following are true.

(1) a ≤ 1’ =⇒ b = c̆ and c = b̆ .

(2) b̆ 6= 0 =⇒ c ≤ b̆ ; a.

(3) c̆ 6= 0 =⇒ b ≤ a; c̆ .

(4) a˘ 6= 0 and b̆ 6= 0 =⇒ b̆ ≤ c; a .̆

(5) a˘ 6= 0 and c̆ 6= 0 =⇒ c̆ ≤ a ;̆ b.

(6) a˘ 6= 0, b̆ 6= 0 and c̆ 6= 0 =⇒ a˘≤ c̆ ; b̆ .

a

b c
b̆

a

b c
c̆

Proof. Let A ∈ REL be a perfect algebra, and let a, b, c ∈ At(A) be such

that a ≤ b; c.

(1) Suppose that a ≤ 1’. Then, by [3, Theorem 1.8 (vi)], we have b̆ 6= 0

and c̆ 6= 0. By [3, Theorem 1.8 (vi)] and axiom (Ax 5), it follows that

0 6= a = a · (b; c) = a · (c̆ ; b̆ ) = (c̆ ; (b̆ · ((c̆ )̆ ; a))) · a.

Thus, b̆ · ((c̆ )̆ ; a) 6= 0. By axiom (Ax 6), we have (c̆ )̆ ; a ≤ (c̆ )̆ .

Then, b̆ · (c̆ )̆ 6= 0. Therefore, [3, Theorem 1.3 (i) and (vi)] implies that

b · c̆ 6= 0, i.e. b = c̆ . Consequently, by [3, Theorem 1.3 (ii)], c · b̆ 6= 0

and c = b̆ .
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(2) Suppose that b̆ 6= 0. Now, by Lemma 2.2 (2) and axiom (Ax 5),

0 6= a = a · (b; c) = a · ((b̆ )̆ ; c) = ((b̆ )̆ ; (c · (((b̆ )̆ )̆ ; a))) · a.

Thus, by axiom (Ax 4), c ≤ ((b̆ )̆ )̆ ; a. The desired follows by [3, Theo-

rem 1.3 (iv)] (or by Lemma 2.2 (2)).

(3) Similarly to item (2) above using the second part of axiom (Ax 5).

(4) Apply item (2) then apply item (3), the desired follows.

(5) Apply item (3) then apply item (2), the desired follows.

(6) Apply item (4) then apply item (2), the desired follows. �

3. Games and networks

Throughout this section, fix a perfect algebra A ∈ REL. We also use von

Neumann ordinals.

Definition 3.1. An A-pre-network (pre-network, for short) is a pair N =

(N1, N2), where N1 is a (possibly empty) set, and N2 : N1 ×N1 → At(A) is

a partial map. We write nodes(N) for N1 and edges(N) for the domain of

N2; we also may write N for any of N , N2, nodes(N) and edges(N).

We write ∅ for the pre-network (∅, ∅). For the pre-networks N and N ′, we

write N ⊆ N ′ if and only if nodes(N) ⊆ nodes(N ′), edges(N) ⊆ edges(N ′),

and N ′(x, y) = N(x, y) for all (x, y) ∈ edges(N).

Let α be an ordinal. A sequence of pre-networks 〈Nκ : κ ∈ α〉 is said to

be a chain if Nκ1
⊆ Nκ2

whenever κ1 ∈ κ2. Supposing that 〈Nκ : κ ∈ α〉 is

a chain of pre-networks, define the pre-network N =
⋃
{Nκ : κ ∈ α} with

nodes(N) =
⋃
{nodes(Nκ) : κ ∈ α}, edges(N) =

⋃
{edges(Nκ) : κ ∈ α}

and its labeling is given as follows: For each (x, y) ∈ edges(N), we let

N(x, y) = Nκ(x, y), where κ ∈ α is any ordinal with (x, y) ∈ edges(Nκ).

Definition 3.2. An A-network (network, for short) is a pre-network that

satisfies the following:

(N 1) For all (x, y) ∈ edges(N), we have

(a) N(x, y) ≤ 1’ ⇐⇒ x = y.

(b) st(N(x, y)) 6= 0 ⇐⇒ (x, x) ∈ edges(N).

