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FIRST ORDER LOGIC WITHOUT EQUALITY ON RELATIVIZED

SEMANTICS

AMITAYU BANERJEE AND MOHAMED KHALED

Abstract. Let α ≥ 2 be any ordinal. We consider the class Drsα of relativized diagonal free set
algebras of dimension α. With same technique, we prove several important results concerning
this class. Among these results, we prove that almost all free algebras of Drsα are atomless, and
none of these free algebras contains zero-dimensional elements other than zero and top element.
The class Drsα corresponds to first order logic, without equality symbol, with α-many variables
and on relativized semantics. Hence, in this variation of first order logic, there is no finitely
axiomatizable, complete and consistent theory.

1. Introduction

In the middle of the twentieth century, A. Tarski introduced and initiated the investigation of
cylindric algebras and relation algebras. These algebras are Boolean algebras with extra additive,
closure and complemented operators. The theories of these algebras are directly related to the
development of some versions of quantifier logics, e.g.,, classical first order logic. These theories
(and the theories of the related structures) have found interesting realizations and applications in
mathematics, computer science, philosophy and logic, c.f., e.g.,, [15], [16], [17], [18] and [37].

An important notion in the theories of these algebras is the notion of representable algebras. These
algebras can be conceived as expansions of Boolean set algebras whose elements are unary relations
to algebras whose elements are relations of higher ranks. The question whether every abstract alge-
bra is isomorphic to a representable algebra is the algebraic equivalent of the completeness theorem
for the corresponding logic. Representable algebras represent the semantics of the corresponding
logic, while abstract algebras correspond to its syntactical side.

One can find well motivated appropriate notions of representable structures by first locating them
while giving up classical semantical prejudices. It is hard to give a precise mathematical underpin-
ning to such intuitions. What really counts at the end is a completeness theorem stating a natural fit
between chosen intuitive concrete-enough, but perhaps not excessively concrete, semantics and well
behaved, hopefully recursive, axiomatization. Gödel’s completeness theorem ties just one choice of
logical validity in standard set theoretic modeling.

The classical concrete algebras are cylindric set algebras defined by A. Tarski, these are algebras
of sets of sequences in which the top element is a square of the form αU , where U is a non-empty
set and α is the dimension. Other concrete algebras can be the relativized versions of cylindric set
algebras. The top element of a relativized set algebra is arbitrary subset V ⊆ αU with operations
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2 AMITAYU BANERJEE AND MOHAMED KHALED

defined like cylindric set algebras, but relativized to V . From the modal perspective, such top
elements are called guards guarding the semantics.

The notion of a relativized algebra has been introduced in algebraic logic by L. Henkin and I.
Németi. Relativization was proved extremely potent in obtaining positive results in both algebraic
and modal logic, the slogan being relativization turns negative results positive. For instance, I.
Németi proved, in a seminal result, that the universal theory of relativized cylindric set algebras
is decidable. The corresponding multimodal logic exhibits nice modal behavior and is regarded as
the base for proposing the so-called guarded fragments of first order logic by H. Andréka, J. van
Benthem and I. Németi in [27].

The important connections between relativized cylindric set algebras and guarded fragments are
discussed in [27] and [36]. More liberal versions of guarded fragments are the so-called loosely

guarded, clique guarded and packed fragments of first order logic, see [36] and [31, Definitions 19.1,
19.2, 19.3, pp. 586-589]. Relativized algebras and their related logics attracted many logicians and
were shown to have several desirable properties, especially concerning decidability and complexity
issues. They are widely applied in various areas of computer science and linguistics (e.g.,, description
logics, database theory, combining logics), see [28], [38], [40] and [32].

The structures of free cylindric algebras are quite rich since they are able to capture the whole of
first order logic, in a sense. One of the first things to investigate about these free algebras is whether
they are atomic or not, i.e.,, whether their Boolean reducts are atomic or not. By an atomic Boolean
algebra, we mean an algebra for which below every non-zero element there is an atom, i.e.,, a minimal
non-zero element. Atoms in these free algebras correspond to finitely axiomatizable complete and
consistent theories, while the atomicity of these free algebras correspond to the failure of Gödel’s
incompleteness theorem for the corresponding logics. For more details about this correspondence,
see [10], [42], [43], [33] and [35].

For a class K of algebras, and a cardinal β > 0, FrβK stands for the β-generated free K algebra.
In particular, for any ordinal α, the class of all cylindric algebras of dimension α is denoted by
CAα, thus FrβCAα denotes the β-generated free cylindric algebra of dimension α. The following
are known:

• If β ≥ ω, then FrβCAα is atomless (has no atoms). This result is due to D. Pigozzi [4,
2.5.13] and it can be generalized easily to any class of Boolean algebras with operators. So,
from now on, let us assume that β < ω.

• If α < 2 then the free algebra FrβCAα is finite, hence atomic [4, 2.5.3 (i)]. Moreover, the
free algebra FrβCA2 is infinite but still atomic [4, 2.5.3(ii), 2.5.7(ii)].

• If 3 ≤ α < ω, then FrβCAα has infinitely many atoms [4, 2.5.9], and it was posed as an
open question, cf [7, Problem 4.14], whether it is atomic or not.

• In [10], it was shown that FrβCAα is not atomic for 3 ≤ α < ω. This was proven by
an involved metalogical machinery, namely, Gödel’s incompleteness Theorem. Then the
problem of finding purely algebraic proof of this fact was raised in [7, Problem 4.14]. Such
a proof, for α ≥ 4, was found by I. Németi [6]. The problem of finding algebraic proof for
the case α = 3 is still open.

Similar results concerning representable cylindric algebras are also obtained, c.f. [6]. The question
whether the finitely generated free relativized cylindric set algebras are atomic was a difficult
problem that remained open for three decades. See [10, Remark 18 (i)], [13, Problem 38] and [34,
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Problem 1.3.3]. However, recently, it was shown that the free relativized cylindric set algebras are
not atomic, but still they contain some atoms [42]. Investigating the non-atomicity of free algebras
in algebraic logic is an ongoing research project punctuated by many deep results and challenges.
See section 6 for more details about the current status of this project.