(c) end(N(x, y)) 6= 0 ⇐⇒ (y, y) ∈ edges(N).

(d) N(x, y)̆ 6= 0 ⇐⇒ (y, x) ∈ edges(N).

(N 2) For all (x, y) ∈ edges(N),

if (y, x) ∈ edges(N) then N(x, y) ·N(y, x)̆ 6= 0.

(N 3) For all (x, y), (x, z), (z, y) ∈ edges(N),N(x, y)·(N(x, z);N(z, y)) 6= 0.
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The following Lemma defines a network, for each atom a ∈ A. These

networks serve as initial networks, one can get more complex networks by

composing these initial networks together.

Lemma 3.3. Let a ∈ At(A) and let x, y be nodes, with x = y iff a ≤ 1’. Let

N
def
= Na

xy be the pre-network with nodes x, y and with the following edges:

• (x, y) is an edge of N , with label N(x, y) = a.

• If st(a) 6= 0 then (x, x) is an edge of N with label N(x, x) = Sa.

• If end(a) 6= 0 then (y, y) is an edge of N with label N(y, y) = Ea.

• If a˘ 6= 0 then (y, x) is an edge of N with label N(y, x) = a .̆

Then N is a well defined network.

Proof. Lemma 2.5 implies that N is a well defined pre-network. Now we

need to show that N satisfies all the conditions of Definition 3.2.

(N 1) By assumptions, we know x = y ⇐⇒ N(x, y) = a ≤ 1’. Suppose

that ă 6= 0. By Lemma 2.2 (2) and [3, Theorem 1.8 (ii)], we have

y = x ⇐⇒ a ≤ 1’ ⇐⇒ N(y, x) = ă ≤ 1’.

Thus, Condition (N 1a) holds for N . Let us check condition (N 1b).

We know from the construction that

(3.1) st(N(x, y)) 6= 0 ⇐⇒ st(a) 6= 0 ⇐⇒ (x, x) ∈ edges(N).

Suppose that (y, x) ∈ edges(N). Then, by the construction, ă 6= 0

and N(y, x) = ă . Thus, by Lemma 2.2 (2) and Lemma 2.4 (1,2), we

have end(a) 6= 0 if and only if st(ă ) 6= 0. Hence,

st(N(y, x)) 6= 0 ⇐⇒ st(ă ) 6= 0(3.2)

⇐⇒ end(a) 6= 0

⇐⇒ (y, y) ∈ edges(N)

Also, by Lemma 2.5 and [3, Theorem 1.8 (i)], we must have

(x, x) ∈ edges(N) =⇒ N(x, x) = Sa ≤ 1’(3.3)

=⇒ st(N(x, x)) = 1’;Sa = Sa,

and

(y, y) ∈ edges(N) =⇒ N(y, y) = Ea ≤ 1’(3.4)

=⇒ st(N(y, y)) = Ea; 1’ = Ea.

Therefore, by (3.1), (3.2), (3.3) and (3.4), condition (N 1b) holds for

all the edges in N as desired. Similarly, one can check that condition
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(N 1c) holds for N . Also, it is not hard to see that condition (N 1d)

follows from the construction, Lemma 2.2 (2) and Lemma 2.5.

(N 2) Suppose that (y, x) ∈ edges(N). That means ă 6= 0 andN(y, x) = ă .

Recall that (ă )̆ = a, by Lemma 2.2 (2). Thus,

N(x, y) ·N(y, x)̆ = a · (ă )̆ = a 6= 0,(3.5)

N(y, x) ·N(x, y)̆ = ă · ă = ă 6= 0.(3.6)

Moreover, Lemma 2.5 implies that

(x, x) ∈ edges(N) =⇒ N(x, x) = Sa ≤ 1’(3.7)

=⇒ N(x, x) ·N(x, x)̆ = Sa 6= 0,

and

(y, y) ∈ edges(N) =⇒ N(y, y) = Ea ≤ 1’(3.8)

=⇒ N(y, y) ·N(y, y)̆ = Ea 6= 0.

Therefore, by (3.5), (3.6), (3.7) and (3.8), it follows that condition (N

2) holds for the pre-network N .

(N 3) Note that, by the construction of N , there is no triangle (cycle of

length 3 on three different nodes) in N .

• Suppose that (x, x) ∈ edges(N) and N(x, x) = Sa. So, by the

definition of Sa, we have Sa; a = a. Hence,

(3.9) N(x, y) · (N(x, x);N(x, y)) = a · (Sa; a) = a 6= 0

Similarly, if (y, y) ∈ edges(N) then we must have

(3.10) N(x, y) · (N(x, y);N(y, y)) = a · (a; Ea) = a 6= 0

• Suppose that both (y, y) and (y, x) are edges in N . Then ă 6= 0

and end(a) 6= 0. Thus, by Lemma 2.4 (2), we have st(ă ) 6= 0

and Să = Ea. Hence, by Lemma 2.3, we have

N(y, x) · (N(y, y);N(y, x)) = ă · (Ea; ă )(3.11)

= ă · (Să ; ă )

= ă 6= 0.

Similarly, if (x, x), (y, x) ∈ edges(N) then E ă = Sa and

N(y, x) · (N(y, x);N(x, x)) = ă · (ă ;Sa)(3.12)

= ă · (ă ; E ă )

= ă 6= 0.
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• By [3, Theorem 1.8 (i)], if (x, x) ∈ edges(N) then we have

(3.13) N(x, x) · (N(x, x);N(x, x)) = Sa · (Sa;Sa) = Sa 6= 0.

Similarly, by [3, Theorem 1.8 (i)], if (y, y) ∈ edges(N) then

(3.14) N(y, y) · (N(y, y);N(y, y)) = Ea · (Ea; Ea) = Ea 6= 0.

• Now, suppose that (y, x) ∈ edges(N). If (x, x) ∈ edges(N) then

by Lemma 2.4 (3) we have

(3.15) N(x, x) · (N(x, y);N(y, x)) = Sa · (a; ă ) = Sa 6= 0.

If (y, y) ∈ edges(N) then by Lemma 2.4 (4) we have

(3.16) N(y, y) · (N(y, x);N(x, y)) = Ea · (ă ; a) = Ea 6= 0.

The facts in (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15) and

(3.16) imply that N satisfies condition (N 3).

Therefore, we have shown that N is a network as required. �

Now, we are ready to introduce a game between a female ∃ and a male

∀, then we will show that ∃ has a winning strategy.

Definition 3.4. Let α be an ordinal. We define a game, denoted by Gα(A),

with α rounds, in which the players ∀ and ∃ build a chain of pre-networks

〈Nκ : κ ∈ α〉 as follows. In round 0, ∃ starts by letting N0 = ∅. Suppose that

we are in round κ ∈ α and assume that each Nλ, λ ∈ κ, is a pre-network. If

κ is a limit ordinal then ∃ defines Nκ =
⋃
{Nλ : λ ∈ κ}. If κ = (κ− 1) + 1

is a successor ordinal then the players move as follows.

(1) ∀ may choose a non-zero element a ∈ A, and ∃ must respond with a

pre-network Nκ ⊇ Nκ−1 containing an edge e with Nκ(e) ≤ a.

(2) Alternatively, ∀ may choose an edge (x, y) ∈ edges(Nκ−1) and two el-

ements b, c ∈ A with Nκ−1(x, y) ≤ b; c. Then, ∃ must respond with a

pre-network Nκ ⊇ Nκ−1 such that for some z ∈ Nκ (possibly z ∈ Nκ−1

already), (x, z), (z, y) ∈ Nκ, Nκ(x, z) ≤ b and Nκ(z, y) ≤ c.

∃ wins if each pre-network Nκ, κ ∈ α, played during the game is actually a

network. Otherwise, ∀ wins. There are no draws.

Proposition 3.5. Let α be an ordinal. Then, ∃ has a winning strategy in

the game Gα(A).

Proof. Let α be an ordinal and let κ ∈ α. By the definition of the game, it

is obvious that ∃ always wins in the round κ if κ = 0 or κ is a limit ordinal.

So, we may suppose that κ = (κ − 1) + 1 is a successor ordinal. We also
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may assume inductively that ∃ has managed to guarantee that Nκ−1 is a

network. We consider the possible moves that ∀ can make.