In this paper, we consider diagonal-free versions of relativized cylindric set algebras Drsα. We prove
that FrβDrsα is atomless whenever α ≥ 2 and β ≥ 1. Considering this in line with the results in [42]
gives us some information about the differences between guarded logics with identity and guarded
logics without identity as a privileged logical symbol. The methods we use here are similar to the
ones in [42], but applied in new directions. As a strength sign of our methods, we collect other
important results too, e.g.,, the decidability of the equational theory of Drsα, which is proved by
these methods.

Diagonal-free relativized cylindric set algebras correspond to first order logic without equality on
general assignment models. We will discuss this correspondence and the applications of our results
in section 6. The interest for the study of languages without equality has its origin in the works
of W. Blok and D. Pigozzi, [9], [19] and [12]. Several developments and interesting results in this
direction have been made, c.f., e.g.,, [20], [23], [24], [25] and [26]

2. Preliminaries and main results

Recall the basic concepts of universal algebra from the literature, see, e.g.,, [5]. Let K be any class
of algebras of the same similarity type, then IK, SK, PK and HK are the classes that consist of the
isomorphic copies, subalgebras, (isomorphic copies of) direct products and homomorphic images,
respectively, of the members of K. Let X be any set, then FrXK is the free algebra of the class K
generated by the free variables in X . Throughout this paper, we fix an ordinal α ≥ 2.

We start with the following basic notions. For every i ∈ α and every two sequences f, g of length
α, we write f ≡i g if and only if g = fu

i for some u, where fu
i is the sequence which is like f except

that it’s value at i equals u. Let V be an arbitrary set of sequences of length α. For each i ∈ α, let

C
[V ]
i be the mapping from P(V ) into P(V ) defined as follows: for any X ⊆ V ,

C
[V ]
i X = {f ∈ V : (∃g ∈ X)f ≡i g}.

This is called the V -cylindrification in the direction i. When no confusion is likely, we merely omit
the superscript [V ] from the above defined object.

Definition 2.1. The class of all representable relativized diagonal free algebras of dimen-

sion α, denoted by Drsα, is defined to be the class that consists of all isomorphic copies of the
subalgebras of the (full) algebras of the form,

P(V )
def

= 〈P(V ),∩,∪, \, ∅, V, C
[V ]
i 〉i∈α,

where V is a non-empty set of sequences of length α and P(V ) is the family of all subsets of V . In
other words, Drsα = IS{P(V ) : ∅ 6= V ⊆ αU for some set U}. For every A ⊆ P(V ), the set V is
called the unit of A, while the smallest set U that satisfies V ⊆ αU is called the base of A.

Proposition 2.2. The class Drsα is a variety.

Sketch of the proof. We need to show that Drsα is closed under S, P and H. By definition, it is
clear that Drsα is closed under forming subalgebras S.
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Drsα is closed under P: Let A and B be two algebras in Drsα. We show that their direct product
A × B ∈ Drsα. The same method can be applied to show that the direct product of any set of
algebras in Drsα is an element of Drsα. By definition, there are two non-empty sets (of sequences
of length α) V1 and V2 such that A and B are isomorphic to subalgebras of the full algebras P(V1)
and P(V2), respectively. Let U1 and U2 be the bases of P(V1) and P(V2), respectively. We may
assume that U1 ∩ U2 = ∅. Now, we need to show that P(V1)×P(V2) ∼= P(V1 ∪ V2).

Define the map ψ : P(V1)×P(V2) → P(V1 ∪ V2) as follows. For each X ⊆ V1 and each Y ⊆ V2, let
ψ(X,Y ) = X ∪Y . It is not hard to see that ψ is a homomorphism because U1 ∩U2 = ∅. It remains
to prove that ψ is an injection. It is enough to show that the kernel of ψ is {∅}, which is clear by
the definition of ψ. Therefore, A×B is isomorphic to a subalgebra of P(V1 ∪ V2).

Drsα is closed under H: By the first homomorphism theorem, we know that every homomorphic
image of an algebra is isomorphic to a quotient of this algebra. Thus, it is enough to prove that
every quotient algebra of a member of Drsα is a member of Drsα. Suppose that A is a subalgebra
of P(V ) for some non-empty set V (of sequences of length α). Suppose that Θ is a congruence
relation on A. For every X ∈ A, let [X ] = {Y ∈ A : (X,Y ) ∈ Θ} and let

⋃

[X ] = {y ∈ V : y ∈ Y for some Y ∈ [X ]}.

Let V ′ = V \ (
⋃

[∅]). We prove that A/Θ is embeddable into the full algebra P(V ′). Define
ψ : A/Θ → P(V ′) as follows. For each X ∈ A, let ψ([X ]) = (

⋃

[X ]) ∩ V ′. The fact that Θ is a
congruence on A implies that ψ is an injective homomorphism. Therefore, A/Θ ∈ Drsα. �

We assume familiarity with the basic notions of the theory of cylindric algebras, e.g., atoms, zero-
dimensional elements, etc. The definitions of such notions can be found in [4] and/or [7]. We shall
mention that several general theorems from literature can be applied to obtain results concerning
Drsα. For example, Theorem 1 below (at least for the case when α is finite) may follow as a
consequence of [30, Theorem 9.4], [10, Theorem 4.2] and [21, Theorem 5.3.5].

In the present paper, we give direct proofs of these facts (for finite and infinite α’s). Our technique
also leads to some new important results, see Theorem 2 and Theorem 3.

Theorem 1. The variety Drsα enjoys each of the following:

(1) Finite schema axiomatizability (finite axiomatizability if α is finite).
(2) Finite base property, i.e.,, generated by its algebras whose base is finite.
(3) Decidable equational theory.
(4) Generated by its locally finite dimensional algebras, for the case when α is infinite.
(5) Super amalgamation property.

Theorem 2. Let X be any set, we have the following:

• If X = ∅ then FrXDrsα is a two-element algebra, hence it is atomic.
• If X 6= ∅ then the free algebra FrXDrsα is atomless.

Theorem 3. Let X be any set. The only zero-dimensional elements in the free algebra FrXDrsα

are the zero and the unit.