(1) Suppose that ∀ picks a non-zero a ∈ A. Then, ∃ chooses a− ∈ At(A)

with a− ≤ a. She picks brand new nodes x, y 6∈ Nκ−1 such that x = y

iff a− ≤ 1’. Now, ∃ extends Nκ−1 to Nκ by adding the new nodes x and

y, and by adding the following edges:

• She adds (x, y) with label Nκ(x, y) = a−.

• If st(a−) 6= 0 then she adds (x, x) with label Nκ(x, x) = Sa−.

• If end(a−) 6= 0 then she adds (y, y) with label Nκ(y, y) = Ea−.

• If (a−)̆ 6= 0 then she also adds (y, x) with label Nκ(y, x) = (a−)̆ .

Lemma 2.5 implies that Nκ is a well defined pre-network. Note that

there are no edges connecting the old nodes of Nκ−1 together with the

new nodes. Also, by the inductive hypothesis, Nκ−1 is a network. Thus,

Lemma 3.3 implies that Nκ is indeed a network.

(2) Alternatively, suppose that ∀ chooses an edge (x, y) ∈ Nκ−1 and two ele-

ments b, c ∈ A with Nκ−1(x, y) ≤ b; c. There are two cases. First suppose

that there is z ∈ Nκ−1 such that (x, z), (z, y) ∈ Nκ−1, Nκ−1(x, z) ≤ b

and Nκ−1(z, y) ≤ c. In this case, ∃ lets Nκ = Nκ−1.

Now assume there is no such z. Since composition is completely ad-

ditive and A is atomic, then

b; c =
∑

{b−; c− : b−, c− ∈ At(A), b− ≤ b, c− ≤ c}.

So we may choose two atoms b−, c− ∈ At(A) such that b− ≤ b, c− ≤ c,

and Nκ−1(x, y) ≤ b−; c−. Our assumptions imply that b− ≤ −1’ and

c− ≤ −1’. Otherwise, suppose that b− ≤ 1’. Then, Nκ−1(x, y) ≤ 1’; 1,

and by condition (N 1b) we must have (x, x) ∈ edges(Nκ−1). By axiom

(Ax 6), it follows that

Nκ−1(x, y) ≤ b−; c− =⇒ Nκ−1(x, y) ≤ c− =⇒ Nκ−1(x, y) = c−

and by axioms (Ax 9) and [3, Theorem 1.8 (i)], we have

Nκ−1(x, y) ≤ Nκ−1(x, x);Nκ−1(x, y)

≤ Nκ−1(x, x); (b
−; c−)

≤ (Nκ−1(x, x); b
−); c−

≤ (Nκ−1(x, x) · b
−); c−

which implies that Nκ−1(x, x) · b
− 6= 0, in other words Nκ−1(x, x) = b−.

Thus, we could choose z = x, and this makes a contradiction. So we

must have b− ≤ −1’ and (similarly) c− ≤ −1’.



STONE TYPE THEOREMS VIA GAMES 13

Now, ∃ chooses a brand new node z 6∈ Nκ−1, and she creates Nκ with

nodes those of Nκ−1 plus z and edges those of Nκ−1 plus:

• (x, z) and (z, y) with labels Nκ(x, z) = b− and Nκ(z, y) = c−.

• She adds (z, x) if and only if (b−)̆ 6= 0, and its label would be

Nκ(z, x) = (b−)̆ .

• She adds (y, z) if and only if (c−)̆ 6= 0, and its label would be

Nκ(y, z) = (c−)̆ .

• She also adds (z, z) if and only if end(b−) 6= 0, and its label would

be Nκ(z, z) = Eb−.

Note that x = y if and only if Nκ−1(x, y) ≤ 1’. Thus, Lemma 2.7 (1)

implies that Nκ is a well defined pre-network. Similarly to the preceding

case, we claim that Nκ is a network. If z ∈ nodes(Nκ−1) then Nκ is a

network by the inductive hypothesis, and we are done. So, suppose that

z is not in Nκ−1. In what follows, assume that Nκ−1(x, y) = a−.

For each V ⊆ nodes(Nκ), we define Nκ ↾V , the restriction of Nκ to V ,

to be the pre-network whose nodes are the nodes in V and whose edges

are edges(Nκ) ∩ (V × V ). Every edge in Nκ ↾V keeps its label as in the

pre-network Nκ. We note that:

(a) The restriction Nκ ↾nodes(Nκ−1) is just Nκ−1, which is a network.