To prove the above theorems, we use the normal forms defined in [44], these are generalizations of
the normal forms introduced by J. Hintikka [3]. We show that, for each satisfiable normal form in
Drsα, there is an algebra in Drsα, whose base is finite, that witnesses the satisfiability of this form.
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3. Axioms and normal forms

Here, we give an equational characterization for the class Drsα. We get this characterization by
deleting the cylindrifiers-commutativity axiom from the axioms defining the diagonal free cylindric
algebras defined by A. Tarski [4, Definition 1.1.2].

Definition 3.1. Let Drα be the class of all relativized diagonal free algebras of dimension α,
i.e., the class consists of all algebras A = 〈A, ·,+,−, 0, 1, ci〉i∈α, that satisfy the following equations
for every i ∈ α.

(Ax 0) The set of equations characterizing Boolean algebras for ·,+,−, 0, 1.
(Ax 1) The set of equations defining ci as an additive, closure and complemented operator:

(Ax 1a) ci0 = 0.
(Ax 1b) x+ cix = cix.
(Ax 1c) ci(x · ciy) = cix · ciy.

Note that Drsα ⊆ Drα. It is easy to check that each A ∈ Drsα satisfies the above axioms. Later,
we will prove that the above is actually a characterization of the class Drsα, i.e., Drsα = Drα. Let
X be any set of variables, then Tα(X) is defined to be the set of all terms in the signature of Drα
that are built up from variables in X .

Now, we define normal forms in the signature of Drα. Then, we will show that each term in this
signature can be rewritten equivalently as a Boolean joint of these normal forms. Let

∏

and
∑

be the grouped versions of · and + respectively. Empty product and empty sum are defined to be
1 and 0 respectively. Let X be a set of variables and let T ⊆ Tα(X) be a finite set of terms. Let
n ∈ α+ 1 be a finite ordinal and let β ∈ T {−1, 1}. Define

Cn(T )
def

= {ciτ : τ ∈ T, i ∈ n} and T β def

=
∏

{τβ : τ ∈ T },

where, for every τ ∈ T , τβ = τ if β(τ) = 1 and τβ = −τ otherwise.

Definition 3.2. Let X be a finite set and let n ∈ α + 1 be finite ordinal such that n ≥ 2. Let
k ∈ ω, we define the following inductively.

- Normal forms of degree 0: F0(X ;n)
def

= {Xβ : β ∈ X{−1, 1}}.
- Normal forms of degree k + 1:

Fk+1(X ;n)
def

= {Xβ · (Cn(Fk(X ;n)))α : β ∈ X{−1, 1} and α ∈ Cn(Fk(X;n)){−1, 1}}.

- All normal forms, F (X ;n)
def

=
⋃

k∈ω Fk(X ;n).

The prove of the following theorem can be found in [44, Lemma 4.9 and Theorem 4.10].

Theorem 3.3. Let k ∈ ω and n ∈ α + 1 be finite ordinals such that n ≥ 2. Let X be a finite set
of variables. Then the following are true:

(i) Drα |=
∑

Fk(X ;n) = 1.
(ii) For every τ, σ ∈ Fk(X ;n), if τ 6= σ then Drα |= τ · σ = 0.
(iii) Let τ ∈ Tn(X) 1 be such that Drα 6|= τ = 0. Then there is a finite ordinal q ∈ ω and a

non-empty finite set S ⊆ Fq(X ;n) of normal forms of degree q such that Drα |= τ =
∑

S.

1Again, Tn(X) is the set of all terms in the signature of Drn that are built up from variables in X.
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Note that (i) and (ii) of the above theorem state that Fk(X ;n) forms a partition of the unit. The
following definition introduces some notations that will be used in the proceeding sections.

Definition 3.4. Let k ∈ ω and n ∈ α+ 1 be finite ordinals such that n ≥ 2. Let X be a finite set
of variables. Let β ∈ X{−1, 1} and α ∈ Cn(Fk(X;n)){−1, 1}. For each i ∈ n, define

subi(X
β · (Cn(Fk(X ;n)))α)

def

= {σ ∈ Fk(X ;n) : α(ciσ) = 1}, and

color(Xβ)
def

= color(Xβ · (Cn(Fk(X ;n)))α)
def

= {σ ∈ X : β(σ) = 1}.

4. Finite schema axiomatizability, decidability, etc

In this section, we fix finite ordinals k ∈ ω and n ∈ α+ 1 such that n ≥ 2, and we fix finite set X .
Consider any normal form τ ∈ Fk(X ;n). We will construct a unit V , on a finite base, such that

Drα 6|= τ = 0 ⇐⇒ P(V ) 6|= τ = 0.

We do this inductively by constructing a finite sequence V0 ⊆ V1 ⊆ · · · ⊆ Vk (of length k + 1), and

then we let V
def

= Vk be the desired unit. Throughout the construction, whenever we add an element
e ∈ V , we label it by some normal form tag(e) ∈ F0(X ;n) ∪ · · · ∪ Fk(X ;n). While constructing V ,
our target is to guarantee that each element satisfies its label.

To start, let U ′ be an infinite set and let t 6∈ U ′ be any entity. For any elements u0, . . . , un−1 ∈ U ′,
by writing ū = (u0, . . . , un−1, t̄) we mean the sequence, of length α, defined as follows: For each
i ∈ n, ū(i) = ui. For each i ∈ α \n, ū(i) = t. The sequence t̄ is called the tail of the desired unit V .

Constructing V0:

Let U0
def

= {v0, . . . , vn−1} ⊆ U ′ be such that |U0| = n. Let V0 = V 0
0 = · · · = V n−1

0
def

= {(v0, . . . , vn−1, t̄)}.
Define the label of the unique element in V0 as follows: tag(v0, . . . , vn−1, t̄) = τ .

Suppose that, for some l ∈ k, we are given the finite sets Ul ⊆ U ′, Vl, V
0
l , · · · , V

n−1
l ⊆ nUl × {t̄}.

Also, assume that we are given the labels of the elements in Vl.

Constructing Vl+1:

For every i ∈ n, every j ∈ n \ {i} and every v̄ ∈ V j
l , create an injective function

ψi
v̄ : subi(tag(v̄)) → U ′ \ Ul,

such that the ranges (ψi
v̄)

∗ of all of those functions are pairwise disjoint and U ′\Ul+1 is still infinite,

where Ul+1
def

=
⋃

{(ψi
v̄)

∗ : i ∈ n, v̄ ∈ V j
l for some j ∈ n, j 6= i} ∪ Ul. Now, for every i ∈ n, let

V i
l+1

def

= {v̄ui : v̄ ∈ V j
l for some j ∈ n, j 6= i, and u ∈ (ψi

v̄)
∗}.