(b) The restriction Nκ ↾{x,z} is N b−

xz . This is a consequence of the in-

ductive hypothesis (In particular, the pre-network Nκ−1 satisfies

condition (N 1)) and Lemma 2.6 (1).

(c) The restriction Nκ ↾{z,y} is N
c−

zy . Again, this follows from the induc-

tive hypothesis and Lemma 2.6 (2,3).

By the inductive hypothesis and Lemma 3.3, these three restrictions

are networks. It is now apparent that (N 1) and (N 2) hold for Nκ,

since for any edge (p, q) of Nκ, both of p and q must lie in one of the

three networks above, all of which satisfy (N 1) and (N 2). For the same

reason, (N 3) holds whenever the three nodes mentioned in (N 3) are not

pairwise distinct. So, it remains to check (N 3) for every three pairwise

distinct nodes p, q, r of Nκ with (p, q), (p, r), (r, q) ∈ edges(Nκ).

If p, q, r are all in Nκ−1 then this instance of (N 3) holds because of the

assumption that Nκ−1 is a network. So, we can suppose z ∈ {p, q, r},

and hence that {p, q, r} = {x, y, z} (since (p, q), (p, r), (r, q) are edges

of Nκ). There are now six cases to consider, corresponding to the six

permutations of {x, y, z}:
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• Remember a− ≤ b−; c−. By the construction, (x, y), (x, z) and (z, y)

are all edges in Nκ, and

(3.17) Nκ(x, y) · (Nκ(x, z);Nκ(z, y)) = a− · (b−; c−) = a− 6= 0.

• Suppose that (y, z) ∈ edges(Nκ). Then, we should have (c−)̆ 6= 0

and Nκ(y, z) = (c−)̆ . Thus, by Lemma 2.7 (3), it follows that

(3.18) Nκ(x, z) · (Nκ(x, y);Nκ(y, z)) = b− · (a−; (c−)̆ ) = b− 6= 0.

In the same way, by Lemma 2.7 (2), if (z, x) ∈ edges(Nκ) then

(3.19) Nκ(z, y) · (Nκ(z, x);Nκ(x, y)) = c− · ((b−)̆ ; a−) = c− 6= 0.

• Suppose that (z, x) ∈ edges(Nκ). Then, by the construction, we

have (b−)̆ 6= 0 and Nκ(z, x) = (b−)̆ . Remember Nκ−1 is a network,

so if (y, x) ∈ edges(Nκ) (this happens iff (y, x) ∈ edges(Nκ−1)) then

(N 2) implies that (a−)̆ 6= 0 and Nκ(y, x) = Nκ−1(y, x) = (a−)̆ .

Hence, by Lemma 2.7 (4),

(3.20) Nκ(z, x) · (Nκ(z, y);Nκ(y, x)) = (b−)̆ · (c−; (a−)̆ ) = (b−)̆ 6= 0.

Again, by Lemma 2.7 (5), if (y, z), (y, x) ∈ edges(Nκ) then

(3.21) Nκ(y, z) · (Nκ(y, x);Nκ(x, z)) = (c−)̆ · ((a−)̆ ; b−) = (c−)̆ 6= 0.

• Suppose that (z, x), (y, z), (y, x) are all edges in the pre-network

Nκ. Then, (a−)̆ 6= 0, (b−)̆ 6= 0, (c−)̆ 6= 0, Nκ(y, x) = (a−)̆ ,

Nκ(z, x) = (b−)̆ and Nκ(y, z) = (c−)̆ . Thus, by Lemma 2.7 (6),

(3.22) Nκ(y, x) · (Nκ(y, z);Nκ(z, x)) = (a−)̆ · ((c−)̆ ; (b−)̆ ) = (a−)̆ 6= 0.

Hence, by (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22), condition (N

3) holds for Nκ as desired.

Therefore, if ∃ plays according to the strategy above she can win any play

of the game Gα(A), regardless of what moves ∀ makes. �

Proof of Theorem 1.4. Let H ⊆ {r, s}. We prove the non-trivial direction.