Let Vl+1
def

= Vl ∪ V 0
l+1 ∪ · · · ∪ V n−1

l+1 . We extend the labels as follows: Let i ∈ n, j ∈ n \ {i}, v̄ ∈ V j
l

and σ ∈ subi(tag(v̄)). Suppose that u = ψi
v̄(σ), define tag(v̄ui )

def

= σ.

The desired algebra:

Finally, let V
def

= Vk and U
def

= Uk. Remember V ⊆ nU × {t̄}. We call U the actual base of V .

Note that, for each v̄ ∈ V and each 1 ≤ l ≤ k, we have

(1) v̄ ∈ V0 ⇐⇒ tag(v̄) = τ ∈ Fk(X ;n) and v̄ ∈ Vl \ Vl−1 ⇐⇒ tag(v̄) ∈ Fk−l(X ;n).
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Define the evaluation, ev : X → P(V ), of free variables into P(V ) as follows: For each x ∈ X ,

let ev(x)
def

= {v̄ ∈ V : x ∈ color(tag(v̄))}. For every v̄ ∈ V and every term σ ∈ Tα(X), we write
(V, ev, v̄) |= σ if and only if v̄ is in the interpretation of the term σ in the full algebra P(V ), under
the evaluation ev. Now, we prove that P(V ) is as desired.

Lemma 4.1. Drα 6|= τ = 0 if and only if P(V ) 6|= τ = 0.

Proof. Note that Drsα ⊆ Drα, so the direction (⇐) is trivial. Now, we prove the non-trivial direction
(⇒). Suppose that Drα 6|= τ = 0. Then by (Ax 1a), it follows that Drα 6|= tag(v̄) = 0 for each
element v̄ ∈ V . For each v̄ ∈ V and each h ≤ k, we define tagh(v̄) as follows:

Suppose that l ≤ k is the smallest number for which v̄ ∈ Vl. Remember the facts Drα 6|= tag(v̄) = 0

and tag(v̄) ∈ Fk−l(X ;n) (by (1)). If h ≥ k− l then we define tagh(v̄)
def

= tag(v̄). Suppose h < k− l,
then by Theorem 3.3 there is a unique normal form σ ∈ Fh(X ;n) such that Drα |= tag(v̄) ≤ σ, so

in this case we define tagh(v̄)
def

= σ.

To finish, it is enough to prove the following. For each v̄ ∈ V and each h ≤ k,

(2) (V, ev, v̄) |= tagh(v̄).

We use induction on h. The choice of the evaluation guarantees that (2) is true for every v̄ ∈ V
when h = 0. Suppose that (2) holds for every v̄ ∈ V , for some h ∈ k. Let v̄ ∈ V , we need to show
that (V, ev, v̄) |= tagh+1(v̄). Let l ≤ k be the smallest number for which v̄ ∈ Vl. Thus, by (1), we
have tag(v̄) ∈ Fk−l(X ;n). If h ≥ k− l, then tagh+1(v̄) = tagh(v̄) and, by the induction hypothesis,
we are done. So, suppose that h < k − l. We consider two cases.

(I) The first case is when l = 0. In this case, tag(v̄) = τ ∈ Fk(X ;n). By the choice of the
evaluation ev, it is easy to check that

(3) (∀x ∈ X) [(V, ev, v̄) |= x ⇐⇒ x ∈ color(tagh+1(v̄))].

Let i ∈ n and let σ ∈ Fh(X ;n). We need to prove the following.

(4) σ ∈ subi(tagh+1(v̄)) ⇐⇒ (V, ev, v̄) |= ciσ.

Suppose that σ ∈ subi(tagh+1(v̄)). By Theorem 3.3 (iii), there is a finite set S ⊆ Fk−1(X ;n)
such that Drα |=

∑

S = σ. We claim that there is σ′ ∈ S such that σ′ ∈ subi(tag(v̄)).
Suppose towards a contradiction that Drα |= tag(v̄) ≤ −ciσ′ for every σ′ ∈ S. Then, by the
additivity of the operator ci, it follows that tag(v̄) ≤ −ci

∑

S = −ciσ. This contradicts the
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facts that σ ∈ subi(tagh+1(v̄)) and Drα |= τ 6= 0. Thus, there exists σ′ ∈ subi(tag(v̄)) such

that Drα |= σ′ ≤ σ. By the construction of V , there exists ū ∈ V i
1 such that tag(ū) = σ′ and

v̄ ≡i ū. Hence, by induction hypothesis, (V, ev, ū) |= tagh(ū) = σ. Therefore, (V, ev, v̄) |= ciσ.
Conversely, let ū ∈ V be such that v̄ ≡i ū and (V, ev, ū) |= σ. Suppose that ū = v̄, then

by induction hypothesis and Theorem 3.3 (ii) we have tagh(v̄) = σ. Again, by Theorem 3.3,
Drα |= τ ≤ σ. Thus, by axiom (Ax 1b), σ ∈ subj(tagh+1(v̄)) as desired. Suppose that ū and
v̄ are different. By the construction, there exists σ′ ∈ subi(tag(v̄)) such that tag(ū) = σ′.
Then, by the induction hypothesis, we must have σ = tagh(ū), i.e., Drα |= σ′ ≤ σ. Thus,
Drα 6|= tag(v̄) · ciσ = 0. But Drα |= tag(v̄) ≤ tagh+1(v̄), hence Drα 6|= tagh+1(v̄) · ciσ = 0.
This can happen only if σ ∈ subi(tagh+1(v̄)).

Thus, we have shown that (4) is true for every i ∈ n and every σ ∈ Fh(X ;n). Therefore,
by (3) and (4), we have (V, ev, v̄) |= tagh+1(v̄), as desired.

(II) Now, suppose that l 6= 0. Again the choice of the evaluation guarantees the following.

(5) (∀x ∈ X) [(V, ev, v̄) |= x ⇐⇒ x ∈ color(tagh+1(v̄))].

Suppose that v̄ ∈ V j
l for some j ∈ n. Let i ∈ n be such that i 6= j. Then, by a similar

argument to the one used in the above item, one can see that

(6) (∀σ ∈ Fh(X ;n)) [σ ∈ subi(tagh+1(v̄)) ⇐⇒ (V, ev, v̄) |= ciσ].

By the construction of V and since l 6= 0, there exists an element w̄ ∈ Vl−1 such that (l−1) is
the smallest number for which w̄ ∈ Vl−1, w̄ ≡j v̄ and tag(v̄) ∈ subj(tag(w̄)). Thus, by axioms
(Ax 1a) and (Ax 1c), and Theorem 3.3, it follows that subj(tagh+1(v̄)) = subj(tagh+1(w̄)).

Since v̄ ∈ V j
l , then w̄ 6∈ V j

l−1. Now, by (6) it follows that

(7) (∀σ ∈ Fh(X ;n)) [(V, ev, w̄) |= cjσ ⇐⇒ σ ∈ subj(tagh+1(w̄))]

Hence, for every σ ∈ Fh(X ;n), we have

(8) σ ∈ subj(tagh+1(v̄)) = subj(tagh+1(w̄)) ⇐⇒ (V, ev, w̄) |= cjσ ⇐⇒ (V, ev, v̄) |= cjσ.

Finally, (5), (6) and (8) imply that (V, ev, v̄) |= tagh+1(v̄), as desired.

Thus, by the principle of mathematical induction, we have shown that (2) holds for each h ≤ k and
each v̄ ∈ V . Now, let v̄ be the unique node in V0. Note that tagk(v̄) = τ . Hence, (V, ev, v̄) |= τ .
Therefore, P(V ) 6|= τ = 0 and we are done. �

Now, the first three items of Theorem 1 are direct consequences of Lemma 4.1. The super amalga-
mation property follows from Lemma 4.1 together with [21, Theorem 5.3.5].

Proof of Theorem 1.

(1) To prove the finite schema axiomatizability, it is enough to prove that Drsα = Drα. Let Y
be any set of variables (finite or infinite) and let τ ∈ Tα(Y ). Then,

Drα |= τ = 0 ⇐⇒ Drsα |= τ = 0.

The implication =⇒ follows from the fact that Drsα ⊆ Drα. For the other direction, suppose
that Drα 6|= τ = 0. Let m ∈ ω and let Z ⊆ Y be a finite set such that τ ∈ Tm(Z). We
can assume that m ≥ 2. By Theorem 3.3 (iii), there are k ∈ ω and σ ∈ Fk(Z;m) such that
Drα |= σ ≤ τ and Drα 6|= σ = 0. The fact that Drsα ⊆ Drα implies that Drsα |= σ ≤ τ .
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Moreover, by Lemma 4.1 we can say that Drsα 6|= σ = 0. Thus, we have Drsα 6|= τ = 0 and
the implication ⇐= is established. Therefore, we can also deduce that FrY Drα ∼= FrY Drsα.

Now, we need to show that Drα ⊆ Drsα. Let A ∈ Drα. By the universal mapping prop-
erty, there is an onto homomorphism f : FrADrα → A. In other words, A is a homomorphic
image of FrADrα. Thus, A is a homomorphic image of FrADrsα too. But Drsα is a variety,
so it contains all its free algebras and it is closed under H. Therefore, A ∈ Drsα as desired.

(2) The finite base property follows immediately from Lemma 4.1, Theorem3.3 and (1).
(3) It is known that the finite schema axiomatizability and the finite base property imply the

decidability of the equational theory, see, e.g., [2].
(4) All the algebras constructed in this section are locally finite dimensional. Thus Drsα is

generated by its locally finite dimensional algebras.
(5) We showed that Drsα is characterized by positive equations, so it is canonical variety. Thus,

super amalgamation property follows from [21, Theorem 5.3.5].

�

5. Free algebras: atoms and zero-dimensional elements

In this section we give the proof of Theorem 2. We start with the following.

Theorem 5.1. The free algebra Fr∅Drsα is a two elements algebra, hence it is atomic.

Proof. Straightforward since any finite Boolean algebra is atomic. �

Theorem 5.2. Let X be an infinite set, the free algebra FrXDrsα is atomless.

Proof. (Essentially due to D. Pigozzi [4, 2.5.13]) Let τ ∈ Tα(X) be such that Drsα 6|= τ = 0. We
show that τ is not an atom in FrXDrsα. Note that there is a finite Y ⊆ X such that τ ∈ Tα(Y ).
Let y ∈ X \ Y and let B ∈ Drsα be such that B 6|= τ = 0. By the universal mapping property,
there are homomorphisms f : FrXDrsα → B and g : FrXDrsα → B such that f(z) = g(z), for all
z ∈ Y , while f(y) = 1 and g(y) = 0. Then, f(τ) = g(τ). Hence, f(τ · y) = g(τ · −y) = τB 6= 0. So,
Drsα 6|= τ · y = 0 and Drsα 6|= τ · −y = 0. Thus, τ can not be an atom in FrXDrsα. �

To prove the remaining part of Theorem 2, we need to prove the following lemma. Let k ∈ ω and
n ∈ α+1 be finite ordinals such that n ≥ 2, and let X be a non-empty finite set. Let τ ∈ Fk(X ;n).
Recall the unit V constructed in the previous section that witnesses the satisfiability of τ .

Lemma 5.3. Suppose that k is even. There is a sequence v̄0, . . . , v̄k ∈ V such that:

(1) For every h ∈ k + 1, tag(v̄h) ∈ Fh(X ;n). In particular, tag(v̄k) = τ .
(2) For every h ∈ k: If h is odd then v̄h ≡0 v̄h+1. If h is even then v̄h ≡1 v̄h+1.