Let A ∈ RELH , then we need to prove that A ∈ IRRAH . Let A+ ⊇ A

be the perfect extension of A as a Boolean algebra with operators defined

in [2]. Clearly, A+ ∈ RELH and A+ is a perfect algebra in the sense of

Definition 2.1, see [2, Theorem 2.4, Theorem 2.15 and Theorem 2.18].

Let α be an ordinal (large enough) and consider a play 〈Nκ : κ ∈ α〉 of

Gα(A
+) in which ∃ plays as in Proposition 3.5, and ∀ plays every possible

move at some stage of play. That means,

(G 1) each non-zero a ∈ A
+ is played by ∀ in some round, and
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(G 2) for every b, c ∈ A
+, every κ ∈ α, and each pair x, y of nodes of Nκ

with (x, y) ∈ edges(Nκ) and Nκ(x, y) ≤ b; c, ∀ plays x, y, b, c in some

round.

This can be guaranteed by choosing α large enough.

Let U =
⋃
{nodes(Nκ) : κ ∈ α} and let

W =
⋃

{edges(Nκ) : κ ∈ α} ⊆ U × U.

We need to check that W is an H-relation on U . If s ∈ H then, by axiom

(Ax s) and the fact that ˘ is completely additive, it follows that ă 6= 0

for every atom a ∈ A+. Thus, by condition (N 1d), W in this case must

be symmetric. Similarly, if r ∈ H then axiom (Ax r) plus the complete

additivity of the composition give st(a) 6= 0 and end(a) 6= 0, for every atom

a ∈ A+. Thus, by conditions (N 1b) and (N 1c), W must be reflexive. Thus,

it remains to show that A+ is embeddable into Re(W ). For this, we define

the following function: For each a ∈ A+, let

h(a) = {(x, y) ∈ W : ∃κ ∈ α ((x, y) ∈ edges(Nκ) and Nκ(x, y) ≤ a)}.

It is not hard to see that h is a Boolean homomorphism. Also, (G 1) above

implies that h is one-to-one. We check conversion, composition, and the

identity. Let b, c ∈ A+. Then, for each (x, y) ∈ W , we have

(x, y) ∈ h(b; c)

⇐⇒ ∃κ ∈ α ((x, y) ∈ Nκ and Nκ(x, y) ≤ b; c)

⇐⇒ ∃z ∈ U ∃κ ∈ α ((x, z), (z, y) ∈ Nκ, Nκ(x, z) ≤ b and Nκ(z, y) ≤ c)

⇐⇒ ∃z ∈ U ((x, z) ∈ h(b) and (z, y) ∈ h(c))

⇐⇒ (x, y) ∈ h(b) ◦ h(c).

The second ⇐⇒ follows by (G 2). For conversion, let (x, y) ∈ W . By

conditions (N 1d) and (N 2) of the networks and [3, Theorem 1.3 (iii) and

(iv)], we have

(x, y) ∈ h(b̆ )

=⇒ ∃κ ∈ α ((x, y) ∈ Nκ and Nκ(x, y) ≤ b̆ )

=⇒ ∃κ ∈ α ((x, y), (y, x) ∈ Nκ and Nκ(y, x) ≤ (Nκ(x, y))̆ ≤ (b̆ )̆ ≤ b)

=⇒ (x, y), (y, x) ∈ W and (y, x) ∈ h(b)

=⇒ (x, y) ∈ ⊗h(b).
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Conversely, by condition (N 2) and [3, Theorem 1.3 (iii)],

(x, y) ∈ ⊗h(b)

=⇒ (x, y), (y, x) ∈ W and (y, x) ∈ h(b)

=⇒ ∃κ ∈ α ((x, y), (y, x) ∈ Nκ and Nκ(y, x) ≤ b)

=⇒ ∃κ ∈ α ((x, y), (y, x) ∈ Nκ and Nκ(x, y) ≤ (Nκ(y, x))̆ ≤ b̆ )

=⇒ (x, y) ∈ h(b̆ ).

Finally, condition (N 1a) guarantees that h(1’) = δ = {(x, y) ∈ W : x = y}.

Thus, A+ ⊆ Re(W ). Therefore, A ∈ IRRAH (i.e. A is representable) as

desired. �
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