Proof. Let v̄k be the only element in V0. If k = 0, then we are done. So let us suppose k 6= 0. Now
since Drα |= τ 6= 0 then there exists a normal form τ1 ∈ Fk−1(X ;n) such that Drα |= τ ≤ τ1. By
axiom (Ax 1b), we have Drα |= τ ≤ c0τ1. Hence, τ1 ∈ sub0(τ). Let v̄k−1 be the unique element in
V 0
1 with v̄k ≡0 v̄k−1 and tag(v̄k−1) = τ1. If k = 1, then we are done. Suppose that k > 1, since

Drα |= τ1 6= 0 then there exists unique τ2 ∈ Fk−2(X ;n) such that Drα |= τ1 ≤ τ2. Again, by axiom
(Ax 1b), we have τ2 ∈ sub1(τ1). Let v̄k−2 be the unique element in V 1

2 with v̄k−1 ≡1 v̄k−2 and
tag(v̄k−2) = τ2. Continue in this manner, we get the desired sequence. �
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V

•v̄0

• v̄1

•v̄2

•

•

•

•v̄k

Theorem 5.4. Let X be a non-empty finite set, the free algebra FrXDrsα is atomless.

Proof. Let σ ∈ Tα(X) be such that Drsα 6|= σ = 0. We need to show that σ is not an atom in
FrXDrsα. By Theorem 3.3 and Theorem 1 (1), there are finite n ∈ α+ 1 (n ≥ 2), finite k ∈ ω and
non-empty finite set S ⊆ Fk(X ;n) such that Drsα |= σ =

∑

S. Thus, there is τ ∈ Fk(X ;n) such
that Drsα |= 0 6= τ ≤ σ. So, to prove that σ is not an atom in the free algebra FrXDrsα, it is enough
to prove that τ is not an atom in FrXDrsα. We do this through the following steps. Without loss
of generality we can assume that k is an even number.

Step 1: Given the normal form τ , construct the unit V , the actual base U , the tail t̄ and the
evaluation ev as constructed in the previous section. Recall that we have

(9) (∀v̄ ∈ V ) (V, ev, v̄) |= tag(v̄).

Step 2: Let v̄0, . . . , v̄k be the sequence given in Lemma 5.3. Extend V to V + as follows: Choose
a brand new element z 6∈ U and let V + = V ∪ {(v̄0)z0}. Recall that X is a non-empty set of free
generators, so one can find a normal form ς ∈ F0(X ;n) such that tag(v̄0) 6= ς . Let tag((v̄0)

z
0) = ς .

Define the evaluation ev+ : X → P(V +) as follows. For every x ∈ X , let

ev+(x) = {v̄ ∈ V + : x ∈ color(tag(v̄))}.

By a similar argument to the proof of Lemma 4.1, one can see that

(10) (∀v̄ ∈ V +) (V +, ev+, v̄) |= tag(v̄).

Step 3: Recall the sequence v̄0. . . . , v̄k ∈ V . Let h ∈ k + 1. Recall that Fh+1(X ;n) is a partition
of the unit, see Theorem 3.3 (i), (ii). Then there exists a unique normal form σh+1 ∈ Fh+1(X ;n)
such that (V, ev, v̄h) |= σh+1. Similarly, there exists a unique normal form γh+1 ∈ Fh+1(X ;n) such
that (V +, ev+, v̄h) |= γh+1. Thus, by (9), (10) and Theorem 3.3, we have

(11) Drsα |= 0 6= σh+1 ≤ tag(v̄h) and Drsα |= 0 6= γh+1 ≤ tag(v̄h).
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V

•v̄0

•
v̄1

•

•

•

•

•v̄k

V+

•v̄0

•
v̄1

•

•

•

•

•v̄k

•
(v̄0)

z
0

Step 4: Now, we prove the following: For every h ∈ k + 1,

(12) Drsα |= σh+1 · γh+1 = 0.

We use induction on h. Since tag(v̄0) 6= tag((v̄0)
z
0) = ς and (∀v̄ ∈ V )

[

v̄ ≡0 v̄0 =⇒ v̄ = v̄0
]

, then
Drsα |= σ1 ·−c0ς 6= 0 and Drsα |= γ1·c0ς 6= 0. Thus, by definition of normal forms, Drsα |= σ1 ≤ −c0ς
and Drsα |= γ1 ≤ c0ς . Hence, Drsα |= σ1 ·γ1 = 0. The induction step goes in a similar way. Suppose
that Drsα |= σh+1 · γh+1 = 0, for some h ∈ k. Let i < 2 be such that i = h+1 (mod 2). Remember
v̄h ≡i v̄h+1 and σh+1, γh+1, tag(v̄h+1) ∈ Fh+1(X ;n). By the induction hypothesis, without loss of
generality, we may assume that Drsα |= σh+1 · tag(v̄h+1) = 0.

Recall the construction of the unit V . Note that v̄h ∈ {(v̄h+1)
u
i : u ∈ (ψi

v̄h+1
)∗}, and in fact

(13) (∀v̄ ∈ V )
[

v̄ ≡i v̄h+1 =⇒ v̄ ∈ {(v̄h+1)
u
i : u ∈ (ψi

v̄h+1
)∗} ∪ {v̄h+1}

]

.

Remember that the labels of (v̄h+1)
u
i ’s were distinct normal forms in subi(tag(v̄h+1)). Thus, by

Theorem 3.3 (ii), we have the following. For each element v̄ ∈ V \ {v̄h+1, v̄h},

(14) v̄ ≡i v̄h+1 ≡i v̄h =⇒ Drsα |= tag(v̄) · tag(v̄h) = 0.

Therefore, by (11), (14) and the assumption that Drsα |= σh+1 · tag(v̄h+1) = 0, we have

(15) (∀v̄ ∈ V \ {v̄h})
[

v̄ ≡i v̄h+1 =⇒ (V, ev, v̄) 6|= σh+1 and (V +, ev+, v̄) 6|= σh+1

]

.

Remember that σh+1 and γh+1 were chosen such that (V, ev, v̄h) |= σh+1 and (V +, ev+, v̄h) |= γh+1.
Hence, by the induction hypothesis,

(16) (V, ev, v̄h) |= σh+1 and (V +, ev+, v̄h) 6|= σh+1.

We also note that (V, ev, v̄h+1) |= σh+2 and (V +, ev+, v̄h+1) |= γh+2. Thus, by (13), (15) and (16),

(17) (V, ev, v̄h+1) |= σh+2 · ciσh+1 and (V +, ev+, v̄h+1) |= γh+2 · −ciσh+1.
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Therefore, by construction of normal forms, Drsα |= σh+2 ≤ ciσh+1 and Drsα |= γh+2 ≤ −ciσh+1.
In other words, Drsα |= σh+2 · γh+2 = 0. Hence, (12) follows by the principle of mathematical
induction.

In particular, there are two forms σk+1, γk+1 ∈ Fk+1(X) each of which is satisfiable form below τ
inside the free algebra FrXDrsα (11). We also proved that these forms are disjoint (12). Therefore,
τ is not an atom in the free algebra FrXDrsα as desired. �

Zero dimensional elements in the free algebras.

Definition 5.5. Let A ∈ Drsα and let a ∈ A. Define ∆a = {i ∈ α : cia 6= a}, the dimension set of
a. The element a is said to be zero-dimensional if and only if ∆a = 0.

Proof of Theorem 3. The free algebra Fr∅Drsα contains only two elements 0 and 1. Now, suppose
that X 6= ∅. Let t ∈ Tα(X) be such that Drsα 6|= t = 0 and Drsα 6|= t = 1. Then there are finite
n ∈ α + 1 and finite Y ⊆ X such that n ≥ 2, t ∈ Tn(Y ) and −t ∈ Tn(Y ). Thus, by Theorem 3.3
(iii), one can find k ∈ ω and two normal forms τ, σ ∈ Fk(Y ;n) such that Drsα |= 0 6= τ ≤ t
and Drsα |= 0 6= σ ≤ −t. Now, we prove that Drsα 6|= σ · ci0 · · · cil−1

τ = 0, for some l ∈ ω and
i0, . . . , il−1 ∈ n. Without loss of generality, we can assume that k is even.

Let V τ and V σ be the two units (defined in the previous section) witnessing the satisfiability of
τ and σ respectively. We can suppose that V τ and V σ share the same tail t̄, while their actual
bases are disjoint. Let v̄τ0 , . . . , v̄

τ
k ∈ V τ and v̄σ0 , . . . , v̄

σ
k ∈ V σ be the sequences given by Lemma 5.3.

Suppose that v̄τ0 = (x0, . . . , xn−1, t̄) and v̄
σ
0 = (y0, . . . , yn−1, t̄). Define the following inductively, for

each j ∈ n: Let w̄1 = (v̄τ0 )
y0

0 and let w̄n = (w̄n−1)
yn−1

n−1 . Let V = V τ ∪ V σ ∪ {w̄1, . . . , w̄n−1}.

V τ V σ

v̄τ0

•

v̄σ0

•

•

•

•

•

•

•

• •

•

• •

v̄τk v̄σk

•

•

•

•

•

•

•

•

Recall the labels of the elements of V τ and V σ. For each x ∈ X \Y , let ev(x) = ∅. For each x ∈ Y ,
let ev(x) = {v̄ ∈ V τ ∪ V σ : x ∈ color(tag(v̄))} ∪ {w̄n−1 : n − 1 = 1 and x ∈ color(tag(v̄τ0 ))}. By a



FIRST ORDER LOGIC WITHOUT EQUALITY ON RELATIVIZED SEMANTICS 13

similar argument to Lemma 4.1, one can verify that

(18) (∀v̄ ∈ V τ ∪ V σ) (V, ev, v̄) |= tag(v̄).

Thus, (V, ev, v̄τk) |= tag(v̄τk ) = τ and (V, ev, v̄σk ) |= tag(v̄σk ) = σ. Moreover, it is easy to see that
there are l ∈ ω and i0, . . . , il−1 ∈ n such that (V, ev, v̄σk ) |= σ · ci0 · · · cil−1

τ . Hence,

(19) Drsα 6|= −t · ci0 · · · cil−1
t = 0.

Therefore, t is not zero-dimensional in the free algebra FrXDrsα. Otherwise, if t is zero-dimensional
then Drsα |= −t · ci0 · · · cil−1

t = −t · t = 0, which contradicts (19). �

6. Application in logic and related developments

One way of having nice versions of first order logic is to keep the set of formulas as it is but consider
generalized models when giving meaning for these formulas. Such a move was first taken by L.
Henkin in [1]. The general assignment models for first order logic, where the set of assignments
of variables into a model is allowed to be an arbitrary subset of the usual one, was introduced
by I. Németi [10]. With selecting a subset of assignments, dependence between variables can be
introduced into semantics. For a survey on generalized semantics, see [39].

For now, let us suppose that α ≥ 2 is finite. By a suitable language we mean a set of α-many
individual variables together with a set of relation symbols each of which is assigned a positive
rank. For simplicity, we assume that our suitable languages do not contain functional symbols
and/or constant symbols. Given a suitable language L, atomic formulas are constructed in the
usual way using only the relation symbols and the variables of L. There is no atom of the form
(x = y) unless if the identity relation appears in L as a binary relation symbol, the identity = is
not treated as a privileged logical symbol in this context. The set of formulas in language L is then
defined to be the smallest set that contain all atomic formulas and which is closed under the logical
connectives.

Definition 6.1. Suppose that L is a suitable language. A general assignment model is an ordered
pair (M, V ) with M a standard first order model with domain M and interpretation function I,
and V is a non-empty set of assignments on M, i.e.,, a subset of VARM , where VAR is the set of all
individual variables of L. The language L is interpreted as usual, now at triples M, V, s with s ∈ V
- with the following clauses for quantifiers:

M, V, s |= ∃xϕ
def

⇐⇒ for some t ∈ V : s ≡x t and M, V, t |= ϕ.

Here, ≡x is the relation between assignments of identity up to x-values.

We denote the logical system consists of the set of formulas in suitable language L together with
the general assignment models by GAM 6=(L). The notions of satisfiable formulas, contradictions,
valid formulas, etc, are defined in the usual way. We note that the class of relativized diagonal-free
algebras Drsα is the algebraic counterpart of the GAM 6=(L)’s. Thus, the following items are the
natural logical reflection of the results in Theorem 1 and Theorem 2.

Theorem 6.2. Let L be a suitable language. Each of the following is true.

(1) GAM 6=(L) is finitely-schema axiomatizable.
(2) GAM 6=(L) has the finite model property, i.e.,, every non-valid formula is falsified in a finite

general assignment model.
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(3) The set of validities of GAM 6=(L) is decidable.
(4) GAM 6=(L) has most of the positive definability properties: Craig’s interpolation, Beth de-

finability, etc.
(5) If L has at least one relation symbol, then every finitely axiomatizable theory in GAM 6=(L)

cannot be both complete and consistent.

Let F(L) denotes Lindenbaum-Tarski algebra of GAM 6=(L). Let R be the set of all atomic formulas
in language L. To deduce the above theorem from our algebraic results herein, it would be enough
to prove that F(L) ∼= FrRDrsα. The function assigning ϕM,V = {s ∈ V : M, V, s |= ϕ}, the
meaning of ϕ in (M, V ), to ϕ is a homomorphism from F(L) to the full algebra P(V ). Not every
homomorphism from F(L) to P(V ) is of this form, though, because the meanings of the atomic
formulas have to be k-regular in the sense that they do not distinguish sequences that agree on the
first k indices. Thus, F(L) is a homomorphic image of FrRDrsα, but not necessarily isomorphic to
it. In the literature, investigating so-called regular algebras is used to fill this gap.

We also note that a completely mechanical translation of the proofs of our algebraic theorems can be
used to prove the above theorem. Such translation, from algebra to logic, was used in [42, Chapter
2] to obtain the following results for guarded fragments of first order logic: (1) Every satisfiable
formula of guarded fragment can be extended to a finitely axiomatizable, complete and consistent
theory. (2) The same is not true if we replace guarded fragment with its solo-quantifiers version;
when polyadic quantifiers are not allowed. Same results hold for loosely guarded fragments, clique
guarded fragments and packed fragments of first order logic.

6.1. Atomicity of free algebras in algebraic logic. It was mentioned in the introduction that
I. Németi used a metalogical proof (translation of Gödel’s incompleteness theorem) to show non-
atomicity of finitely generated free algebras of CAα, if α ≥ 3. Such metalogical argument could
be used also to deduce non-atomicity of finitely generated free algebras of other important classes
of algebras of logics, e.g.,, representable cylindric algebras Gsα (if α ≥ 3), relation algebras RA,
representable relation algebras RRA and semi-associative relation algebras SA. See [8] and [10].

So far, only one atomicity result has been obtained. The proof that FrXCA2 is atomic, for finite X ,
relies on the facts that CA2 is a discriminator variety and the equational theory of CA2 coincides with
the equational theory of the finite CA2’s, c.f. [4, 2.5.7]. This could be generalized by H. Andréka,
B. Jónsson and I. Németi [14] as follows: For any variety of Boolean algebras with operators K of
finite similarity type, if K is generated by its finite members then

K is a discriminator variety =⇒ FrXK is atomic, for every finite X.

In the literature of algebraic logic, there are several varieties (of finite similarity types) that are
generated by their finite members but none of them is discriminator. Here are some examples. The
class of relativized cylindric set algebras Crsα and its variations Dα and Gα. The classes of non-
commutative cylindric algebras WCAα and NCAα. The classes of non-associative relation algebras
NA and weakened associative relation algebras WA. The definitions of all these classes can be found
in [10] and [22]. The finite algebra property of these classes can be found in [10], [22], [11] and [29].

The question whether the finitely generated free algebras of these classes are atomic remained open
for three decades. Recently, negative answers have been obtained for this problem. For finite X , the
free algebras FrXCrsα, FrXDα and FrXGα were shown to be not atomic in [42]. Non-atomicity of
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free non-commutative cylindric algebras WCAα and NCAα was proved in [43]. In [45], similar non-
atomicity result for the class NA was obtained. Finally, preprint [41] includes an idea for showing
non-atomicity of FrXWA, for finite X . It is worthy of note that the methods in these references are
quite different, in each case there is a different difficulty.

Hence, roughly speaking, we can say that being non-discriminator in the above classes was more
dominant than the finite algebra property, and it caused the non-atomicity of finitely generated
free algebras. A natural question arises here: is that always true?

Problem. Find a variety of Boolean algebras with operators K such that:

(a) the similarity type of K is finite,
(b) K is generated by its finite members,
(b) K is not discriminator variety, and
(d) all the finitely generated free algebras of K are atomic.

6.2. Infinite dimensional free algebras. Here, assume that α ≥ 2 is an infinite ordinal. The free
algebras of infinite dimensional cylindric algebras are more interesting. The metalogical technique
used in [10] provides a proof for non-atomicity of the free algebras of CAα. The non-atomicity of
free algebras of Gsα can be obtained by a purely algebraic argument, see [6]. This argument uses
the fact that Gsα is generated as a variety by its locally finite dimensional algebras. The same is
not true for classes Crsα, Dα and Gα, however with a different algebraic technique non-atomicity of
the free algebras of these classes was shown in [42, Appendix 2].

We note that Drsα is generated by its locally finite dimensional algebras, however the method used
to prove non-atomicity of infinite dimensional free algebras of Gsα cannot work here, it depends
essentially on the existence of diagonals. The method used here to prove non-atomicity of the free
algebras of Drsα is completely different than the one in [42, Appendix 2].
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[15] R. Berghammer, P. Kempf, G. Schmidt and T. Ströhlein (1991). Relation algebras and logic of programs. In

[13], pp. 37–58.
[16] S. Givant (1991). Tarski’s development of Logic and Mathematics based on the calculus of relations. In [13],

pp. 189–215.
[17] V. Manca and A. Salibra (1991). On the power of equational logic: applications and extensions. [13], pp.

393–412.
[18] B. I. Plotkin (1991). Halmos (polyadic) algebras in Database theory. In [13], pp. 503–518.
[19] W. J. Blok and D. Pigozzi (1992). Algebraic semantics for universal Horn logic without equality. In: A.

Romanowska and J. D. H. Smith, editors, Universal Algebra and Quasigroups. Heldermann Verlag.
[20] R. Elgueta (1994). Algebraic Model Theory for Languages without equality. Ph.D. Thesis, Universitat de

Barcelona.
[21] M. Marx (1995). Algebraic relativization and arrow logic. Ph.D thesis, ILLC dissertation Series. Institute for

Logic, Language and Computation, University of Amsterdam.
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